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WEAK AND STRONG CONVERGENCE THEOREMS
FOR SEMIGROUPS OF MAPPINGS WITHOUT CONTINUITY
IN HILBERT SPACES

NAWAB HUSSAIN® AND WATARU TAKAHASHI

ABSTRACT. In this paper, we first introduce a broad semigroup of mappings
without continuity in Hilbert spaces which contains discrete semigroups gener-
ated by generalized hybrid mappings and semigroups of nonexpansive mappings.
Then, using the theory of invariant means, we prove a weak convergence the-
orem of Mann’s type iteration for the semigroups. Next, using Halpern’s type
iteration, we prove a strong convergence theorem for such semigroups. Using
these results, we obtain new and well-known results for semigroups of mappings
without continuity in Hilbert spaces.

1. INTRODUCTION

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space and let C' be a nonempty subset
of H. Let T be a mapping of C into itself. We denote by F(T') the set of fized
points of T and by A(T) the set of attractive points [25] of T, i.e.,

(i) F(I)={z€C:Tz= 2z},

(i) A(T)={z€ H:|Tx — z|| < ||z — z||, Vz € C}.
We know from [25] that A(T') is closed and convex. This property is important.
Kocourek, Takahashi and Yao [14] defined a class of nonlinear mappings containing
nonexpansive mappings, nonspreading mappings [15, 16] and hybrid mappings [24]
in a Hilbert space. A mapping T': C — C'is called generalized hybrid [14] if there
exist «, 8 € R such that

(L.1) alTe = Tyl* + (1 - a)llz — Ty|* < BTz — y|* + (1 = )|z — y|?

for all z,y € C; see also [17]. We call such a mapping an («, (3)-generalized hybrid
mapping. A (1, 0)-generalized hybrid mapping is nonexpansive [8], i.e.,

[Tz =Tyl <[z —yl, Vz,yeC.
It is nonspreading [15, 16] for « =2 and 8 =1, i.e.,
2| T — Ty|* < Tz -yl + |Ty — z|*, Va,y e C.
It is hybrid [24] for o = % and 3 = %, ie.,
3 Tw — Tyl < llz — gl + T — yl> + Ty — 2], ¥a,y e C.
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In general, nonspreading and hybrid mappings are not continuous. See, for example,
[12]. We also know the concept of one-parameter nonexpansive semigroups in a
Hilbert space. Let H be a Hilbert space and let C' be a nonempty subset of H. Let
S=RtT={teR:0<t<oo} Afamily S ={S(t):t e R"} of mappings of C
into itself is called a one-parameter nonexpansive semigroup on C if S satisfies the
following:

(1) S(t+s)x=S(t)S(s)xr, VxreC, t,seRT;

(2) S(0)xr ==z, Vzel;

(3) for each x € C, the mapping t — S(t)z from RT into C' is continuous;

(2) for each t € RT, S(t) is nonexpansive.

Of course, S(t) are continuous. Such one-parameter nonexpansive semigroups are
used in the theory of nonlinear evolution equations [6]. Recently, using the concept
of invariant means, Takahashi, Wong and Yao [28] introduced the concept of semi-
groups of mappings without continuity in Hilbert spaces which contains discrete
semigroups generated by generalized hybrid mappings and semigroups of nonex-
pansive mappings. They proved a nonlinear mean convergence theorem of Baillon’s
type [4] which generalized simultaneously the mean convergence theorems [14] and
[5] for generalized hybrid mappings and one-parameter nonexpansive semigroups
in a Hilbert space. What kind of conditions of semigroups do we need to prove a
weak convergence theorem of Mann’s type [18] and a strong convergence theorem
of Halpern’s type [9] in a Hilbert space? This question is natural.

