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In general, nonspreading and hybrid mappings are not continuous. See, for example,
[12]. We also know the concept of one-parameter nonexpansive semigroups in a
Hilbert space. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S = R+ = {t ∈ R : 0 ≤ t < ∞}. A family S = {S(t) : t ∈ R+} of mappings of C
into itself is called a one-parameter nonexpansive semigroup on C if S satisfies the
following:

(1) S(t+ s)x = S(t)S(s)x, ∀x ∈ C, t, s ∈ R+;
(2) S(0)x = x, ∀x ∈ C;
(3) for each x ∈ C, the mapping t 7→ S(t)x from R+ into C is continuous;
(2) for each t ∈ R+, S(t) is nonexpansive.

Of course, S(t) are continuous. Such one-parameter nonexpansive semigroups are
used in the theory of nonlinear evolution equations [6]. Recently, using the concept
of invariant means, Takahashi, Wong and Yao [28] introduced the concept of semi-
groups of mappings without continuity in Hilbert spaces which contains discrete
semigroups generated by generalized hybrid mappings and semigroups of nonex-
pansive mappings. They proved a nonlinear mean convergence theorem of Baillon’s
type [4] which generalized simultaneously the mean convergence theorems [14] and
[5] for generalized hybrid mappings and one-parameter nonexpansive semigroups
in a Hilbert space. What kind of conditions of semigroups do we need to prove a
weak convergence theorem of Mann’s type [18] and a strong convergence theorem
of Halpern’s type [9] in a Hilbert space? This question is natural.

In this paper, using the concept of strongly asymptotically invariant nets, we
first introduce a broad semigroup of mappings without continuity in Hilbert spaces
which contains discrete semigroups generated by generalized hybrid mappings and
semigroups of nonexpansive mappings. Then, using the theory of strongly asymp-
totically invariant means, we prove a weak convergence theorem of Mann’s type
iteration for the semigroups. Next, using Halpern’s type iteration, we prove a
strong convergence theorem for such semigroups. Using these results, we obtain
new results and well-known results for semigroups of mappings without continuity
in Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨ · , · ⟩ and norm ∥ · ∥, respec-
tively. We denote the strong convergence and the weak convergence of {xn} to
x ∈ H by xn → x and xn ⇀ x, respectively. Let A be a nonempty subset of H. We
denote by coA the closure of the convex hull of A. In a Hilbert space, it is known
[23] that for all x, y ∈ H and α ∈ R,
(2.1) ∥y∥2 − ∥x∥2 ≤ 2⟨y − x, y⟩;

(2.2) ∥αx+ (1− α)y∥2 = α ∥x∥2 + (1− α) ∥y∥2 − α(1− α) ∥x− y∥2 .
Furthermore, we have that

(2.3) 2 ⟨x− y, z − w⟩ = ∥x− w∥2 + ∥y − z∥2 − ∥x− z∥2 − ∥y − w∥2

for all x, y, z, w ∈ H. From (2.3), we have that

(2.4) 2⟨x− y, z − y⟩ − ∥z − y∥2 = ∥x− y∥2 − ∥x− z∥2
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for all x, y, z ∈ H. Let C be a nonempty subset of H. A mapping T : C → C is
quasi-nonexpansive if F (T ) ̸= ∅ and

∥Tx− y∥ ≤ ∥x− y∥, ∀x ∈ C, y ∈ F (T ).

It is well-known that the set F (T ) of fixed points of a quasi-nonexpansive mapping
T is closed and convex; see Itoh and Takahashi [13].

Let ℓ∞ be the Banach space of bounded sequences with supremum norm. Let
µ be an element of (ℓ∞)∗ (the dual space of ℓ∞). Then, we denote by µ(f) the
value of µ at f = (x1, x2, x3, . . . ) ∈ ℓ∞. Sometimes, we denote by µn(xn) the value
µ(f). A linear functional µ on ℓ∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . . ). A mean µ is called a Banach limit on ℓ∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on ℓ∞. If µ is a Banach limit on ℓ∞, then
for f = (x1, x2, x3, . . . ) ∈ ℓ∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ ℓ∞ and xn → a ∈ R, then we have µ(f) =
µn(xn) = a. For the proof of existence of a Banach limit and its other elementary
properties, see [22]. To prove our main results, we need the following lemmas:

Lemma 2.1 (Aoyama-Kimura-Takahashi-Toyoda [1]). Let {sn} be a sequence of
nonnegative real numbers, let {αn} be a sequence of [0, 1] with

∑∞
n=1 αn = ∞, let

{βn} be a sequence of nonnegative real numbers with
∑∞

n=1 βn < ∞, and let {γn}
be a sequence of real numbers with lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.

