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WEAK AND STRONG CONVERGENCE THEOREMS FOR
WIDELY MORE GENERALIZED HYBRID MAPPINGS
IN HILBERT SPACES

MAYUMI HOJO

ABSTRACT. In this paper, using strongly asymptotically invariant sequences, we
first prove a weak convergence theorem of Mann’s type [18] for widely more gen-
eralized hybrid mappings in a Hilbert space. Furthermore, using the idea of mean
convergence by Shimizu and Takahashi [19, 20], we prove a strong convergence
theorem of Halpern’s type [6] for widely more generalized hybrid mappings in a
Hilbert space. This theorem generalizes Hojo and Takahashi’s strong convergence
theorem [7] for generalized hybrid mappings.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a non-empty subset of H. We denote
by F(T) the set of fixed points of T'. Kocourek, Takahashi and Yao [14] introduced
a broad class of nonlinear mappings in a Hilbert space which covers nonexpansive
mappings [5], nonspreading mappings [15, 16] and hybrid mappings [24]. A mapping
T :C — H is said to be generalized hybrid if there exist «, 8 € R such that

alTe = Tyl* + (1 = a)llz = Ty|* < BTz — y|* + (1 = Bz — y||?

for all x,y € C, where R is the set of real numbers. We call such a mapping an (a,
B)-generalized hybrid mapping. Hojo and Takahashi [7] proved the following strong
convergence theorem.

Theorem 1.1 ([7]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T be a generalized hybrid mapping of C into itself. Let u € C' and
define two sequences {xy,} and {z,} in C as follows: x1 =z € C and

Tnt1 = apu + (1 — ) zn,
1 n—1
Zn = — Z Tk:rn
n
k=0

for allm = 1,2, ..., where 0 < o, < 1, oy — 0 and Y 07 oy, = 0. If F(T) is
nonempty, then {x,} and {z,} converge strongly to Pu € F(T), where P is the
metric projection of H onto F(T).

Very recently, Kawasaki and Takahashi [13] introduced a broader class of nonlin-
ear mappings than the class of generalized hybrid mappings in a Hilbert space. A
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mapping 1" from C' into H is said to be widely more generalized hybrid if there exist
a, B3,7,9,¢,(,n € R such that

(L1 alTe=Ty|* + Bllz — TylI* ++I|Tx — yl* + é)lz — y|*
+elle —Tz|* + Clly — Tyl* +ll(z — Tz) — (y = Ty)|I> <0

for all z,y € C. Such a mapping T is called an («, 3,7, 0, &, (, n)-widely more gener-
alized hybrid mapping; see also [12]. In particular, an (a, 3,7, 0,0, 0, 0)-widely more
generalized hybrid mapping is generalized hybrid in the sense of Kocourek, Taka-
hashi and Yao [14] if a4+ 8 = —y—9 = 1. A generalized hybrid mapping with a fixed
point is quasi-nonexpansive. However, a widely more generalized hybrid mapping is
not quasi-nonexpansive generally even if it has a fixed point. In [13], Kawasaki and
Takahashi proved fixed point theorems and nonlinear ergodic theorems of Baillon’s
type [2] for such new mappings in a Hilbert space. In particular, by using their fixed
point theorems, they proved directly Browder and Petryshyn’s fixed point theorem
[3] for strict pseudo-contractive mappings and Kocourek, Takahashi and Yao’s fixed
point theorem [14] for super generalized hybrid mappings.

In this paper, using strongly asymptotically invariant sequences, we first prove a
weak convergence theorem of Mann’s type [18] for widely more generalized hybrid
mappings in a Hilbert space. Furthermore, using the idea of mean convergence by
Shimizu and Takahashi [19, 20], we prove a strong convergence theorem of Halpern’s
type [6] for widely more generalized hybrid mappings in a Hilbert space. This theo-
rem generalizes Hojo and Takahashi’s strong convergence theorem [7] for generalized
hybrid mappings.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a (real) Hilbert space with inner product (-, ) and
norm || - ||, respectively. We denote the strong convergence and the weak convergence
of {,} tox € H by x,, - x and z,, = z, respectively. From [23], we have that for
any z,y € H and A € R,

(2.1) lyl? = llz]* < 2(y — z,y),

(2.2) 1Az 4 (1= Nyl = Azl + (1 = Vgl = 21 = Nz -yl
Furthermore, we know that for z,y,u,v € H
(2.3) 2(z —y,u—v) = [l —v|*+ lly — ul’ = o —u||* — [ly — .