In this paper, using the concept of strongly asymptotically invariant nets, we
first introduce a broad semigroup of mappings without continuity in Hilbert spaces
which contains discrete semigroups generated by generalized hybrid mappings and
semigroups of nonexpansive mappings. Then, using the theory of strongly asymp-
totically invariant means, we prove a weak convergence theorem of Mann’s type
iteration for the semigroups. Next, using Halpern’s type iteration, we prove a
strong convergence theorem for such semigroups. Using these results, we obtain
new results and well-known results for semigroups of mappings without continuity
in Hilbert spaces.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm ||-||, respec-
tively. We denote the strong convergence and the weak convergence of {x,} to
x € H by x, — = and x,, — z, respectively. Let A be a nonempty subset of H. We
denote by ¢0A the closure of the convex hull of A. In a Hilbert space, it is known
[23] that for all z,y € H and a € R,

(2.1) lyll* = ll=ll* < 20y — =, y);

2 2 2 2
(22) ez + A -a)yl” =alz]"+ A -a)[ly]" —all —a) [z -y~
Furthermore, we have that
(2.3) 2(x—y,z—w) = |z —w|* +[ly — 2|° = [l — 2> = |y — w|?
for all z,y,z,w € H. From (2.3), we have that
(2.4) 20 —y,z—y) — |z —yl* = lz =yl = [l - 2|?
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for all x,y,z € H. Let C be a nonempty subset of H. A mapping T : C — C'is
quasi-nonezpansive if F(T) # () and

[Tz —yll < lz—yll, Veel, yeF(T).

It is well-known that the set F'(T") of fixed points of a quasi-nonexpansive mapping
T is closed and convex; see Itoh and Takahashi [13].
Let £*° be the Banach space of bounded sequences with supremum norm. Let

i be an element of (¢*°)* (the dual space of ¢*°). Then, we denote by u(f) the
value of p at f = (z1,z2,x3,...) € £°°. Sometimes, we denote by pu,(x,) the value
wu(f). A linear functional p on ¢ is called a mean if u(e) = ||p|| = 1, where
e=(1,1,1,...). A mean p is called a Banach limit on (> if p,(xnt1) = pn(xs).
We know that there exists a Banach limit on ¢°°. If 1 is a Banach limit on ¢*°, then
for f = (z1,22,23,...) € £,

liminf z,, < pp(zy,) < limsup z,.

n—00 n—o0
In particular, if f = (z1,29,23,...) € £*° and z,, — a € R, then we have u(f) =
tn(zy) = a. For the proof of existence of a Banach limit and its other elementary
properties, see [22]. To prove our main results, we need the following lemmas:

Lemma 2.1 (Aoyama-Kimura-Takahashi-Toyoda [1]). Let {s,} be a sequence of
nonnegative real numbers, let {ay} be a sequence of [0,1] with > o2 | oy, = 00, let
{Bn} be a sequence of nonnegative real numbers with > > | Bn < 0o, and let {v,}
be a sequence of real numbers with limsup,,_, . vn < 0. Suppose that

Sn+1 < (1 - an)sn + anYn + Bn

foralln =1,2,.... Then lim,_, s, = 0.

Lemma 2.2 (Takahashi-Toyoda [26]). Let D be a nonempty closed convex subset
of a real Hilbert space H. Let P be the metric projection of H onto D and let {x,}
be a sequence in H. If ||[xp+1 — ul| < ||zp —ul| for allu € D and n € N, then {Px,}
converges strongly.

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a € S the mappings s — a - s and s — s-a from S to
S are continuous. In the case when S is commutative, we denote st by s +t. Let
B(S) be the Banach space of all bounded real-valued functions on S with supremum
norm and let C(S) be the subspace of B(S) of all bounded real-valued continuous
functions on S. Let p be an element of C'(S)* (the dual space of C(S)). We denote
by u(f) the value of p at f € C(S). Sometimes, we denote by u(f(t)) or e f(t)
the value p(f). For each s € S and f € C(S5), we define two functions ¢, f and rsf
as follows:

(6sf)(t) = f(st) and (rsf)(t) = f(ts)
for all t € S. An element p of C(S)* is called a mean on C(S) if u(e) = ||p| = 1,
where e(s) = 1 for all s € S. We know that p € C(S)* is a mean on C(S) if and
only if

inf f(s) < p(f) <sup f(s), VfeC(9).

seS ses
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A mean p on C(S) is called left invariant if p(lsf) = p(f) for all f € C(S) and
s € S. Similarly, a mean p on C(S) is called right invariant if p(rsf) = u(f) for all
feC(S)and s € S. A left and right invariant invariant mean on C(S) is called an
invariant mean on C'(S). If S = N, an invariant mean on C'(S) = B(S) is a Banach
limit on ¢°°. The following theorem is in [22, Theorem 1.4.5].

