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NON-EXPANSIVE AND POTENTIALLY EXPANSIVE
PROPERTIES OF TWO MODIFIED P-CYCLIC SELF-MAPS IN
METRIC SPACES

MANUEL DE LA SEN, RAVI P. AGARWAL, AND RAUL NISTAL

ABSTRACT. This paper investigates p-cyclic self-maps 7' : X — X in problems
involving perturbations which satisfy a distance constraint in a metric space with
mixed non-expansive or contractive properties and potentially expansive prop-
erties related to some distance threshold. The above mentioned constraint is
feasible in certain real-world problems. Two classes of self-maps are investigated,
namely, those which become p-cyclic strict contractions in the absence of pertur-
bations and those which in the same conditions become p-cyclic contractions of
Meir-Keeler type.

1. INTRODUCTION

Fixed point theory and related techniques are of increasing interest for solving
a wide class of mathematical problems where convergence of a trajectory or se-
quence to some equilibrium set is essential. Recently, the subsequent set of more
sophisticated related problems are under strong research activity:
1) In the, so-called, p (> 2)-cyclic non-expansive or contractive self-maps map each
element of a subset A; € {A1, Aa,..., Ay} of an either metric or Banach space B to
an element of the next subset A; 1 in a strictly ordered chain of p subsets of B such
that A,41 = A;. If the above subsets do not intersect then fixed points do not exist
and their potential relevance in Analysis is played by best proximity points, [16,19].
Best proximity points are also of interest in hyperconvex metric spaces, [7,14].
2) The so-called Kannan maps are also being intensively investigated in the last years
as well as their relationships with contractive maps. See, for instance, [15,17,21].
3) Although there is an increasing number of theorems about fixed points in Ba-
nach or metric spaces, new related recent results have been proven. Some of those
novel results are, for instance, the generalization in [9] of Edelstein’s fixed point
theorem for metric spaces by proving a new theorem. Also, an iterative algorithm
for searching a fixed point in a closed convex subset of a Banach space has been
proposed in [13]. On the other hand, an estimation of the size of an attraction ball
to a fixed point has been provided in [5] for nonlinear differentiable maps.
4) Self-maps T' in complete (or compact) metric spaces (X, d) are classified in four
classes in [27], namely: T is said to be of Leader-type (or Picard operator) if it
guarantees the convergence of any iteration through 7' to the unique fixed point.
Also, T is said to be of Unnamed-type if convergence of all the iterations to the
unique fixed point is not guaranteed. In the so-called Subrahmanyam-type (or
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weakly Picard operator), all iterations converge to a fixed point which can be non-
unique. Finally, T is said to be of Caristi-type if iterations not necessarily converge
to some eventually non-unique fixed points.

5) Fixed point theory can be also used successfully to find oscillations of solutions of
differential or difference equations which can be themselves characterized as fixed
points. The formalism is also useful to investigate stability and boundedness of
the solutions in time-delay and continuous/ discrete hybrid dynamic systems and
also the convergence properties of nonlinear iterative processes. See, for instance,
[4,5,8,10,20,22-24]. On the other hand, the existence of positive solutions of some
useful differential equations can be investigated by using the fixed point index.
See, for instance, [28,29] and references therein. This manuscript is devoted to
investigate the nonexpansive ( [9,16,23]) and contractive properties of cyclic self-
maps T : X — X in a metric space (X, d) which satisfy the constraint:

— Kud(z,y) + Kyid; + My (z,y) < d(Tz,Ty) — d(z,y)