Let C' be a non-empty subset of H. A mapping T : C — H is said to be
nonexpansive if ||Tx —Ty|| < ||z —y|| for all z,y € C. A mapping T : C — H
with F(T) # 0 is called quasi-nonexpansive if |z — Ty|| < ||z — y|| for all x € F(T)
and y € C. Let C be a non-empty, closed and convex subset of H and z € H.
Then, we know that there exists a unique nearest point z € C' such that ||z — z|| =
infycc ||z — y||. We denote such a correspondence by z = Pcx. The mapping Pc is
called the metric projection of H onto C. It is known that Py is nonexpansive and

(x — Pox, Pox —u) >0
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for all x € H and v € C. Furthermore, we know that
(2.4) |Pox — Peyll® < {x -y, Pex — Poy)

for all z,y € H; see [23] for more details. For proving main results in this paper,
we also need the following lemmas proved in [25] and [1].

Lemma 2.1 (Takahashi and Toyoda [25]). Let D be a nonempty closed convex
subset of H. Let P be the metric projection from H onto D. Let {u,} be a sequence
in H. If |[up+1 — u|| < |lup — u| for any w € D and n € N, then {Puy,} converges
strongly to some ug € D.

Lemma 2.2 (Aoyama-Kimura-Takahashi-Toyoda [1]). Let {s,} be a sequence of
nonnegative real numbers, let {ay,} be a sequence of [0,1] with Y " | oy, = o0, let
{Bn} be a sequence of nonnegative real numbers with > »" | Bn < 00, and let {v,}
be a sequence of real numbers with limsup,,_,., vn» < 0. Suppose that

Spt+1 < (1 - an)sn + anyn + Bn

foralln=1,2,.... Then lim,_, s, = 0.

Let £*° be the Banach space of bounded sequences with supremum norm. Let

i be an element of (£*°)* (the dual space of ¢*°). Then we denote by u(f) the
value of p at f = (x1,x9,x3,...) € £>°. Sometimes, we denote by p,(z,) the value
wu(f). A linear functional p on ¢*° is called a mean if p(e) = ||u|] = 1, where
e=(1,1,1,...). A mean p is called a Banach limit on £ if p,(zp4+1) = pn(xn).
We know that there exists a Banach limit on ¢°°. If 11 is a Banach limit on ¢, then
for f = (x1,29,23,...) € £,

liminf 2, < p,(x,) < limsup z,.

n—ro0 n—00
In particular, if f = (x1,x9,23,...) € £*° and z, — a € R, then we have u(f) =
tn(xyn) = a. See [22] for the proof of existence of a Banach limit and its other
elementary properties. For f € £°°, define ¢; : £>° — {*° as follows:

Lf(k)=fQ+k), VkeN
A sequence {u,} of means on > is said to be strongly asymptotically invariant if

where (7 is the adjoint operator of ¢;. See [4] for more details. The following
definition which was introduced by Takahashi [21] is crucial in the fixed point theory.
Let h be a bounded function of N into H. Then, for any mean p on £°°, there exists
a unique element h, € H such that

(hys2) = (Welh(k), 2), V= € H.

Such a hy, is contained in ¢o{h(k) : k € N}, where oA is the closure of convex hull
of A. In particular, let T be a mapping of a subset C' of a Hilbert space H into
itself such that {T%x : k € N} is bounded for some x € C. Putting h(k) = T*z for
all k£ € N, we have that there exists zg € H such tat

p(TFa,y) = (20,y), Vy € H.
We denote such zg by T),x.
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From Kawasaki and Takahashi [13], we also know the following fixed point theo-
rem for widely more generalized hybrid mappings in a Hilbert space.

