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TWO TURNPIKE RESULTS FOR DYNAMIC DISCRETE TIME
ZERO-SUM GAMES

ALEXANDER J. ZASLAVSKI

ABSTRACT. In this paper we study turnpike properties of approximate solutions
for a class of dynamic discrete-time two-player zero-sum games without using
convexity-concavity assumptions. These properties describe the structure of ap-
proximate solutions which is independent of the length of the interval, for all
sufficiently large intervals.

1. INTRODUCTION

The study of the existence and the structure of (approximate) solutions of optimal
control problems and dynamic zero-sum games defined on infinite intervals and on
sufficiently large intervals has recently been a rapidly growing area of research [3,
7-10, 12, 15, 17, 19, 20, 24-27, 36, 37, 39]. These problems arise in engineering [2,
43], in models of economic growth [11, 13, 22, 23, 29, 33, 34, 39, 40|, in stochastic
and differential dynamic games [1, 6, 14, 16, 28], in infinite discrete models of solid-
state physics related to dislocations in one-dimensional crystals [5, 35] and in the
theory of thermodynamical equilibrium for materials [18, 21].

In this paper we study the structure of approximate solutions for a class of dy-
namic discrete-time two-player zero-sum games without using standard convexity-
concavity assumptions and establish two turnpike results. These results describe
the structure of approximate solutions which is independent of the length of the
interval, for all sufficiently large intervals. We show, roughly speaking, that approx-
imate solutions are determined mainly by the objective function, and are essentially
independent of the choice of interval and endpoint conditions. Turnpike results are
well known in mathematical economics and optimal control (see [22, 33, 36, 37, 39,
40, 43] and the references mentioned there).

Let (X, px) and (Y, py’) be compact metric spaces equipped with the metrics px
and py respectively. We consider the set X x X XY x Y equipped with the product
topology induced by the metric

p((z1, 22,91, y2), (21, 25,91, 95)) = px (21, 21) + px (22, 25) + py (Y1, 91) + py (Y2, ¥2),
.%'1,.%'2,.1‘/1,$IQ € X, y17y27y/17y§ €Y.
Denote by C(X x X xY xY') the set of all continuous functions f : X x X xY xY —
RY. Foreach f € C(X x X x Y xY) set
11} = sup{|f(z1, 22,91, 82)| - 21,22 € X, y1,52 € YV}
Clearly, (C(X x X xY xY),||-|]) is a Banach space.
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Let f € C(X x X xY xY). We associate with f a dynamic discrete-time two-
player zero-sum game and study its optimal solutions. Namely, given an integer
n > 1 we consider a discrete-time two-player zero-sum game over the interval [0, n].
For this game {{z;}l', : x; € X, i = 0,...n} is the set of strategies for the first
player, {{yi}l-y : yi € Y, i =0,...n} is the set of strategies for the second player,
and the cost for the first player associated with the strategies {z;}7, {vi}l is
given by Y10 filwi, Tiyt, Yis Yir1)-

Denote by A the set of all f € C(X x X xY xY) for which there exist 2y € X
and yy € Y such that
(1.1)

f($f7$f7yvy) < f('rf7xf7yf>yf) < f('r?'rayfayf) forall z € X and all y €Y.

The following result is proved in Section 2.
Proposition 1.1. Ay is a closed subset of the Banach space (C(X x X xY xY),|-|)).

In this paper we consider a dynamic discrete-time two-player zero-sum game
associated with f € Ag. If f € Ag and xy € X and yy € Y satisfy (1.1), then the
pair (z,yy) is a saddle point for the function f(z,y) = f(z,2,y,y), € X,y €Y.

It should be mentioned that in [38, 42] this class of games was considered in
the case when X and Y are convex subsets of finite-dimensional Euclidean spaces
and an objective function f € C(X x X x Y x Y) satisfies standard convexity-
concavity assumptions which, of course, imply the existence of a pair (zy,ys) €
X x Y satisfying (1.1) [4, 38, 42]. Clearly, there exist objective functions f which
do not satisfy convexity-concavity assumptions and for which (1.1) holds with a
pair (z¢,yr) € X xY. The main goal of our paper is to extend the turnpike results
of [38, 42] obtained under convexity-concavity assumptions, to the class of games
considered here.

Let us now define approximate solutions (saddle points) of our dynamic games.

Let f € C(X x X xY xY), integers ng > n; and M > 0. A pair of sequences
{z:}2,, € X, {7:i}i2,, CY is called (f, M)-good [17, 38, 39, 42] if the following

properties hold:

(i) for each sequence {z;};2, C X satisfying x,, = Zp,, Tny = Tn,,
no—1 no—1

(1.2) M+ f@inmicn, 0o 0i1) 2 Y F(@ T, Ui Ji);
=N =n1

(ii) for each sequence {y;};2, CY satisfying yn, = Un;s Yno = Una»

no—1 no—1
(1.3) M+ > f(@0 iy, U0 Tir1) = Y F(@i Tar1, vi Yigd)-
=N 1=n1

If a pair of sequences {z;}2, C X, {y;};2,, CY is (f,0)-good then it is called
(f)-optimal.

A pair of sequences {Z;}2, C X, {7;};2, C Y is called (f, M)-good if for each
natural number n the pair of sequences {Z;}7, {7i}i—, is (f, M)-good.

A pair of sequences {Z;}7°, C X, {7:}32, C Y is called (f)-good if it is (f, M)-
good with some M > 0.
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A pair of sequences {Z;};2, C X, {#;:}:2, C Y is called (f)-optimal if for each
natural number n the pair of sequences {Z;}" ., {Ui}i— is (f)-optimal.
The following result is proved in Section 3.

Proposition 1.2. Let f € Ay, x5 € X and ys €Y satisfy (1.1) and let i{ =y,
—f100

ﬂlf =y for all integers i > 0. Then the pair {:Elf}‘iﬁo, {7] 1520 is (f)-optimal if and
only if it is (f)-good.

The following result is proved in Section 4.

Proposition 1.3. Let f € Ay, x5y € X and yy € Y satisfy (1.1) and let :E{ =y,

gjf =y for all integers © > 0. Then the following properties are equivalent:

3
(i) the pair {:Z"Zf}fio, {g[ 20 is (f)-optimal;
(ii) for each natural number n and each pair of sequences {x;}1'_y C X, {yi}i—y C

Y,
n—1 n—1
i=0 1=0

(iii) there is ¢ > 0 such that for each natural number n and each pair of sequences
{zi}ino € X, {yi}ino C Y,

n—1 n—1
—c+ > f@papynyio) S nf(@papyeyr) < O f(@nzi, yp ur) +
=0 =0

Note that analogs of properties (i)-(iii) are used in the infinite horizon optimal
control and they are usually posed, when one obtains a turnpike result where the
turnpike is a singleton. See, for example, [40]. It was shown in [38] that these
properties hold if X and Y are convex sets in finite-dimensional Euclidean spaces
and f satisfies the convexity-concavity assumptions.

Proposition 1.3 implies the following result.

Proposition 1.4. Let f € Ay, x5 € X and ys € Y satisfy (1.1) and let property
(iii) of Proposition 1.3 hold. Then the following assertions hold.

1. For each sequence {x;};2, C X either the sequence

o0

n=1

{‘ nz:l[f(xi,miﬂ,yf,yf) - f(xf,a:f,yf,yf)]‘}
i=0

is bounded or
n—1

nh—>Holo [f(xla $i+1,yf,l/f) - f(wfa'rf)yf’yf)] = 0.
1=0

2. For each sequence {y;};°, C Y either the sequence

o0

n=1

{‘ nz:l[f(vavayi,yi+1) — f(:cf,g;f,yf,yf)]‘}
=0
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s bounded or

n—1
Jim ¥[f(xf,xf,yi7yi+1) — flzpzp,y5,yf)] = —o0.
1=

Denote by A the set of all f € A for which there exist xy € X and yy € Y
satisfying (1.1) and ¢y > 0 such that for each natural number n and each pair of
sequences {z;}l' o C X, {yi}l, CY,

n—1 n—1
(14> _Cf—i_z f($f>$f7yi7yi+1) < nf(xfaxf>yf7yf) < Zf(xiaxiJrlayfayf)—l_cf‘
i=0 =0

Remark 1.5. In view of Proposition 1.3 we may assume without loss of generality
that ¢y = 4| f[|. In the sequel we associate with each f € A points zy € X and
ys € Y satisfying (1.1) and such that (1.4) holds with ¢y = 4| f|| for each natural
number n and each pair of sequences {z;}" , C X, {y;}l', CY.