1.1
(1.1) < —Koid (z,y) + Koidi + Ma; (z,y);V (z,y) € Ai x Aipq

for some real constants Ki;, Ko; and some real functions Mj; : A; x A1 —
Ro+; Vi € p:={1,2,...,p}; j=1, 2, where Rg; := {z € Ry : 2 >0} and d; :=
dist (A;, Ai+1); Vi € p are the distances between adjacent subsets A; and A;4; of X;
Vi € p. The p-cyclic restricted self-map T : Uiep A; — UZ-@5 A; (i.e. the domain and
the image of T': X — X are restricted to Uz‘ep A; ) is subject to the set of constraints
T (A;) C Aiq1; Vi € p. The set of fixed points of the map T : Uz‘ep A — Uia5 A;
is denoted through the manuscript by F' (7'). The main motivation to consider the
functions Mj; : A; x A1 = Roy; Vie p:={1,2,...,p}; j7=1,2in (1.1) is to endow
to (1.1) of the property of being point-wise contractive, non-expansive or expansive.
This can reinforce the ability of the formulation to discuss some properties of more
general problems as, for instance, global stability of discrete dynamic systems under
parametrical uncertainties and /or unmodeled dynamics which are not necessarily
locally stable around some of the equilibrium points or which might exhibit ultimate
boundedness, while an equilibrium point is locally unstable and all the solution tra-
jectories are globally bounded for any set of bounded initial conditions so that the
system is globally stable in the Lyapunov sense. Several examples concerning this
important problem are given in section 4.

2. MAIN RESULTS BASED ON BANACH CONTRACTION PRINCIPLE FOR P-CYCLIC
CONTRACTIONS

This section is mainly concerned with the derivation of some mathematical results
about uniform boundedness of the iteration of distances of pairs of points belonging
to adjacent subsets of X in the presence of perturbations given by the functions
Mji: Ai x Aiy1 = Rog; Vie p:={1,2,...,p};j = 1,2. First note that Eq.(1.1) is
equivalent to:

(1= Ky)d(2,y) + Kiidi + My (2, y) d(Txz,Ty)
(1 - Kai) d (a,y)
+Koid; + Ma; (2,y) .

<
(2.1) <
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Note that if d; = My; (z,y) = 0, Ko; € [0,1); V(x,y) € A; X A;11; Vi € p then
(2.1) implies that T": {J;c; Ai = U;p Ai Is a strict contraction according to Banach
contraction principle. If My; (z,y) = 0; Vi € pthen T : ;5 Ai — U, Ai satisfying
(2.1) for each (z,y) € A; x Ajy1; Vi € pis a p-cyclic contraction [9,16]. Through this
section, it is proven that the contraction principle does not hold, in general for a
generic (2.1). However, T : J;c; Ai — U, Ai 1s not expansive for sufficiently large
distances between (z,y) € A; X A;y1;Vi € p . In this context and in view of (1.1),
it is possible to speak about the restricted self-map T : Uieﬁ A — Uie;ﬁ A; being
locally non expansive, contractive and expansive as follows. Note by comparing the
lower and upper-bound of (2.1) that:

My, (x7y) — M (l’,y) .
Ko — K, ’
Note also that d (Tx, Ty) < d(x,y);i.e. T : X|A; — A;41 is locally non-expansive
for a given pair (z,y) € A; x A1 if d(z,y) > d; + %iy)
Combining this constraint with a induced lower-bound from (2.1) yields that 7" :
X|A; = A;y1 is locally non-expansive for a given pair (z,y) € A; X A;j4q if

V(z,y) € Ay x Aip1;Viep

Mo; (x,
d(%@/) > max (d (Tx,Ty) 7di + %)
21

Ma; (z,y)

Moy; (z,
> max (di + My (2, y) + (1—Ky),d;i + Mai (z,y) y)>
K2i K2i
= <di + M) max (1, My (z,y) — M)
Ko Ko;

Also, d(Tx,Ty) < d(x,y); i.e. T : X|A; — A1 is locally contractive for a
given pair (z,y) € A; x Aiyq if d(z,y) > d; + 2229

Toor Finally, for any given
(z,y) € Ay x Ajp1, Vi € Pt

My (2, y)
Ky,
so that T': X|A; — A;41 is locally expansive for such a given pair.
Since T': X|A; — A;41 cannot be simultaneously locally expansive and locally
non-expansive for any given pair (z,y) € A; X A;11, the following inequality is not
feasible for any (z,y) € A; X Ajt1, Vi € p

My (z,y) Mo; (z,y)
_ =7y A; x A;
Kli K% ) (:U’y) € A; X i+1

Vi € p. Then, Ko < Kj;Ms;/My;; Vi € p. The following result is concerned with
sets of necessary constraints for (1.1) to hold.

d(z,y) <d; + = d(Tz,Ty) > d(x,y)

(2.2)  di+ > d(z,y) > d; +

Proposition 2.1. The following propositions follow directly:

(i) If the constants Kj; satisfy the sets of necessary conditions:
(2.3) M (z,y) [Mai (2, y) < K1i/Koizi € pyj = 1,2,V (2,y) € A X Aipa
then the unfeasible condition (2.2) never holds in A; X Ajy1. If
(2.4) My; (z,y) /Mo (z,y) > K1/ Ko
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for some (x,y) € A; X Ai11,i € p,j =1, then

My (2, y) d-—i—Mli(x’y))
Ky Ky

(ii)
(2.5)  (Kii— K) (d(z,y) — di) + (M2 (z,y) — Mii (z,y)) > 0;
V(z,y) € Ay x Ajp1,VieD
(111) Ifd; =0 (Z@ AiﬂAi+1 75 @) and M; (l‘,y) = 0, V(x,y) € A; x Ai+1
for some i € p then 1 > Ky; > Koy > 0 0r1 > Koy > 0 and Ky; > 1.

In the second case, the first inequality of (2.1) holds trivially everywhere in
Ai X AZ'+]_.

Proof. Property (i) follows since (2.2) is unfeasible then either M%i’y) >

= Ky
d(z,y) ¢ [d + M ,d; + M“(w y)> for any pair (z,y) € A; x Ai+1; Vi € p. Hence,

Property (i). Propertles (ii)- (111) follow from (2.1) which requires the necessary
condition

(1= Kyi)d(z,y) + Kiid; + My (v,y) < (1 — Ko;) d(z,y) + K2id; + Ma; (2, y) ;
V(x,y) € AZ X Ai+17Vi €p

My, (z,y)

or

which leads to (2.5) and Property (iii). Hence, Propositions 2.1. O

The following result proves uniform boundedness of the distance iterates inde-
pendently of the iteration index but dependent, in general, of the initial points. The
limit superiors of the iterations are uniformly bounded independent of the iteration
index and also independent of the initial points.

Theorem 2.2. The following properties hold:

(i) Assume that My (z,y) < agid(Tz, Ty) + v2i with v2; € Roy, 0 < ag; <
Ko < 1;V(z,y) € A; X Ajy1, Vi€ p. Then, d (ij:c,ijy) < L(z,y) < oo;
V(z,y) € A; X Aiy1, Vi € p where L(x,y) being a bound dependent on the
pair (z, y); ¥V (x,y) € A; X Ajv1; Vi € p which is uniform for all j € Z4
provided that d (x,y) is bounded. Furthermore,

D ( P [1*sz] K2idi+72i>
(2.6) limsup d (T9, T9Py) < By = N7 L maa ] Ao
oo 1- 112, [11—51]
- —Q1g

1s uniformly boundedVz,y € UlEp A;. Also, there is an upper-bound 625 (z,y)
ofsup d (Tfp:c Tepy) Vr,y € Ulep A; which is sufficiently close to By for suf-

ﬁczently large 7 € Zy in the sense that, for any prescribed arbitrarily small
e€Ry, |0 (z,y) — B2| <e;Vj>N =N () € Z; for some finite N € Z .

(ii) Assume that Property (i) holds and, in addition, My; (z,y) > apd (Tz, Ty)+
Y1i with a1 (< agz) S R0+ and Y1i (S ")/27:) S R0+ and 0 < ap; < Kli <

Ko; min (1 1 ah) < 1;¥(2,y) € Aix Ay, Vi € p. Then, d (T9x,; TiPy) €

e
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[B1 — €0, P2 + 0], Vj > max (N, Ng) € Z; and some finite Ny = Ny (g0)
P (Hp ) [1*K1k] Klidi""’Yli)
1=1 k=i+1 l—ayy l—aq;
1T, =52
bound 01; (x,y) of gfd (Tpr,T[py) ;V(z,y) € A X Ajv1; Vi € p which is
J

sufficiently close to B1 for sufficiently large j € Z in the sense that, for any
gwen arbitrarily small eg € Ry, |61 (z,y) — B1| < eo; Vj > No = Ny (e9) €
Z. for some finite Ny € Zy. Also, d(ij:C,ijy) € [B1—co0,P2+¢]; Vi
(> max (N, Ng)) € Z,..

