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where

R(T )
+ := {(λt) ∈ RT : λt ≥ 0 for each t ∈ T and only finitely many λt ̸= 0}.

The optimal values of problems (P) and (D) are denoted by v(P) and v(D) respec-
tively.

It is well-known that the so-called weak Lagrange duality holds between problems
(P) and (D), i.e., v(P) ≥ v(D), but a duality gap may occur, i.e., we may have
v(P) > v(D). A challenge in convex analysis is to find sufficient conditions which
guarantee the strong Lagrange duality, i.e. the situation when v(P) = v(D) and the
dual problem (D) has at least an optimal solution. In the case when the involved
functions are proper convex functions, several interiority-type conditions were given
in order to preclude the existence of such a duality gap in different settings (see, for
instance, [36, Theorem 2.9.3]). Taking inspiration from the works due to Burachik
and Jeyakumar [6, 7], some authors approached the strong Lagrange duality by
using some epigraph properties for conjugate functions of the involved functions h∗

and h∗t , t ∈ T ; see, for instance, [8, 9, 14].
Recent interests are focused on the DC (difference of two convex functions) opti-

mization problem, that is, the involved functions h and/or ht in problem (P) are DC
functions. As pointed in [10], problems of DC programming are highly important
from both viewpoints of optimization theory and applications, and they have been
extensively studied in the literature, see for example [1, 4, 10, 11, 12, 13, 16, 19, 33,
34, 35] and the references therein.

Inspired by the works mentioned above, we continue to study the optimization
problem (P) but with h := f − g and ht := ft − gt, t ∈ T , being DC functions, that
is, the DC problem defined by

(1.1) (P )
Minimize f(x)− g(x),
s. t. ft(x)− gt(x) ≤ 0, t ∈ T,

x ∈ C,

where f, g, ft, gt : X → R, t ∈ T , are proper convex functions. Throughout this
paper, we assume that

(1.2) ∅ ̸= A := {x ∈ C : ft(x)− gt(x) ≤ 0 for each t ∈ T}.

Here and throughout the whole paper, following [36, page 39], we adapt the conven-
tion that (+∞)+(−∞) = (+∞)− (+∞) = +∞, 0 · (+∞) = +∞ and 0 · (−∞) = 0.
Then, for any two proper convex functions h1, h2 : X → R, we have that

(1.3) h1(x)− h2(x) :=

h1(x)− h2(x) ∈ R, x ∈ domh1 ∩ domh2,
−∞, x ∈ domh1 \ domh2,
+∞, x /∈ domh1;

hence,

(1.4) h1 − h2 is proper ⇐⇒ domh1 ⊆ domh2.
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In the case when g, gt, t ∈ T , are lower semicontinuous (lsc in brief), one can use

the equalities g = g∗∗ and gt = g∗∗t , t ∈ T , to deduce that, for each λ ∈ R(T )
+ ,

(1.5)
infx∈C{f(x)− g(x) +

∑
t∈T λt(ft(x)− gt(x))}

= inf(u∗,v∗)∈H∗{g∗(u∗) +
∑

t∈T λtg
∗
t (v

∗
t )− (f + δC +

∑
t∈T λtft)

∗(u∗ +
∑

t∈T λtv
∗
t )},

whereH∗ := dom g∗×
∏

t∈T dom g∗t and φ∗∗ denotes the second conjugate of a convex
function φ on X. Thus the dual problem (D) with h := f1 − f2 and ht := ft − gt,
t ∈ T , is reduced to the following one:

(1.6) (D) sup
λ∈R(T )

+

inf
w∗∈H∗

L(w∗, λ),

where the Lagrange function L : H∗ × R(T )
+ → R for (1.1) is defined by

(1.7) L(w∗, λ) := g∗(u∗) +
∑
t∈T

λtg
∗
t (v

∗
t )−

(
f + δC +

∑
t∈T

λtft
)∗(

u∗ +
∑
t∈T

λtv
∗
t

)
for any (w∗, λ) ∈ H∗ × R(T )

+ with w∗ = (u∗, (v∗t )) ∈ H∗ and λ = (λt) ∈ R(T )
+ .

Another interesting and extensively studied issue related to problem (P) is to find
sufficient conditions ensuring the Farkas rule (cf. [14]), that is, for each α ∈ R,

(1.8) [h(x) ≥ α, ∀x ∈ C, ht(x) ≤ 0, t ∈ T ] ⇔

[∃λ ∈ R(T )
+ s.t. h(x) +

∑
t∈T

λtht(x) ≥ α, ∀x ∈ C].

Specializing in the case when h := f1 − f2 and each ht := ft − gt with g, gt, t ∈ T ,
being lsc, we get from equality (1.5) that (1.8) is equivalent to the following one:

(1.9) [f(x)−g(x) ≥ α, ∀x ∈ A] ⇐⇒ [(∃λ ∈ R(T )
+ )(∀w∗ ∈ H∗) s.t. L(w∗, λ) ≥ α].

However, without assuming the lower semicontinuity of g and gt, equality (1.5)
does not necessarily hold. Thus, (D) and (D), (1.8) and (1.9) are, in general, not
equivalent; see Example 5.2 in Section 5.

Our main aim in the present paper is focused on two aspects: One is about the
strong Lagrange duality, that is, one seeks conditions to characterize the strong
Lagrange dualities between (P ) and (D); and the other is about the Farkas lemma,
that is, we look for conditions to ensure (1.9) holds. To the best of our knowledge,
not many results are known to provide characterizations for the strong Lagrange
duality or for the Farkas lemma for DC optimization problems, except the works
in [4, 33] where, some sufficient conditions in terms of the interiority are provided
for DC optimization problems with finite constraints but different formulations of
the dual problem via the standard convexification technique; while, in [12, 13], the
epigraph closure conditions are used to establish the Fenchel-Lagrange duality and
the extended Farkas lemma for the conical optimization problem with DC objective
function, but also for the dual problem defined via the convexification technique.

Unlike the convex case, the weak Lagrange duality between (P ) and (D) does not
necessarily hold, in general, as showed in Example 5.2. In the present paper we will
use the epigraph technique, the powerful tool in convex programming (see [6, 7, 17,
20, 21, 4, 5, 11, 10, 12, 13, 14, 26, 30, 31]), to provide complete characterizations
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for the (weak/strong/strong stable) Lagrangian dualities between (P ) and (D) and
for the Farkas rules and the stable Farkas rules. In general, we do not impose any
topological assumption on C or on f, g, ft and gt, that is, C is not necessarily closed
and f, g, ft, gt, t ∈ T , are not necessarily lsc. Most of results obtained in the present
paper seem new and are proper extensions of the results in [14] in the special case
when f2 = g2 = 0. In [14], the authors established the strong Lagrange duality
between (P) and (D) and the Farkas lemmas. As we noted earlier, in general, we
do not have the equivalences between (D) and (D), and between (1.8) and (1.9) in
the case when g and gt are not lsc. In particular, our dual problem and regularity
conditions introduced here are defined in terms of conjugates of the convex functions
f, g, ft and gt rather than of the DC functions f − g and ft − gt, which are different
from the consideration in [14] for the general (not necessarily convex) case.

