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FIXED POINTS OF PSEUDOCONTRACTIVE MAPPINGS BY A
PROJECTION METHOD IN HILBERT SPACES

YONGHONG YAO, YEONG-CHENG LIOU*, AND CHIUH-CHENG CHYU

ABSTRACT. It is well-known that Mann’s algorithm fails to converge for Lips-
chitzian pseudocontractions. The main purpose of this article is to construct
iterative methods for finding the fixed points of pseudocontractive mappings in
Hilbert spaces. Strong convergence results are given.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-, -) and norm ||-||, respectively.
Let C be a nonempty closed convex subset of H. Recall that a mapping 7' : C' — C
is called pseudocontractive (or a pseudocontraction) if

(11) <T$—Ty,$—y> < HJI—yHZ, x?Z/GC'

It is known (and is easily seen) that 7" is pseudocontractive if and only if T" satisfies
the condition:

(1.2) 1T = Ty|? < llz = ylP* + |(I = T)z — (I = D)yl*, z,yeC.

Construction of fixed points of nonlinear mappings is a classical and active area of
nonlinear functional analysis, due to the fact that many nonlinear problems can be
reformulated as fixed point equations of nonlinear mappings. The research of this
area dates back to Picard’s and Banach’s time. As a matter of fact, the well-known
Banach’s contraction principle states that the Picard iterates {T™xz} converge to
the unique fixed point of T" whenever T is a contraction of a complete metric space.
However, if T is not a contraction (nonexpansive, say), then the Picard iterates
{T"x} fail, in general, to converge; hence, other iterative methods are needed. In
1953, Mann [18] introduced the now called Mann’s iterative method which generates
a sequence {x,} via the averaged algorithm:

Tnt1 = (1 —ap)zy + apyTa,, n>0

where {a,,} is a sequence in the unit interval [0, 1], 7" is a self-mapping of a closed
convex subset C' of a Hilbert space H, and the initial guess z is an arbitrary (but
fixed) point of C.

Mann’s algorithm has extensively been studied [1,4,5,8,9,11-13,16,19, 20,24, 26,
27,29,31], and in particular, it is known that if 7" is nonexpansive (i.e., | Tz —Ty| <
|z —yl for all z,y € C) and if T" has a fixed point, then the sequence {z,} generated
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by Mann’s algorithm converges weakly to a fixed point of T provided the sequence
{ay} satisfies the condition: Y 2 | ay(1 — o) = oo. This algorithm however does
not converge in the strong topology, in general (see [1, Corollary 5.2]).

Browder and Petryshyn [2] studied weak convergence of Mann’s algorithm for
the class of strictly pseudocontractions. However, Mann’s algorithm fails to con-
verge for Lipschitzian pseudocontractions (see the counterexample of Chidume and
Mutangadura [10]). It is therefore an interesting question of inventing iterative algo-
rithms which generate a sequence converging in the norm topology to a fixed point
of a Lipschitzian pseudocontraction (if any). The interest of pseudocontractions lies
in their connection with monotone operators; namely, T is a pseudocontraction if
and only if the complement I — T is a monotone operator. Some related works,
please refer to [35]- [22]. Especially, in order to find the minimum norm fixed point
of pseudocontractions, Zegeye, Shahzad and Alghamdi [32] proved the following
convergence result:

Theorem 1.1. Let K be a nonempty closed convex subset of a real Hilbert space H.
Let T : K — K be a Lipschitz pseudocontractive mapping with Lipschitz constant
L >0 and Fiz(T) # (. Let a sequence {x,,} be generated from arbitrary 1 € K by

(1.3) Tnt1 = (L = Ap)xpn + ATy — A\pOn (2, — Pr[(1 — tp)xy]),n > 1,

where {\,}, {0} and {t,} are real sequences in (0,1] satisfying the conditions:
(C1) Timpsoe O = lipoootn = 0; (C2) Au(1 + 00) < LS, At = oo,
limy, 500 A /Ontn = 0; (C3) limy, so0lfn1 — O]/ Anb2t2 = 0 and lim, oo [tn_1 —
tn]/Anbnt: = 0. Then, the sequence {x,} converges strongly to the minimum-norm
fized point of T.

Remark 1.2. We note that the restrictions (C2)-(C3) are complicated. That is to
say, it is difficult to select the algorithm parameters.

