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Stability analysis in vector optimization problems has been investigated inten-
sively by many researchers. One of the main problems here is to find sufficient
conditions for the efficient point multifunction F to have a certain stability prop-
erty such as lower (upper) semi-continuous, calmness and continuous properties.
For instance, the lower (upper) semi-continuity of the efficient point multifunction
have been examined by Penot [28,29]. Other results in this direction for the convex
problems can be found in [39]. We can consult the books by Tanino, Sawaragi and
Nakayama [37], Luc [24] for more various stability properties of the efficient point
multifunction. Using the so-called domination property and containment property,
Bednarczuk [2,3] studied the Hausdorff upper semi-continuity, the K-Hausdorff up-
per semi-continuity and the lower (upper) semi-continuity of F . Moreover, some of
the principal results in [2,3] being valid under weaker assumptions is proved by the
authors in a recent paper [11]. More recently, paper [8] gave sufficient conditions
in terms of the Fréchet and limiting coderivatives of parametric multifunctions for
the efficient solution map to have the calmness.

The contingent derivative has proved to be not only useful in necessary/sufficient
conditions of vector optimization (see e.g., [24]) but also successful in sensitivity
analysis (see e.g., [19, 20,35,36,38,39] and the references therein).

In this work the contingent derivative is exploited to study the stability theory
of parametric vector optimization problems. Namely, we establish new sufficient
conditions for the efficient point multifunction F of (1.2) to be isolatedly calm at a
given point in its graph. Furthermore, these conditions are elaborated in a broad
class of conventional vector optimization problems.

The rest of the paper is organized as follows. In Section 2, we provide further the
basic definitions and notations from set-valued analysis. Then we recall some known
auxiliary results which will be useful hereafter. In Section 3 we establish sufficient
conditions for the efficient point multifunction F to have the isolated calmness at
a given point in general cases. The further elaboration of these conditions on the
concrete/conventional classes in parametric vector optimization problems will be
undertaken in the last section. Moreover, examples are also simultaneously provided
to analyze and illustrate the obtained results.

2. Preliminaries and auxiliary results

In this section we provide further the basic definitions and notations from set-
valued analysis which will be widely used in what follows and also present some
auxiliary results which will be useful in the next section. Let G : P ⇒ Y be a
multifunction. The effective domain and the graph of G are defined, respectively,
by

domG = {p ∈ P | G(p) ̸= ∅}, gphG = {(p, y) ∈ P × Y | y ∈ G(p)}.
Let BY := {y ∈ Y | ||y|| ≤ 1}. We denote by N (y) the set of all neighborhoods of
y ∈ Y.

Definition 2.1. (i) G is upper locally Lipschitz at p̄ ∈ domG if there exist U ∈ N (p̄)
and a real number M > 0 such that

G(p) ⊂ G(p̄) +M ||p− p̄||BY ∀p ∈ U.
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(ii) We say that G is isolatedly calm at (p̄, ȳ) ∈ gphG if there exists V ∈ N (ȳ) such
that V ∩G(p̄) = {ȳ} and the multifunction p 7→ V ∩G(p) is upper locally Lipschitz
at p̄.
(iii) G is pseudo-Lipschitz at (p̄, ȳ) ∈ gphG if there exist U ∈ N (p̄) and V ∈ N (ȳ)
and a real number M > 0 such that

G(p1) ∩ V ⊂ G(p2) +M ||p1 − p2||BY ∀p1, p2 ∈ U.

Note that the isolated calmness was introduced in [14] under the name upper
Lipschitz continuity at a point, Levy [22] called it local upper Lipschitz. Recently,
this property was called isolated calmness in [15] and this is the name we use here.
The reader is referred to the book [18] for the study in details and the comparison
among various concepts of Lipschitz-type stable properties.

Definition 2.2. (i) G is said to be convex if

αG(p) + (1− α)G(p′) ⊂ G(αp+ (1− α)p′) ∀p, p′ ∈ P, ∀α ∈ [0, 1].

(ii) G is said to be K-convex if

αG(p) + (1− α)G(p′) ⊂ G(αp+ (1− α)p′) +K ∀p, p′ ∈ P, ∀α ∈ [0, 1].

It is known that (see e.g., [39]) G is convex if and only if gphG is a convex set
in P × Y. Given a subset Ω ⊂ Y , we denote the interior and the closure of Ω,
respectively, by intΩ and clΩ. Let ȳ ∈ clΩ. The Bouligand tangent cone to Ω at ȳ is
defined by

TB(Ω; ȳ) = {v ∈ Y |∃{tn} ⊂ (0,+∞), tn → 0, ∃{vn} ⊂ Y, vn → v

with ȳ + tnvn ∈ Ω ∀n ∈ N},

where N := {1, 2, . . . }. It is well known that this cone is closed.

When Ω is convex, the normal cone to Ω ⊂ Y at ȳ ∈ Ω is defined by

N(Ω; ȳ) := {v ∈ Y | ⟨v, y − ȳ⟩ ≤ 0 ∀y ∈ Ω},

and N(Ω; ȳ) := ∅ if ȳ /∈ Ω. Since Ω is convex, it is known that in this case the
normal cone to Ω at ȳ ∈ Ω is precisely the negative polar cone of the Bouligand
tangent cone to Ω at this point, that is

N(Ω; ȳ) := TB(Ω; ȳ)◦ = {v ∈ Y | ⟨v, y⟩ ≤ 0 ∀y ∈ TB(Ω; ȳ)}.