The paper is organized as follows. The next section contains some necessary
notations and preliminary results. In Section 3, some new constraint qualifications
are introduced and studied. Complete characterizations for the (stable) Farkas
lemmas and for the (weak/strong/stable) Lagrange dualities are obtained in Sections
4 and 5, respectively. Applications to conical programming problem are given in
Section 6.

2. Notations and preliminaries

The notations used in this paper are standard (cf. [36]). In particular, we assume
throughout the whole paper that X is a real locally convex space and let X∗ denote
the dual space of X. For x ∈ X and x∗ ∈ X∗, we write ⟨x∗, x⟩ for the value of x∗

at x, that is, ⟨x∗, x⟩ := x∗(x). Let Z be a set in X. The closure of Z is denoted by
clZ. If W ⊆ X∗, then clW denotes the weak∗-closure of W . For the whole paper,
we endow X∗×R with the product topology of w∗(X∗, X) and the usual Euclidean
topology.

The indicator function δZ and the support function σZ of the nonempty set Z
are respectively defined by

δZ(x) :=

{
0, x ∈ Z,

+∞, otherwise,

and

σZ(x
∗) := sup

x∈Z
⟨x∗, x⟩ for each x∗ ∈ X∗.

Let f be a proper function defined on X. The effective domain, the conjugate
function and the epigraph of f are denoted by dom f , f∗ and epi f respectively;
they are defined by

dom f := {x ∈ X : f(x) < +∞},
f∗(x∗) := sup{⟨x∗, x⟩ − f(x) : x ∈ X} for each x∗ ∈ X∗,

and

epi f := {(x, r) ∈ X × R : f(x) ≤ r}.
It is well known and easy to verify that epi f∗ is weak∗-closed. The closure of f is
denoted by clf , which is defined by

epi (clf) = cl(epi f).
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Then (cf. [36, Theorems 2.3.1]),

(2.1) f∗ = (cl f)∗.

By [36, Theorem 2.3.4], if cl f is proper and convex, then the following equality
holds:

(2.2) f∗∗ = cl f.

By definition, the Young-Fenchel inequality below holds:

(2.3) f(x) + f∗(x∗) ≥ ⟨x, x∗⟩ for each pair (x, x∗) ∈ X ×X∗.

Furthermore, if g, h are proper functions, then

(2.4) epi g∗ + epih∗ ⊆ epi (g + h)∗,

and

(2.5) g ≤ h ⇒ g∗ ≥ h∗ ⇔ epi g∗ ⊆ epih∗.

Moreover, if g is convex and lsc on domh, then the same argument for the proof of
[16, Lemma 3.1] shows that

(2.6) epi(h− g)∗ =
∩

u∗∈domg∗

(epih∗ − (u∗, g∗(u∗))).

The following lemma is a direct consequence of the definitions of a conjugate
function and an epigraph. In particular, statements (i) and (ii) were used in [36,
Theorem 2.13(i)] and [30, equation (2.5)], respectively.

Lemma 2.1. Let I be an index set and let {fi : i ∈ I} be a family of proper convex
functions. Then the following statements hold.

(i) epi (supi∈I fi) = ∩i∈Iepi fi.
(ii) (infi∈I fi)

∗ = supi∈I f
∗
i ; consequently, epi (infi∈I fi)

∗ = ∩i∈Iepi f
∗
i .

We end this section with a remark that an element p ∈ X∗ can be naturally
regarded as a function on X in such a way that

(2.7) p(x) := ⟨p, x⟩ for each x ∈ X.

Thus the following facts are clear for any a ∈ R and any function h : X → R:
(2.8) (h+ p+ a)∗(x∗) = h∗(x∗ − p)− a for each x∗ ∈ X∗,

(2.9) epi(h+ p+ a)∗ = epih∗ + (p,−a).

3. New constraint qualifications

Let X be a real locally convex Hausdorff vector space, and C ⊆ X be a convex
set. Let T be an index set and let f, g, ft, gt, t ∈ T , be proper convex functions such
that f − g and ft − gt, t ∈ T , are proper functions such that A ∩ dom (f − g) ̸= ∅,
where, as before, A is the solution set of the following system:

(3.1) x ∈ C; ft(x)− gt(x) ≤ 0 for each t ∈ T.

Then, by (1.4), we have that

(3.2) ∅ ̸= dom f ⊆ dom g and ∅ ̸= dom ft ⊆ dom gt.
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Following [25], we use R(T ) to denote the space of real tuples λ = (λt) with only

finitely many λt ̸= 0, and let R(T )
+ denote the nonnegative cone in R(T ), that is

R(T )
+ := {λ = (λt) ∈ R(T ) : λt ≥ 0 for each t ∈ T}.

For simplicity, we denote

H∗ := domg∗ ×
∏
t∈T

domg∗t .

To make the dual problem considered here well-defined, we further assume that cl g
and cl gt, t ∈ T , are proper. Then H∗ ̸= ∅. For the whole paper, any elements

λ ∈ R(T )
+ and v∗ ∈

∏
t∈T domg∗t are understood as λ = (λt) ∈ R(T )

+ and v∗ = (v∗t ) ∈∏
t∈T domg∗t , respectively. Let K denote the following characteristic set defined by

(3.3)

K :=
∪

λ∈R(T )
+

( ∩
(u∗,v∗)∈H∗

(
epi (f + δC +

∑
t∈T

λtft)
∗− (u∗, g∗(u∗))−

∑
t∈T

λt(v
∗
t , g

∗
t (v

∗
t ))

))
.

The functions h̄ and h̄t, t ∈ T , which play a bridging role for our study, are defined
respectively by

(3.4) h̄ := f − cl g and h̄t := ft − cl gt for each t ∈ T.

Then

(3.5) h := f − g ≤ h̄ and ht := ft − gt ≤ h̄t for each t ∈ T.

Further, by (3.2), h̄ and h̄t, t ∈ T , are proper.

Lemma 3.1. The following equality holds:

(3.6) K =
∪

λ∈R(T )
+

epi (h̄+ δC +
∑
t∈T

λth̄t)
∗.

Proof. Let λ = (λt) ∈ R(T )
+ . Since cl g and cl gt, t ∈ T , are proper lsc convex

functions, it follows from (2.2) that

(3.7) cl g = g∗∗ and cl gt = g∗∗t for each t ∈ T.

Hence, by (3.4) and the definition of conjugate function, we have that

h̄+ δC +
∑

t∈T λth̄t
= inf(u∗,v∗)∈H∗(f + δC +

∑
t∈T λtft − u∗ −

∑
t∈T λtv

∗
t + g∗(u∗) +

∑
t∈T λtg

∗
t (v

∗
t )).

Moreover, by (2.9), one has that

epi(f + δC +
∑

t∈T λtft − u∗ −
∑

t∈T λtv
∗
t + g∗(u∗) +

∑
t∈T λtg

∗
t (v

∗
t ))

∗

= epi (f + δC +
∑

t∈T λtft)
∗ − (u∗, g∗(u∗))−

∑
t∈T λt(v

∗
t , g

∗
t (v

∗
t )).