(iii) Consider the restricted map T @ X|U;ep Ai = Uigp
Property (i) holds and, furthermore, vo; = 0; Vi € p and ()

where 1 = . Furthermore, there is a lower-

A; and assume that
iepdi # 0.
Then, 3z € F (T\ Uiep Ai> C Nigp Ai and the p-cyclic restricted self-map
T UiepAi = U,ep Ai is strictly contractive. If, furthermore, (X,d) is

complete then the fized point is unique.

Proof. The following chain of inequalities follows by direct inspection of (2.1) pro-
vided that Moy; (x,y) < agid (Tx,Ty) + v2; and 0 < ag; < Ko < 1; V(x,y) €
A; % Ai+1, Vi ep:

d(Tz,Ty) < (1— Ky)d(w,y)+ Kod; + Ma; (v,y)
(2.7) < (1= Koi)d(x,y) + Koidi 4 aid (Tw, Ty) + 25
1— Ky Koid; + 724
d(Tx, Ty) < d _oettr | e
= (T Ty) S T Ry SR
p
1 — Ky
TPy, TPy) <
= d(T"z, y)(g[l_%Dd(x,y)
+i ﬁ |:1_K2j:| Koid; + 724
o \yo Loz ] T—ao
P11 - K '
d TPz, TiPy) < il I
= d(T", y)_<iH1[1_a2iD (2,y)
J P =t p P
1 — Ko 1 — Koy | Koidi + 2
] (Sl ]t

<oo; VjeZy
= limsupd (ijx,ijy) < B
j—o0
= d (ijx,ijy) €0,82+¢€]; V(z,y) € Aj X Aip1,Vi €D
for any given ¢ € Ry and some finite sufficiently large N = N (¢) € Z, since
le {1_—&1} < 1 from 0 < ag; < Ko; < 1. Property (i) has been proven.

1—0{21'

Property (ii) is proven as follows. If Property (i) holds and, furthermore, My; (z,y) >
ad (Tz, Ty) + y1i,71 < 72i and 0 < a1y < ag; V(z,y) € A; x A1, Vi € p,
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then one gets in a similar way liminfd (ij:x,ijy) > fB1. Thus, for any given
Jj—o0

g0 € Ry, 3Ny = Ny (g0) € Zy being sufficiently large so that d (19Pz, T'Py) €
[B1 — €0, B2 + €] ; Vi (> max (N, No)) € Zy.

Property (ii) has been proven. To prove Property (iii), note that lim d (ija?, ij”y)
= 0; V(z,y) € A;j x A1 for any i € p if 79, = 0; Vi € ﬁ,jzflod ﬂieﬁAi # 0
(& di = 0;Vi € p) as a result so that T'|(J;c; Ai := (T t X|Uiep Ai = Uiy Ai> has
a fixed point. This is obvious since T'(A4;) = A;11. Thus, z € A; (| F (T! Uiep Ai)

for some j € p since z € J;c; Ai. Thus, Tz = z € Aj()Aj41 and proceeding

recursively:

1€Ep

P, — . J e )
Tz-zeﬂAl—jlglgon,VxeuAl
1€EP 1Ep

F (T| Uies AZ-) C (Vigp Ai is proven as follows. Since T'(4;) € Aj11;Vi € p, then
TFz = 2 = lim T2 € F (T| UieﬁAZ) #0 = 2¢e T'Ay C Ay for some £ € p,

j—o0
Vo € U;ep Ai, Vi € p. Then, z € ;5 A; which is unique from Banach contraction
principle if (X, d) is complete. O

> 1—ag;
of Theorem 2.2 are now weakened by replacing them by weaker ones related to the
whole p-cycle of the restricted map T'||J,., A; as follows:

The conditions 0 < ag; < K9; < 1 and 0 < aq; < Kq; < Ko; min <1 ﬂ) <1

i€p
Corollary 2.3. The following properties hold:

(i) Assume that Mo; (z,y) < aoid (T, Ty) + vy2i with 0 < Ko; < 1 and y9; €

Rot;V(z,y) € A x Ajyq, Vi € p and py = [0 [1;1(%} < 1. Then,

1—ag;
Theorem 2.2 (i) holds.
(ii) Assume that Property (i) holds and, in addition, My; (z,y) > apd (Tz, Ty)+

Y1i with,
0 < Ky; < Ko < 1,005 (< ag;) € Roy
and v1; (£ 72i) € Rot and py := le {11:—511;} < 1; V(z,y) € 4A; x Ajta,
Vi € p. Then, Theorem 2.2 (ii) holds.
(iii) Consider the restricted map T @ X|U;ep Ai = Ujep Ai and assume that

Property (i) holds and, furthermore, ~vo; = 0; Vi € p and )
Then, 3z € F <T| Uies Ai> CNigpAi and T : U;ep Ai = Uiy

contractive. If, furthermore, (X, d) is complete then the fized point is unique.