Inspired by the results in the literature, the main purpose of this article is to con-
struct iterative method for finding the fixed points of pseudocontractive mappings.
Under some mild conditions, strong convergence results are given. As a special case,
the minimum norm fixed point of pseudocontractive mappings can be approached
iteratively.

2. PRELIMINARIES

A mapping T : C — C' is called L—Lipschitzian if there exists L > 0 such that
[Tz - Ty|| < Lljz -y,

for all x,y € C.
Recall that the (nearest point or metric) projection from H onto C, denoted Pg,
assigns, to each x € H, the unique point Po(x) € C' with the property

l — Po(@)l| = nf{[le —y| : y € C}.

It is well known that the metric projection Po of H onto C has the following basic
properties:

(a) |Po(z) = Po(y)|| < ||z =yl for all 2,y € H;

(b) (z —y, Pe(z) — Pely)) = | Po(x) — Po(y)||? for every ,y € H;
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(¢) (x — Po(x),y — Po(x)) <O0forallx € H, y € C.
It is well-known that in a real Hilbert space H, the following hold:
(i) [lz +ylI* < ll=]* +2(y, = + y), Yo,y € H;
(i) [[tz + (1 = )y[I* = tllz]* + (1 = Ollyl]> = t(1 — B)l|lz — y[|* Va,y € H and
te[0,1].
In the sequel we shall use the following notations:
e Fix(T) stands for the set of fixed points of T’;
e 1, — x stands for the weak convergence of x,, to z;
e 1, — x stands for the strong convergence of x,, to x.

Lemma 2.1 ([34]). Let H be a real Hilbert space, C' a closed convex subset of H.
Let T : C'— C be a continuous pseudocontractive mapping. Then

(i) Fiz(T) is a closed convez subset of C.

(ii) (I —T) is demiclosed at zero.

Lemma 2.2 ([30]). Assume that {an} is a sequence of nonnegative real numbers
such that
Ap+41 < (1 - 'Yn)an + 5717
where {y,} is a sequence in (0,1) and {d,} is a sequence such that
(1) 22521 W = 0%
(2) limsup,,_, oo % <0 or Y o2 |0n] < o0.
Then lim,, oo an = 0.

Lemma 2.3 ([17]). Let (sp) be a sequence of real numbers that does not decrease
at infinity, in the sense that there exists a subsequence (sp,;) of (Sn) such that s, <
Sn;+1 for all i > 0. For every n > ng, define an integer sequence (7(n)) as
7(n) = max{k <n: sy, < Sp,+1}-
Then T7(n) — oo as n — oo and for all n > ng
max{s-(n); $n} < Sr(n)+1-
3. MAIN RESULTS

In this section, we will introduce our algorithm and prove our main results.

Algorithm 3.1. Let C' be a nonempty closed convex subset of a real Hilbert space
H. LetT : C — C be a nonlinear operator. For fited w € H and xog € C arbitrarily,
define a sequence {x,} C C by the following manner:
(3 1) Yn = (1 - 'Yn)xn + YTy,

Tnp+1 = PC[anu + (1 — Qp — ﬁn)xn + ﬁnTyn]yn > 07
where {an}, {Bn} and {v,} are three real number sequences and Pc is the metric
projection.

Theorem 3.2. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let T : C — C be an L-Lipschitz pseudocontractve mapping with Fixz(T) # (.
Assume the parameters {on}, {Bn} and {y.} satisfy the following restrictions:

(1): limp—yoo p, =0 and Y 07 | o = 00;

(”) an + Bn < Vs
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(792): liminf,, oo Bn > 0 and limsup,,_, . Tn < ﬁ
Then the sequence {xy,} defined by (3.1) converges strongly to Ppiyyu.

Proof. Set x* = Ppj,(r)(u). Thus, from (3.1), we have

[Zns1 — 2*|1* = || Pelanu + (1 — an — Bu)zn + BnTyn] — «*||
o (u — %) + (1 — an — Bn)(xn — %) + Bn(Tyn — x*)HZ

IN

— ot =ty 41— an (B2 P, oty (- o) |
1—qo, 1—a,
* 1—a, — N 2
< anflu= a4 (1= ) |F P - o) 4 (g - 0)
* -« _ﬁ * /8 *
e R e
1—ap—
PO =P,y
-

(32)= anllu— [ + (1 = an = Bu)llwn — 2|1 + Bl Ty — |12
—Bn(1 — an — Bn)lln — TynHQ-
By (1.2), we have