Definition 2.3. Let (p̄, ȳ) ∈ gphG.
(i) (See [1]) The multifunction DG(p̄, ȳ) : P ⇒ Y is said to be the contingent

derivative of G at (p̄, ȳ) if gphDG(p̄, ȳ) = TB(gphG; (p̄, ȳ)). Equivalently,

DG(p̄, ȳ)(p) = lim sup
(t,p′)→(0+,p)

1

t

(
G(p̄+ tp′)− ȳ

)
∀p ∈ P.

(ii) (See [27]) The multifunction DlG(p̄, ȳ) : P ⇒ Y is said to be the lower
derivative of G at (p̄, ȳ) if

gphDlG(p̄, ȳ) ={(p, y) ∈ P × Y | ∀{pn} ⊂ P, pn → p, ∀{tn} ⊂ (0,+∞), tn → 0,

∃{yn} ⊂ Y, yn → y, ∃n0 ∈ N, ∀n ≥ n0, ȳ + tnyn ∈ G(p̄+ tnpn)}.
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Equivalently,

DlG(p̄, ȳ)(p) = lim inf
(t,p′)→(0+,p)

1

t

(
G(p̄+ tp′)− ȳ

)
∀p ∈ P.

The multifunction G is said to be semi-differentiable at (p̄, ȳ) if DG(p̄, ȳ) =
DlG(p̄, ȳ).

The notion of semi-differentiable multifunction introduced by Penot [27] is closer
to the classical differentiability of mappings; see [27,31,32] for its various properties
and applications therein. Let us recall a result in [31] which will be useful hereafter.

Lemma 2.4 (See [31, Theorem 5.4]). Let X,Y and Z be finite dimensional spaces
and let G : X ⇒ Y be a multifunction having the form

G(x) = {y ∈ Ω | h(x, y) ∈ Θ},
where h : X × Y → Z is a continuously differentiable mapping and the sets Ω ⊂ Y
and Θ ⊂ Z are closed and convex. Suppose for (x̄, ȳ) ∈ gphG that the following
constraint qualification holds:

The only vector z ∈ N
(
Θ;h(x̄, ȳ)

)
satisfying − z∇yh(x̄, ȳ) ∈ N(Ω; ȳ) is z = 0.

Then G is semi-differentiable and pseudo-Lipschitz at (x̄, ȳ) as well as for each
x ∈ X,

DG(x̄, ȳ)(x) = {y ∈ TB(Ω; ȳ) | ∇xh(x̄, ȳ)(x) +∇yh(x̄, ȳ)(y) ∈ TB
(
Θ;h(x̄, ȳ)

)
},

where ∇h(x̄, ȳ) := (∇xh(x̄, ȳ),∇yh(x̄, ȳ)) denotes the Fréchet derivative of h at
(x̄, ȳ).

Definition 2.5 (See [4]). G is called directionally compact at (p̄, ȳ) ∈ gphG if for
every sequence {tn} ⊂ (0,+∞), tn → 0 and for every sequence {hn} ⊂ P, hn →
h ∈ P , any sequence yn with ȳ + tnyn ∈ G(p̄ + tnhn) for each n ∈ N contains a
convergent subsequence.

There are several sufficient conditions for the directionally compactness of G at a
given point in its graph that can be found in [4]. Here we invoke some other criteria
from [10] which will be used in the sequel.

Lemma 2.6 (See [10, Proposition 2.5]). If G is upper locally Lipschitz at p̄ ∈ domG
with G(p̄) = {ȳ}, then G is directionally compact at (p̄, ȳ).

Shi [35] introduced the following derivative of G at (p̄, ȳ) ∈ gphG in the direction
p :

DSG(p̄, ȳ)(p) :={y ∈ Y | ∃{tn} ⊂ (0,+∞),∃{pn} ⊂ P, yn ∈ G(pn)

such that pn → p̄, tn(pn − p̄, yn − ȳ) → (p, y)}.

It is easy to check that gphDG(p̄, ȳ) ⊂ gphDSG(p̄, ȳ) and gphDG(p̄, ȳ) = gphDSG(p̄, ȳ)
if G is a convex multifunction.

Lemma 2.7 (See [10, Proposition 2.6]). Let (p̄, ȳ) ∈ gphG. If the following condi-
tion is fulfilled, then G is directionally compact at (p̄, ȳ),

DSG(p̄, ȳ)(0) = {0}.(2.1)
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Note that the condition (2.1) has served well as a qualification condition for having
the so-called proto-differentiability of G. We refer the reader to [21] for more details
and its applications therein.

In what follows we also use the characterization of the isolated calmness of a
multifunction in terms of its contingent derivative.

Lemma 2.8 (See [22, Proposition 4.1]). Let G : P ⇒ Y be a multifunction and let
(p̄, ȳ) ∈ gphG. Then G is isolatedly calm at (p̄, ȳ) if and only if DG(p̄, ȳ)(0) = {0}.