The following result is proved in Section 6.
Proposition 1.6. A is a closed subset of the Banach space (C(X x X xY xY),|-])-
The next result is proved in Section 7.

Proposition 1.7. Let f € A, 21,20 € X, £&1,& € Y, n be a natural number and let

(1.5) xo = 21, Tn = 22, T; = Ty for all integers i satisfying 0 < i < n,

(1.6) yo = &1, yn = &2, yi = yy for all integers i satisfying 0 < i < n.
Then the pair of sequences {x;}1 o, {yi}i—q is (f, 12 f]])-good.

In this paper we establish a turnpike property of (f)-good pairs of sequences
which means that they spend most of the time in a small neighborhood of the
pair (zf,yr). It is known in the optimal control theory that turnpike properties of
approximately optimal solutions are deduced from an asymptotic turnpike property
of solutions of corresponding infinite horizon optimal control problems [37, 39, 40].

Let f € A. We say that f possesses the asymptotic turnpike property (or, briefly,
(ATP)) if for each pair z € X, y € Y satisfying

@3, y.y) < f#5,9) < f@.2,5,5) forall 2 € X and all y € Y

we have & = ¢ and § = y; and if for each pair of sequences {z;};°, C X, {y:}72, C
Y satisfying

n—1

sup { Zf(xi,l'i_irl,yf,yf) —nf(xp,xp,yp,yr) : nis a natural number} < 00
i=0
and
n—1
inf { Zf(mf,$f,yi,yi+l) —nf(xs,xf,yp,yp) : nis a natural number} > —00
i=0
we have

lim px(x;,xf) =0, leglo py (Yi,yf) = 0.

i—00
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Let f € A. Denote by S(f) the set of all pairs (x,y) € X x Y such that
(17) f(x7x7§7€) S f(w7x7y7y) S f(2727yay> for all z € X and all 5 ey
Clearly, S(f) # 0 and for all (z1,y1), (z2,y2) € S(f),

(1.8) [z, 21,91,01) = f(22, 22,92, y2).

We consider the topological subspace A C C(X x X x Y x Y) with the relative
topology induced by the metric d(f,g) = ||f —gl|, f,g € A.
The following two theorems are the main results of the paper.

Theorem 1.8. Let f possess (ATP) and M,e > 0. Then there exist natural
numbers | and Q and a positive number 0 such that for each g € A satisfying
lf —gll < 6, each integer T > QI and each (g, M)-good pair of of sequences
{x Y, Cc X, {yi}, C Y there exist a natural number ¢ < Q and sequences
of integers {a;}1_,, {b;}i_; C [0,T) such that

Ogbi—aigl, z':l,...,q,

pX(IL“z'aUCf) <€ PY(yzvyf) <e€
for all integers i € [0, T\ Uj_, [a;, b;].

Note that Theorem 1.8 shows that the turnpike phenomenon is stable under small
perturbations of the objective function f.

Theorem 1.9. There exists a set F C A which is a countable intersection of open
everywhere dense subsets of A such that each f € F possesses (ATP).

Theorem 1.9 shows that a generic (typical) function f € A possesses (ATP).
Results of this kind for classes of single-player control systems have been established
in [36, 37, 39]. Note that the generic approach of [36, 37, 39] is not limited to the
turnpike property, but is also applicable to other problems in optimization and
nonlinear analysis [4, 30-32, 41].

Theorem 1.8 is proved in Section 9 while the proof of Theorem 1.9 is given in
Section 10. Section 8 contains auxiliary results.

2. PROOF OF PROPOSITION 1.1

Let {fn}o2 C Ay, feC(X x X xY xY) and
(2.1) lim | £ — /]| = 0.

n—oo
For each integer n > 1 there exist x, € X and ¥y, € Y such that for each x € X
and each y € Y,

(22) fn(x’rhxﬂny?y) S fn(xnvwmyn’yn) S fn(xa%ymyn)-

Extracting a subsequence and re-indexing, if necessary, we may assume without loss
of generality that there exist

(2.3) Ty = lim zy,, ye = lim y,.
n—oo n—oo
By (2.1), (2.2) and (2.3), for each z € X and each y € Y,

f(x*,x*,y,y) = lim f(l'n,xnaya y) = lim fn($n7$nayay)
n—00 n—00
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< lim fn(azn,xn,yn,yn) = lim f(xn,l'n,yn7yn) = f($*ax*7y*ay*)a
n—o00 n—00

f(x*vx*ay*7y*) = hm fn(xnaxnaynayn) S hm f’VL(xvxaynayn)
n—00 n—o00
= hm f(xvxaynayn) :f(xax7y*>y*)
n—oo

and
f(x*7$*7y7y) S f(x*vx*ayhy*) S f(xawvy*ay*)'
Thus f € Ap and Proposition 1.1 is proved.

3. PROOF OF PROPOSITION 1.2
Clearly, if the pair {a?f}l 0, {gjl 20 is (f)-optimal it is also (f)-good.
Assume that the pair {:1: 0 {gj{};’io is (f) good and show that it is (f)-

optimal. There is M > 0 such that the pair {:Z Fa {y 1220 is (f, M)-good.

Let n be a natural number. In order to complete the proof of the proposition it
is sufficient to show that the pair {i{ s {y n o is (f)-optimal.

Assume that

(3.1) {zitico C X, {&}ibo C Y, 20 = 2n = 2, S0 =&n =¥y
There exist {2;}52,,; C X, {&}52,.1 CY such that
(3.2) Zitn = Ziy Eian = & for all integers ¢ > 0.

Since the pair of sequences {:/Uf}Z 0 {yzf 20 is (f, M)-good it follows from (1.2),
(1.3), (3.1) and (3.2) that for any natural number k,

kn—1
M > Z[f(mfaxfayfayf) _f(zi7ziayfayf)]
=0
n—1
= kZ[f@fJﬁ@lﬂ@/f) - f(ziazi7yf>yf)]7
=0
n—1
Z f(Zi) Zi+1,YfH yf) > nf(ﬂff,ﬁf, Z/f,?/f)
=0
and
kn—1
M > Z [f(xfa va&iafﬂrl) - f(xfa Tf,Yf, yf)]
i=0
n—1

= kY [flapap & i) = flag,zp,up,95)],
=0

n—1

Zf(vavagiafﬂrl) < nf($f7xf7yf7yf)

i=0
Thus the pair of sequences {:Z'{}?ZO, {y "o is (f)-optimal. Proposition 1.2 is
proved.
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4. PROOF OF PROPOSITION 1.3

We show that (i) implies (ii) Assume that property (i) holds, n be a natural
number and {z;} , C X, {y;i}l"y C Y. Set

(41) xO:va ;pi:xi,l,z:l,...,n—i—l, .ZE;.H_QZZL'f,

Yo=Yf Vi =Yi-1, i=1,...,n4+1, Yo =yys.
By property (i) and (4.1),
n+1
(n+2)f($faxf7yfayf) = Zf x;, 1+17y1>yzf+1)

n+1
Z f(a7;7 ‘T’/L'+17 Yis yf)
=0
n+1

Z f($i7$i+la yf?Z/f) + 2||f||a

1=0

IN

IN

n—1
Z f(x’iaxi+17yf7yf) Z nf(xf7$f7yf7yf) - 4”f”7
=0
n+1
(”+2)f($fa$f,yf7yf) = Zf x;, 7,+17y17yzf+1)

n+1
Z f($f7 .Z'f, y;v y£+l)
=0
n—1

Zf(xf’xf7yiayi+l) - 2Hf||a

1=0

v

v

n—1
i=0
Thus property (ii) holds.