Thus applying Lemma 2.1, we conclude that

epi (h̄+ δC +
∑

t∈T λth̄t)
∗

= epi
(
sup(u∗,v∗)∈H∗

(
f + δC +

∑
t∈T λtft − ⟨u∗, ·⟩

−
∑

t∈T λt⟨v∗t , ·⟩+ g∗(u∗) +
∑

t∈T λtg
∗
t (v

∗
t )
)∗)

= ∩(u∗,v∗)∈H∗
(
epi (f + δC +

∑
t∈T λtft)

∗ − (u∗, g∗(u∗))−
∑

t∈T λt(v
∗
t , g

∗
t (v

∗
t )
)
,

and (3.6) is established. �
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Let Acl denote the solution set of the system {x ∈ C; h̄t(x) ≤ 0, t ∈ T}, that is

(3.8) Acl := {x ∈ C : h̄t(x) ≤ 0 for each t ∈ T}.
Then, Acl ⊆ A (cf. (3.5)) and, by [14, equation (3.5)], one has that

(3.9) K =
∪

λ∈R(T )
+

epi (h̄+ δC +
∑
t∈T

λth̄t)
∗ ⊆ epi (h̄+ δAcl)∗.

Thus, in the case when g and gt, t ∈ T , are lsc, then Acl = A and h̄ = f − g; hence
the following inclusion holds:

(3.10) K ⊆ epi (f − g + δA)
∗.

The following example shows that (3.10) does not hold in general.

Example 3.2. Let X = C := R. Define f, g, f1, g1 : R → R respectively by
f = f1 := δ(−∞,0], g1 := 0 and for each x ∈ R,

g(x) :=

 0 x < 0,
1 x = 0,
+∞ x > 0.

Then f, g, f1 and g1 are proper convex functions. Consider the system (3.1) with
T := {1}. Then one sees that

A = {x ∈ R : f1(x)− g1(x) ≤ 0} = (−∞, 0].

It is easy to see that for each x ∈ R,

(f − g + δA)(x) =

 0 x < 0,
−1 x = 0,
+∞ x < 0,

and for each x∗ ∈ R,

(f − g + δA)
∗(x∗) =

{
1 x∗ ≥ 0,
+∞ x∗ < 0.

Hence,
epi (f − g + δA)

∗ = [0,+∞)× [1,+∞).

Moreover, since g∗1 = δ{0}, g
∗ = δ[0,+∞) and (f + λf1)

∗ = δ[0,+∞) for each λ ≥ 0, it
follows that

K =
∪
λ≥0

(
∩

u∗∈[0,+∞)

(epi (f + λf1)
∗ − (u∗, g∗(u∗)))) = [0,+∞)× [0,+∞).

Therefore, K * epi (f − g + δA)
∗.

Moreover, it is well known that, even in the case when g = 0 and each gt = 0,
the converse inclusion of (3.10) is not true, in general. Considering the possible
inclusions between epi (f − g + δA)

∗ and K, we introduce the following definition.

Definition 3.3. Let p ∈ X∗. The family {f, g, δC ; ft, gt : t ∈ T} is said to satisfy

(a) the conical weak epigraph hull property at p (denote by p-(WEHP )) if

(3.11) epi (f − g + δA)
∗ ∩ ({p} × R) = K ∩ ({p} × R);



754 D. H. FANG, G. M. LEE, C. LI, AND J. C. YAO

(b) the conical semi weak epigraph hull property at p (denote by p-(SWEHP ))
if

(3.12) epi (f − g + δA)
∗ ∩ ({p} × R) ⊇ K ∩ ({p} × R);

(c) the conical asymptotic weak epigraph hull property at p (denote by p-
(AWEHP )) if

(3.13) epi (f − g + δA)
∗ ∩ ({p} × R) = cl[K ∩ ({p} × R)];

(d) the conical (WEHP ) (resp. the conical (SWEHP ), the conical (AWEHP ))
if it satisfies the conical p-(WEHP ) (resp. the conical p-(SWEHP ), the
conical p-(AWEHP )) at each p ∈ X∗.

Remark 3.4. (a) Let p ∈ X∗. Then the following equivalences/implications hold
by definition:
(3.14)
the conical p-(WEHP ) =⇒ the conical p-(AWEHP ) =⇒ the conical p-(SWEHP );

(3.15) the conical (SWEHP ) ⇐⇒ epi (f − g + δA)
∗ ⊇ K;

(3.16) the conical (WEHP ) ⇐⇒ epi (f − g + δA)
∗ = K.

Moreover, the following equivalence holds (see Proposition 5.7 in Section 5):

the conical (AWEHP ) ⇐⇒ [epi (f − g + δA)
∗ = clK(3.17)

and p 7→ v(Dp) is upper semicontinuous].

(b) By (3.9), if g and gt, t ∈ T , are lsc, then the family {f, g, δC ; ft, gt : t ∈ T}
satisfies the conical (SWEHP ). The converse is not true, in general, as showed by
Example 3.5 below.

(d) Recall from [14] that the family {δC ;ht : t ∈ T} satisfies the conical (WEHP )h
if

(3.18) epi (h+ δA)
∗ =

∪
λ∈R(T )

+

epi
(
h+ δC +

∑
t∈T

λtht
)∗
.

Therefore, if g and gt, t ∈ T , are lsc, then the conical (WEHP ) for the family
{f, g, δC ; ft, gt : t ∈ T} is equivalent to the conical (WEHP )h for the family {δC ;ht :
t ∈ T} because of (3.6) and the lower semicontinuity of g and gt.

Example 3.5. Let X = C =: R and T := {1}. Define f, g, f1, g1 : R → R
respectively by f = f1 := δ[0,+∞), g1 := 0 and

g(x) :=


1
x x > 0, x ̸= 1,
2 x = 1,
1 x = 0,
+∞ x < 0

for each x ∈ R.

Then, for each λ ≥ 0,

(f − clg + λ(f1 − g1))(x) =

 − 1
x x > 0,

−1 x = 0,
+∞ x < 0

for each x ∈ R.



FARKAS’S LEMMAS AND LAGRANGE DUALITIES FOR DC PROGRAMMING 755

It follows that for each λ ≥ 0,

cl(f − clg + λ(f1 − g1))(x) =

 − 1
x x > 0,

−∞ x = 0,
+∞ x < 0

for each x ∈ R.

This implies thatK = ∪λ≥0epi(f−clg+λ(f1−g1))
∗ = ∅. Hence, K ⊆ epi(f−g+δA)

∗

and the conical (SWEHP ) holds by (3.15). However, g is not lsc at x = 1.

The following proposition establishes the relationship between the conical
(SWEHP ) (resp. the conical (AWEHP ), the conical (WEHP )) and the conical
0-(SWEHP ) (resp. the conical 0-(AWEHP ), the conical 0-(WEHP )).