Theorem 2.3 ([13]). Let H be a Hilbert space, let C' be a non-empty, closed and
convex subset of H and let T be an («, 3,7, 90,¢,(,n)-widely more generalized hybrid
mapping from C' into itself, i.e., there exist o, B,7,9d,¢,(,n € R such that
a| Tz=Ty|* + Bllz — Tyl* + ATz — y|* + 6|z — y|”
+ellz = Ta|? + Clly = Tyll* +nll(z = Tz) = (y = Ty)|> <0

for all x,y € C. Suppose that it satisfies the following condition (1) or (2):

(1) a+pB+v+0>0,a+v+e+n>0and (+n>0;

2) a+B8+v+d>0,a++(+n>0andec+n>0.
Then T has a fized point if and only if there exists z € C such that {T"z | n =
0,1,...} is bounded. In particular, a fived point of T is unique in the case of o +
B+~ + 3 >0 under the conditions (1) and (2).

3. WEAK CONVERGENCE THEOREMS OF MANN’S TYPE

In this section, we prove a weak convergence theorem of Mann’s type [18] for
widely more generalized hybrid mappings in a Hilbert space. Before proving the
result, we need the following lemma proved by Kawasaki and Takahashi [13]; see
also [8].

Lemma 3.1 ([13]). Let C be a non-empty, closed and convexr subset of a Hilbert
space H and let T be an (o, B,7,9,e,(,n)-widely more generalized hybrid mapping
from C' into itself with F(T) # 0 which satisfies the condition (1) or (2):

(1) a+B+7+6>0,a+ >0 and {+n>0;
(2) a+B8+7v+5>0,a+y>0andec+n>0.
Then T is quasi-nonerpansive.

If T:C — H is quasi-nonexpansive, then F(T) is closed and convex; see Itoh
and Takahashi [11]. It is not difficult to prove such a result in a Hilbert space. In
fact, for proving that F'(T) is closed, take a sequence {z,} C F(T) with z, — z.
Since C' is weakly closed, we have z € C. Furthermore, from

Iz = Tz| <[z = znll + |20 = T2| < 2|2 = 20| = 0,

z is a fixed point of 7" and so F(T') is closed. Let us show that F'(T') is convex. For
z,y € F(T) and o € [0, 1], put z = axz + (1 — a)y. Then we have from (2.2) that

Iz = Tz||* = [laz + (1 — a)y — T2||?
=alz =Tz|* + (1 - a)lly = T2|* = a(l = a) |z — y?
<allz —z* + (1= a)y —2[* — a(l —a) |z -y
= a(l - a)’[lz —y|* + (1 - a)a?|z — yl* = a(l - a)|lz - y|?
—a(l—a)l—a+a—1)]z—y|
=0
and hence Tz = z. This implies that F'(T') is convex.
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Using Lemma 3.1 and the technique developed by Ibaraki and Takahashi [9, 10],
we can prove the following weak convergence theorem.

Theorem 3.2. Let H be a Hilbert space and let C' be a non-empty, closed and convex
subset of H. Let T : C — C be an («, 3,7, 9,e,(,n)- widely more generalized hybrid
mapping with F(T) # () which satisfies the condition (1) or (2):

(1) a+B8+~v+d>0,a+7v>0,e4+n>0and (+n=>0;

(2) a+B8+v+5>0,a+p>0,(+n>0ande+n>0.
Let P be the mertic projection of H onto F(T'). Let {un} be a strongly asymptotically
invariant sequence of means on (. Let {a,} be a sequence of real numbers such
that 0 < a,, < 1 and liminf, ;o o, (1 — ay) > 0. Suppose {z,} is the sequence
generated by r1 = x € C and

Tpt1 = oy + (1 — )Ty, n, n€N.
Then {x,} converges weakly to v € F(T), where v = limy,_,oo Py

Proof. Since T : C — C be an (o, ,7,9,¢,(,n)-widely more generalized hybrid
mapping, we have that

(3.1) alTe = Ty|* + Blla — Tyl* +4||Tz — y|* + dllz — y|*
+ellz = Ta|® + Clly — Tyl +nll(z - Tz) — (y = Ty)|* < 0

for any x,y € C. Since T : C — H is quasi-nonexpansive, we have from Lemma
3.1 that F(T) is closed and convex. Furthermore, we have that for any x € C and
z € F(T)

||Tﬂn$ - ZH2 = <T;Ufnx - Z? Tllnx - Z>
= (,un)k<Tkx — 2,1y, —2)
< [ n| Sup (T*z — 2, Ty, @ — 2)]