3. Isolated calmness of the efficient point multifunction in general
cases

In this section we provide sufficient conditions for the efficient point multifunction
F in (1.3) to be isolatedly calm at a given point in its graph. To do this, we first
need to establish an outer estimate of the contingent derivative of F at the reference
point via the set of weakly efficient points of the contingent derivative of F in (1.1)
at the corresponding point.

Proposition 3.1. Let (p̄, ȳ) ∈ gphF . If one of the following conditions is satisfied:
(i) F is semi-differentiable at (p̄, ȳ);
(ii) F is K-convex and p̄ ∈ int(domF ),

then

DF(p̄, ȳ)(p) ⊂ Effw
KDF (p̄, ȳ)(p) ∀p ∈ P.(3.2)

Proof. It follows from [17, Theorem 3.6.19]. �

The next example shows that under condition (i) or (ii) the inclusion (3.2) may
be not true if the superscription “w” is omitted. In other words, we do not have in
general a sharper outer estimate DF(p̄, ȳ)(p) ⊂ EffKDF (p̄, ȳ)(p) for all p ∈ P.

Example 3.2. Let P = R, X = Y = R2,K = R2
+ and let f : P×X → Y,C : P ⇒ X

be mappings which are given as follows:

f(p, x) = x ∀p ∈ P, ∀x ∈ X,

C(p) = {x = (x1, x2) ∈ R2 | x2 ≥ x21} ∀p ∈ P.

We have

F (p) = {y = (y1, y2) ∈ R2 | y2 ≥ y21} ∀p ∈ P,

F(p) = {y = (y1, y2) ∈ R2 | y2 = y21, y1 ≤ 0} ∀p ∈ P.

Take p̄ = 0 and ȳ = (0, 0), then ȳ ∈ F(p̄). By simple computation, one can find

DF(p̄, ȳ)(p) = (−∞, 0]× {0},
DF (p̄, ȳ)(p) = R× [0,+∞) ∀p ∈ P.

It is easy to see that F is K-convex and p̄ ∈ int(domF ), i.e., the assumption (ii) is
fulfilled. Meanwhile, EffKDF (p̄, ȳ)(p) = ∅ for all p ∈ P and therefore the inclusion
DF(p̄, ȳ)(p) ⊂ EffKDF (p̄, ȳ)(p) fails to hold for all p ∈ P.

We are now ready to formulate the main result of this section.
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Theorem 3.3. Let (p̄, ȳ) ∈ gphF . Suppose that Effw
KDF (p̄, ȳ)(0) = {0}. If one of

the following conditions is satisfied:
(i) F is semi-differentiable at (p̄, ȳ);
(ii) F is K-convex and p̄ ∈ int(domF ),

then F is isolatedly calm at (p̄, ȳ).

Proof. Employing Proposition 3.1 and Lemma 2.8, we get the desired result. �

It is worth to noticing that the assumptions in the above theorem are essential.
Let us first revisit Example 3.2. Consider p̄ = 0 and ȳ = (0, 0) ∈ F(p̄). We have
Effw

KDF (p̄, ȳ)(0) = R × {0} ̸= {0}. Observe that F is not isolatedly calm at (p̄, ȳ)
although the condition (ii) in Theorem 3.3 holds. In the next example neither (i)
nor (ii) in Theorem 3.3 is satisfied, the conclusion of this theorem is invalid.

Example 3.4. Let P = X = Y = R,K = R+ and let f : P ×X → Y,C : P ⇒ X
be mappings which are given as follows:

f(p, x) = x ∀p ∈ P, ∀x ∈ X,

C(p) =

{√
p if p ≥ 0

∅ otherwise.

We have F(p) = F (p) = C(p) for all p ∈ P. Take p̄ = 0 and ȳ = 0, then ȳ ∈ F(p̄).
By computing, we obtain Effw

KDF (p̄, ȳ)(0) = {0}. Since p̄ /∈ int(domF ), it follows
that neither (i) nor (ii) in Theorem 3.3 is satisfied. Actually, F is not isolatedly
calm at (p̄, ȳ).

4. Isolated calmness of the efficient point multifunction in
special/concrete cases

4.1. Multifunction constraints. We now consider the problem (1.2) with con-

straint mapping C : P ⇒ X. Define C̃ : P × Y ⇒ X as follows

C̃(p, y) = {x ∈ C(p) | f(p, x) = y}.(4.1)

Our first auxiliary result in this section gives a formula for computing contingent
derivatives of F in (1.1) at the reference point via the contingent derivative of the
constraint mapping C and the Fréchet derivative of the objective function f at the
corresponding points.

Proposition 4.1. Let p̄ ∈ P, x̄ ∈ C(p̄) and ȳ = f(p̄, x̄). Suppose that f is Fréchet
differentiable at (p̄, x̄) with the derivative ∇f(p̄, x̄) := (∇pf(p̄, x̄),∇xf(p̄, x̄)) and

that C̃ defined in (4.1) is directionally compact at ((p̄, ȳ), x̄). One has

DF (p̄, ȳ)(p) = {∇pf(p̄, x̄)(p) +∇xf(p̄, x̄)(x) | x ∈ DC(p̄, x̄)(p)} ∀p ∈ P.(4.2)

Furthermore, if C is semi-differentiable at (p̄, x̄), then F is semi-differentiable at
(p̄, ȳ) as well.