Clearly, property (ii) implies property (iii).

Assume that property (iii) holds. In order to complete the proof of the proposition
it is sufficient to show that property (i) holds. Let n be a natural number. We show
that the pair {5:{}?:0, {yl ' is (f)-optimal.

Assume that

(4.2) {zi}ito C X, {yitico CY, 2o = T = x5, Yo = Yn = Ys-
There exist {x;}2, . C X, {yi}2,,1 CY such that for each integer i > 0,

(4.3) Litn = Liy Yitn = Yi-
It follows from property (iii), (4.2) and (4.3) that for any natural number £,
n—1 nk—1

—c+ kz f(xf7$f7yiayi+1) =—c+ Z f(xf’fﬁf,?/iayi—i—l) < nkf(xf7$f7yf7yf)
=0 1=0
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nk—1 n—1
< Z f(@i, zip1,y5,yp) te=k Z f(@i, mip1, 95, 9f) +
i=0 =0
n—1 n—1
—c/k+ > flapzpynyin) <nf(epapypyn) <D f@nzicn,ypyp) +c/k.
i=0 i=0
Since k is any natural number we conclude that
n—1 n—1
S f@rapyiyin) S nf(@panyny) < F(@o T, ypyr)
i=0 1=0
and that {a’:f o {ng 7 o is an (f)-optimal pair of sequences. Proposition 1.3 is
proved.

5. GOOD PAIRS OF SEQUENCES
Proposition 5.1. Let f € Ay, 7 € X and y; €Y satisfy
(5.1)
f@ppyy) < Fepenypg) < fla,eyp,yy) for ale € X and ally € Y

and let ¢ > 0 be such that for each natural number k and each pair of sequences
{zitig C X, {yitio CY,

k—1 k—1
(52) —c+ Zf(xf7$f7yiayi+l) < kf(xf7$f7yf7yf) < Zf(xhxi-i-lvyfvyf) +ec
i=0 =0

Let M >0, n be a natural number and {u;}7—, C X, {vi}ly CY be an (f, M)-good
pair of sequences. Then

n—1

‘ Z f(u’iaui-i-hyfayf) - nf(vaxfayfvyf)’ S c+ 2M + 8”f”’
i=0
n—1

‘ Zf(vavaviavi+l) - nf($f>$f7yf>yf)‘ <c+2M + 8Hf||
1=0

Proof. By (5.2),

n—1 n—1

(53) —Cc+ Z f(va Zf, U, 'Ui+1) < nf(.'lff, TfYf, yf) < Z f('U/Z, Ui+1,Yf, yf) +c.
=0 i=0

Set

(5.4) up = ug, Uy, = Uy, u; = xy for all integers i satisfying 0 < i < n,

vy = Vo, Ul = Up, Vi = yy for all integers i satisfying 0 < ¢ < n.

Since {u;} g, {vitig is an (f, M)-good pair of sequences it follows from (5.3) and
(5.4) that

n—1
nf(zpapypyp) —c—M—4f] < Y flunui,ypyr) — M =4 f]
=0
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n—1
< =M+ fluiuirn, v, v4)
i=0
n—1
< Zf(uivui+lavi7vi+1)
=0
n—1
< Zf(u;7u;'+1vvi7vi+1)+M
i=0
n—1
< Y flapwp,vivign) + M+ 4| f]|
i=0
< nf(zy,xpyryr) + o+ M+4f].
This implies that
n—1
’ > Fuisuigr, yp,yy) — nf(wf,xf,yﬁyf)’ <c+2M +8|/f[,
i=0
n—1
‘ > fap g, vivin) — nf($f>$fyyf>yf)‘ < c+2M + 8| f].
i=0
Proposition 5.1 is proved. O

6. PROOF OF PROPOSITION 1.5
Let {fu}22 CA feC(XxXxY xY)and
(6.1) lim || f — fI| = 0.
n—oo

By Proposition 1.1, f € Ay. By definition of A (see (1.4)), Proposition 1.3 and
Remark 1.5, for any natural number n there exist xy, € X and yy, € Y such that

fo@p 2, 0Y9) < fu(@f T Yt Yt)
(6.2) < falz,2,y4,,y5,) forallz € X and ally € Y

and that for each natural number k and each pair of sequences {xi}f”zo C X,

k—1
—A) fall + D (@ g psvisyir1) < R Fa(@r T Ysas Yr)
=0 k-1
(6.3) < > alwn iy, vp,) + 4l fall
=0

Extracting a subsequence and re-indexing, if necessary, we may assume without loss
of generality that there exist

(6.4) "= nh_)n;oxfn, Y= nh—>noloyf"'
By (6.1), (6.2) and (6.4), for each z € X and each y € Y,
f($*7$*7y7y) = nh—>rgo f(xfn’$f7L7y7y) = n11—>Hc;lo fn($f7L7zf7L7y>y)
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< lim In(@f s f s Ypns Ur) = Jim. f(@f Yt Ys)
= f(x*vx*vy*’y*):nll_?olofn(xfnvxfn7yfn7yfn)
<

nlggo fn(xa Ty Yfns yfn) = nh—{glo f(x7$7yfn7yfn>
= f(:'U’:E’ y*’y*)
and
f* 2% y,y) < f(a", 2%y, y") < f(z,z,y",y") for allz € X and all y € V.

Let k be a natural number and {z;}*_, C X, {y;}}*., C Y. By (6.1), (6.3) and (6.4),

k—1 k—1
—4|| [l + Z;f(l“*,%*,yi,yiﬂ) = 731_{1;0[*4||an + Z;f(xfnaxfnvyiayi+l)]
1= 7=
k-1
= 7}i_>ITolo[—4||an + ¥fn($fna$fnayiayi+l)]
1=

< N kfu(zg,, 2, Y50, v5.)
= lim kf(wfn,.rfn,yfn,yfn) :kf(x*ax*vy*ay*)

n—oo
= bm kfa(s, 2h0 Ytar i)
k-1
[4]| foll + an($i,$i+1,yfn7yfn)]
i=0
k-1
= 4/ +nh_>1202f($iaxi+lvyfnayfn)
i=0
k-1

A+ Faszi, v',y").

1=0

lim
n—00

Thus f € A with xy = 2* and y; = y* and Proposition 1.6 is proved.

7. PROOF OF PROPOSITION 1.7

By (1.4), (1.5) and (1.6), each pair of sequences {u;}} , C X, {v;}}'y C Y,

n—1 n—1
> fuis i, yiyin) = > f (@i i1, vi yirn)
i=0 i=0

n—1

i=0

> —12||11I,
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n—1 n—1
D F@imigr, vivien) = Y F (@i Tig1, isvir)
=0 i=0
n—1
S Zf($f7xf7vi7vi+1) + 4”f” - nf(vavayfvyf> + 4”f”
i=0
< 12[|f]].

Proposition 1.7 is proved.

8. AUXILIARY RESULTS

Assume that f € A possesses (ATP). We suppose that the sum over empty set
is zero.

Lemma 8.1. Lete > 0. Then there exists § > 0 such that for each g € Ay satisfying
lg — fll <9, each x € X and each y € Y satisfying

g(2,2,6,6) < g(e,2,y,9) < gz, 2 y,y) for allz € X and all § € Y

the inequalities
px(z,xp) <€ py(y,yr) <€
hold.

Proof. Assume the contrary. Then there exist sequences {g, 22, C Ao, {,}52, C
X and {yn}p2; C Y such that

(8.1) Jim [ f = gnll =0
and for all integers n > 1,
(8.2)

In(Tny 0y £,8) < gn(Tny Tny Yns Yn) < Gn(2,2,Yn, yn) for all z € X and all £ € Y,

(8.3) px(l‘n,l'f) + pY(ymyf) > €.