A; # 0.
A; is strictly

1EP

Proof. Properties (i)-(ii) follow directly from Theorem 2.2. Property (iii) is proven
as follows. Closely to the proof of Theorem 2.2 (iii), it follows that Jz €

FP (T| UieﬁA,) C NigpAi » that is TPz = z € (ﬂieﬁ Ai) if M;ep Ai # 0 which is

unique since TP : Uie;s A — Uite A; is strictly contractive, then continuous, from
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Property (i) so that lim d(T7%z,T%y) = d < lim 77Pg, lim ijy> = 0 implies

]—)OO j—}OO

that lim 77Px = lim Tpr =z =Tz for any (z,y) € A; X Aiy1. Also,

]*)OO ]*}OO

lim d (T”’:c TP y) = d (Tk (llim ija:) , <hm TP >>
j—o0 J—00 J—00

helry g
< H [—2'7} d < lim T]pm lim T9P )
=i 1-— Ozgj j—o0 ]—)oo
itk—1
1— Ky,
= H [72]} d(z,Tz)
[ 1— g
j=t
= 0
so that lim 797z = lim TPty = 2 = Tz; V(z,y) € A; x Aip1, Vi € p. Then,
J—o0 Jj—oo
zeF (T| Uiep Ai) C Niep Ai and is unique if (X, d) is complete. Hence, Property
(ii). O

Note that an important fact related to the applicability of Corollary 2.3 is that
the conditions 0 < Kj;; < 1;Vi € p; j = 1,2 may be achieved in a compatible fashion
with max (p1, p2) < 1 with only one of Ki;, Ka; being strictly less than unity for
some i,j € p. The known previous result that the sets A;; ¢ € p have identical
pair-wise distances if non-expansive p-cyclic self-maps on Uieﬁ A; exist, [16], adopts
the following characterization.

Proposition 2.4. If there exists a non-expansive p-cyclic self-map
T:UAi — UAi then d = d;; Vi € p.
i€p icp
Proof. Take (x,y) € A; X A;41 such that d; = d (z,y) for any i € p and assume that
T : Uiep Ai = U,ep Ai s non-expansive. Then, on gets:

(2.8)
d; = d(z,y) > max (d;,d (Tx,Ty)) > max <maxA (d;),d (Tja:,ij)> > max (d;)
Jjep \1<i<j JED
Since i € p is arbitrary then d; > max (d;) < d; = d; Vi € p. O

Jjep

Proposition 2.4 applies in particular if T : Ulep A — Uzep A; is strictly contrac-
tive as, for instance, to Theorem 2.2 (iii) and Corollary 2.3 (iii). A result follows
related to the fact that under weak conditions the self-map 7" : | J,.- A; — U,
cannot be either expansive or asymptotically expansive.

1€EP zEp

Theorem 2.5. Assume that min (Kfj;‘;?l, K211 ’(:;72’) >0;Viepand) b Kflia‘;f’ >
0. Then, T : |J,.; Ai — U

A; is neither expansive nor asymptotically expansive.