ITw —*|* < [lw — 2*|* + |lw — Tw|]?,

for all w € C.
Note that
|20 — ynll = ullzn — Tnl|-
Hence,
1Ty = = |TU1 = y)zn + WTan) — 2|
< T =v)zn +nTzn — 33*”2
(1 = ym)zn + nTTn — TynH2
= (@ —v)(@n —2%) + y(Tzn — 37*)H2
H(1 =y )(@n — Tyn) + y(Tzn — Tyn)H2
= (1=)llen = 2*|® + 7| Txn — 2*|?
(1 = m)l|lzn — TanZ
+(1 =) lzn — TynH2 + Y| Tzn — Tyn”2
(1 = )l|lzn — TJ:nHQ
< (U =w)llzn = 2P + mllzn — 2*(° + 20 — Taa|?)
~Yn(L = )|z = Tzal” + (1 =) ll2n — Tyl
+’YnL2||55n - yn”2 = (1 = yn)l|lzn — TanQ
<l = 2P+ (1= ya) 2 — Tyal?

(3.3) —Yn(1 = 27, — '7721L2)||$n - TanQ'
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Since lim Supn?oo Yn < ﬁ, without loss of generality, we may assume that
Tn S0 < A
(3.2) and (3.3) that

|zni1 — 2> < anllu— 2|+ (1 = an — Ba) |20 — %> + Bullen — 27|
+Bn(1 = ) |20 — TynH2 — YnBn(l — 27y, — 77%L2)Hxn - Tan2
_Bn(l — Qp — Bn)”xn - Tyn”2

for all n. Then, we have 1 — 2y, — v2L? > 0. It follows from

< anllu = 2P+ (1 = an)llzn — 2|
+Bn(an + Bn — ) |70 — Tyn||2

< agflu— 2|+ (1= )|z, — 2|

< max{fu —z*|%, |z, — 2|*}.

By induction, we deduce
[2n1 = 2*| < max{[ju — 2, [[zo — 2™[|}.

Hence, {z,} is bounded.
Set zp, = apu+ (1 — ay — Bp)xn + BnTyy for all n. Then, we can rewrite z,4+1 in
(3.1) as zp41 = Polanu + (1 — ay)zy] for all n. Thus,

1Pelomu + (1= an)zn] — 2|

[

< lzg — 2|
= (1 = an)(@n — &%) = Bulzn — Tyn) + an(u — 2*)|?
< (1= ap)(zy — ) — Bu(zn — Tyn)H2 + 20 (u — =¥, 2, — x¥)

(1 = an) (@ — 2*)[? = 262 (1 = ) (@n — Ty, @0 — )
+B2 20 — Tynll? + 200, (u — z*, 2, — %),
It is easy to verify that (3.3) is equivalent to
2(xn — TYn, T — %) > llon — TynH2 + (1 — 2y — ’)’121L2)||xn - TwnH2-

Therefore,
|41 — x*HZ < (1—an)llzn — x*Hz = Bn(1 — an)vnlln — TynH2
+5721Hxn - Tyn”2 — Bn(1 = an)yn (1 — 290 — 7721112)”3371 - Txnu2
+2a,(u — x*, 2z, — )
(1 —an)llzn — x*”Q = Bn(1 = an)¥n(l — 29, — ’7721L2)”a7n - TanQ

(3.4) +20, (u — ¥, 2y, — 7).
It follows that

IN

|Zn41 — x*”Q — |lzn — x*Hz + Bn(l — an)yn(l — 29, — '7721L2)||xn - Tan2
<2ap(u —x*, 2, — ).

Since x,, is bounded, then y,, and Ty, are all bounded. Consequently, z, is bounded.

So,

(3.5)
| Tnt1 — x*Hz — |lzp — 95*”2 + Bn(1 — an)yn (1 — 290 — ’YZLZ)Hxn - TanQ
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< a,M.

Next, we will prove that x,, — z*. We consider two possible cases.