Lemma 2.2 (Takahashi-Toyoda [26]). Let D be a nonempty closed convex subset
of a real Hilbert space H. Let P be the metric projection of H onto D and let {xn}
be a sequence in H. If ∥xn+1−u∥ ≤ ∥xn−u∥ for all u ∈ D and n ∈ N, then {Pxn}
converges strongly.

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a ∈ S the mappings s 7→ a · s and s 7→ s · a from S to
S are continuous. In the case when S is commutative, we denote st by s + t. Let
B(S) be the Banach space of all bounded real-valued functions on S with supremum
norm and let C(S) be the subspace of B(S) of all bounded real-valued continuous
functions on S. Let µ be an element of C(S)∗ (the dual space of C(S)). We denote
by µ(f) the value of µ at f ∈ C(S). Sometimes, we denote by µt(f(t)) or µtf(t)
the value µ(f). For each s ∈ S and f ∈ C(S), we define two functions ℓsf and rsf
as follows:

(ℓsf)(t) = f(st) and (rs f )(t) = f (ts)

for all t ∈ S. An element µ of C(S)∗ is called a mean on C(S) if µ(e) = ∥µ∥ = 1,
where e(s) = 1 for all s ∈ S. We know that µ ∈ C(S)∗ is a mean on C(S) if and
only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s), ∀f ∈ C(S).
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A mean µ on C(S) is called left invariant if µ(ℓsf) = µ(f) for all f ∈ C(S) and
s ∈ S. Similarly, a mean µ on C(S) is called right invariant if µ(rsf) = µ(f) for all
f ∈ C(S) and s ∈ S. A left and right invariant invariant mean on C(S) is called an
invariant mean on C(S). If S = N, an invariant mean on C(S) = B(S) is a Banach
limit on ℓ∞. The following theorem is in [22, Theorem 1.4.5].

Theorem 2.3 ([22]). Let S be a commutative semitopological semigroup. Then
there exists an invariant mean on C(S), i.e., there exists an element µ ∈ C(S)∗

such that µ(e) = ∥µ∥ = 1 and µ(rsf) = µ(f) for all f ∈ C(S) and s ∈ S.

Let S be a semitopological semigroup. For any f ∈ C(S) and c ∈ R, we write

f(s) → c, as s → ∞R

if for each ε > 0 there exists an ω ∈ S such that

|f(tw)− c| < ε, ∀t ∈ S.

We denote the case f(s) → c, as s → ∞R by

lim
s→∞R

f(s) = c, or lim
s

f (s) = c.

When S is commutative, we also denote s → ∞R by s → ∞.

Theorem 2.4 ([22]). Let f ∈ C(S) and c ∈ R. If

f(s) → c, as s → ∞R,

then µ(f) = c for all right invariant mean µ on C(S).

Theorem 2.5 ([22]). If f ∈ C(S) fulfills

f(ts) ≤ f(s), ∀t, s ∈ S,

then

f(t) → inf
w∈S

f(w), as t → ∞R.

Let H be a Hilbert space and let C be a nonempty subset of H. Let S be a
semitopological semigroup and let S = {Ts : s ∈ S} be a family of mappings of C
into itself. Then S = {Ts : s ∈ S} is called a continuous representation of S as
mappings on C if Tst = TsTt for all s, t ∈ S and s 7→ Tsx is continuous for each
x ∈ C. We denote by F (S) the set of common fixed points of Ts, s ∈ S, i.e.,

F (S) = ∩{F (Ts) : s ∈ S}.

A continuous representation S = {Ts : s ∈ S} of S as mappings on C is called a
nonexpansive semigroup on C if each Ts, s ∈ S is nonexpansive, i.e.,

∥Tsx− Tsy∥ ≤ ∥x− y∥, ∀x, y ∈ C.

The following definition [21] is crucial in the nonlinear ergodic theory of abstract
semigroups. Let u : S → H be a continuous function such that {u(s) : s ∈ S}
is bounded and let µ be a mean on C(S). Then there exists a unique point z0 ∈
co{u(s) : s ∈ S} such that

(2.5) µs⟨u(s), y⟩ = ⟨z0, y⟩, ∀y ∈ H.