Extracting a subsequence and re-indexing, if necessary, we may assume without loss
of generality that there exist lim, ,o, z,, and lim, .o y,. Arguing as in the proof
of Proposition 1.6 and using (8.1) and (8.2) we obtain that for all z € X and all
ey,

f(lim z,, lim z,,£,¢) < f(lim z,, lim z,, im y,, lim y,)
n—oo n—o0 n—oo n—oo n—oo n— o0

A

< f(z,z, lim y,, lim y,).

n—oo n—oo
Since f possesses (ATP) we conclude that lim, oo x, = ¢ and limy, 00 yn = Y.
This contradicts (8.3). The contradiction we have reached proves Lemma 8.1. [
Lemma 8.2. Let M, e > 0 and 19 be a natural number. Then there exists an integer
T > 19 such that for each integer T > T, each sequence {M};’on C X satisfying

T-1

Z f(xhxi-i-lvyfvyf) S Tf(xf7$f7yf7yf) + M
=0
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and each integer s € [0,T — 7| there is an integer sy such that [so, so+70] C [s, 5+ T]
and

px(xi,xf) <€ i =S50,...,50 + To.
Proof. Let us assume the contrary. Then for each integer £ > 7y there exist and
integer T}, > k, a sequence {xgk)}iT:’“O C X satisfying
Tp—1
(84) Z £ 28y up) < Tof(apoap,yp yp) + M,

and an integer s € [0, Ty — k] such that the following property holds:
(P1) for each integer p satisfying [p,p + 70| C [sk, Sk + k] we have

(8.5) max{px(xgk),xf) ti=p,...,p+T0} > €
For each integer k > ¢ set
(8.6) uM =2l i=0,.. k.

By (8.6) and (P1), for each integer k > 7y the following property holds:
(P2) for each integer p satisfying [p,p + 1] C [0, k] we have

(8.7) max{px(ugk),xf) i=p,...,p+ 10} > €
Let k > 79 be an integer. By (8.4), (8.6) and the definition of A (see (1.4)),
sp+k—1 T,—1
Zf () yg, ) = Y [ L) Zf (@, 2 vr, )
i=s},

_ Z{f (k) , H—l’yf yf) : i is an integer such that 0 <7 < s}
— Z{f (.k , Z+1,yf yf) : @ is an integer such that s +k <i < T}

<Tuf(xp,xp,yr,yp) + M —spf(xp,xp,yp,yf) + cf

(88) —(Tk — Sk — k)f(a;f,a:f,yf,yf) +cf = kf(xf,a:f,yf,yf) + M + QCf.

Let ¢ > 79 be an integer. By (8.8) and the definition of A (see (1.4)), for each
integer k > q,

s}
—_

k k (k) (k)
f(UE )7uz(+)17yf7yf) = Zf ) H_layf yf Zf i 7,+17yf yf)

< kf(wf,xf,yf,yf) + M + 2Cf — (k=) f(zp,zp,95,9r)
(8.9) +ep=qf(zs,xp,yryf) + M+ 3¢y

Clearly, there exists a strictly increasing sequence of natural numbers {k; }3”;1 with

s
Il
o

k1 > 7 such that for each integer ¢ > 0, the sequence {u ks )} 2, converges. For
each integer ¢ > 0 set
(8.10) w; = lim "),

]*)OO ¢
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By (8.9) and (8.10) for each integer ¢ > 79,

q—1

> Flusuign, yp,yp) < af@p,xp,yp,yp) + M+ 3¢y
=0

and combined with (ATP) this implies that lim; ;oo u; = 2. Clearly, there is an
integer p > 1 such that

(8.11) px(ui, xy) < €/4 for all integers i > p.
By (8.10) there is an integer j > 1 such that

ki >p+70+4,

(8.12) px(u,u™) < e/a, i =0, p+7+4.
By (8.11) and (8.12) for all i = p,...,p + 7o,

(k5) (k

px(u; 7 xrp) < px(u; j)7uz‘) + px(ui, xp) < €/2.

This contradicts (P2). The contradiction we have reached proves Lemma 8.2. [

Analogously to Lemma 8.2 we can prove the following auxiliary result.
Lemma 8.3. Let M, e > 0 and 19 be a natural number. Then there exists an integer
T > 19 such that for each integer T > T, each sequence {yi}iTzo C Y satisfying

T-1

> f@p gy yin) = Tf(epap,yp,yp) — M
=0

3

and each integer s € [0, T — ] there is an integer so such that [so, so+ 7] C [, s+ T]
and

pY(ylayf) < €, 1= 80, --+,50 + 70-

Lemma 8.4. Let M,e > 0. Then there exists and integer 7 > 1 such that for each
integer T > 11, each pair of sequences {x;}1_y C X and {y;}, C Y satisfying

T—1

(813) Z f($i7$i+17yfayf) < Tf(l‘fvxf’yfayf) + M7
=0
T-1

(814) f(vaxfayi7yi+1) > Tf(mf7mf7yfayf) - M
=0

and each integer s € [0,T — 71| there is an integer so such that
{s0,s0 + 1} C [s,5+ 7],

px(zi,xp) < € and py (yi,ys) <€, i = 50,50+ 1.
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Proof. By Lemma 8.3 (with 79 = 1) there exists an integer 79 > 1 such that the
following property holds:
(P3) for each integer T' > 79, each sequence {y;}L, C Y satisfying

T-1

Z fxr,xryi,yiv1) = Tf(xp,xp,yr,yp) — M — 2¢y
1=0

and each integer s € [0, T —7p] there is an integer sg such that {so, sop+1} C [s, s+70]
and
py (Yi,yr) <€, 0= s0,50 + 1.

By Lemma 8.2 there is an integer 71 > 7 such that the following property holds:
(P4) for each integer T > 71, each sequence {z;}-_, C X satisfying

T-1
S f@in i ypup) < Tf (g op,ypyp) + M

~

and each integer s € [0, T — 1] there is an integer sg such that [sg, so+70] C [s, s+71]
and

px(wi,xf) <€, 0= S0,...,50 + To.
Assume that an integer T > 71, {z;}1_, C X, {yi}, C Y, (8.13) and (8.14) hold

and that an integer s € [0,7 — 71]. By (8.13) and (P4), there is an integer gy such
that

(8.15) [90, g0 + 70] C [s, 58+ 7],

px(zi,zp) <€ i=qo,...,q0 + To.
By (8.14) and the definition of A (see (1.4)),

qo+710—1 T-1
Z f(vavayi)yi+1) = Zf(vavayi)yile)
i—q0 i—0

- Z{f(xf,xf,yi,yi+1) : i is an integer such that 0 <1i < go}
- Z{f($f,xf,yi,yi+1) : i is an integer such that go + 79 <i < T}
>Tf(xpxp,yr,yr) — M —qof(xg, xp,yp,ys) — cf

(8.16) — (T —qo—m0)f(xp, ap,yp,y5) — cf =T0f(xp2p,y5y7) — M — 2¢.

By (8.16) and (P3) (with 7" = 79) there is an integer so such that {sg,so + 1} C
[90, g0 + T0] and

py (yi,yr) <€, i = 50,50+ 1.
This completes the proof of Lemma 8.4. O

Lemma 8.4 and Proposition 5.1 imply the following result.
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Lemma 8.5. Let M, e > 0. Then there exists and integer 7 > 1 such that for each
integer T > 71, each (f, M)-good pair of sequences {x;}1_y C X and {y;}/y C Y
and each integer s € [0,T — 71| there is an integer so such that

{s0,80+ 1} C [s,s + 7],
px(xi,xy) < € and py (yi,ys) < €, 1 = sg, 50 + 1.