Proof. The inclusion “⊃” in (4.2) has been proved in [17, Theorem 2.7.8]. Let us
justify the inverse “⊂” in (4.2). For each p ∈ P, take any y ∈ DF (p̄, ȳ)(p), i.e.,
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(p, y) ∈ TB(gphF ; (p̄, ȳ)). Then there exist sequences {tn} ⊂ (0,+∞), tn → 0 and
{(pn, yn)} ⊂ P × Y, (pn, yn) → (p, y) with

ȳ + tnyn ∈ F (p̄+ tnpn) for all n.

Thus it follows from the composite from of F in (1.1) that there exists {xn} ⊂
C(p̄+ tnpn) such that

ȳ + tnyn = f(p̄+ tnpn, xn) for all n,(4.3)

i.e., xn ∈ C̃(p̄+ tnpn, ȳ + tnyn) for all n.

Set x̂n = xn−x̄
tn

. We get xn = x̄+ tnx̂n ∈ C̃(p̄+ tnpn, ȳ + tnyn) for all n. Since C̃ is

directionally compact at ((p̄, ȳ), x̄), without loss of generality, we may assume that
{x̂n} converges to some x̂ ∈ X. Thus x̂ ∈ DC(p̄, x̄)(p). By (4.3), we have

y = lim
n→∞

yn = lim
n→∞

f(p̄+ tnpn, x̄+ tnx̂n)− f(p̄, x̄)

tn
= ∇pf(p̄, x̄)(p) +∇xf(p̄, x̄)(x̂)

and thus (4.2) has been established. We have by definition

DlF (p̄, ȳ)(p) ⊂ DF (p̄, ȳ)(p) ∀p ∈ P.(4.4)

In order to show that F is semi-differentiable at (p̄, ȳ), it suffices to justify the
converse inclusion in (4.4). Let p ∈ P and take any y ∈ DF (p̄, ȳ)(p). By (4.2),
there exists x ∈ DC(p̄, x̄)(p) such that y = ∇pf(p̄, x̄)(p) +∇xf(p̄, x̄)(x). From the
semi-differentiability of C at (p̄, x̄) it follows that for any {tn} ⊂ (0,+∞), tn → 0,
and {pn} ⊂ P, pn → p, there exist {xn} ⊂ X,xn → x and n0 ∈ N such that

x̄+ tnxn ∈ C(p̄+ tnpn) ∀n ≥ n0.

Setting

yn :=
f(p̄+ tnpn, x̄+ tnxn)− f(p̄, x̄)

tn
,

we have lim
n→∞

yn = y and

yn ∈ F (p̄+ tnpn)− ȳ

tn
∀n ≥ n0.

Hence y ∈ lim inf
(t,p′)→(0+,p)

F (p̄+tp′)−ȳ
t = DlF (p̄, ȳ)(p) and this completes the proof. �

Remark 4.2. Observe that, in the proof of Proposition 4.1, the multifunction C̃
is directionally compact at ((p̄, ȳ), x̄) whenever the multifunction C has the corre-
sponding property at (p̄, x̄). Thus the conclusion of Proposition 4.1 remains valid if

the assumption C̃ is directionally compact at ((p̄, ȳ), x̄) is replaced by the assump-
tion C is directionally compact at (p̄, x̄).

Corollary 4.3. Let p̄ ∈ P, x̄ ∈ C(p̄) and ȳ = f(p̄, x̄). Suppose that f is Fréchet
differentiable at (p̄, x̄) with the derivative ∇f(p̄, x̄) := (∇pf(p̄, x̄),∇xf(p̄, x̄)). If one
of the following requirements is fulfilled:

(i) C is upper locally Lipschitz at p̄ ∈ domC with C(p̄) = {x̄};
(ii) DSC(p̄, x̄)(0) = {0};
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(iii) C̃ defined in (4.1) is upper locally Lipschitz at (p̄, ȳ) ∈ domC̃ with C̃(p̄, ȳ) =
{x̄};

(iv) DSC̃((p̄, ȳ), x̄)(0, 0) = {0},
then (4.2) holds true.

Proof. The proof is immediate from Lemmas 2.6, 2.7, Proposition 4.1 and Re-
mark 4.2. �

Note that the formula (4.2) is stated and proved by Tanino [38] under the condi-
tion (iii) in Corollary 4.3 and a slightly more exacting assumption that f is a con-
tinuously differentiable function; see further [17, Theorem 2.7.8] for a proof which
has been undertaken under the condition (i) in Corollary 4.3.

The following proposition gives us another criteria for computing contingent
derivatives of F in (1.1) at a given point in its graph.

Proposition 4.4. Let p̄ ∈ P, x̄ ∈ C(p̄) and ȳ = f(p̄, x̄). Suppose that f is Fréchet
differentiable at (p̄, x̄) with the derivative ∇f(p̄, x̄) := (∇pf(p̄, x̄),∇xf(p̄, x̄)). If one
of the following requirements is fulfilled:

(i) f is K-convex, C is a convex multifunction with C(x̄) being a closed set

and x̄ ∈ int(domC), and C̃ defined in (4.1) is isolatedly calm at ((p̄, ȳ), x̄) with

C̃(p̄, ȳ) = {x̄};
(ii) C̃ defined in (4.1) is pseudo-Lipschitz at ((p̄, ȳ), x̄),

then (4.2) holds true.