WEAK AND STRONG CONVERGENCE THEOREMS 773

We call such z0 the mean vector of u for µ. In particular, if S = {Ts : s ∈ S}
is a continuous representation of S as mappings on C such that {Tsx : s ∈ S} is
bounded for some x ∈ C and u(s) = Tsx for all s ∈ S, then there exists z0 ∈ H
such tat

µs⟨Tsx, y⟩ = ⟨z0, y⟩, ∀y ∈ H.

We denote such z0 by Tµx.
Motivated by Takahashi and Takeuchi [25], Atsushiba and Takahashi [3] defined

the set A(S) of all common attractive points of a family S = {Ts : s ∈ S} of
mappings of C into itself, i.e.,

A(S) = ∩{A(Ts) : s ∈ S}.

A net {µα} of means on C(S) is said to be asymptotically invariant if for each
f ∈ C(S) and s ∈ S,

µα(f)− µα(ℓsf) → 0 and µα(f )− µα(rs f ) → 0.

A net {µα} of means on C(S) is said to be strongly asymptotically invariant if for
each s ∈ S,

∥ℓ∗sµα − µα∥ → 0 and ∥r∗s µα − µα∥ → 0,

where ℓ∗s and r∗s are the adjoint operators of ℓs and rs, respectively. See [7] and
[22] for more details. Recently, Takahashi, Wong and Yao [28] proved the following
theorems:

Theorem 2.6. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ts : s ∈ S}
be a continuous representation of S as mappings of C into itself. Let {Tsx : s ∈ S}
be bounded for some x ∈ C and let µ be a mean on C(S). Suppose that

(2.6) µs∥Tsx− Tty∥2 ≤ µs∥Tsx− y∥2, ∀y ∈ C, t ∈ S.

Then A(S) is nonempty. In addition, if C is closed and convex, then F (S) is
nonempty.

Theorem 2.7. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ts : s ∈ S}
be a continuous representation of S as mappings of C into itself such that A(S) ̸= ∅.
Suppose that

(2.7) µs∥Tsx− Tty∥2 ≤ µs∥Tsx− y∥2, ∀x, y ∈ C, t ∈ S

for all invariant means µ on C(S). Let {µα} be a net of means on C(S) such that
for each f ∈ C(S) and s ∈ S, µα(f)−µα(ℓsf) → 0. Then, {Tµαx} converges weakly
to u ∈ A(S), where u = lims PA(S)Tsx. In addition, if C is closed and convex, then
{Tµαx} converges weakly to u ∈ F (S), where u = lims PF (S)Tsx.

3. Weak convergence theorems

In this section, we first prove a weak convergence theorem of Mann’s type iteration
for semigroups of mappings without continuity in a Hilbert space.
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Theorem 3.1. Let H be a Hilbert space and let C be a nonempty, bounded, closed
and convex subset of H. Let S be a commutative semitopological semigroup with
identity. Let S = {Ts : s ∈ S} be a continuous representation of S as mappings of
C into itself. Suppose that

(3.1) lim sup
α

sup
x,y∈C

(µα)s(∥Tsx− Tty∥2 − ∥Tsx− y∥2) ≤ 0, ∀t ∈ S

for all strongly asymptotically invariant nets {µα} of means on C(S). Let {µn} be
a strongly asymptotically invariant sequence of means on C(S), i.e.,

∥µn − ℓ∗sµn∥ → 0, ∀s ∈ S.

Define a sequence {xn} in C as follows: x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Tµnxn, ∀n ∈ N,
where 0 ≤ αn ≤ 1 and lim infn→∞ αn(1− αn) > 0. Then, {xn} converges weakly to
a point z ∈ F (S) and z = limn→∞ PF (S)xn, where PF (S) is the metric projection of
H onto F (S).

Proof. Since S is commutative, we have from Theorem 2.3 that there exists an
invariant mean on C(S). Let µ be an invariant mean on C(S) and put µα = µ in
(3.1). Then, we have from (3.1) that

µs∥Tsx− Tty∥2 ≤ µs∥Tsx− y∥2, ∀x, y ∈ C, t ∈ S.