Lemma 8.6. Let M,e > 0. Then there exist and integer 7 > 1 and § > 0 such that
for each g € C(X x X xY xY) satisfying ||g — f|| < 0 and each (g, M)-good pair
of sequences {x;}I_y C X and {y;}]_o C Y there is an integer so such that

(8.17) {s0,s0 + 1} C [0, 7],
pX(sz;xf) <e and pY(ylayf) <k, 1= S0, 80 + L.

Proof. By Lemma 8.5 there is an integer 7 > 1 such that the following property
holds:

(P5) for each (f, M + 1)-good pair of sequences {z;}7_, C X and {y;}[_, C Y
there is an integer sg such that (8.17) holds.

Set
(8.18) §=(87)" L
Let g € C(X x X xY xY) satisty
(8.19) lg = fll <6

and let {z;}7_, C X and {y;}_, C Y be an (g, M)-good pair of sequences. By (8.18)
and (8.19), {x;}_, and {y;}]_, is an (f, M + 1)-good pair of sequences. Together
with (P5) this implies that there exists an integer sg such that (8.17) holds. Lemma
8.6 is proved. O

Lemma 8.6 implies the following result.

Lemma 8.7. Let M,e > 0. Then there exist an integer 7 > 1 and 6 > 0 such
that for each g € C(X x X xY xY) satisfying ||g — f|| < 0, each integer T > T,
each (g, M)-good pair of sequences {x;}_, C X and {y;}_, C Y and each integer
s €0, — 7| there is an integer so such that

{s0,s0 + 1} C [s,s+ 7],
px(xi,xy) < € and py (yi,ys) < €, 1 = sg,50 + 1.

Lemma 8.8. Let M,e > 0. Then there exist an integer 7 > 1 and § > 0 such
that for each g € A satisfying ||g — f|| < 9§, each (2,§) € S(g) and each sequence
{z;}I_y C X satisfying

T—1
(820) Zg($i,$i+17§af) STg(Z,Z,f,f)—f-M
=0

there is an integer so € [0, 7 — 1] such that

(8.21) pX(xi,xf) <€ t=5g,8 + 1.
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Proof. By Lemma 8.2 (with 79 = 1) there exists an integer 7 > 1 such that the
following property holds:
(P6) for each sequence {z;}7_, C X satisfying

T—1

> f@iwiin,ypyp) < (g ap,yp,yp) + M 44
i=0

there is an integer so € [0, 7 — 1] such that (8.21) holds.
Since the function f is uniformly continuous on the space X x X x Y x Y there
is 47 > 0 such that

(8.22) | fu1,ug, v, v2) — fuh,uh, v, v5)] < (87)

for all uj,ug,uf,ufy € X and all vy,ve,v],v5 € Y satisfying px(ui,u)) < 01,
py(Ui,U;) S 51, 7= 1,2.
By Lemma 8.1 there exists

(8.23) 5 € (0,87
such that for each g € A satisfying ||g — f|| < 0 and each (z,&) € S(g)
(8.24) px(z,xp) < 61, py (& yyp) < 61

Assume that g € A satisfies

(8.25) lg = fll <0,
(8.26) (2,€) € S(9)
and that {z;}7_, C X satisfies (8.20). By (8.20), (8.23) and (8.25),
T—1
827) ) f(wiwi1,6,8) S Tf(2,2.6,8) + M +20m < 7f(2,2,6,6) + M+ 1.
=0
By (8.24), (8.25), (8.26) and the choice of § (see (8.23)),
(8.28) px(z,2p) < 61, py(§,yr) < 1.
By (8.27), (8.28) and the choice of §; (see (8.22)),
T—1 T—1
Zf(xhxi-‘rlayfayf) S Zf(xi)xi-‘rlvgag) +8_1
=0 =0
< 7260+ M A8 41
(8.29) < Tf(zpxpyp,yp) + M4 2.

By (8.29) and property (P6) there is an integer sg € [0, 7 — 1] such that (8.21) holds.
Lemma 8.8 is proved. O

Analogously to Lemma 8.8 we can prove the following result.
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Lemma 8.9. Let M,e > 0. Then there exist an integer 7 > 1 and § > 0 such
that for each g € A satisfying ||g — f|| < 0, each (2,£) € S(g) and each sequence
{yi}T_y C Y satisfying

T—1

Zg(zvzvyivyi-i-l) Z Tg(Z7Z7€7§) - M
i=0

there is an integer so € [0, 7 — 1] such that
py (yi,yr) <€, i = s0,50 + 1.
Let g € A, integers Tb > T1 > 0, 21,20 € X and £1,& € Y. Set

ox(g,T1,Ts, 21, 22,&1,&2)
Ty—1

(830) = ll’lf{ Z g(xi7$i+17£7€) : {xl}zTiTl C X7 Ty = 21, TTy, = ZQ}:
=Ty
oy (9,11, T3, 21, 22,£1,&2)
To—1
(8.31) = Sup{ > 9z 20,0 u) H{uiti2g C Y yn =&, yn, = 52}-
=Ty

It is easy to see that the following result holds.

Lemma 8.10. Let g c .A, integers T > 1Ty > 0, 21,22,21,52 € X, 51,52,51,52 eY.
Then

lox (9,11, T3, 21, 22,1, 62) — ox (9, T1, 1o, 21, 22,61, &2)| < 4|9l

(
oy (9, T1, Ta, 21, 29, €1, &2) — oy (9, T1, T, 21, 20, &1, &2)| < 4|1,

4lgll;

‘O—Y(gaTbTang?xg)gbg?) - (TQ - Tl)g(xgvxgayfﬁyg | S 4”9”

IN

)
)
lox (9, T, T2, 21, 22, Yg, Yg) — (T2 — T1)g(2g, Tg, Yg, Yg)|
)

Lemmas 8.8 and 8.10 imply the following result.

Lemma 8.11. Let M,e > 0. Then there exist 6 € (0,1) and an integer T > 1 such
that for each g € A satisfying ||g— f|| < 6, each (z4,y4) € S(g), each integer T > T,
each sequence {%’}iT:o C X satisfying

T-1

Z 9($i7$i+17yg7yg) S UX(Q? 07T7 Zo, J;Tvyg?yg) + M
=0

and each integer p € [0,T — 7| there is an integer j such that {j,j + 1} C [p,p + 7]
and

pX(xu:l:f) <e€ 1 :.]7.] + 1
Lemmas 8.9 and 8.11 imply the following result.
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Lemma 8.12. Let M,e > 0. Then there exist 6 € (0,1) and an integer T > 1 such
that for each g € A satisfying ||g— f|| < 6, each (z4,y4) € S(g), each integer T > T,
each sequence {y;}_, C'Y satisfying

T-1

Z g(xguxg7yi7yi+1) > UY(9707T7 xgvxguy(%yT) -M
=0

and each integer p € [0,T — 7| there is an integer j such that {j,j+ 1} C [p,p+ 7]
and

py (Vi yp) <€ i=j,j+1.

It is easy to see that the following lemma holds.

Lemma 8.13. Let € > 0. Then there exists § > 0 such that for each pair of integers
To > T1 >0, each z1,29,21,22 € X and each £1,&2,&1,&2 €Y satisfying

px(zi,2) <6, i=1,2, py(&,6) <6, i=1,2
the following inequalities hold:
lox (f,T1,Ts, 21, 22,61, &2) — ox (f, 11, T3, 21, 22,61, §2)| < €,

oy (f, T1, T2, 21, 22, €1, &) — oy (f, T1, Ta, 21, 22,1, &2)| < e.
Lemma 8.14. Let € > 0. Then there exists § > 0 such that for each integer T > 0
and each sequence {z;}L_ o C X satisfying
xo =Ty, TT = Ty,
T-1

Z f(m’m Ti+1,YF, yf) < UX(fa 07 T7 T, TfyYf, yf) +90
i=0
the following inequality holds:

px(xi,xy) <€ i=0,...,T.