Theorem 2.3 ([22]). Let S be a commutative semitopological semigroup. Then
there exists an invariant mean on C(S), i.e., there erists an element p € C(S)*
such that p(e) = ||ul| =1 and p(rsf) = p(f) for all f € C(S) and s € S.

Let S be a semitopological semigroup. For any f € C(S) and ¢ € R, we write
f(s) =»¢c, as s—oop
if for each € > 0 there exists an w € S such that
|f(tw) —c| <&, Vtes.
We denote the case f(s) = ¢, as s = oogr by
lim f(s)=¢, or lign f(s)=c.

S—OOR

When S is commutative, we also denote s — cor by s — oo.
Theorem 2.4 ([22]). Let f € C(S) and c € R. If

f(s) = e, as s— oop,
then u(f) = ¢ for all right invariant mean p on C(S).
Theorem 2.5 ([22]). If f € C(S) fulfills

f(ts) < f(s), Vt,se€S,

then
f(t) — inf f(w), as t— oop.
weSs

Let H be a Hilbert space and let C' be a nonempty subset of H. Let S be a
semitopological semigroup and let S = {T : s € S} be a family of mappings of C
into itself. Then & = {Ts : s € S} is called a continuous representation of S as
mappings on C if Ty = T,T; for all s,t € S and s — Tz is continuous for each
x € C. We denote by F'(S) the set of common fixed points of Ts, s € S, i.e.,

F(S) = N{F(T,) : s € S}.

A continuous representation S = {Ts : s € S} of S as mappings on C is called a
nonezrpansive semigroup on C' if each Ts, s € S is nonexpansive, i.e.,

|Tsx — Tsy|| < ||z —yll, Vz,yeC.

The following definition [21] is crucial in the nonlinear ergodic theory of abstract
semigroups. Let uw : S — H be a continuous function such that {u(s) : s € S}
is bounded and let p be a mean on C(S). Then there exists a unique point zg €
co{u(s) : s € S} such that

(2.5) no(u(s),y) = (z0,4), Wy € H.



WEAK AND STRONG CONVERGENCE THEOREMS 773

We call such zy the mean vector of u for . In particular, if S = {Ts : s € S}
is a continuous representation of S as mappings on C' such that {Tsx : s € S} is
bounded for some = € C and u(s) = Tsx for all s € S, then there exists zyp € H
such tat
M3<T3$,y> = <Zo,y>, Vy € H.

We denote such zg by T),x.

Motivated by Takahashi and Takeuchi [25], Atsushiba and Takahashi [3] defined
the set A(S) of all common attractive points of a family S = {7 : s € S} of
mappings of C into itself, i.e.,

A(S) =n{A(Ty) : s € S}.

A net {uq} of means on C(S) is said to be asymptotically invariant if for each
feC(S)and s €S,

ta(f) — pa(lsf) =0 and  pa(f) — pa(rsf) — 0.

A net {pq} of means on C(S) is said to be strongly asymptotically invariant if for
each s € S,

[€eta = pall = 0 and  |[ripa — pall = 0,
where ¢% and r} are the adjoint operators of f5 and 7, respectively. See [7] and

[22] for more details. Recently, Takahashi, Wong and Yao [28] proved the following
theorems:

Theorem 2.6. Let H be a Hilbert space and let C' be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ty : s € S}
be a continuous representation of S as mappings of C into itself. Let {Tsx :s € S}
be bounded for some x € C and let 1 be a mean on C(S). Suppose that

(2.6) ps || Tsw — Tty”2 < ps||Tsw — y”Qv Vyel, teS.

Then A(S) is nonempty. In addition, if C is closed and convex, then F(S) is
nonempty.

Theorem 2.7. Let H be a Hilbert space and let C' be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ts : s € S}
be a continuous representation of S as mappings of C into itself such that A(S) # 0.
Suppose that

(2.7) psl|Tsx — Ty ||* < ps| T = y[?, Yo,y e C, tes

for all invariant means p on C(S). Let {ua} be a net of means on C(S) such that
for each f € C(S) and s € S, pa(f) — pa(lsf) = 0. Then, {T,, x} converges weakly
to u € A(S), where u = limg PysyTsz. In addition, if C is closed and convez, then
{T,} converges weakly to u € F(S), where u = lim; Pp(s)Tsx.