Proposition 3.6. The family {f, g, δC ; ft, gt : t ∈ T} satisfies the conical (SWEHP )
(resp. the conical (AWEHP ), the conical (WEHP ) ) if and only if, for each
p ∈ X∗, the family {f − p, g, δC ; ft, gt : t ∈ T} satisfies the conical 0-(SWEHP )
(resp. the conical 0-(AWEHP ), the conical 0-(WEHP )).

Proof. Let p ∈ X∗ and let K(p) be the set defined by

K(p) :=
∪

λ∈R(T )
+

( ∩
(u∗,v∗)∈H∗

(
epi (f − p(·) + δC

+
∑
t∈T

λtft)
∗ − (u∗, g∗(u∗))−

∑
t∈T

λt(v
∗
t , g

∗
t (v

∗
t ))

))
.

Then, K(p) = K + (−p, 0) by (2.9) and so

(3.19) K(p) ∩ ({0} × R) = K ∩ ({p} × R) + (−p, 0).

Moreover, using (2.9), we conclude that

(3.20) epi (f − p− g + δA)
∗ ∩ ({0} ×R) = epi (f − g + δA)

∗ ∩ ({p} ×R) + (−p, 0).

Thus the conclusion follows from the definition and the proof is complete. �

4. Farkas Lemmas for DC programming

Throughout this section, the notations f, g, C, ft, gt, t ∈ T , A and K are as
explained at Section 3. In this section, we consider the Farkas lemma and the
stable Farkas lemma for DC optimization problem (1.1). Recall that the Lagrange
function L is defined by (1.7). We say that the family {f, g, δC ; ft, gt : t ∈ T}
satisfies the Farkas rule if, for each α ∈ R,
(4.1)

[f(x)− g(x) ≥ α, ∀x ∈ A] ⇐⇒ [(∃λ ∈ R(T )
+ )(∀w∗ ∈ H∗) s.t. L(w∗, λ) ≥ α],

and the stable Farkas rule if, for each p ∈ X∗, the family {f − p, g, δC ; ft, gt : t ∈ T}
satisfies the Farkas rule.

Remark 4.1. In the case when g and gt, t ∈ T , are lsc, the Farkas rule for the
family {f, g, δC ; ft, gt : t ∈ T}, thanks to (1.5), is reduced to (1.8) for the family
{h, δC ;ht : t ∈ T} studied in [14] .

The following lemma is useful for our study in the present paper.
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Lemma 4.2. Let r ∈ R. Then the following statements hold.
(i) (0, r) ∈ epi (f − g + δA)

∗ if and only if v(P ) ≥ −r.

(ii) (0, r) ∈ K if and only if there exists λ ∈ R(T )
+ such that for each w∗ =

(u∗, v∗) ∈ H∗, one has that

(4.2) L(w∗, λ) ≥ −r.

Proof. (i) By the definition of the conjugate function, one has

v(P ) = −(f − g + δA)
∗(0).

Hence, the result is clear.

(ii)Let (0, r) ∈ K. Then there exists λ ∈ R(T )
+ such that for each (u∗, v∗) ∈ H∗,

one has

(4.3) (0, r) ∈ epi (f + δC +
∑
t∈T

λtft)
∗ − (u∗, g∗(u∗))−

∑
t∈T

λt(v
∗
t , g

∗
t (v

∗
t )).

Let (u∗, v∗) ∈ H∗. Then there exists (x∗, r1) ∈ epi (f + δC +
∑

t∈T λtft)
∗ such that

(4.4) x∗ − u∗ −
∑
t∈T

λtv
∗
t = 0

and

(4.5) r1 − g∗(u∗)−
∑
t∈T

λtg
∗
t (v

∗
t ) = r.

Since (f + δC +
∑

t∈T λtft)
∗(x∗) ≤ r1 , it follows from (4.4) and (4.5) that

L(w∗, λ) = g∗(u∗) +
∑
t∈T

λtg
∗
t (v

∗
t )− (f + δC +

∑
t∈T

λtft)
∗(x∗)

≥ g∗(u∗) +
∑
t∈T

λtg
∗
t (v

∗
t )− r1

= −r.

Conversely, suppose that there exists λ ∈ R(T )
+ such that for each w∗ = (u∗, v∗) ∈

H∗, (4.2) holds. Let (u∗, v∗) ∈ H∗. Then

g∗(u∗) +
∑
t∈T

λtg
∗
t (v

∗
t )− (f + δC +

∑
t∈T

λtft)
∗(u∗ +

∑
t∈T

λtv
∗
t ) ≥ −r,

that is

(f + δC +
∑
t∈T

λtft)
∗(u∗ +

∑
t∈T

λtv
∗
t ) ≤ r + g∗(u∗) +

∑
t∈T

λtg
∗
t (v

∗
t ).

This means that (z∗, s) ∈ epi (f + δC +
∑

t∈T λtft)
∗, where,

z∗ := u∗ +
∑
t∈T

λtv
∗
t and s := r + g∗(u∗) +

∑
t∈T

λtg
∗
t (v

∗
t ).

Hence,

(4.6)
(0, r) = (z∗, s)− (u∗, g∗(u∗))−

∑
t∈T λt(v

∗
t , g

∗
t (v

∗
t ))

∈ epi (f + δC +
∑

t∈T λtft)
∗ − (u∗, g∗(u∗))−

∑
t∈T λt(v

∗
t , g

∗
t (v

∗
t )).
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Since (4.6) holds for each (u∗, v∗) ∈ H∗, it follows that

(0, r) ∈
∩

(u∗,v∗)∈H∗

(epi (f + δC +
∑
t∈T

λ̄tft)
∗ − (u∗, g∗(u∗))−

∑
t∈T

λ̄t(v
∗
t , g

∗
t (v

∗
t )))

and hence (0, r) ∈ K. The proof is complete. �

Theorem 4.3. The following statements are equivalent.
(i) The family {f, g, δC ; ft, gt : t ∈ T} satisfies the conical 0-(WEHP ).
(ii) For each α ∈ R,

(4.7) (0,−α) ∈ epi (f − g + δA)
∗ ⇐⇒ (0,−α) ∈ K.

(iii) The family {f, g, δC ; ft, gt : t ∈ T} satisfies the Farkas rule.

Proof. It is evident that (i)⇔(ii). By Lemma 4.2(i), the condition stated in the
left-hand side of (4.1) and that of (4.7) are equivalent. The corresponding assertion
regarding the right-hand side is also valid by Lemma 4.2(ii). Therefore (4.1) and
(4.7) are equivalent, and so (ii)⇔(iii). �

Using Theorem 4.3 and Proposition 3.6, we get straightforwardly the following
global version of Theorem 4.3, which gives a complete characterization for the stable
Farkas rule to hold.

Theorem 4.4. The following statements are equivalent.
(i) The family {f, g, δC ; ft, gt : t ∈ T} satisfies the conical (WEHP ).
(ii) For each p ∈ X∗ and each α ∈ R,

(4.8) (p,−α) ∈ epi (f − g + δA)
∗ ⇐⇒ (p,−α) ∈ K.