Proof. The proof of (i) is similar to that given in [39, Proposition 5.2]. We only
justify the proposition under condition (ii). In view of [17, Theorem 2.7.8], it suffices
to prove that

DF (p̄, ȳ)(p) ⊂ {∇pf(p̄, x̄)(p) +∇xf(p̄, x̄)(x) | x ∈ DC(p̄, x̄)(p)} ∀p ∈ P.(4.5)

For each p ∈ P, take any y ∈ DF (p̄, ȳ)(p), i.e., (p, y) ∈ TB(gphF ; (p̄, ȳ)). Then there
exist sequences {tn} ⊂ (0,+∞), tn → 0 and {(pn, yn)} ⊂ P × Y, (pn, yn) → (p, y)
with

ȳ + tnyn ∈ F (p̄+ tnpn) for all n ∈ N.

Since C̃ is pseudo-Lipschitz at ((p̄, ȳ), x̄), there exist U1 ∈ N (p̄), U2 ∈ N (ȳ), V ∈
N (x̄) and M > 0 such that

C̃(p1, y1) ∩ V ⊂C̃(p2, y2) +M(||p1 − p2||2 + ||y1 − y2||2)
1
2BX(4.6)

∀p1, p2 ∈ U1, ∀y1, y2 ∈ U2.

Choose δ > 0 such that p̄+ δBP ⊂ U1, ȳ + δBY ⊂ U2. It follows from (4.6) that

x̄ ∈ C̃(p̄, ȳ) ∩ V ⊂C̃(p̄+ tp′, ȳ + ty′) +Mt(||p′||2 + ||y′||2)
1
2BX(4.7)

∀t ∈ (0, δ), ∀p′ ∈ P, ||tp′|| ≤ δ,∀y′ ∈ Y, ||ty′|| ≤ δ.

Since tn → 0 and (pn, yn) → (p, y), without loss of generality, we may assume that

there exists M1 > 0 such that (||pn||2 + ||yn||2)
1
2 ≤ M1 and tn ∈ (0, δ), ||tnpn|| ≤



ISOLATED CALMNESS OF EFFICIENT POINT MULTIFUNCTIONS 727

δ, ||tnyn|| ≤ δ for all n. So, by (4.7) there exists {xn} ⊂ C̃(p̄+ tnpn, ȳ + tnyn) such
that ||x̄−xn|| ≤ MM1tn for all n. Set x̂n = xn−x̄

tn
. Then ||x̂n|| ≤ MM1 for all n and

xn = x̄+ tnx̂n ∈ C̃(p̄+ tnpn, ȳ + tnyn) ∀n.(4.8)

Since X is finite dimensional, without loss of generality, we may assume that {x̂n}
converges to some x̂ ∈ X. This together with the fact that

x̄+ tnx̂n ∈ C̃(p̄+ tnpn, ȳ + tnyn) ⊂ C(p̄+ tnpn) for all n

yields x̂ ∈ DC(p̄, x̄)(p). It follows from (4.8) that ȳ+tnyn = f(p̄+tnpn, xn) for all n.
We have

y = lim
n→∞

yn = lim
n→∞

f(p̄+ tnpn, x̄+ tnx̂n)− f(p̄, x̄)

tn
= ∇pf(p̄, x̄)(p) +∇xf(p̄, x̄)(x̂)

and thus (4.5) has been justified. �

The criteria for the mapping C̃ to be pseudo-Lipschitz or upper locally Lipschitz
can be found in [38,39] (also see [30] for the more general mappings).

We now provide sufficient conditions in the presence of the objective function f
and the constraint mapping C for the efficient point multifunction F in (1.3) to be
isolatedly calm at the reference point.

Theorem 4.5. Let p̄ ∈ P and let x̄ ∈ C(p̄) be such that ȳ = f(p̄, x̄) ∈ F(p̄).
Suppose that f is Fréchet differentiable at (p̄, x̄) with the derivative ∇f(p̄, x̄) :=
(∇pf(p̄, x̄),∇xf(p̄, x̄)). Assume further that (4.2) holds and that

Effw
K{∇xf(p̄, x̄)(x) | x ∈ DC(p̄, x̄)(0)} = {0}.

If C is semi-differentiable at (p̄, x̄), then F is isolatedly calm at (p̄, ȳ).

Proof. Combining Theorem 3.3 and Proposition 4.1, we get the desired result. �

4.2. Operator constraints. We now consider the problem (1.2) with the con-
straint mapping C : P ⇒ X given in the form

C(p) := {x ∈ Ω | h(p, x) ∈ Θ},(4.9)

where h : P ×X → Z is a single-valued mapping between finite dimensional spaces.
Here Ω ⊂ X,Θ ⊂ Z are nonempty, closed and convex. Constraints of type (4.9) are
known as operator constraints. They include geometric, functional, and other types
of constraints under appropriate specifications of h and Θ, see [25, 26, 32] for more
discussions and examples.