Proof. Assume the contrary. Then for each natural number k there exists a sequence
{xgk)}ﬁo C X where T} is a natural number such that

(8.32) x(()k) = xy, x%;) =xy,
T—1
k) (k _
(8.33) > F@ 2 yryp) < ox(£.0, Thoag ap,yp,yp) +27F,
=0
(8.34) max{px(:nz(-k),xf) ci=0,...,Tx} > e

There is a sequence {z;}2, C X such that

(8.35) =2V, i=0,...,T

i
and for each integer k£ > 1,

(8.36) x (kD) -5

leTr‘rj:xJ ]Zl,...,Tk+1.
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By (1.4) and Proposition 1.3, for any integer k > 1,

(8.37) ox(f,0, T, xp,xp,yp,yp) = T f (T, zp, 95, yy)-
It follows from (8.33), (8.35), (8.36) and (8.37) that

k
> (@i zin,yp up) ZT -1} < Z Tif (g xp,y5,97) +277)

(8.38)

IN

(ZTj)f(Jvavayfayf) + 1.
7j=1

In view (8.38) and (ATP), lim; o0 px (i, 2f) = 0. Then there is a natural number
ip such that px (s, x¢) < €/2 for all integers ¢ > iy. Together with (8.35) and (8.36)
this implies that for all natural number k > 4,

pX(:UZ(k),:Cf) <e€/2,i=0,...,Tk.
This contradicts (8.34). The contradiction we have reached proves Lemma 8.14. [
Analogously to Lemma 8.14 we can prove the following result.

Lemma 8.15. Let € > O Then there exists 6 > 0 such that for each integer T > 0
and each sequence {yl _o C Y satisfying

Yo =Yf, Yr = Ys,
T-1

> F@papynvin) = oy (£,0, T xp,xp,yp,yp) — 6
i=0
the following inequality holds:

py (i, yf) <€, i=0,...,T
It is easy to see that the following lemma holds.

Lemma 8.16. Let € > 0 and 7 be a natural nymf)er. Then there exists 6 > 0 such
that for each z1,z29,%21,22 € X and each &1,£2,&1,&2 € Y satisfying

px(2i,5) <6, i =1,2, py(&,&) <6, i=1,2
the following inequalities hold:
lox (£,0,7, 21, 22,1, &) — ox (f,0,7, 71, 22,81, &)| < €
oy (f,0,7, 21, 22,61, &) — oy (f,0,7, 21, 22,61, &) < €
Lemmas 8.13 and 8.14 imply the following result.

Lemma 8.17. Let € > 0. Then there exists 6 > 0 such that for each integer T > 0
and each sequence {x;}1_, C X satisfying

px(zo,xy) <6, px(xr,25) <6,

~
L

f(ﬂfz';JUi—i—l,?/fyyf) < O'X(f,O,T, x())xTayfayf) + 4

ﬂ.
[en]
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the following inequality holds:
px(xi,xy) <€ i=0,...,T.
Lemmas 8.13 and 8.15 imply the following result.

Lemma 8.18. Let € > 0. Then there exists 6 > 0 such that for each integer T > 0
and each sequence {yi};frzo CY satisfying

PY(y07Z/f) S 55 PY(?/TJ/f) S 55

T-1

Zf(xfal‘fayivyi-f-l) > O-Y(faOaTvxf7$f7y07yT) -9

i=0
the following inequality holds:

pY(yzvyf) S €, 1= 07' 7T

Lemma 8.19. Let € > 0. Then there exists 6 € (0,1) such that for each g € A
satisfying || f — gl < 0, each (x4,y4) € S(g), each integer T > 0 and each sequence
{x; Y, C X satisfying

(8.39) px(xo,xf) <6, px(zr,zp) <6,
T-1

(840) Z g(xiaxi-f-l?ygvyg) S GX(9707T7 anxT7ngyg) + J
=0

the following inequality holds:
px(xi,xy) <€ i=0,...,T.

Proof. By Lemma 8.17 there exists 6; € (0,1) such that the following property
holds:
(P7) for each integer T' > 0 and each sequence {z;}_, C X satisfying

PX(anxf) S 517 PX(J:T?xf) S 617

b

J(@i, zip,yp,9p) < ox(f,0, T, xo, 27,5, y5) + 01

<.
Il
o

we have
px(:lii,fl,’f) < €, 1= 0,... ,T.
By Lemma 8.11 there exist
(8.41) 92 € (0,01)
and an integer 19 > 1 such that the following property holds:
(P8) for each g € A satisfying |lg — f|| < 2, each (z4,y4) € S(g), each integer
T > 79, each sequence {z;}]_, C X satisfying
T-1
Z g($1> Tit+1,Yg, yg) < UX(gv 07 T7 Zo,ZT,Yg, yg) +4
i=0
and each integer p € [0,T — 7p] there is an integer j such that {j,j+1} C [p,p+ 70]
and
px(zixp) <61, i=7,j+1.
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Since the function f is continuous there is
(8.42) 63 € (0, (210 +1)718715y)

such that the following property holds: o
(P9) for each z1, 29, 21, 22 € X and each &1,&,&1,& € Y satisfying

px(zi, %) < 83, i =1,2, py(&,&) < Gzi=1,2
we have
|f (21, 22, 61,&) — f(31, 22,61, &)| < 871210 + 1) 10
By Lemma 8.1 there is
(8.43) 5 € (0,53)

such that the following property holds:
(P10) for each g € A satisfying ||g — f|| < d and each (x,y) € S(g) we have

px(x,xy) < 03, py(y,ys) < d3.
Assume that g € A,
(8.44) 1f =gl <6, (zg,94) € S(9),

an integer T > 0 and a sequence {z;}_, C X satisfies (8.39) and (8.40). By (8.40),
(8.42), (8.43), (8.44) and property (P8) there exist a strictly increasing sequence of
nonnegative integers {¢;}7_, where ¢ is a natural number such that

(845) tQZO, tq:T, ti+1—ti§7'0 for allizO,...,q—l,

(846) pX(xt”xf)Sélu 22077(]

Let j € {0,...,T}. We show that px(z;,zf) < e. By (8.45) there is an integer
k € [0,q — 1] such that

(8.47) J € [tk thya]-
By (8.40) and (8.46),

(848) pX(ajtmxf) < 517 PX(fEtkHa ZEf) < 61a
tp41—1
(849) Z g(ﬂ%, Li+1,Yg, yg) < UX(Q? 07 tk+1 - tk, Tty s mtk+1 yYgs yg) + d.
1=ty

By (8.44), (8.45) and (8.49),

tp41—1 te41—1
S F@imiinygyy) <Y 9(Ti T, Yg, Yg) + 070
i=ty i=ty
(850) 25¢ (ga Oa tk-i—l - tka xtka'rthrl yYgs yg) + 5(7_0 + 1)

<
S JX(f7 07 tk-i—l - tka ':Etka:Ethrpygv yg) + 5(27_0 + 1)
By (8.44) and (P10),

(851) pX(xg,ﬁUf) < 537 PY(ygayf) < d3.
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In view of (8.45), (8.51) and (P9),

tpyr1—1 tpp1—1
852 ‘ Z f xzaxz—i-laygayg Z f Ly Li+-1,Yf> yf) <TO(2TO+1) 18 1527
1=ty 1=ty

’UX(fu 07 tk-‘rl - tk7 $tk>$tk+1vyg) yg) - UX(f; 07 tk—‘rl - tk) xtkpxtk+17yf7 yf)
(8.53) < 7'0(27’0 + 1)_18_152.

By (8.52), (8.50), (8.53), (8.42), (8.43) and (8.41),

ter1—1 tk+1 1
(854) Z f Lis Tit+1,Yf yf Z f xlalerlaygayg) + 16~ 52
1=ty 1=t

< X (£,0, tht = bk Ty, Tty Yg Yg) + 6(270 + 1) + 16710
< ox(f0,tpqr — e, Tey, Ty, Yps Yp) + 16710, + 0210+ 1) + 167165
< ox(f,0,tpr1 — th, Tty Tepr1, Yy, Yy) + 01
By (8.47), (8.48), (8.54) and (P7), px(zg,2) < e. Lemma 8.19 is proved. O

Analogously to Lemma 8.19 we can prove the following result.