(iii) The family {f, g, δC ; ft, gt : t ∈ T} satisfies the stable Farkas rule.

5. Lagrange dualities for DC programming

Let p ∈ X∗ and consider the following DC optimization problem:

(5.1) (Pp)
Minimize f(x)− g(x)− ⟨p, x⟩,
s. t. ft(x)− gt(x) ≤ 0, t ∈ T,

x ∈ C

and its dual problem defined by

(5.2) (Dp) sup
λ∈R(T )

+

inf
w∗∈H∗

Lp(w
∗, λ),

where the Lagrange function Lp : H
∗ × R(T )

+ → R is defined by

(5.3) Lp(w
∗, λ) := g∗(u∗) +

∑
t∈T

λtg
∗
t (v

∗
t )−

(
f − p+ δC +

∑
t∈T

λtft
)∗(

u∗ +
∑
t∈T

λtv
∗
t

)
for any (w∗, λ) ∈ H∗ × R(T )

+ with w∗ = (u∗, v∗) ∈ H∗ and λ = (λt) ∈ R(T )
+ . In

particular, in the case when p = 0, problem (Pp) as well as its dual problem (Dp)
are reduced to the problem (P ) and problem (D) respectively. Let v(Pp) and v(Dp)
denote the optimal values of (Pp) and (Dp), respectively.
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Definition 5.1. We say that
(a) the weak Lagrange duality holds ( between (P ) and (D)) if v(D) ≤ v(P );
(b) the Lagrange duality holds ( between (P ) and (D)) if v(D) = v(P );
(c) the strong Lagrange duality holds ( between (P ) and (D)) if v(P ) = v(D)

and the problem (D) has an optimal solution;
(d) the stable weak Lagrange duality (resp. the stable Lagrange duality, the stable

strong Lagrange duality) holds if the weak Lagrange duality (resp. the Lagrange
duality, the strong Lagrange duality) between (Pp) and (Dp) holds for each p ∈ X∗.

This section is devoted to the study of the weak/stong and stable weak/strong
Lagrange dualities between (P ) and (D). We first note by the following example
that the weak Lagrange duality does not necessarily hold in general.

Example 5.2. Let X,C, T and f, g, f1, g1 : R → R be defined as Example 3.2.
Then f, g, f1 and g1 are proper convex functions and A = (−∞, 0]. Thus,

v(P ) = inf
x∈(−∞,0]

{f(x)− g(x)} = −1.

Clearly, f∗ = g∗ = f∗
1 = δ[0,+∞) and g∗1 = δ{0}. Hence,

v(D) = sup
λ≥0

inf
u∗≥0,v∗=0

{g∗(u∗) + g∗1(v
∗)− (f + λf1)

∗(u∗ + v∗)} = 0.

This implies that v(P ) < v(D). Consequently, the weak Lagrange duality does not
hold. Moreover, since

v(D) = max
λ≥0

inf
x∈R

{f(x)− g(x) + λ(f1(x)− g1(x))} = −1,

it follows that the problem (D) and (D) are not equivalent. Furthermore, it is easy
to see that (1.8) and (1.9) are not equivalent.

The following theorem shows that the conical 0-(SWEHP ) is a sufficient and
necessary condition for the weak Lagrange duality holds.

Theorem 5.3. (i) The weak Lagrange duality holds if and only if the family
{f, g, δC ; ft, gt : t ∈ T} satisfies the conical 0-(SWEHP ).

(ii) The stable weak Lagrange duality holds if and only if the family {f, g, δC ; ft, gt :
t ∈ T} satisfies the conical (SWEHP ).

Proof. Assertion (ii) is a global version of assertion (i). Hence, by Proposition 3.6,
we only need to prove assertion (i). To do this, suppose that the weak Lagrange
duality holds, that is, v(D) ≤ v(P ). Let (0, r) ∈ K. Then, by Lemma 4.2(ii) and
the definition of v(D), one has that v(D) ≥ −r and so, v(P ) ≥ −r, which implies
that (0, r) ∈ epi (f − g + δA)

∗, thanks to Lemma 4.2(i). Hence,

(5.4) K ∩ ({0} × R) ⊆ epi (f − g + δA)
∗ ∩ ({0} × R),

that is, the conical 0-(SWEHP ) holds.
Conversely, suppose that the conical 0-(SWEHP ) holds. Then (5.4) holds. To

show v(D) ≤ v(P ), suppose on the contrary that v(P ) < v(D). Then there exists
r ∈ R such that v(P ) < −r < v(D). Thus, by the definition of v(D), there exists

λ ∈ R(T )
+ such that for each (u∗, v∗) ∈ H∗, L(w∗, λ) ≥ −r holds. Hence, by Lemma

4.2(ii), we have (0, r) ∈ K, and (0, r) ∈ epi (f−g+δA)
∗ by (5.4). This together with
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Lemma 4.2(i) implies that v(P ) ≥ −r, which contradicts v(P ) < −r. Consequently,
v(P ) ≥ v(D) and the proof is complete. �

The following theorem provides some complete characterizations for the Lagrange
duality and the stable Lagrange duality .

Theorem 5.4. (i) The Lagrange duality holds if and only if the family {f, g, δC ; ft, gt :
t ∈ T} satisfies the conical 0-(AWEHP ).

(ii) The stable Lagrange duality holds if and only if the family {f, g, δC ; ft, gt : t ∈
T} satisfies the conical (AWEHP ).

Proof. As noted for the proof for Theorem 5.3, it is sufficient to prove assertion (i).
To do this, suppose that the Lagrange duality holds. Then, by Theorem 5.3, the
family {f, g, δC ; ft, gt : t ∈ T} satisfies the conical 0-(SWEHP ), that is, (5.4) holds.
Since epi (f − g + δA)

∗ ∩ ({0} × R) is w∗-closed, it follows that

(5.5) cl [K ∩ ({0} × R)] ⊆ epi (f − g + δA)
∗ ∩ ({0} × R).

To verify the converse inclusion, let (0, r) ∈ epi (f − g + δA)
∗. By Lemma 4.2(i),

v(P ) ≥ −r and so v(D) = v(P ) ≥ −r. Let ϵ > 0. Then, there exists λ ∈ R(T )
+ such

that for each w∗ = (u∗, v∗) ∈ H∗,

L(w∗, λ) ≥ −r − ϵ,

which implies that (0, r + ϵ) ∈ K ∩ ({0} × R) thanks to Lemma 4.2(ii). Hence,
(0, r) ∈ cl [K ∩ ({0} × R)], which shows the converse inclusion of (5.5). Hence, the
conical 0-(AWEHP ) holds.