So, we have from Theorem 2.6 that A(S) is nonempty. Let z ∈ A(S). Since
∥µn∥ = 1, we have that for any n ∈ N,

∥Tµnxn − z∥2 = ⟨Tµnxn − z, Tµnxn − z⟩
= (µn)t⟨Ttxn − z, Tµnxn − z⟩
≤ ∥µn∥ sup

t
|⟨Ttxn − z, Tµnxn − z⟩|

≤ sup
t

∥Ttxn − z∥ · ∥Tµnxn − z∥

≤ sup
t

∥xn − v∥ · ∥Tµnxn − z∥

= ∥xn − v∥ · ∥Tµnxn − z∥

(3.2)

and hence

(3.3) ∥Tµnxn − z∥ ≤ ∥xn − z∥.
Using (3.3), we have that

∥xn+1 − z∥2 = ∥αnxn + (1− αn)Tµnxn − z∥2

≤ αn∥xn − z∥2 + (1− αn)∥Tµnxn − z∥2

≤ αn∥xn − z∥2 + (1− αn)∥xn − z∥2

= ∥xn − z∥2

for all n ∈ N. Then, limn→∞ ∥xn − z∥2 exists and hence {xn} is bounded. We also
have from (2.2) that

∥xn+1−z∥2 = ∥αnxn + (1− αn)Tµnxn − z∥2
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= αn∥xn − z∥2 + (1− αn)∥Tµnxn − z∥2 − αn(1− αn)∥Tµnxn − xn∥2

≤ αn∥xn − z∥2 + (1− αn)∥xn − z∥2 − αn(1− αn)∥Tµnxn − xn∥2

= ∥xn − z∥2 − αn(1− αn)∥Tµnxn − xn∥2.

Thus, we have

αn(1− αn)∥Tµnxn − xn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2.

Since limn→∞ ∥xn − z∥2 exists and lim infn→∞ αn(1− αn) > 0, we have that

(3.4) ∥Tµnxn − xn∥ → 0.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ v.
We have from (3.4) that

(3.5) Tµni
xni ⇀ v.

We have from (2.3) that for y ∈ C and s, t ∈ S,

2⟨Tsxn − Tty, y − Tty⟩ − ∥Tty − y∥2 = ∥Tsxn − Tty∥2 − ∥Tsxn − y∥2.

Applying µn to both sides of the inequality, we have that

2(µn)s⟨Tsxn − Tty,y − Tty⟩ − ∥Tty − y∥2 = (µn)s(∥Tsxn − Tty∥2 − ∥Tsxn − y∥2)

and hence

2⟨Tµnxn − Tty, y − Tty⟩ − ∥Tty − y∥2 = (µn)s(∥Tsxn − Tty∥2 − ∥Tsxn − y∥2)

Since Tµni
xni ⇀ v and lim supi→∞(µni)s(∥Tsxni − Tty∥2 − ∥Tsxni − y∥2) ≤ 0, we

get that

2⟨v − Tty, y − Tty⟩ − ∥Tty − y∥2 ≤ 0.

Since 2⟨v − Tty, y − Tty⟩ − ∥Tty − y∥2 = ∥v − Tty∥2 − ∥v − y∥2, we have that

(3.6) ∥v − Tty∥2 ≤ ∥v − y∥2, y ∈ C, t ∈ S.

Putting y = v, we have v ∈ F (Tt). Therefore v ∈ F (S). Let {xni} and {xnj} be
two subsequences of {xn} such that xni ⇀ v1 and xnj ⇀ v2. To complete the proof,

we show v1 = v2. We know that v1, v2 ∈ F (S) and hence limn→∞ ∥xn − v1∥2 and
limn→∞ ∥xn − v2∥2 exist. Put

a = lim
n→∞

(∥xn − v1∥2 − ∥xn − v2∥2).

Note that for n ∈ N,

∥xn − v1∥2 − ∥xn − v2∥2 = 2⟨xn, v2 − v1⟩+ ∥v1∥2 − ∥v2∥2.

From xni ⇀ v1 and xnj ⇀ v2, we have

(3.7) a = 2⟨v1, v2 − v1⟩+ ∥v1∥2 − ∥v2∥2;

(3.8) a = 2⟨v2, v2 − v1⟩+ ∥v1∥2 − ∥v2∥2.

Combining (3.7) and (3.8), we obtain 0 = 2⟨v2 − v1, v2 − v1⟩. Thus we get v2 = v1.
This implies that {xn} converges weakly to an element v ∈ F (S). Since ∥xn+1−z∥ ≤
∥xn − z∥ for all z ∈ F (S) and n ∈ N, we obtain from Lemma 2.2 that {PF (S)xn}
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converges strongly to an element p ∈ F (S). On the other hand, we have from the
property of PF (S) that

⟨xn − PF (S)xn, PF (S)xn − u⟩ ≥ 0

for all u ∈ F (S) and n ∈ N. Since xn ⇀ v and PF (S)xn → p, we obtain

⟨v − p, p− u⟩ ≥ 0

for all u ∈ F (S). Putting u = v, we obtain p = v. This means v = limn→∞ PF (S)xn.
This completes the proof. �

Using Theorem 3.1, we obtain the following weak convergence theorem for gen-
eralized hybrid mappings in a Hilbert space.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T be a generalized hybrid mapping of C into itself such that F (T ) is nonempty.
Let {µn} be a strongly asymptotically invariant sequence of means on B(N). Define
a sequence {xn} in C as follows: x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Tµnxn, ∀n ∈ N,

where 0 ≤ αn ≤ 1 and lim infn→∞ αn(1− αn) > 0. Then {xn} converges weakly to
z ∈ F (T ) and z = limn→∞ PF (T )xn, where PF (T ) is the metric projection of H onto
F (T ).