Lemma 8.20. Let € > 0. Then there exists 6 € (0,1) such that for each g € A
satisfying || f — gl < 0, each (x4,y4) € S(g), each integer T > 0 and each sequence

{yi}E, C Y satisfying
py (o, yp) <6, py (yr.ys) <6,

T-1
Zg(xg7$gvyi)yi+l) > UY(9707T5 l‘g)xgvyﬂvyT) =9
=0

the following inequality holds:

pY(ylvyf) Sﬁ, 2:077T

Lemma 8.21. Let M,e > 0. Then there exist natural numbers | and Q and a
positive number ¢ such that for each g € A satisfying || f — g|| < 0, each (z4,y4) €
S(g), each integer T > QI and each sequence {z;}L_, C X satisfying

T-1
(855) Zg($i,$i+17ygayg) S Tg($g7xguyg7yg) +M

i=0
there exist a natural number ¢ < Q and sequences of integers {a;}i_,, {b;}_; C
[0,T] such that

Oﬁbi—ai SL izl,...,q

Y

px(xi,xy) <€
for all integers i € [0,T] \ Uj_,[ay, b;].
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Proof. By Lemma 8.19 there exists 6y € (0,1) such that the following property
holds:

(P11) for each g € A satisfying || f — g|| < do, each (z4,y4) € S(g), each integer
T > 0 and each sequence {z;}1, C X satisfying

pX(J"Oaxf) < 50) PX($T7xf> < 507

~
L

(i, Tig1,Yg,Yg) < 0x(9,0,T, 20,27, Yg,Yg) + 60

.
Il
=)

we have
px(xi,xy) <€ i=0,...,T.
By Lemma 8.11 there exist a positive number
d < min{dg, M/8}

and an integer 179 > 1 such that the following property holds:
(P12) for each g € A satisfying ||g — f|| < 9, each (z4,y4) € S(g), each integer

T > 19 and each sequence {z;}_, C X satisfying

T—1

Z g(lii’ Ti+1,Yg, yg) < Ux(g, 07 Ta Zo,ZT,Yg, yg) +M

i=0
and each integer p € [0, T — 7| there is an integer j such that {j,7+ 1} C [p,p+ 70]
and

px(xi,xy) < 0o, i =7,5+ 1.

Choose natural numbers

(8.56) Q> 6+35,  (A(If] + 1)+ M), I > 4(m +1).
Assume that g € A,
(8.57) 1f = gll <6, (g,y4) € S(g),

an integer T' > QI and that a sequence {z;}L , C X satisfies (8.55).

Set tp = 0. Assume that an integer £ > 0 and we have defined a strictly increasing
sequence of integers t,, p = 0,...,k such that ¢, < T and that for each integer p
satisfying p < k,

(8.58) by — 1y > 2,
tp+1—1
(859) Z g(aj]a LTjt+1,Ygs yg) > 0Xx (97 Oa thrl - tpa Lty Ttpr1s Ygs yg) + 507
j:tp
tp+1—2
(860) Z g(l'], Tjt+1,Yg, yg) < UX(gv Oa tp+1 - tp - ]-a Lty Ltpy1—15Ygs yg) + 50-
J=tp

(Clearly, for k = 0 this assumption holds.) If

T-1
Z g(‘rja Tj41,Yg, yg) < UX(gy O7T - tkaxtkaxTaygvyg) + 507
J=tx
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then set ¢ = k4 1, t, = T and the construction is completed.
Assume that
T—1
Z g(xja Tji+1,Yg, yg) > UX(gv 07 T — tka LTty s TT5 Yg,s yg) + 50-
J=tk
Then there exists an integer t;1 such that ¢ + 1 < txy1 < T (it is possible that
tgr1 = T) such that

tp+1—1
Z g(xjaxj-f-layg:yg) > UX(.gaOathrl - tk7$tk7$tk+1;ygyyg) + 607
J=tk
thy1—2
Z g(a:jﬂxj-i-hygayg) < UX(g7O7tk+1 - tk - 17$tk7$tk+1—17yg7yg) + 50'
J=tk

Clearly, the assumption made for k also holds for k + 1 (if £ + 1 < ¢) and the
construction is completed after a finite number of steps and the last element of the
sequence satisfies t; = 7.

It follows from the construction of the sequence {¢;}{_, that for each integer p
satisfying 0 < p < ¢ — 1, (8.58)-(8.60) hold and if t; — t;—1 > 1, then (8.60) holds
with p = ¢ — 1.

By (8.55), (8.30), (8.31), Proposition 1.3, (1.4), Lemma 8.10 and (8.57),

T-1
Zg(xivxi-f-l?ygvyg) S M—i_Tg(wg?xgaygayg)
1=0
= M+JX(g7O7T7 xg7xg7ygayg)
< M+UX(9707T5 $0795T7yg,?/g)+4”9”
(8.61) < M+A(f+1) +ox(9,0, T, o, 27, Yg, Yg)-

By (8.59) and (8.61),

T-1
4(||f||+1)+M > Zg(miaxi+1aygayg)_JX(gaOaT7m07xT7ygayg)
=0

tp+1—1
> Z{ Z g($i7$i+17ygayg)_O-X(gatpatp+17xtp7xtp+1ayg’yg):

i=tp

pef{0,...,q—1} andp<q—1}250(q—2),

(8.62) g <2435 4(lf] + 1)+ M).
Set,
(8.63) E={pe{0,....,q—1} i tpy1 —t, > 4(10+ 1)}.

Let p € E. Then (8.60) holds. By (8.57), (8.60), (8.63) and (P12), there exist
integers

(8.64) Jip € [tp,tp + 7'0], Jop € [tp+1 —1—719, tpr1 — 1]
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such that

(8.65) px(zj,,, ) < 0o, s =1,2.

By (8.64), the inclusion p € E, (8.63), (8.65), (8.60), (8.57) and (P11),
px(zi,xp) < € 0 € {jip -5 J2p),

(866) pX(xi,:cf) <e i€ {tp+TQ,... ytpr1 — 1 —T()}
for all p € E. By (8.66),
{7, S {0,,T} : px(l'i,l‘f) > 6} C U{{ti,...,ti_H} T 1 E {0,...,(]— 1}\E}

(8.67) UU{{{tp, .- s tp+710 =1} U{tpr1 —710,. .-, tpt1}) - p € E}).
Consider the collection of closed intervals
[tistiv1], 1€{0,...,¢q =1} \E, [tp,tp+7170—1], p€ E, [tpt1 — 70, tp+1], p € E.
Clearly, the number of intervals in this collection does not exceed
3¢ <6435 A(IfIl+ 1)+ M) <Q

(see (8.56) and (8.62)) and by (8.56) and (8.63) the lengths of all these intervals
does not exceed 4(1p + 1) < I.
Lemma &8.21 is proved. g

Analogously to Lemma 8.21 we can prove the following result.

Lemma 8.22. Let M,e > 0. Then there exist natural numbers | and Q and a
positive number 0 such that for each g € A satisfying || f — g|| < 6, each (z4,y4) €
S(g), each integer T'> QI and each sequence {yi};fio C Y satisfying

T-1

Z g(xga Jﬁg, y’ia yi+1) 2 Tg(x_tb .Tg, y97 yg) - M

i=0
there exist a natural number ¢ < Q and sequences of integers {a;}l_,, {b;i}_; C
[0,T] such that

Oﬁbi—ai Sl, izl,...,q,
py (Yi,yg) < €

for all integers i € [0, T\ Uj_,[a;, b;].