3. WEAK CONVERGENCE THEOREMS

In this section, we first prove a weak convergence theorem of Mann’s type iteration
for semigroups of mappings without continuity in a Hilbert space.
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Theorem 3.1. Let H be a Hilbert space and let C' be a nonempty, bounded, closed
and convex subset of H. Let S be a commutative semitopological semigroup with
identity. Let S = {Ts : s € S} be a continuous representation of S as mappings of
C into itself. Suppose that

(3.1) limsup sup (pa)s(||Tsx — Tty||2 — || Tsx — yHQ) <0, VvVieS
« z,yeC

for all strongly asymptotically invariant nets {pq} of means on C(S). Let {u,} be
a strongly asymptotically invariant sequence of means on C(5), i.e.,

[ — Lopnll = 0, Vs € S.
Define a sequence {xy} in C as follows: x1 =z € C and
Tnt1 = Ty + (1 — )Ty, zn, Yn €N,

where 0 < o, < 1 and liminf,, o0 oy (1 — ay,) > 0. Then, {z,} converges weakly to
a point z € F(S) and z = lim,, o Pp(s)Tn, where Pr(s) is the metric projection of
H onto F(S).

Proof. Since S is commutative, we have from Theorem 2.3 that there exists an
invariant mean on C(S). Let p be an invariant mean on C'(S) and put pe = g in
(3.1). Then, we have from (3.1) that

psl| Tow — Toy||* < pol| Tow — y||*, Va,y € C, te S,

So, we have from Theorem 2.6 that A(S) is nonempty. Let z € A(S). Since
||in|| = 1, we have that for any n € N,

||Tﬂnl‘n - Z||2 = <Tunl‘n - Z’T,unxn - Z)
= (Mn)t<thL’n — Z,Tunﬁﬂn — Z>
< ol p (Tin = 2 T = 2)

(3:2) < sup [Ty = 2| - [ Tunn — 2|
< sup lzn = vl - [T n — |
= llzn — vl ([T, 20 — 2|

and hence

(3.3) T3 = 21 < iz = 211

Using (3.3), we have that
zns1 = 2[* = lanzn + (1 = an) Ty, zn — 2|
< ap|lzy, — ZH2 +(1 - O‘n)”Tunxn - 2”2
< apllzn — ZH2 + (1 = ap)|zn — ZH2
= [lan — 2|?

for all n € N. Then, lim, s ||z — 2||? exists and hence {z,} is bounded. We also
have from (2.2) that

Hl’n+1—ZH2 = |lanzy + (1 - an)Tﬂn‘T” - Z||2
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= anllzn — Z||2 + (1 — an) [Ty, zn — z||2 — an(l — an) [Ty, zn — $n||2
< anllzn — 22+ (1 = an)llzn — 2[* = an(l = an) | T, 20 — za?
= llzn = 2| = an(l = an)| Ty, 2n — al*.
Thus, we have
an(l = an) | Ty, — 20| < o — 27 = lenss — 2)*
Since lim,, o0 ||, — 2]|? exists and liminf,, o a, (1 — i) > 0, we have that
(3.4) | Ty, 20 — 0| = 0.

Since {zy} is bounded, there exists a subsequence {x,,} of {z,} such that z,, — v.
We have from (3.4) that

(3.5) T, Tny — 0.
We have from (2.3) that for y € C' and s,t € S,
2Tz — Ty, y — Ty) — | Ty — yl* = | Tswn — Toyl® — | Toan — ylI.
Applying u, to both sides of the inequality, we have that
2(tn)s(Tsztn — Teysy — Toy) — 1Ty — ylI* = (un)s(| Tswn — Tuyl|® = | Tswn — yl?)
and hence
2Ty, w0 — Ty, y — Tuy) — 1Ty — yl1* = (k) s (| Tswn — Tyl|* — | Tsan — yl*)

Since T, Ty, — v and imsup;_, o (tin,)s([| Tszn, — Tyl? — || Tszn, — y|*) <0, we
get that
2(v = Tyy,y — Ty) — | Ty — ylI* < 0.

Since 2(v — Tyy,y — Tyy) — || Tyy — y||* = ||v — Tyy||? — ||v — y]||?, we have that
(3.6) lv—Tiyl* < llv—yl?, yeC tes.