< sup IT"z — 2|| - | Ty, — 2]
< Sup |z — 2] - Ty, x — 2|

= flz = 2l [Tz =]
and hence
(3.2) I T — 21| <l — 2.
Using (3.2), we have that for any z € F(T),
Znt1 — 2)|% < lan®n + (1 — ap) Ty, 20 — 2|2

< apl|zn — ZH2 + (1 — Oén)”Tunxn - 2”2

< anlzn — 2|12 + (1 — o)z — 2|2

= |lzn — 2|

for all n € N. Hence lim,, s ||z, — z||? exists. Then {z,} is bounded. We also have
from (2.2) that

|Zn+1 — ZH2 < oy + (1 - an) Ty, Tn — ZH2
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= anllzn — Z||2 + (1 — an)|[T2, — z||2 —an(l = apn)|[Ty,zn — $n||2
e ZHZ + (1 —an)llzn — ZHZ — an(1 = an)|| Ty, zn — $n||2
= [len — 2[* = an(l = an)| T 2 — za*.
Thus we have
an(l = )| Tt — zal? < llwn — 201 = lenss — 2%
Since lim,, o0 ||, — 2||? exists and lim inf,, o (1 — i) > 0, we have that
(3.3) | T, 20 — zn|| = 0.

Since {zy} is bounded, there exists a subsequence {x,,} of {z,} such that z,, — v.
From (3.3), we also have that T}, z,, — v. Let us show that v is a fixed point of
T. We obtain from (3.1) that for any =,z € C and n € N,

af|Tz — T 2|2 + Bz — T 2| + || Tx — Tz||? + 6]jx — T"2|)?
tellz = Ta|® + (T2 = T 2|+ ll(z = Tz) — (T2 = T"2)|2 <0
for any n € NU{0} and = € C. By (2.3) we obtain that
I(z = Ta) — (T"z = T""2)|?
= |z — Tz||® + |T"z — T 2||? — 2(x — Tz, T"z — T""12)
= |l = Ta|* + ||T"2 = T" 1 2|* + |l = T"2||* + || Tz — T+ 2|
|l =T 2|? = || T2z — T2
Thus we have that
()T = T2 + (8 = n)lla = T" 2| + (v — )| Tz — T2
+@ e =T 2l” + (e +n)llz — Tzl + (¢ + )| Tz = T" 2] < 0.
From
(y =) Tz = T"z||?
= (a+7)(lz = Tz|® + ||z = T"2|” - 2{x — T,z — T"z))
—(a+n)|Tz -T2,
we have that
(4| Te =T 2| + (8 —n)llz — T 22
o+ ) (|l = Tal* + |l = T"z|* = 2(z — T,z — T"z))
—(a+ )Tz =T + (5 + )|z — T"2|>
+e+n)llz — Tl + (C+ )T = T"Hz|? <0
and hence
(a+n)(|Tz =T 2| — [Tz = T"2|1%) + (8 = n)||z — T"" 2|2
2o+ e —Tz,z —T"2) 4+ (a+vy+6+n)||lz —T"z|?
Ha+y+etnlz—Tz|? + (C+m|T" - T 2|* < 0.
By a4+ 8+ v+ 9 > 0, we have that
—B=m)=—B+0)+d+n<at+y+di+n.
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From this inequality and { + 7 > 0 we obtain that
(a+n) (| Tz — T 2||* — || T — T"2|)
(3.4) +(B = m)(lla = T 2|? — |lo — T"2|)
2a+y)(x—Tr,x —T"2) + (a+v+e+n)|z—Tz||> <0.
From (3.4), we have that
(@ +n0)(|Tz = Ty ||* — || Tz — T ay|*)
+(B = m)(Ilz = T g |* — |z — TF4 )
—2a+y)(z =Tz z—Tre,) + (a+y+e+n)|z—Tz|><0

for any k € NU {0} and z € C. We apply pu, to both sides of this inequality. We
have that

(e + ) ()i (ITz = T ay | = | T2 — T, %)
+(B =) (k2 = Tz ||* — ||z = Tz, |1?)
—2(a +7)(pa)k(z = Tz, 2 = TFan) + (a +y +e+ 1)z = Tz[* <0
and hence

~la + nlllptn = Cipn| sup | T2 — T 2y
keN
(3.5) — 18 = nllltn — Cipnl| sup |2 — T*a, |
keN