The following theorem gives a sufficient condition ensuring the efficient point
multifunction F in (1.3) with constraints given by (4.9) to be isolatedly calm at the
point under consideration.

Theorem 4.6. Let F be the efficient point multifunction of (1.2) with the constraint
mapping C given by (4.9) and let p̄ ∈ P, x̄ ∈ C(p̄) be such that ȳ = f(p̄, x̄) ∈ F(p̄).
Suppose that f is Fréchet differentiable at (p̄, x̄) with the derivative ∇f(p̄, x̄) :=
(∇pf(p̄, x̄),∇xf(p̄, x̄)) and h in (4.9) is continuously differentiable at (p̄, x̄) with the
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derivative ∇h(p̄, x̄) := (∇ph(p̄, x̄),∇xh(p̄, x̄)). Assume further that (4.2) holds and
that the following constraint qualification is fulfilled:

The only vector z ∈ N
(
Θ;h(p̄, x̄)

)
satisfying − z∇xh(p̄, x̄) ∈ N(Ω; x̄) is z = 0.

(4.10)

If the following is valid,

Effw
K{∇xf(p̄, x̄)(x) | x ∈ TB(Ω; x̄),∇xh(p̄, x̄)(x) ∈ TB

(
Θ;h(p̄, x̄)

)
} = {0},(4.11)

then F is isolatedly calm at (p̄, ȳ).

Proof. According to Lemma 2.4, we have C is semi-differentiable at (p̄, x̄) and

DC(p̄, x̄)(p) = {x ∈ TB(Ω; x̄) | ∇ph(p̄, x̄)(p) +∇xh(p̄, x̄)(x) ∈ TB
(
Θ;h(p̄, x̄)

)
}

for all p ∈ P. To finish the proof it remains to apply Theorem 4.5. �

The next theorem shows that the assumption (4.11) always holds in the following
case.

Theorem 4.7. Let F be the efficient point multifunction of (1.2) with the constraint
mapping C given by (4.9) and let p̄ ∈ P, x̄ ∈ C(p̄) be such that ȳ = f(p̄, x̄) ∈ F(p̄).
Suppose that f is Fréchet differentiable at (p̄, x̄) with the derivative ∇f(p̄, x̄) :=
(∇pf(p̄, x̄),∇xf(p̄, x̄)) and h in (4.9) is continuously differentiable at (p̄, x̄) with the
derivative ∇h(p̄, x̄) := (∇ph(p̄, x̄),∇xh(p̄, x̄)). Assume further that (4.2) holds and
that the following constraint qualification is fulfilled:

The only vector z ∈ N
(
Θ;h(p̄, x̄)

)
satisfying − z∇xh(p̄, x̄) ∈ N(Ω; x̄) is z = 0.

If C(p̄, x̄) = {x̄}, then F is isolatedly calm at (p̄, ȳ).

Proof. It follows from Lemma 2.4 that C is pseudo-Lipschitz at (p̄, x̄). Moreover,
C(p̄, x̄) = {x̄}, we therefore have that C is isolatedly calm at (p̄, x̄). By Lemma 2.8,
DC(p̄, x̄)(0) = {0}. Using again Lemma 2.4 we have that C is semi-differentiable
at (p̄, x̄). Applying now Theorem 4.5, we get the desired result. �

4.3. Constraints described by finitely many equalities and inequalities.
Next we consider the problem (1.2) with the functional constraints described by
finitely many equalities and inequalities given as follows

C(p) :=
{
x ∈ X | gi(p, x) ≤ 0, i = 1, . . . ,m,

gi(p, x) = 0, i = m+ 1, . . . ,m+ r
}
,(4.12)

where gi, i = 1, . . . ,m+r, are real-valued functions on the space P×X. Constraints
of this type can be treated as a particular case of the operator constraints (4.9) with
h : P ×X → Rm+r defined by

h(p, x) := (g1(p, x), . . . , gm+r(p, x)),(4.13)

Ω = X and Θ ⊂ Rm+r defined by

Θ :=
{
(α1, . . . , αm+r) ∈ Rm+r | αi ≤ 0, i = 1, . . . ,m,

αi = 0, i = m+ 1, . . . ,m+ r
}
.(4.14)
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However, constraints of type (4.12) is a conventional and remarkable class in para-
metric nonlinear programs and parametric vector optimization. The following corol-
laries provide sufficient conditions for the efficient point multifunction F in (1.3)
with constraints given by (4.12) to be isolatedly calm at the reference point via the
Mangasarian-Fromovitz constraint qualification which is as follows:

the gradients ∇gm+1(p̄, x̄), . . . ,∇gm+r(p̄, x̄) are linearly independent, and

there is u ∈ P ×X such that ⟨∇gi(p̄, x̄), u⟩ = 0 for i = m+ 1, . . . ,m+ r

and that ⟨∇gi(p̄, x̄), u⟩ < 0 whenever i = 1, . . . ,m with gi(p̄, x̄) = 0.