Putting y = v, we have v € F(T}). Therefore v € F(S). Let {xp,} and {xy,} be
two subsequences of {z,,} such that x,, — v; and Tpn; — vz. To complete the proof,
we show v; = vg. We know that vy, vs € F(S) and hence lim,, o |7, — v1]|? and
limy, o0 || 25 — v2||? exist. Put

a = lim ([Ja, = v1]? = [|lzn — val*).
n—oo
Note that for n € N,
[0 = v1]]? = |20 = val|* = 2(@n, v2 — v1) + [Jor]|* = [vz]|*.
From z,,, — v1 and Tp; — V2, We have

(3.7) a=2(vi,v2 — v1) + [o1]|* = [[oal|%;

(3-8) a = 2(va, vz — v1) + [Joa|* — fJoz|*.

Combining (3.7) and (3.8), we obtain 0 = 2(vg — v1,v2 — v1). Thus we get vy = v;.
This implies that {z,,} converges weakly to an element v € F(S). Since ||xp+1—2| <
|zn — 2|| for all z € F(S) and n € N, we obtain from Lemma 2.2 that {Pps)7n}
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converges strongly to an element p € F(S). On the other hand, we have from the
property of Pp(s) that
(Tn — Pp(s)Tn, Pp(syTn —u) >0
for all u € F/(S) and n € N. Since ¥, — v and Pp(s)z, — p, We obtain
(v=pp—u) =0

for all u € F'(S). Putting u = v, we obtain p = v. This means v = limy, o0 Pr(s)Tn-
This completes the proof. O

Using Theorem 3.1, we obtain the following weak convergence theorem for gen-
eralized hybrid mappings in a Hilbert space.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T be a generalized hybrid mapping of C into itself such that F(T') is nonempty.
Let {un} be a strongly asymptotically invariant sequence of means on B(N). Define
a sequence {x,} in C as follows: x1 =x € C and

Tpt1 = nTp + (1 — )Ty, Tn,  ¥n €N,

where 0 < ay, < 1 and liminf,, o apn(l — ay) > 0. Then {x,} converges weakly to
z € F(T) and z = limy, 00 Pp(r)Zn, where Pp(r) is the metric projection of H onto
F(T).

Proof. Consider S = {0} UN and S = {T* : k € {0} UN} in Theorem 3.1. Since
T : C — C be a generalized hybrid mapping, there exist «, 5 € R such that
(39)  alTe—Ty|*+ (1 —a)|z—Ty|* < BTz —y|* + (1 - B)llz — y|*
for all x,y € C. Putting x = u in (3.9), where u € F(T'), we have that
lu—Ty[? < flu—y]?

for all y € C. This implies that T is quasi-nonexpansive. From Takahashi, Wong
and Yao [27], we have that A(T) N C = F(T) and hence A(T) # (). We also have
that for all ¢ € F(T) and n € N,

”T/tnxn - qH2 = <Tﬂnxn - Q7T,unxn - CI>
= ()T 20 — ¢, Ty, o0 — q)

S H,UnH Sl]ip ’<Tk37n - QaTunxn - Q>‘

(3.10)
< sup 1T 2 — ql| - | Ty, 0 — gl

< sup [lzn = qll - [Ty = gl
= llen = vl - |1 Ty, 0 — qll
and hence |1}, 2, — q|| < || — q[|. Then, we have

H.Cl?n+1 - qH = HOénJZn + (1 - an)TunCCn - QH
< apllrn —qll + (1 — an) | Ty, w0 — 4|
< O‘NH‘TTL - q” + (1 - O‘n)Hxn - QH
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= [lzn —ql.-

Putting M ={y € C : ||ly — q|| < || — q||}, we have that z € M, TM C M and M
is bounded, closed and convex. Without loss of generality, we may assume that C
is bounded. Since T is generalized hybrid, we have that for all x,y € C' and k € N,