= 2a+)( =Tz 2 = Tyan) + (a+y+ e+ )]z = Tz|* <0.
Replacing n by n; in (3.5), we have that
—loc+ lllpn, = Cpim | sup | Tz — Ty, ||?
keN

18 = mlllptns = Cipim || sup 12 - T a,,||?
€

—2(a+7)(z = Tz,2 =Ty, Tn,) + (@ + v +e+n)|z — Tz||> <0.
Letting ¢ — oo, we have from T, x,, — v that
—2a4+)(z—=Tz,z—v)+ (a+y+e+n)|z—Tz|* <0.
Putting z = v, we have that
(@+v+e+n)v—To|* <0

Since a + v + ¢ +n > 0, we have that v € F(T). Let {xp,} and {z,,;} be two
subsequences of {z,} such that z,, — v; and z, ; — v2. To complete the proof,
we show v; = ve. We know that v1,v9 € F(T) and hence lim,, o ||, — v1]|? and
limy, o0 || 20 — v2||? exist. Put

a= lim ([lan — 1| = ||z, — val?).
n—oo
Note that forn =1,2,...,

lzn = v1]]* = llwn — vall* = 2z, v2 = v1) + [Jur|* = oz,
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From z,, — v; and Tp; — V2, We have

(3.6) a = 2(v, vy —v1) + [[o1]|* = [|v2|?
and
(3.7) a = 2(vg,va — v1) + [[o1]* = [Joa*.

Combining (3.6) and (3.7), we obtain 0 = 2(vy — vi,v2 — v1). Thus we obtain
ve = v1. This implies that {x,} converges weakly to an element v € F(T'). Since
|Znt1 — 2| < ||zn — 2| for all z € F(T) and n € N, we obtain from Lemma 2.1 that
{Pz,} converges strongly to an element p € F(T). On the other hand, we have
from the property of P that

(xy, — Py, Pryp, —u) >0
for all w € F(T) and n € N. Since x,, — v and Px,, — p, we obtain
(v—p,p—u)>0
for all u € F(T). Putting u = v, we obtain p = v. This means v = lim,,_, o Pxy,.

Similarly, we can obtain the desired result for the case of a + 8+ v+ 6 > 0,
a+6>0,(+n>0and € +n > 0. This completes the proof. O

Using Theorem 3.2, we can show the following weak convergence theorem of
Mann’s type for generalized hybrid mappings in a Hilbert space.

Theorem 3.3. Let H be a Hilbert space and let C' be a non-empty, closed and
convex subset of H. Let T : C — C be a generalized hybrid mapping with F(T) # (.
Let {pn} be a strongly asymptotically invariant sequence of means on €>°. Let {c,}
be a sequence of real numbers such that 0 < ay, < 1 and liminf,, o o (1 —ay) > 0.
Suppose that {xy} is the sequence generated by x1 = x € C' and

Tpt1 = 0@y + (1 — )Ty, n, n€N.
Then the sequence {xy} converges weakly to an element v € F(T).
Proof. Since T': C — C' is a generalized hybrid mapping, there exist «, 8 € R such
that
alTx = Tyl? + (1 — &)l — Ty|]? < BTz — Tyl + (1 — B)l|x — Tyl
for all x,y € C. We have that an («, §)-generalized hybrid mapping is an («, 1 —
a,—B,—(1—p),0,0,0)-widely more generalized hybrid mapping which satisfies the

condition (2) in Theorem 3.2. Therefore, we have the desired result from Theorem
3.2. O

4. STRONG CONVERGENCE THEOREM

In this section, using the idea of mean convergence by Shimizu and Takahashi
[19] and [20], we prove the following strong convergence theorem for widely more
generalized hybrid mappings in a Hilbert space by using strongly asymptotically
invariant sequences.