Proof. Consider S = {0} ∪ N and S = {T k : k ∈ {0} ∪ N} in Theorem 3.1. Since
T : C → C be a generalized hybrid mapping, there exist α, β ∈ R such that

(3.9) α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. Putting x = u in (3.9), where u ∈ F (T ), we have that

∥u− Ty∥2 ≤ ∥u− y∥2

for all y ∈ C. This implies that T is quasi-nonexpansive. From Takahashi, Wong
and Yao [27], we have that A(T ) ∩ C = F (T ) and hence A(T ) ̸= ∅. We also have
that for all q ∈ F (T ) and n ∈ N,

∥Tµnxn − q∥2 = ⟨Tµnxn − q, Tµnxn − q⟩

= (µn)k⟨T kxn − q, Tµnxn − q⟩

≤ ∥µn∥ sup
k

|⟨T kxn − q, Tµnxn − q⟩|

≤ sup
k

∥T kxn − q∥ · ∥Tµnxn − q∥

≤ sup
k

∥xn − q∥ · ∥Tµnxn − q∥

= ∥xn − v∥ · ∥Tµnxn − q∥

(3.10)

and hence ∥Tµnxn − q∥ ≤ ∥xn − q∥. Then, we have

∥xn+1 − q∥ = ∥αnxn + (1− αn)Tµnxn − q∥
≤ αn∥xn − q∥+ (1− αn)∥Tµnxn − q∥
≤ αn∥xn − q∥+ (1− αn)∥xn − q∥



WEAK AND STRONG CONVERGENCE THEOREMS 777

= ∥xn − q∥.

Putting M = {y ∈ C : ∥y − q∥ ≤ ∥x− q∥}, we have that x ∈ M , TM ⊂ M and M
is bounded, closed and convex. Without loss of generality, we may assume that C
is bounded. Since T is generalized hybrid, we have that for all x, y ∈ C and k ∈ N,

0 ≤ β∥T k+1x− y∥2 + (1− β)∥T kx− y∥2

− α∥T k+1x− Ty∥2 − (1− α)∥T kx− Ty∥2

= β
{
∥T k+1x− Ty∥2 + 2

⟨
T k+1x− Ty, Ty − y

⟩
+ ∥Ty − y∥2

}
+ (1− β)

{
∥T kx− Ty∥2 + 2

⟨
T kx− Ty, Ty − y

⟩
+ ∥Ty − y∥2

}
− α∥T k+1x− Ty∥2 − (1− α)∥T kx− Ty∥2

= ∥Ty − y∥2 + 2
⟨
βT k+1x+ (1− β)T kx− Ty, Ty − y

⟩
+ (β − α)

{
∥T k+1x− Ty∥2 − ∥T kx− Ty∥2

}
= ∥Ty − y∥2 + 2

⟨
T kx− Ty + β(T k+1xn − T kx), T y − y

⟩
+ (β − α)

{
∥T k+1x− Ty∥2 − ∥T kx− Ty∥2

}
and hence

2⟨T kx− Ty, y − Ty⟩ − ∥Ty − y∥2

≤ 2β⟨T k+1xn − T kx, Ty − y⟩+ (β − α)
{
∥T k+1x− Ty∥2 − ∥T kx− Ty∥2

}
.

On the other hand, we have from (2.3) that

2
⟨
T kx− Ty, y − Ty

⟩
− ∥Ty − y∥2 = ∥T kx− Ty∥2 − ∥T kx− y∥2.

So, we have that

∥T kx− Ty∥2 − ∥T kx− y∥2 ≤ 2β
⟨
T k+1xn − T kx, Ty − y

⟩
+ (β − α)

{
∥T k+1x− Ty∥2 − ∥T kx− Ty∥2

}
.