Conversely, suppose that the family {f, g, δC ; ft, gt : t ∈ T} satisfies the conical
0-(AWEHP ). Then by Remark 3.4, the conical 0-(SWEHP ) holds. Hence, by
Theorem 5.3Extended Farkas’s lemmas and strong Lagrange dualities for DC infinite
programming, we have that v(D) ≤ v(P ). To show the converse inequality, suppose
on the contrary that v(D) < v(P ). Then there exists r ∈ R such that v(D) <
−r < v(P ). Thus, (0, r) ∈ epi (f − g + δA)

∗, thanks to Lemma 4.2(i). Since the
family {f, g, δC ; ft, gt : t ∈ T} satisfies the conical 0-(AWEHP ), it follows that
(0, r) ∈ cl [K ∩ ({0} × R)]. Therefore, there exists a net {(0, rτ )} ⊆ K such that

(0, rτ ) → (0, r). Hence, by Lemma 4.2(ii), there exists λ ∈ R(T )
+ such that for each

w∗ = (u∗, v∗) ∈ H∗,

L(w∗, λ) ≥ −rτ → −r.

This together with the definition of v(D) implies that v(D) ≥ −r, which contradicts
v(D) < −r. Hence, v(D) = v(P ) and the proof is complete. �

The following theorem characterizes the strong Lagrange dualities in term of the
conical 0-(WEHP ) and the conical (WEHP ).

Theorem 5.5. (i) The strong Lagrange duality holds if and only if the family
{f, g, δC ; ft, gt : t ∈ T} satisfies the conical 0-(WEHP ).

(ii) The stable strong Lagrange duality holds if and only if the family {f, g, δC ; ft, gt :
t ∈ T} satisfies the conical (WEHP ).
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Proof. As noted for the proof for Theorem 5.3, it is sufficient to prove assertion (i).
To do this, suppose that the strong Lagrange duality holds. Then, by Theorem 5.3,
we have (5.4) holds and so, we only need to verify the set on the right side of (5.4)
is contained in the set on the left side. To do this, let (0, r) ∈ epi (f − g + δA)

∗.
Then, by Lemma 4.2(i), we have v(P ) ≥ −r. Hence, by the strong Lagrange

duality, v(D) = v(P ) and there exists λ ∈ R(T )
+ such that (4.2) holds for each

(u∗, v∗) ∈ H∗. This together with Lemma 4.2(ii) implies that (0, r) ∈ K. Hence,
epi (f − g + δA)

∗ ∩ ({0} × R) ⊆ K ∩ ({0} × R).
Conversely, suppose that the family {f, g, δC ; ft, gt : t ∈ T} satisfies the conical

0-(WEHP ). Then, by Theorem 5.3, v(D) ≤ v(P ). Thus, to show the strong
Lagrange duality, it suffices to show v(P ) ≤ v(D) and (D) has an optimal solution.
Note that the conclusion holds trivially if v(P ) = −∞. Below we only consider
the case when r = −v(P ) ∈ R. By Lemma 4.2(i), (0, r) ∈ epi (f − g + δA)

∗ and
so (0, r) ∈ K, thanks to the assumed conical 0-(WEHP ). Thus, by Lemma 4.2(ii)

and the definition of v(D), we have that v(D) ≥ −r and there exists λ ∈ R(T )
+ such

that (4.2) holds for each (u∗, v∗) ∈ H∗. This implies that v(D) = v(P ) and λ is an
optimal solution of the problem (D). Hence, the strong Lagrange duality holds and
the proof is complete. �

For the following proposition on characterization of the (AWEHP ), we introduce
the upper semicontinuous hull of a proper function onX. Let ϕ : X → R be a proper
function. The upper semicontinuous hull of ϕ is defined by

lim sup
y→x

ϕ(y) := inf
V ∈N (x)

sup
y∈V

ϕ(y) for each x ∈ X,

where N (x) denotes the set of the neighborhoods of x. Clearly, one has by definition
that

(5.6) lim sup
y→x

ϕ(y) ≥ ϕ(x) for each x ∈ X.

Recall that ϕ is said to be upper semicontinuous (usc in brief) at x0 ∈ X if
lim supx→x0

ϕ(x) = ϕ(x0), and usc if ϕ is usc at each point of its domain.

Lemma 5.6. The function p 7→ v(Pp) is usc on X∗.

Proof. Let p0 ∈ X∗. By (5.6), we only need to show that lim supp→p0 v(Pp) ≤ v(Pp0).
Suppose on the contrary that lim supp→p0 v(Pp) > v(Pp0). Then there exists r ∈ R
such that lim supp→p0 v(Pp) > r > v(Pp0). Hence, for each V ∈ N (p0), there exists
pV ∈ V such that

v(Pp0) < r ≤ v(PpV ).

Let V be fixed. Then, for each x ∈ X,

f(x)− g(x) + δA(x)− ⟨pV , x⟩ ≥ r.

Since {pV : V ∈ N (p0)} ⊆ X∗, it follows that for each x ∈ X,

f(x)− g(x) + δA(x)− ⟨p0, x⟩ ≥ lim sup
pV →p0

{f(x)− g(x) + δA(x)− ⟨pV , x⟩} ≥ r.

Hence, v(Pp0) ≥ r, which is a contradiction. The proof is complete. �
Below we give a characterization for the conical (AWEHP ).
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Proposition 5.7. The family {f, g, δC ; ft, gt : t ∈ T} satisfies the conical (AWEHP )
if and only if the function p 7→ v(Dp) is usc on X∗ and the following equality holds:

(5.7) epi (f − g + δA)
∗ = clK.

Proof. Suppose that the family {f, g, δC ; ft, gt : t ∈ T} satisfies the conical
(AWEHP ). Then, by Theorem 5.4, we have that for each p ∈ X∗, v(Pp) = v(Dp)
holds, which implies that the function p 7→ v(Dp) is usc (note by Lemma 5.6 that
the function p 7→ v(Pp) is usc) and hence

(5.8) v(Pp) = lim sup
q→p

v(Dq) for each p ∈ X∗.

Below we show that (5.7) holds. By the assumed conical (AWEHP ), we have that
the family {f, g, δC ; ft, gt : t ∈ T} satisfies the conical (SWEHP ) by (3.14). Since
epi (f − g + δA)

∗ is weak∗-closed, it follows that

(5.9) clK ⊆ epi (f − g + δA)
∗.

To verify the converse inclusion, let (p, r) ∈ epi (f − g+ δA)
∗. Then v(Pp) ≥ −r and

by (5.8), we have that

lim sup
q→p

v(Dq) = v(Pp) ≥ −r.

Hence, for each V ∈ N (p), there exists pV ∈ V such that v(DpV ) ≥ −r. Let ϵ > 0

and let V be fixed. Then there exists λ ∈ R(T )
+ such that for each w∗ = (u∗, v∗) ∈ H∗,

LpV (w
∗, λ) ≥ −r − ϵ,

which implies that (pV , r + ϵ) ∈ K, thanks to Lemma 4.2(ii). Thus, (p, r) ∈ clK,
which shows the converse inclusion of (5.9). Hence, (5.7) holds.