(4.15)

Corollary 4.8. Let F be the efficient point multifunction of (1.2) with the con-
straint mapping C given by (4.12) and let p̄ ∈ P, x̄ ∈ C(p̄) be such that ȳ =
f(p̄, x̄) ∈ F(p̄). Suppose that f is Fréchet differentiable at (p̄, x̄) with the deriva-
tive ∇f(p̄, x̄) := (∇pf(p̄, x̄),∇xf(p̄, x̄)) and that gi, i = 1, . . . ,m + r, in (4.12) are
continuously differentiable at (p̄, x̄). Assume further that (4.2) holds and that the
Mangasarian-Fromovitz constraint qualification (4.15) is fulfilled. If the following is
valid, then F is isolatedly calm at (p̄, ȳ),

Effw
K

{
∇xf(p̄, x̄)(x) | x ∈ X,∇xgi(p̄, x̄)(x) ≤ 0 for all i ∈ I(p̄, x̄)

∇xgi(p̄, x̄)(x) = 0 for i = m+ 1, . . . ,m+ r
}
= {0},

where I(p̄, x̄) :=
{
i ∈ {1, . . . ,m} | gi(p̄, x̄) = 0

}
denotes the index set of active

inequality constraints in (4.12) at (p̄, x̄).

Proof. Observe that the condition (4.10) which is fulfilled is precisely the Mangasarian-
Fromovitz constraint qualification (4.15) and the fact that

TB
(
Θ;h(p̄, x̄)

)
= {(λ1, . . . , λm+r) ∈ Rm+r|λi ≤ 0 for all i ∈ I(p̄, x̄)

λi = 0 for i = m+ 1, . . . ,m+ r},

where h and Θ were defined in (4.13) and (4.14) respectively. Thus the proof is
immediate from Theorem 4.6. �

4.4. Constraints described by an arbitrary (possibly infinite) number of
inequalities. In this subsection we consider the problem (1.2) with the constraint
mapping C : P ⇒ X defined by

C(p) := {x ∈ X : gt(p, x) ≤ 0, t ∈ T},(4.16)

where T is an arbitrary (possibly infinite) index set and for each t ∈ T, gt : P ×X →
R is proper, lower semicontinuous (l.s.c.) and convex.

Constraints of type (4.16) are known as semi-infinite/infinite inequality con-
straints. It is well known that models of semi-infinite optimization cover, e.g.,
pollution control models, engineering design, control of robots, mechanical stress of
materials, optimal experimental design in regression and the popular semi-definite
programming. Semi-infinite optimization programming and its wide applications
have attracted much attention from many researchers. We refer readers to the
books [16,33] for more details and discussions and some recent papers [5–7,9,12,13]
for references.
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Denote by R(T ) (respectively, R(T )
+ ) the collection of all the functions λ : T →

R taking nonzero (respectively, nonnegative) values only at finitely many points

of T, and supp λ := {t ∈ T |λt ̸= 0}. Given u ∈ R(T ) and λ ∈ R(T )
+ , we put

⟨λ, u⟩ =
∑

t∈supp λ λtut. In connection with (4.16), we use the set of active constraint
multipliers defined by

A(p̄, x̄) := {λ ∈ R(T )
+ |λtgt(p̄, x̄) = 0 for all t ∈ supp λ}.(4.17)

Definition 4.9. Let C be defined in (4.16) and let (p̄, x̄) ∈ gphC. We say that C
satisfies the regular constraint qualification (RCQ) at (p̄, x̄) if

N
(
gphC; (p̄, x̄)

)
=

∪
λ∈A(p̄,x̄)

[ ∑
t∈supp λ

λt∂gt(p̄, x̄)
]
,(4.18)

where the symbol ∂ stands for the subdifferential in the sense of convex analysis.

Various criteria for the validity of this qualification condition can be found in
[7, 13,23].

The following proposition gives a criterion for computing the contingent derivative
of the constraint mapping C in (4.16) at a given point.

Proposition 4.10. Let (p̄, x̄) ∈ gphC. Suppose that C in (4.16) satisfies (RCQ)
in (4.18). Then

(4.19) DC(p̄, x̄)(p) =
{
x ∈ X

∣∣ ∑
t∈supp λ

λt∂gt(p̄, x̄)(p, x) ≤ 0, ∀λ ∈ A(p̄, x̄)
}
∀p ∈ P.

Proof. Note that gphC =
{
(p, x) ∈ P × X | gt(p, x) ≤ 0 for all t ∈ T

}
is convex.

Since C satisfies (RCQ) in (4.18), it holds

N
(
gphC; (p̄, x̄)

)
=

∪
λ∈A(p̄,x̄)

[ ∑
t∈supp λ

λt∂gt(p̄, x̄)
]
.(4.20)

Since TB
(
gphC; (p̄, x̄)

)
is closed, we have

TB
(
gphC; (p̄, x̄)

)
=

(
TB

(
gphC; (p̄, x̄)

)◦)◦
= N

(
gphC; (p̄, x̄)

)◦
.(4.21)

Combining (4.20) with (4.21) and using the definition of the contingent derivative,
we get (4.19). The proof is complete. �

Our first result in this subsection provides a sufficient condition for verifying the
isolated calmness of the efficient point multifunction F in (1.3) with the constraints
of nondifferentiable functions at a given point.