If {µα} is a strongly asymptotically invariant net of means on ℓ∞, then we have
that

(µα)k(∥T kx−Ty∥2 − ∥T kx− y∥2) ≤ 2β(µα)k

⟨
T k+1xn − T kx, Ty − y

⟩
+ (β − α)(µα)k(

{
∥T k+1x− Ty∥2 − ∥T kx− Ty∥2

}
)

≤ ∥ℓ∗1µα − µα∥ sup
k∈N

|
⟨
T kxn, T y − y

⟩
|

+ |β − α|∥ℓ∗1µα − µα∥ sup
k∈N

∥T kx− Ty∥2

and hence

lim sup
α

sup
x,y∈C

(µα)k(∥T kx− Ty∥2 − ∥T kx− y∥2) ≤ 0.

So, we have the desired result from Theorem 3.1. �
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Using Theorem 3.1, we obtain the following weak convergence theorem for semi-
groups of nonexpansive mappings in a Hilbert space; see also [2].

Theorem 3.3. Let H be a Hilbert space, let C be a nonempty, closed and convex
subset of H. Let S be a commutative semitopological semigroup with identity and
let S = {Tt : t ∈ S} be a nonexpansive semigroup on C such that {Ttx : t ∈ S} is
bounded for some x ∈ C. Let {µn} be a strongly asymptotically invariant sequence
of means on C(S), i.e., a sequence of means on C(S) such that

lim
n→∞

∥µn − ℓ∗sµn∥ = 0, ∀s ∈ S.

Define a sequence {xn} in C as follows: x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Tµnxn, ∀n ∈ N,

where 0 ≤ αn ≤ 1 and lim infn→∞ αn(1− αn) > 0. Then, {xn} converges weakly to
a point z ∈ F (S) and z = limn→∞ PF (S)xn, where PF (S) is the metric projection of
H onto F (S).

Proof. Since S = {Tt : t ∈ S} is a nonexpansive semigroup on C such that {Ttx :
t ∈ S} is bounded for some x ∈ C, we have that F (S) is nonempty. Let u ∈ F (S)
and put M = {y ∈ C : ∥y−u∥ ≤ ∥x−u∥}. Then, we have x ∈ M , TtM ⊂ M for all
t ∈ S, and M is bounded, closed and convex. Without loss of generality, we may
assume that C is bounded. Since S = {Tt : t ∈ S} is a nonexpansive semigroup on
C, we have that for all x, y ∈ C and s, t ∈ S,

∥Tsx− Tty∥2 − ∥Tsx− y∥2 = ∥Tsx− Tty∥2 − ∥Ts+tx− Tty∥2

+ ∥Ts+tx− Tty∥2 − ∥Tsx− y∥2

≤ ∥Tsx− Tty∥2 − ∥Ts+tx− Tty∥2

+ ∥Tsx− y∥2 − ∥Tsx− y∥2

= ∥Tsx− Tty∥2 − ∥Ts+tx− Tty∥2.

If {µα} is a strongly asymptotically invariant net of means on C(S), then we have
that

(µα)s(∥Tsx− Tty∥2 − ∥Tsx− y∥2) ≤ (µα)s(∥Tsx− Tty∥2 − ∥Ts+tx− Tty∥2)
= (µα)s∥Tsx− Tty∥2 − (ℓ∗tµα)s∥Tsx− Tty∥2)
≤ ∥µα − ℓ∗tµα∥ sup

s
∥Tsx− Tty∥2

and hence

lim sup
α

sup
x,y∈C

(µα)s(∥Tsx− Tty∥2 − ∥Tsx− y∥2) ≤ 0

for all t ∈ S. So, we have the desired result from Theorem 3.1. �

4. Strong convergence theorems

In this section, we prove a strong convergence theorem of Halpern’s type iteration
for semigroups of mappings without continuity in a Hilbert space.
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Theorem 4.1. Let H be a Hilbert space and let C be a nonempty, bounded, closed
and convex subset of H. Let S be a commutative semitopological semigroup with
identity. Let S = {Ts : s ∈ S} be a continuous representation of S as mappings of
C into itself. Suppose that

(4.1) lim sup
α

sup
x,y∈C

(µα)s(∥Tsx− Tty∥2 − ∥Tsx− y∥2) ≤ 0, ∀t ∈ S

for all strongly asymptotically invariant nets {µα} of means on C(S). Let {µn} be
a strongly asymptotically invariant sequence of means on C(S), i.e.,

∥µn − ℓ∗sµn∥ → 0, ∀s ∈ S.