Conversely, suppose that (5.7) holds and the function p 7→ v(Dp) is usc. To
show the conical (AWEHP ), by Theorem 5.4, it suffices to show that (5.8) holds
(note that the function p 7→ v(Dp) is usc). Note by (5.7) that K ⊆ epi (f −
g + δA)

∗ and hence the conical (SWEHP ) holds by Remark 3.4(a). Let p ∈ X∗.
Then, by Theorem 5.3(ii), one has that v(Dp) ≤ v(Pp) and so, lim supq→p v(Dq) ≤
lim supq→p v(Pq). Note by Lemma 5.6 that the function q 7→ v(Pq) is usc. It follows
that

(5.10) lim sup
q→p

v(Dq) ≤ v(Pp).

To show the converse inequality, let −r < v(Pp). Then, by Lemma 4.2(i) and (2.8),
(p, r) ∈ epi (f − g + δA)

∗ and (p, r) ∈ clK by (5.7). Therefore, (V × (r − δ, r +
δ)) ∩K ̸= ∅ for each V ∈ N (p) and each δ > 0. Fix V ∈ N (p), δ > 0 and choose
(pV , rδ) ∈ (V × (r − δ, r + δ)) ∩ K. Then, applying Lemma 4.2(ii), we have that
v(DpV ) ≥ −rδ ≥ −r − δ, and consequently,

inf
V ∈N (p)

sup
p∈V

v(Dp) ≥ inf
V ∈N (p)

v(DpV ) ≥ sup
δ>0

(−r − δ) ≥ −r.

This shows that lim supq→p v(Dq) ≥ −r, and so lim supq→p v(Dq) ≥ v(Pp) as −r <
v(Pp) is arbitrary. Thus lim supq→p v(Dq) = v(Pp) is proved by (5.10). The proof
is complete. �
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6. Applications to conic programming

Throughout this section, let X,Y be locally convex spaces, C ⊆ X be a nonempty
convex set. Let S ⊆ Y be a closed convex cone. Define an order on Y by saying
that y ≤S x if y − x ∈ −S. We attach a greatest element ∞ with respect to ≤S

and denote Y • := Y ∪ {+∞}. The following operations are defined on Y •: for any
y ∈ Y , y+∞ = ∞+y = ∞ and t∞ = ∞ for any t ≥ 0. Let f, g : X → R be proper
convex functions and G : X → Y • be S-convex in the sense that for every u, v ∈ X
and every t ∈ [0, 1],

G(tu+ (1− t)v) ≤S tG(u) + (1− t)G(v)

(see [4, 5, 21]). Consider the following DC conic programming problem

(6.1) (P (S))
Minimize f(x)− g(x),
s. t. x ∈ C, G(x) ∈ −S.

Problem (6.1) has been studied in [12, 13] and also studied in [2, 5, 3, 14, 15, 20,
22, 21, 24, 23] for the special case when g = 0. As before, we use A to denote the
solution set of the following system

(6.2) x ∈ C; G(x) ∈ −S,

and assume that A ∩ dom (f − g) ̸= ∅. Following [4, 14, 31], we define for each
λ ∈ S⊕,

(6.3) (λG)(x) :=

{
⟨λ,G(x)⟩ if x ∈ domG,

+∞ otherwise.

It is easy to see that G is S-convex if and only if (λG)(·) : X → R is a convex
function for each λ ∈ S⊕. Thus, problem (6.1) can be viewed as an example of (1.1)
by setting

(6.4) T := S⊕, ft := tG, gt := 0 for each t ∈ T,

and the approaches in previous sections are applicable. In particular, one can check
easily that the corresponding dual problem and Farkas rule are respectively reduced
to

(6.5) (D(S)) sup
λ∈S⊕

inf
u∗∈dom g∗

{g∗(u∗)− (f + δC + λG
)∗(

u∗)}

and for each α ∈ R,

[f(x)− g(x) ≥ α, ∀x ∈ A] ⇐⇒
[(∃λ ∈ S⊕)(∀u∗ ∈ domg∗) s.t. g∗(u∗)− (f + δC + λG

)∗(
u∗) ≥ α].

Moreover, the corresponding characteristic set K defined by (3.3) for (6.4) can ba
expressed as

(6.6) K =
∪

λ∈S⊕

( ∩
u∗∈dom g∗

(
epi (f + δC + λG)∗ − (u∗, g∗(u∗))

))
.

Thus, Theorems 4.3, 4.4, 5.3, 5.4 and 5.5 are applicable to establishing the corre-
sponding results on Farkas lemmas and Lagrange dualities for DC conic program-
ming problem (6.1). In particular, we make the following definition.
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Definition 6.1. The family {δC ;G} is said to satisfy the C(f, g;A) if

(6.7) epi (f − g + δA)
∗ = K.

Remark 6.2. Let ϕ := f − g be a proper DC function. Recall that the family
{δC ;G} satisfies the C(ϕ,A) if

(6.8) C(ϕ,A) epi (ϕ+ δA)
∗ =

∪
λ∈S⊕

epi (ϕ+ δC + λG)∗,

which was introduced in [14] (in the case when g = 0) for studying the Farkas lemma
and the strong Lagrange duality between (P (S)) and (D(S)). In the case when g
is lsc, one sees by (3.6) (applied to {λG, 0, S⊕} in place of {ft, 0, T}) that

K =
∪

λ∈S⊕

epi (h+ δC + λG)∗;

hence the C(f − g,A) and the C(f, g;A) coincide for the family {δC ;G}. However,
it is not true, in general, as shown in Example 6.4 below.

The main theorem of this section is as follows. In particular, the equivalences
(i)⇔(iii)⇔(iv) (in the special case when g = 0) in Theorem 6.3 below were given
in [14, Theorem 6.7] and (i)⇔(iii) was proved also in [3, Theorem 2] under the
assumptions that f is lsc, g = 0, C is closed and G is S-epi-closed, that is epiS(G) :=
{(x, y) ∈ X × Y : y ∈ G(x) + S} is closed.

Theorem 6.3. The following assertions are equivalent:
(i) The family {δC ;G} satisfies the C(f, g;A).
(ii) The stable strong Lagrange duality holds between (P (S)) and (D(S)).
(iii) The family {f, g, δC ;λG : λ ∈ S⊕} satisfies the stable Farkas rule.

Furthermore, if g is lsc, then each of assertions (i)-(iii) is equivalent to the following
one:

(iv) The family {δC ;G} satisfies the C(f − g,A).

Proof. Consider the family {f, g, δC ; ft, gt : t ∈ T} with T and ft, gt, t ∈ T , defined
by (6.4). As we mentioned earlier, the dual problem (6.5) for conic problem (6.1)
and the Farkas rule (1.8) for the family {δC ;G} are respectively equivalent to the
corresponding ones for problem (1.1) and the family {f, g, δC ; ft, gt : t ∈ T}. Fur-
thermore, by (6.6) and definition, the C(f, g;A) for the family {δC ;G} coincides
with the conical (WEHP ) for the family {f, g, δC ; ft, gt : t ∈ T}. Then, (i)⇔(ii)
follows from Theorem 5.5 and (i)⇔(iii) follows from Theorem 4.4; while the equiv-
alence (i)⇔(iv) holds by Remark 6.2. The proof is complete. �
Example 6.4. Let X = Y = C := R and S := [0,+∞). Let h,G : R → R be
defined respectively by h := f − g,G(x) := −x for each x ∈ R, where f := δ(−∞,0]

and

g(x) :=

 0, x < 0,
1, x = 0,

+∞, x > 0
for each x ∈ R.