9. PROOF OF THEOREM 1.8

By Lemma 8.21 there exist natural numbers [y and @)1 and a positive number
01 < 1 such that the following property holds:
(P13) for each g € A satisfying || f — g|| < 61, each (z4,y4) € S(g), each integer
T > @1l; and each sequence {xi}iTzo C X satisfying
T—1
Z g(xla $i+17ygu yg) S Tg(xg,xg, ygayg) + 2M + 12(”f” + 1)
i=0
there exist a natural number ¢ < @ and sequences of integers {a;}{_;, {b;j}{_, C
[0, T] such that
0<bi—a;,<l,i=1,...,q,
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PX (l‘i? xf) <e
for all integers ¢ € [0,77] \ U?Zl[aj, bj).
By Lemma 8.22 there exist natural numbers Il and ()2 and a positive number
02 < 1 such that the following property holds:
(P14) for each g € A satisfying || f — g|| < 02, each (z4,y4) € S(g), each integer
T > Qsls and each sequence {y;}_, C Y satisfying
T-1
Z 9(xg, 29, Yis Yiv1) = Tg(xg, g, yg, yg) — 2M — 12(||f]| +1)
i=0
there exist a natural number ¢ < Q2 and sequences of integers {a;}{_;, {b;j}_, C
[0, T such that
Ogbi_aigl% i1=1,...,q,
py (Yisys) < €
for all integers i € 0,7\ Uj_,[a;, ;.

Put

(9.1) 0 = min{d1,d2}, | = max{l1,lo}, Q = Q1 + Qo.
Assume that

(9.2) geA |If —gl <o,

an integer 7 > QI and that {z;}._, C X, {y;}., C Y is a (g, M)-good pair of
sequences. Let

(9.3) (zg,Yq) € S(9)

be an element of S(g) associated with ¢ (see the definition of A, (1.4) and Remark
1.5). Then
(9.4) g(zg,24,6,€) < g(xg,2g,Yg,Yg) < 9(2,2,Yg,Yg) for all z€ X and all £ €Y

and for each natural number n and each pair of sequences {z;}I , C X, {&}, C Y,
(9.5)

n—1 n—1

_4HgH + Zg(xgax97§i7§i+1) S ng(fcgaxmygayg) S Zg(ziazi+17ygayg) + 4HgH
i=0 1=0
By (9.2), (9.3), (9.4), (9.5) and Proposition 5.1,

T-1
(9.6) ‘ Zg(xuxm,yg7yg)—Tg(xg,xg7yg,yg)‘ < 2M+12(|g|| < 2M+12([| f||+1),
i=0
T-1
i=0
By properties (P13) and (P14), (9.1), (9.2), (9.3), (9.6) and (9.7) there exist natural
numbers ¢; < Q1, ¢2 < Q2 and sequences of integers

{aribity, {briditys {aza}iz,, {b2i}iz, C 10,7

such that
0<bij—ar; <l,i=1,...,q,
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0<by;—ag; <la,i=1,...,q,

px(xi,xf) <€ py(yi,yr) <€
for all integers

i € [0, T\ [U(ULy [a1,5, b1,4]) U (U724 [az,j, ba )]

Theorem 1.8 is proved.

10. PROOF OF THEOREM 1.9
Let £ be the set of all f € A which possess (ATP).
Lemma 10.1. & is an everywhere dense subset of A.

Proof. Let f € A and r € (0,1] and let (z,yr) € S(f) be an element of S(f)
associated with f such that (1.1) holds and (1.4) holds with c; = 4| f||. Set

fr(@i, 2, y1,92) = f(21,22,91,92) + rpx (21, 7¢)
(10.1) +rpx (2, xf) —rpy (Y1, yr) — rpy (Y2, yy).-
Clearly,
(10.2) fr € Ao, (x,yr) € S(fr) and f, € A.
Let
(10.3) (z,y) € S(fr)-

Then by (10.2), (10.3) and the definition of S(-) (see (1.7)),

fr(@,zoyryr) < fr(mzy,y) < folmp xp,y9,9)
(10.4) < felwpzpyryp) < fr(zzyp yr).
By (10.1), (10.4) and the inclusion (¢, yyr) € S(f),
f(@ 2, yp,yp) + 2rpx (z,25) = f(wp,2p,y5,9r) < flT, 2,97, 97),
Xr = iL'f
and
fpzey,y) < flepxr,yr,yr) = f@pzr,9,y) — 2rpy (Y, y£),
Y =ys-

Thus S(f,) = {(xf,ys)}. We show that f, possesses (ATP).
Let {x;}2, C X satisfy

n—1

SuP{Zfr(fin’UHl,yf,yf) - nf?”(vavayfvyf) = 1727 .. } < 00.
=0

By the inequality above, (10.1) and Proposition 1.4,

o0

Z(Px(wi,xﬁ + px (@it1,2y)) < 0.
1=0

This implies that px(z;,2¢) — 0 as i — oc.
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Analogously we can show that for each sequence {y;}7°, C Y satisfying
n—1
inf { Z fr($f>$f7yi7 yi+1) - nf?“(xfaxfayfvyf) tn=12,... } > —0
i=0
we have py (y;,yf) — 0 as i = oo. Thus f, possesses (ATP). Since ||f — f-|] = 0 as
r — 07 we conclude that Lemma 10.1 is proved. O

Let f € &, (x,yf) € S(f) and n be a natural number. By Lemmas 8.1, 8.21 and
8.22 there exists an open neighborhood V' (f,n) of f in A such that the following
properties hold:

(i) for each g € V(f,n) and each (z,&) € S(g),

px(z,25) < (4n) 74, py (& yp) < (4n) 7
(ii) for each g € V(f,n), each (z4,y4) € S(g) and each sequence {z;}°, C X
satisfying
T-1
sup { Z 9(xi, i1, Y, Yg) — T9(2g, Ty, Yg,yg) : T =1,2,... } <n,
=0
for all sufficiently large natural numbers i, px (2;, z7) < (4n)~1;
(iii) for each g € V(f,n), each (x4,y4) € S(g) and each sequence {y;}3°, C Y
satisfying
T-1
inf{ Z 9(xg, g, Vi, Yir1) — T9(xg, Tg,yg,yg) : T =1,2,... } > —n,
=0
for all sufficiently large natural numbers i, py (y;,yr) < (4n)~L.
Set

(10.5) F=m,U{V(f,n): n=1,2,... }.

Clearly, F is a countable intersection of open everywhere dense subsets of A.
Let g € F. By (10.5) for any natural number n there is f,, € £ such that

(10.6) g € V(fn,n).
Let
(10.7) (z1,&), (22,&) € S(9)

and let n be a natural number. By (10.6), (10.7) and property (i),
PX(Zi,$fn)a PY(fnyfn) S (4n)_15 1= ]-727

px(z1,22), py(&1,6) < (2n)7"
and since n is an arbitrary natural number we conclude that z; = 29, £ = & and

S(g) is a singleton: S(g) = {(z4,yy)} and
(10.8) px(xg,25,), py(Yg,ys,) < (4n)~" for all integers n > 1.
Assume that {z;}3°, C X satisfies
T-1

sup { Zg($i7Ii+17ygayg) - Tg(-rgaxgaygvyg) T = 172) cee } < 0.
=0
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Choose a natural number n such that
(10.9) 2n~1 < e,
T_
Sup{ 9(xi, i1, Yg Yg) — T9(xg, Tg,Yg,yg) : T =1,2,... } <n.
i=0

By (10.6), (10.8), (10.9) and property (ii), for all sufficiently large natural numbers

2,

[y

px (i p,) < (4n)7),

px (i, 1g) < px (i, x5,) + px(2f,,2) < (2n) 7! <€
Since € is an arbitrary positive number we conclude that lim; . px(xi, z4) = 0.
Analogously we can show that if {y;}5°, C Y satisfies

T-1

lnf{ Z g<$gvxgayi7yi+1) - Tg(xg7xgvyg7yg) :T'=1,2,.. } > —00,
i=0

then lim;_,o py (¥i, yg) = 0. Thus g possesses (ATP). Theorem 1.9 is proved.
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