Let u ∈ C and define a sequence {xn} in C as follows: x1 = x ∈ C and

xn+1 = αnu+ (1− αn)Tµnxn, ∀n ∈ N,
where 0 ≤ αn ≤ 1, αn → 0 and

∑∞
n=1 αn = ∞. Then, {xn} converges strongly to a

point z ∈ F (S), where z = PF (S)u.

Proof. As in the proof of Theorem 3.1, we have that A(S) is nonempty. Since
{Tsx : s ∈ S} is bounded for all x ∈ C, we have from the proof of Theorem 3.1 that
for any v ∈ A(S) and n ∈ N,
(4.2) ∥Tµnxn − v∥ ≤ ∥xn − v∥.
So, we have from (4.2) that

∥xn+1 − v∥ = ∥αnu+ (1− αn)Tµnxn − v∥
≤ αn∥u− v∥+ (1− αn)∥Tµnxn − v∥
≤ αn∥u− v∥+ (1− αn)∥xn − v∥.

Hence, by induction, we obtain

∥xn − v∥ ≤ max {∥u− v∥, ∥x− v∥}
for all n ∈ N. This implies that {xn} is bounded. We also have from (4.2) that
{Tµnxn} is bounded. Set zn = Tµnxn for all n ∈ N and let {zni} be a subsequence
of {zn} such that zni ⇀ v for some v ∈ C. As in the proof of Theorem 3.1, we have
that v ∈ F (S). On the other hand, since xn+1 − zn = αn(u− zn), {zn} is bounded
and αn → 0, we have

lim
n→∞

∥xn+1 − zn∥ = 0.

We show lim supn→∞⟨u − Pu, xn+1 − Pu⟩ ≤ 0. We may assume without loss of
generality that there exists a subsequence {xni+1} of {xn+1} such that

lim sup
n→∞

⟨u− Pu, xn+1 − Pu⟩ = lim
i→∞

⟨u− Pu, xni+1 − Pu⟩

and xni+1 ⇀ v, where P is the metric projection of H onto F (S). Since ∥xn+1 −
zn∥ → 0, we have zni ⇀ v. As the above, we have that v ∈ F (S). Then, we get

lim
i→∞

⟨u− Pu, xni+1 − Pu⟩ = ⟨u− Pu, v − Pu⟩ ≤ 0.

This implies

lim sup
n→∞

⟨u− Pu, xn+1 − Pu⟩ ≤ 0.(4.3)
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Since xn+1 − Pu = (1− αn)(zn − Pu) + αn(u− Pu), from (2.1) and (4.2) we have

∥xn+1 − Pu∥2 = ∥(1− αn)(zn − Pu) + αn(u− Pu)∥2

≤ (1− αn)
2∥zn − Pu∥2 + 2αn⟨u− Pu, xn+1 − Pu⟩

≤ (1− αn)∥xn − Pu∥2 + 2αn⟨u− Pu, xn+1 − Pu⟩.

Putting sn = ∥xn − Pu∥2, βn = 0 and γn = 2⟨u − Pu, xn+1 − Pu⟩ in Lemma 2.1,
we have from

∑∞
n=1 αn = ∞ and (4.3) that

lim
n→∞

∥xn − Pu∥ = 0.

This completes the proof. �
Using Theorem 4.1, we can prove the following strong convergence theorem for

generalized hybrid mappings in a Hilbert space.

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T be a generalized hybrid mapping of C into itself such that F (T ) is nonempty.
Let {µn} be a strongly asymptotically invariant sequence of means on B(N). Let
u ∈ C and define two sequences {xn} and {zn} in C as follows: x1 = x ∈ C and{

xn+1 = αnu+ (1− αn)zn,

zn = Tµnxn

for all n ∈ N, where 0 ≤ αn ≤ 1, αn → 0 and
∑∞

n=1 αn = ∞. Then {xn} and {zn}
converge strongly to Pu, where P is the metric projection of H onto F (T ).

Proof. Consider S = {0} ∪ N and S = {T k : k ∈ {0} ∪ N} in Theorem 4.1. Since
T : C → C be a generalized hybrid mapping and F (T ) is nonempty, T is quasi-
nonexpansive. From Takahashi, Wong and Yao [27], we have that A(T )∩C = F (T )
and hence A(T ) ̸= ∅. As in the proof of Theorem 3.2, we have that for all q ∈ F (T )
and n ∈ N,

∥zn − q∥ ≤ ∥xn − q∥.
Then, we have

∥xn+1 − q∥ = ∥αnu+ (1− αn)zn − q∥
≤ αn∥u− q∥+ (1− αn)∥zn − q∥
≤ αn∥u− q∥+ (1− αn)∥xn − q∥.