Then f, g is proper convex, G is R-convex. Consider the system (6.2). Then one
has that

A = {x ∈ R : G(x) ∈ −S} = [0,+∞).
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Note that for each λ ∈ S⊕ = [0,+∞), one has that for each x ∈ R,

(h+ δA)(x) =

{
−1, x = 0,
+∞, x ̸= 0

and (h+ δC + λG)(x) =

 −λx, x < 0,
−λx− 1, x = 0,
+∞, x > 0.

Hence, for each x∗ ∈ R, (h+ δA)
∗(x∗) = 1 and

(h+ δC + λG)∗(x∗) =

{
1, x∗ ≥ −λ,

+∞, x∗ < −λ.

Thus,

epi (h+ δA)
∗ =

∪
λ∈[0,+∞)

epi (h+ δC + λG)∗ = R× [1,+∞).

Therefore, (6.8) holds and the family {δC ;G} satisfies the C(h,A). However, it is
easy to see that dom g∗ = [0,+∞) and for each λ ∈ [0,+∞),

(f + δC + λG)∗(x∗) =

{
0, x∗ ≥ −λ,

+∞, x∗ < −λ
for each x∗ ∈ R.

This implies that

K =
∪

λ∈[0,+∞)

∩
u∗∈[0,+∞)

{epi(f + δC + λG)∗ − (u∗, 0)} = R× [0,+∞).

Hence, epi (h+ δA)
∗ ̸= K and the C(f, g;A) does not holds. Therefore, the C(h,A)

does not coincide with the C(f, g;A).

We end this paper with the following remark which shows that some results for
the case of convex conical programming (i.e., the case when g = 0) can not be
extended to the case of DC conical programming.

Remark 6.5. Suppose that g = 0. Then the following assertions hold by [14,
Proposition 6.4 and Theorem 6.8]:

(a) If f is lsc, C is closed and G is S-epi-closed, then

(6.9) epi (f − g + δA)
∗ = cl

( ∪
λ∈S⊕

epi (f − g + δC + λG)∗
)
,

and so

(6.10) C(f − g;A) ⇐⇒
∪

λ∈S⊕

epi (f − g + δC + λG)∗ is weak∗-closed.

(b) If f − g is continuous at some point in A, then

(6.11) C(0, A) =⇒ C(f − g,A).

The following example shows that, if g ̸= 0, then each of (6.9), (6.10) and (6.11) is
no longer true (even in the case when f , g and G are continuous).

Example 6.6. Let X = Y = C := R and S := [0,+∞). Let h,G : R → R be
defined respectively by h := f − g,G(x) := x− 1 for each x ∈ R, where f := δ[0,+∞)

and

g(x) :=

{
x2, x ≥ 0,
+∞, x < 0

for each x ∈ R.
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Then f, g is proper convex, G is R-convex. Consider the system (6.2). Then one
has that

A = {x ∈ R : G(x) ∈ −S} = (−∞, 1].

Hence, h is continuous at some point in A and epiδ∗A = {(x, y) : x ≥ 0, y ≥ x}. It is
easy to see that for each λ ∈ S⊕ = [0,+∞) and for each x∗ ∈ R,

(δC + λG)∗(x∗) =

{
λ, x∗ = λ,

+∞, x∗ ̸= λ.

Then ∪
λ≥0

epi(δC + λG)∗ = {(x, y) : x ≥ 0, y ≥ x} = epiδ∗A.

This implies that the family {δC ; g} satisfies the condition C(0, A). Note that for
each x ∈ R,

h(x) =

{
−x2, x ≥ 0,
+∞, x < 0,

and (h+ δA)(x) =

{
−x2, 0 ≤ x ≤ 1,
+∞, x > 1 or x < 0.

It follows that for each x∗ ∈ R,

(h+ δA)
∗(x∗) =

{
x∗ + 1, x∗ ≥ 0,

0, x∗ < 0.

Therefore,

epi(h+ δA)
∗ = {(x, y) ∈ R2 : x ≥ 0, y > x+ 1} ∪ {(x, y) ∈ R2 : x < 0, y ≥ 0}.

However, for each λ ∈ [0,+∞) and for each x ∈ R,

(h+ δC + λG)(x) =

{
−x2 + λx− λ, x ≥ 0,

+∞, x < 0.

Thus, (h+ δC + λG)∗(x∗) = +∞ for each x∗ ∈ R and hence epi(h+ δC + λG)∗ = ∅.
This implies that ∪

λ∈[0,+∞)

epi(h+ δC + λG)∗ = ∅ ̸= epi(h+ δA)
∗.

Hence, the condition C(h,A) does not hold. Therefore, (6.11) does not hold. More-
over, note that ∪

λ∈[0,+∞)

epi(h+ δC + λG)∗ is w∗-closed,

it follows that (6.9) and (6.10) do not hold.
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[3] R. I. Boţ, S. M. Grad and G. Wanka, New regularity conditions for strong and total Fenchel-
Lagrange duality in infinite dimensional spaces, Nonlinear Anal. 69 (2008), 323–336.
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[26] C. Li, D. H. Fang, G. López and M. A. López, Stable and total Fenchel duality for convex
optimization problems in locally convex spaces, SIAM, J. Optim. 20 (2009), 1032–1051.

[27] C. Li and K. F. Ng, Constraint qualification, the strong CHIP and best approximation with
convex constraints in Banach spaces, SIAM J. Optim. 14 (2003), 584–607.

[28] C. Li and K. F. Ng, On constraint qualification for infinite system of convex inequalities in a
Banach space, SIAM J. Optim. 15 (2005), 488–512.

[29] C. Li and K. F. Ng, Strong CHIP for infinite system of closed convex sets in normed linear
spaces, SIAM J. Optim. 16 (2005), 311–340.



FARKAS’S LEMMAS AND LAGRANGE DUALITIES FOR DC PROGRAMMING 767

[30] C. Li, K. F. Ng and T. K. Pong, The SECQ, linear regularity and the strong CHIP for infinite
system of closed convex sets in normed linear spaces, SIAM J. Optim. 18 (2007), 643–665.

[31] C. Li, K. F. Ng and T. K. Pong, Constraint qualifications for convex inequality systems with
applications in constrained optimization, SIAM J. Optim. 19 (2008), 163–187.

[32] W. Li, C. Nahak and I. Singer, Constraint qualifications for semi-infinite systems of convex
inequalities, SIAM J. Optim. 11 (2000), 31–52.

[33] J. E. Martinez-Legaz and M. Volle, Duality in DC programming: the case of several constraints,
J. Math. Anal. Appl. 237 (1999), 657-671.

[34] J. F. Toland, Duality in nonconvex optimization, J. Math. Anal. Appl. 66 (1978), 399–415.
[35] H. Tuy, Convex Analysis and Global Optimization, Kluwer, Dordrecht, 1978.
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