0 < BT e -yl + (1 = )Tz - y|?
—a| Tz = Ty|? - (1 - a)||T*z — Ty|®
= B{IT* e = Ty|? + 2 (T e — Ty, Ty — y) + | Ty -y}
+ (1= A{IT e — Ty|? + 2Tz — Ty, Ty — y) + | Ty - yII*}
—a| Tz = Ty|? = (1 - a)||T"z — Ty|
= Ty =yl +2 (BT + (1 = B)T* 2 — Ty, Ty — y )
+ (B = ){IT" 2 = Ty|? — |T"x - Ty|*}
=Ty —y|*>+2 <Tk$ — Ty + B(T* e, — TFz), Ty — y>
+ (B — a){|T" 2 - Ty|* — || T*z — Ty|*}
and hence
2T "z — Ty,y — Ty) — | Ty — y|
< 2B(T*" My — T2, Ty — y) + (B — ) {|T* 'z — Ty||* — IT"x — Ty|*}.
On the other hand, we have from (2.3) that
2(T* % = Ty,y = Ty) = | Ty — ylI* = | Tz - Ty|]? ~ |7z — y||*
So, we have that
|T%a = Ty|? — | T"2 — y|? < 26 (T2, — Tha, Ty — y)
+ (B — a){|T* 2 = Ty|* — || T* — Ty|*}.

If {ua} is a strongly asymptotically invariant net of means on ¢°°, then we have
that

(L) k(| T 2=Ty||*> — Tz — y|1*) < 2B8(pta)k <Tk+1$n — T2, Ty — y>
+ (8 — @) () ({1 Tz — Ty|? — ||T"z — Ty|*})
< |16itta = pall sup| (T 20, Ty —y) |
keN
+18 = ||| pa — pallsup | TFz — Tyl
keN
and hence

limsup sup (pa)x(||T*z — Ty||* — || T*z — y[|*) < 0.
o z,yeC

So, we have the desired result from Theorem 3.1. O
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Using Theorem 3.1, we obtain the following weak convergence theorem for semi-
groups of nonexpansive mappings in a Hilbert space; see also [2].

Theorem 3.3. Let H be a Hilbert space, let C' be a nonempty, closed and convex
subset of H. Let S be a commutative semitopological semigroup with identity and
let S ={T; : t € S} be a nonexpansive semigroup on C such that {Tix : t € S} is
bounded for some x € C. Let {un} be a strongly asymptotically invariant sequence
of means on C(S), i.e., a sequence of means on C(S) such that

lim [[p, — Gpnl| =0, Vs €S
n—oo

Define a sequence {x,} in C as follows: x1 = x € C' and

where 0 < o, < 1 and liminf,, o (1 — ay) > 0. Then, {z,} converges weakly to
a point z € F(S) and z = limy, ;o Pp(s)Tn, where Pr(s) is the metric projection of
H onto F(S).

Proof. Since § = {T} : t € S} is a nonexpansive semigroup on C' such that {T;z :
t € S} is bounded for some = € C, we have that F'(S) is nonempty. Let u € F(S)
and put M ={y € C: |ly—u|| < ||z —ul/}. Then, we have x € M, T;M C M for all
t € S, and M is bounded, closed and convex. Without loss of generality, we may
assume that C' is bounded. Since S = {T} : t € S} is a nonexpansive semigroup on
C, we have that for all x,y € C and s,t € S,

| Tz = Tyyl? = 1Tz — ylI* = | Tsx — Tyl* — | Torez — Thyl?
+ | Torsz = Toyl? — (| Tsz — y||
< | Tsa = Tyll* = | Torsz — Thyl?
+ || Tsx — y|* = | Tow — ylI?
= [Tz — Tiy|)* — | Torex — Tryl|*.

If {10} is a strongly asymptotically invariant net of means on C(S), then we have
that

(ta)s(| Tsz — Tty”2 — | Tsx — y||2) < (pa)s([| Tse — Tty”2 — || Ttz — TtyH2)
= (ta)sl|Tsx — Toy |1 — (6 pa)s | Tsw — Tyy|1?)
< |lpa = £ pa|| sup | Tow — Tyy|?
S

and hence
limsup sup (pa)s([Tsz — Try||* — | Tsz — y[[?) <0
« z,yeC
for all t € S. So, we have the desired result from Theorem 3.1. O

4. STRONG CONVERGENCE THEOREMS

In this section, we prove a strong convergence theorem of Halpern’s type iteration
for semigroups of mappings without continuity in a Hilbert space.
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Theorem 4.1. Let H be a Hilbert space and let C' be a nonempty, bounded, closed
and convex subset of H. Let S be a commutative semitopological semigroup with
identity. Let S = {Ts : s € S} be a continuous representation of S as mappings of
C into itself. Suppose that