Theorem 4.11. Let F be the efficient point multifunction of (1.2) with the con-
straint mapping C given by (4.16) and let p̄ ∈ P, x̄ ∈ C(p̄) be such that ȳ =
f(p̄, x̄) ∈ F(p̄). Suppose that f is Fréchet differentiable at (p̄, x̄) with the deriva-
tive ∇f(p̄, x̄) := (∇pf(p̄, x̄),∇xf(p̄, x̄)). Assume further that (4.2) holds and that C
satisfies (RCQ) in (4.18) as well as

Effw
K

{
∇xf(p̄, x̄)(x) | x ∈ X,

∑
t∈supp λ

λt∂gt(p̄, x̄)(0, x) ≤ 0, ∀λ ∈ A(p̄, x̄)
}
= {0}.

If C is semi-differentiable at (p̄, x̄), then F is isolatedly calm at (p̄, ȳ).
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Proof. The proof follows from Proposition 4.10 and Theorem 4.5. �

Remark 4.12. It is worth to mention here that since C is a convex multifunction,
one thus gets the semi-differentiability of C at (p̄, x̄) as long as p̄ ∈ int(domC)
(see [17, Theorem 2.7.6]).

As an immediate consequence of Theorem 4.11, we have the following result
which gives a criterion for verifying the isolated calmness of the efficient point
multifunction F in (1.3) with the constraints of differentiable functions at the point
under consideration.

Corollary 4.13. Let F be the efficient point multifunction of (1.2) with the con-
straint mapping C given by (4.16) and let p̄ ∈ P, x̄ ∈ C(p̄) be such that ȳ =
f(p̄, x̄) ∈ F(p̄). Suppose that f is Fréchet differentiable at (p̄, x̄) with the deriva-
tive ∇f(p̄, x̄) := (∇pf(p̄, x̄),∇xf(p̄, x̄)) and that all gt, t ∈ T, in (4.16) are Fréchet
differentiable at this point. Assume further that (4.2) holds and that C satisfies
(RCQ) in (4.18) as well as

Effw
K

{
∇xf(p̄, x̄)(x) | x ∈ X,

∑
t∈supp λ

λt∇xgt(p̄, x̄)(x) ≤ 0, ∀λ ∈ A(p̄, x̄)
}
= {0}.

(4.22)

If C is semi-differentiable at (p̄, x̄), then F is isolatedly calm at (p̄, ȳ).

Finally we present an example which aims for illustrating the results obtained.

Example 4.14. Let T = [0, 1] ∪ {−1} ∪ {2}, P = R, X = Y = R2,K = R2
+ and let

f : R× R2 → R2, gt : R× R2 → R, t ∈ T be mappings which are given as follows:

f(p, x) = (p+ x1, x2) ∀x = (x1, x2) ∈ R2, ∀p ∈ R,

gt(p, x) = tp− tx1 − (1− t)x2 ∀x = (x1, x2) ∈ R2, ∀p ∈ R.
We consider the problem (1.2) with C defined in (4.16). By simple computation,
one can find

C(p) = {x = (x1, x2) ∈ R2 | − p+ x1 − 2x2 ≤ 0, 2p− 2x1 + x2 ≤ 0},
F (p) = {y = (y1, y2) ∈ R2 | − 2p+ y1 − 2y2 ≤ 0, 4p− 2y1 + y2 ≤ 0} ∀p ∈ P.

In particular, for p̄ = 0,

C(p̄) = {x = (x1, x2) ∈ R2 |x1 − 2x2 ≤ 0,−2x1 + x2 ≤ 0},
F (p̄) = {y = (y1, y2) ∈ R2 | y1 − 2y2 ≤ 0,−2y1 + y2 ≤ 0},

and thus x̄ = (0, 0) ∈ C(p̄) as well as ȳ = f(p̄, x̄) = (0, 0) ∈ F(p̄). Observe that C
is a convex multifunction and p̄ ∈ int(domC) and therefore it is semi-differentiable
at (p̄, x̄) (see [17, Theorem 2.7.6]).

For each t ∈ T, we have

g∗t (p, x) =

{
0 if (p, x) = (t,−t, t− 1)

+∞ if (p, x) ̸= (t,−t, t− 1),
∀x = (x1, x2) ∈ R2, ∀p ∈ R,

epig∗t = {t} × {−t} × {t− 1} × R+,
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where g∗t denotes the conjugate function of gt. Thus cone
(∪

t∈T epig∗t

)
= R+×R2

−×
R+ which is closed in R4, where cone(Ω) stands for the convex conical hull of Ω.
So it follows from [7, Theorem 3.7] that C satisfies (RCQ) in (4.18). Using now
Proposition 4.10, we obtain

DC(p̄, x̄)(p) =
{
x = (x1, x2) ∈ R2 | tp−tx1−(1−t)x2 ≤ 0 ∀t ∈ T

}
= C(p) ∀p ∈ P.

Thus for each p ∈ P,

{∇pf(p̄, x̄)(p) +∇xf(p̄, x̄)(x)| x ∈ DC(p̄, x̄)(p)} = F (p).

Besides, DF (p̄, ȳ)(p) = {y ∈ R2 | − 2p + y1 − 2y2 ≤ 0, 4p − 2y1 + y2 ≤ 0} for all
p ∈ P. So (4.2) is valid. Similarly, it is easy to check that (4.22) is satisfied. We
now assert by Corollary 4.13 that F is isolatedly calm at (p̄, ȳ).
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