Hence, by induction, we obtain

∥xn − q∥ ≤ max {∥u− q∥, ∥x− q∥}
for all n ∈ N. This implies that {xn} and {zn} are bounded. Without loss of
generality, we may assume that C is bounded. Since T is generalized hybrid, we
have from the proof of Theorem 3.2 that

lim sup
α

sup
x,y∈C

(µα)k(∥T kx− Ty∥2 − ∥T kx− y∥2) ≤ 0.

So, we get the desired result from Theorem 4.1. �
In particular, we obtain Hojo and Takahashi strong convergence theorem [11]

from Theorem 4.2.
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Theorem 4.3. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T be a generalized hybrid mapping of C into itself. Let u ∈ C and define
two sequences {xn} and {zn} in C as follows: x1 = x ∈ C and

xn+1 = αnu+ (1− αn)zn,

zn =
1

n

n−1∑
k=0

T kxn

for all n = 1, 2, ..., where 0 ≤ αn ≤ 1, αn → 0 and
∑∞

n=1 αn = ∞. If F (T )
is nonempty, then {xn} and {zn} converge strongly to Pu, where P is the metric
projection of H onto F (T ).

Proof. Let S = {0} ∩ N in Theorem 3.2 and define

µn(f) =
1

n

n−1∑
i=0

f(i)

for all n ∈ N and f ∈ B(S). As in the proof of [10, Theorem 5], we have that
{µn : n ∈ N} is a strongly asymptotically invariant sequence of means on B(S).
Furthermore, we have from [22, p. 78] that for any x ∈ C and n ∈ N,

Tµnx =
1

n

n−1∑
i=0

T ix.

Therefore, we obtain Theorem 4.3 by using Theorem 4.2. �
Using Theorem 4.1, we also have a strong convergence theorem for semigroups

of nonexpansive mappings in a Hilbert space; see also [20].

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty closed and convex
subset of H. Let S be a commutative semitopological semigroup with identity. Let
S = {Ts : s ∈ S} be a nonexpansive semigroup on C such that F (S) ̸= ∅. Let {µn}
be a strongly asymptotically invariant sequence of means on C(S), i.e.,

∥µn − ℓ∗sµn∥ → 0, ∀s ∈ S.

Let u ∈ C and define a sequence {xn} in C as follows: x1 = x ∈ C and

xn+1 = αnu+ (1− αn)Tµnxn, ∀n ∈ N,
where 0 ≤ αn ≤ 1, αn → 0 and

∑∞
n=1 αn = ∞. Then, {xn} converges strongly to a

point z ∈ F (S), where z = PF (S)u.

Proof. Let x ∈ C and z ∈ F (S). Put r = max{∥u− z∥, ∥x− z∥} and set

M = {y ∈ C : ∥y − z∥ ≤ r}.
Then M is a bounded closed convex subset of C which is Tt-invariant and contains
u and x. Without loss of generality, we may assume that C is bounded. As in the
proof of Theorem 3.3, we have that

lim sup
α

sup
x,y∈C

(µα)s(∥Tsx− Tty∥2 − ∥Tsx− y∥2) ≤ 0

for all t ∈ S. So, we have the desired result from Theorem 4.1. �
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In particular, we have the following strong convergence theorem from Theorem
4.4.

Theorem 4.5 (Shimizu and Takahashi [19]). Let H be a Hilbert space and let C
be a nonempty, closed and convex subset of H. Let S = {S(t) : t ∈ R+} be a
one-parameter nonexpansive semigroup on C such that F (S) ̸= ∅. Let u ∈ C and
define a sequence {xn} in C as follows: x1 = x ∈ C and

xn+1 = αnu+ (1− αn)
1

λn

∫ λn

0
S(t)xndt, ∀n ∈ N,

where 0 < λn < ∞, λn → ∞, 0 ≤ αn ≤ 1, αn → 0 and
∑∞

n=1 αn = ∞. Then, {xn}
converges strongly to a point z ∈ F (S), where z = PF (S)u.

Proof. Let S = R+. For any f ∈ C(R+), define

µn(f) =
1

λn

∫ λn

0
f(t)dt, ∀λn ∈ (0,∞).

Then {µn} is a strongly asymptotically invariant sequence of means on C(R+); see
[10, Theorem 6]. Furthermore, we have from [22, Theorem 3.5.2] that for any x ∈ C
and λn ∈ (0,∞),

Tµnx =
1

λn

∫ λn

0
S(t)xdt.

Therefore, we have the desired result from Theorem 4.4. �
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