(4.1) limsup sup (pa)s(||Tsz — Tty||2 — || Tsx — yH2) <0, VvVteS
@ z,yeC

for all strongly asymptotically invariant nets {pq} of means on C(S). Let {un} be
a strongly asymptotically invariant sequence of means on C(5), i.e.,
g, = Cipn]] = 0, Vs € S.
Let u € C and define a sequence {x,} in C as follows: 1 =z € C and
Tpt1 = opu+ (1 — )Ty, n, YneN,
where 0 < oy, <1, ap — 0 and Y7 | o, = 00. Then, {x,} converges strongly to a

point z € F(S), where z = Pp(s)u.

Proof. As in the proof of Theorem 3.1, we have that A(S) is nonempty. Since
{Tsx : s € S} is bounded for all z € C, we have from the proof of Theorem 3.1 that
for any v € A(S) and n € N,
(4.2) [Ty n — ]| < [lzn — o]
So, we have from (4.2) that
[Zn+1 — vl = [lanu + (1 — o) Ty, 20 — 0|
< apllu —vl| + (1 = o) | Ty, 20 — 0]
< apllu — vl + (1 = an)|zn — v]|.
Hence, by induction, we obtain
l2n — o] < max {|lu —vl|, ||z — v}

for all n € N. This implies that {z,} is bounded. We also have from (4.2) that
{Ty,xn} is bounded. Set z, = T),,x, for all n € N and let {z,,} be a subsequence
of {z,} such that z,, — v for some v € C. As in the proof of Theorem 3.1, we have
that v € F(S). On the other hand, since ;1 — 2, = an(u — 2p), {zn} is bounded
and a, — 0, we have

nh_{rolo [Zn+1 = 2nll = 0.

We show limsup,,_, . (u — Pu,zp41 — Pu) < 0. We may assume without loss of
generality that there exists a subsequence {zy,4+1} of {zp41} such that
limsup(u — Pu, xp41 — Pu) = lim (u — Pu, xp,4+1 — Pu)
n—oo 1—00

and T,,+1 — v, where P is the metric projection of H onto F(S). Since |[zp4+1 —
zn|| = 0, we have z,, — v. As the above, we have that v € F(S). Then, we get

lim (u — Pu, 2,41 — Pu) = (u — Pu,v — Pu) <0.

71— 00
This implies
(4.3) limsup(u — Pu, xp4+1 — Pu) < 0.

n—o0
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Since xp4+1 — Pu = (1 — ) (2, — Pu) + o (u — Pu), from (2.1) and (4.2) we have
lns1 = Pull® = (1 an)(zn — P) + an(u — Pu)|?
< (1= an)?||zn — Pu* + 204, (u — Pu, x4 1 — Pu)
< (1= ap)||zn — Pu|? + 20y, (u — Pu, £y — Pu).

Putting s, = ||z, — Pul|?, 8, = 0 and 7, = 2(u — Pu, 7,41 — Pu) in Lemma 2.1,
we have from ) 7, a,, = oo and (4.3) that

lim ||z, — Pu| = 0.
n—oo

This completes the proof. Il

Using Theorem 4.1, we can prove the following strong convergence theorem for
generalized hybrid mappings in a Hilbert space.

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T be a generalized hybrid mapping of C into itself such that F(T') is nonempty.
Let {un} be a strongly asymptotically invariant sequence of means on B(N). Let
u € C and define two sequences {xyn} and {z,} in C as follows: x1 =z € C and

Tnt1 = apt + (1 — o) zn,
z2n =Ty, xn

for alln € N, where 0 < ay, <1, oy = 0 and Y2 | o, = 00. Then {x,} and {z,}
converge strongly to Pu, where P is the metric projection of H onto F(T).