Theorem 4.1. Let C' be a nonempty, closed and conver subset of a real Hilbert
space H. Let T be an (o, 3,7, 96,¢,(,n)-widely more generalized hybrid mapping of
C' into itself which satisfies the following condition (1) or (2):
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(1) a+p+v+6>0,a+~v>0,e4+n>0and (+n>0;

(2 a+B8+7+5>0,a+5>0,(+n>0ande+n>0.
Let {pn} be a strongly asymptotically invariant sequence of means on (>°. Letu € C
and define sequences {xy} and {zp} in C as follows: 1 =z € C and

Tp+l = QplU + (1 - Oén)Zn,
Zn =Ty, %n

for alln =1,2,..., where 0 < a, <1, oy = 0 and Y 02 oy, = 00. If F(T) # 0,

then {x,} and {z,} converge strongly to Pu, where P is the metric projection of H

onto F(T).
Proof. Since T : C — C be an (o, 3,7,9,&,(,n)-widely more generalized hybrid

mapping, we have that
(A1) allTe - Tyl + Bla - Ty|2 + A Te - y|? + oz — y)?
+elle = Txl* + Clly — Tyll* + nll(z — Ta) — (y = Ty)|* <0
for any x,y € C. Since F(T) # (), we have that for all ¢ € F(T) and n =1,2,3, ...,
(4.2) 2 = all = Ty — all < llzn — all.
Thus we have that
[Zn+1 — qll = [lanu + (1 — an)z, — g

< apllu =gl + (1 — an)llzn — 4|

< apllu =gl + (1 — an)llzn —ql|-
Hence, by induction, we obtain

[ — gl < max {{lu —ql, [z - ql[}

for all n € N. Then {x,} and {z,} are bounded. Since ||T,,zn — ¢q|| < ||zn — ¢l|, we
have also that {T},,2,} is bounded.

Since {T,,x,} is bounded, there exists a subsequence {7, x,,} of {T,,x,} such
that T, x,, — w € H. As in the proof of Theorem 3.2, we have that w € F(T'). On
the other hand, since z, 1 — 2, = ap(u — zp,), {Thzy} is bounded and a,, — 0, we
have limy, o0 ||Zn4+1 — Thay| = 0. Let us show

limsup(u — Pu, xy41 — Pu) <0.
n—oo
We may assume without loss of generality that there exists a subsequence {x,,+1}
of {zp41} such that
limsup(u — Pu, xp 41 — Pu) = lim (u — Pu, xp,4+1 — Pu)
n—00 1—>00

and zp,+1 — v. From ||zp41 — Thxy|| — 0, we have T),,z,, — v. From the above
argument, we have v € F(T'). Since P is the metric projection of H onto F(T'), we
have

lim (u — Pu, xp,+1 — Pu) = (u — Pu,v — Pu) <0.

1—00
This implies
(4.3) limsup(u — Pu, xy 41 — Pu) <0.

n—00
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Since xp4+1 — Pu = (1 — ay)(2n — Pu) + ap(u — Pu), from (2.1) we have
(1 = an) (2 — Pu) + an(u — Pu)|?
1 - O‘n)QHZn - PUH2 + 20 (u — Pu, vp1 — Pu)

1 — )|z, — Pul|® + 200, (u — Pu, 2,41 — Pu).

|Znt1 — Pull?

IA

(
(

IN

Putting s, = ||z, — Pul|?, 8, = 0 and 7, = 2(u — Pu, 7,41 — Pu) in Lemma 2.2,
we have from Y 7 | oy, = oo and (4.3) that

lim ||z, — Pul| =0.
n—oo
By limy, o0 || Zn+1 — 2n]| = 0, we also obtain z, — Pu as n — oo.

Similarly, we can obtain the desired result for the case of a + 8 +~v+d > 0,
a+pB>0,(+n>0ande+n>0. O

Using Theorem 4.1, we can show the following result obtained by Hojo and Taka-
hashi [7]; see also [17].

Theorem 4.2 ([7]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T be a generalized hybrid mapping of C into itself. Let u € C and
define two sequences {xyn} and {zn} in C as follows: x1 =z € C and

Tnt1 = apu + (1 — ay)zn,
1 n—1
Zn = — ZT’%H
n
k=0

for allmn = 1,2,..., where 0 < a, < 1, oy = 0 and Y 2 oy = 00. If F(T) is
nonempty, then {x,} and {z,} converge strongly to Pu € F(T), where P is the
metric projection of H onto F(T).

Proof. As in the proof of Theorem 3.3, a generalized hybrid mapping is a widely
more generalized hybrid mapping. Define

for all n € N and f € £°°. We have that {u, : n € N} is a strongly asymptotically
invariant sequence of means on £°°. Furthermore, we have that for any = € C and

n €N,
1 n—1 '
T,unw = E Z; T x.
=
Therefore, we have the desired result from Theorem 4.1. Il
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