Case 1. Assume {||z, — x*||} is eventually decreasing, i.e., there exists N > 0 such
that {||z, — «*||} is decreasing for n > N. Then, lim,_, ||z, — 2|} exists and
from (3.5) it follows that

(3.6) Bn(l —an)ym(l =2y, — V2L ||zn — Ty

< Nan — 2| = [|znsr — ¥ + Ma,.
Since liminf,, s B, > 0 and limsup,, ., T < ﬁ, we have liminf,,_,~ 5, (1—
an)yn(l — 29, —¥2L?) > 0. Letting n — oo in (3.6), we get

T}Ln;o |xr, — T'zy|| = 0.
Since
lzn = Tanll < omllu = Tan|l + Bl Tyn — Tyl
< apllu = Tap|| 4 BuL||yn — zn||
< apllu—Tzp|| + BrynLl||xn — Txy|,
we get
lzn —anll < lzn = Tan| + [[on — Tan ||
< Nen = Tan|| + anllu — Tan|| + BuynL||n — Ty
= opllu—Tzp|| + (BpynLl + 1)||zp — Ty
Hence,

lim |z, —z,|| = 0.
n—oo

Since {z,} is bounded, there exists a subsequence {z,, } of {z,} such that

*

Zn, — & € C and limsup,, . (u— 2%, z, — %) = limg_ 00 (u — 2%, 2, — ).

Since, x5, — 2z, — 0, we also have {z,, } of {z,} converging weakly to Z € C. From
the demi-closed principle of T' (Lemma 2.1), we have & € Fiz(T). So,

limsup{u — 2%, 2, —2*) = lim (u— 2%, 2,, — %)
n—00 k—oo

= (u—2z*,T—2")
< 0.
From (3.6), we obtain
(3.7) |Zns1 — 2% < (1 — an)||zn — 2))* + 2000 (u — %, 2, — 2*).

This together with Lemma 2.2 imply that ||z, — z*|| — 0.

Case 2. Assume w, = {||x, — 2*||} is not eventually decreasing. That is, there
exists an integer ng such that wy, < wpy4+1. Thus, we can define an integer sequence
{mn} for all n > ngy as follows:

7(n) = max{k € Njng < k < n,wp < wip1}-
Clearly, 7(n) is a non-decreasing sequence such that 7(n) — +o0o as n — oo and

Wr(n) < Wr(n)+1s
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for all n > ng. In this case, we derive from (3.6) that

lim Hxﬂ'(n) - Txr(n)” =0.

n—o0

This implies that every weak cluster point of {a;.r(n)} is in the fixed points set
Fix(T); i.e., wy(Tr(n)) C Fiz(T). On the other hand, we note that

||ZT(n) - xq—(n)H — 0.

From which we can deduce that

lim Sup<u - x*a Rr(n) — $*> = _ max <’LL - PFw(T) (u)7 T — PFZ:D(T) (u)>
n—00 Teww (Tr(n))
(3.8) < 0.
Since wy(n)y < Wr(n)+1, We have from (3.7) that
(39) Wr(n) < 2aT(n))<u - 1'*, Zr(n) — 1'*>

Combining (3.8) and (3.9) yields
lim sup wy () < 0,
n—oo
and hence

lim wT(n) =0.
n—o00

From (3.7), we have

lim sup wy ()41 < limsup wy ).
n—oo n—oo

Thus,
nll_}II;o Wr(n)+1 = 0.
From Lemma 2.3, we have
0 < wy < max{wr(n), Wr(n)+1}-

Therefore, w, — 0. That is, x,, — =*. This completes the proof. O
For u = 0 in Algorithm 3.1, we have the following iterative scheme.

Algorithm 3.3. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C — C be a nonlinear operator. For xg € C arbitrarily, define a
sequence {x,} C C by the following manner:

Yn = (1 - 'Yn)xn + ’YnTxna
Tpt+1 = PC[(l — Qp — Bn)xn + 5nTyn]7n >0,

where {an}, {Bn} and {v,} are three real number sequences and Pc is the metric
projection.

(3.10)

The following result is then a direct consequence of Theorem 3.2.
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Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C — C be an L-Lipschitz pseudocontractve mapping with Fix(T) # (.
Assume the parameters {an}, {Bn} and {vn} satisfy the following restrictions:

(4): limp o0 atn = 0 and Y 07 |y = 00;

(“) Qp + Bn < Vn;

(797): liminf,, oo Bn > 0 and limsup,,_, . Tn < ﬁ
Then the sequence {xn} defined by (3.10) converges strongly to Ppi7)(0), the
minimum-norm fixed point of T.

We observe that related results have been established recently in [25]- [28].

Remark 3.5. We can find the minimum norm fized point of the pseudocontractive
mapping T by using the algorithm (3.10). In contrast to Theorem 1.1, Theorem 3.}
may be effective due to the weaker parameters restrictions.
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