Proof. Consider S = {0} UN and S = {T* : k € {0} UN} in Theorem 4.1. Since
T : C — C be a generalized hybrid mapping and F(T") is nonempty, 1" is quasi-
nonexpansive. From Takahashi, Wong and Yao [27], we have that A(T)NC = F(T)
and hence A(T) # (). As in the proof of Theorem 3.2, we have that for all ¢ € F(T')
and n € N,

l2n = qll < llzn — qll
Then, we have

[2n41 —all = llanu + (1 — an)zn — 4|

< apllu—ql| + (1 — an)lzn — gl

< apllu—qll + (1 — an)l|zn —ql|-
Hence, by induction, we obtain

[2n — gl < max{[lu—qll, ||z - ql[}

for all n € N. This implies that {z,,} and {z,} are bounded. Without loss of
generality, we may assume that C' is bounded. Since T is generalized hybrid, we
have from the proof of Theorem 3.2 that

limsup sup (pa)x(||T"z — Ty||* — ||T*z - y[|*) < 0.
«a z,yeC

So, we get the desired result from Theorem 4.1. O

In particular, we obtain Hojo and Takahashi strong convergence theorem [11]
from Theorem 4.2.
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Theorem 4.3. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T be a generalized hybrid mapping of C into itself. Let uw € C and define
two sequences {xn} and {z,} in C as follows: r1 = x € C and

Tnt1 = Qpt + (1 — ap) zn,
1 n—1
Zn = — g Tk:cn
n
k=0

for all n = 1,2,..., where 0 < o, < 1, oy, — 0 and Y 07 a, = o0o. If F(T)
is nonempty, then {x,} and {z,} converge strongly to Pu, where P is the metric
projection of H onto F(T).

Proof. Let S = {0} NN in Theorem 3.2 and define
1 n—1

pn(f) =~ > f(0)
=0

for all n € N and f € B(S). As in the proof of [10, Theorem 5|, we have that
{pn : n € N} is a strongly asymptotically invariant sequence of means on B(S).
Furthermore, we have from [22, p. 78] that for any « € C' and n € N,

1 n—1
Ty = — Z%T’x.
1=

Therefore, we obtain Theorem 4.3 by using Theorem 4.2. 0

Using Theorem 4.1, we also have a strong convergence theorem for semigroups
of nonexpansive mappings in a Hilbert space; see also [20].

Theorem 4.4. Let H be a Hilbert space and let C' be a nonempty closed and convex
subset of H. Let S be a commutative semitopological semigroup with identity. Let
S ={Ts:s € S} be a nonexpansive semigroup on C' such that F(S) # 0. Let {pn}
be a strongly asymptotically invariant sequence of means on C(S), i.e.,

[ — Lopnll =0, Vs € S.
Let u € C and define a sequence {x,} in C as follows: 1 =z € C and
Tpy1 = o+ (1 — an)Tpy,zn, VneN,

where 0 < a, < 1, oy — 0 and > 07 | ayy = 00. Then, {z,,} converges strongly to a

point z € F(S), where z = Pp(s)u.
Proof. Let x € C and z € F(S). Put r = max{||u — z||, ||z — z||} and set
M={yeC:|y—z| <}

Then M is a bounded closed convex subset of C which is Ti-invariant and contains
u and z. Without loss of generality, we may assume that C' is bounded. As in the
proof of Theorem 3.3, we have that

limsup sup (pa)s([Tsz — Try[|* — || Tsz — y[[?) <0
«a z,yeC

for all t € S. So, we have the desired result from Theorem 4.1. O
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In particular, we have the following strong convergence theorem from Theorem
4.4.

Theorem 4.5 (Shimizu and Takahashi [19]). Let H be a Hilbert space and let C
be a nonempty, closed and conver subset of H. Let S = {S(t) : t € R*} be a
one-parameter nonexpansive semigroup on C such that F(S) # 0. Let u € C and
define a sequence {x,} in C as follows: 1 =z € C and

1 (A
Tpy1 = apu+ (1 — Oén)/\/ S(t)xpdt, Vn €N,

where 0 < Ay, < 00, Ay =00, 0 <, <1, oy = 0 and > o7 | o = 0. Then, {x,}
converges strongly to a point z € F'(S), where z = Pp(syu

Proof. Let S =R™. For any f € C(R"), define

/ f@)ydt, VA, € (0,00).

Then {u,} is a strongly asymptotically invariant sequence of means on C(R™); see
[10, Theorem 6]. Furthermore, we have from [22, Theorem 3.5.2] that for any z € C
and A, € (0, 00),
IR
Ty, v = — S(t)xdt.
A Jo

Therefore, we have the desired result from Theorem 4.4. O
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