Ai_>

icp icp

Proof. The proof is made using contradiction arguments. Assume that 7" : Uie;ﬁ
Uiep Ai is expansive so that one gets from (1.1):
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Ko — ag; Koid; + voi
1—ay '

V(r,y) € Aj x Aip1,Vi€p

(2.9) d(Tz,Ty) —d(z,y) < — d(xz,y) +

1—0&21'

which implies:

d(TPz, TPy) — d(x,y) = Z d (Tiilx, Tily)) >0

)

 ((Koidi +vig Ko — o,
1 1-— Qa9 1-— a9,
if T : Ujep Ai = Uiy Ai is expansive. If T': ;e
expansive then for some sufficiently large j € Zg:

A; = U5 A 1 asymptotically

€D
(2.10) d (T9HP7 1z, T7HP71y) — d (T2, TVy)

P
_ Z <K2idi tyi2  Kai—ai (Tilx,Tily)> >0
i=

1—0&2i 1—0(21‘

Then, for any j € Zo+

_ i i P Ko — g P\ Ko — g i—1 i—1
min (d (T]H* x, TV y)) 24 < 27 d(T’f x, T y)
N 7 3

1ED i1 1-— (%) Py 1-— Qa9
p
Koid; + 72
2.11 < R S
( ) ; 1— ag, +00

V(z,y) € Ai x Ajp1,YViep

Now, assume that T : Uieﬁ A — Uz’eﬁ A; is either expansive or asymptotically
expansive. Thus, for any (z,y) € A; X A;4+1 and any i € p, there exists a sufficiently
large finite positive integer j = j (z,y, ) such that d (Tp+jx, Tp+jy) < 400 for any
(z,y) € Aj x Ajp1 and any i € p, and T': {J;¢5 Ai = U, Ai is not either expansive
or asymptotically expansive what is a contradiction. Hence, the result. O

Note that Theorem 2.5 is applicable even if K;o; i € p are real constants non nec-
essarily in [0,1). Note also that Theorem 2.5 does not guarantee that 7' : J;c; Ai —
Uia5 A; is nonexpansive so that it is not guaranteed that all distances between the
subsets A;; Vi € p are identical. In particular, Theorem 2.5 says that, under the
given parametrical conditions, sufficiently large distances lead to local contractions
in the sense that such distances decrease through the iterative process. As a result,
T: Uz’e;s A; — Uz’e;s A; can only be locally expansive for small distances. The fol-
lowing complementary result ensures that 17" : (J;c; Ai — U;¢; Ai is neither globally
expansive or asymptotically expansive although it is not ensured to be non-expansive
for any points in Uz‘ep Ay

.

Proposition 2.6. Assume that the constraint for Ma; (x,y) of Corollary 2.3 (i) is

generalized as

(2.12) Mo, (zj,T]y) < g elngl%XZQ d (T’x,sz) + Y2i

with v2; € Roy and ag; € [Koi,1);Vi € p, 0 < a9 < Ko < 1 for some £, =
Uk (3) € Zoy, k=1, 2 subject to 0 < ¥1 < ly < j+1,V(r,y) € A; X Aiy1, Vi € P.
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Then, d (Tj$, ij) is iteration-uniformly bounded (in the sense that its upper-bound
is independent of the integer j € Z ) with uniform bound being dependent on the
(bounded) distance of the pair (x,y); ¥V (x,y) € A; X Ajy1; VJ € Zoy, Vi € p so
that T - Uieﬁ A — Uiep A; can be locally expansive although it cannot be either
expansive or asymptotically expansive. If, furthermore, ag; € [Koi + p,1) ;i € p
and some p € Ry then

: 1 Koidi + 2
(2.13) limsupd (Tkx, Tky) < max < 00
k—00 1—v iep 1 — o

for some R >v € (0,1)
Proof. One gets from (2.13) and (2.12):

d(T" 2, T y) < (1-Ky)d (T2, T7y) + Kyd; + Mo (T2, T7y)
(2.14) < (1-Ky)d(Tz,T7y)
+ovg; o LBaX | d(T'z,T'y) + Kaid; + Y235
V(z,y) € Ai x Ajy1, Vi€ p,Vj € Zoy.
Define

j (kxyy) = {max (¢ € Zop4) : (¢ < k)

A <d (Tk+1x,Tk+1y> < max d (Tj“x,Tj‘Hy))}
0<j<k
for any given k € Zy4 which always exists since the set involved in the definition is
non-empty by construction. Thus, one gets from (2.14):

(2.15) ogl??kd (Tj+1x, Tj+1y) <(1—-Ky)d (Tkx, Tky> + g

Ogljcfgikd (T7H 2, T4 y) + Koid; + o

] j k+1 k+1 i+1 i+1
:>d(TJx,T]y) < d(T z, T y) < e gxkd(TJ x, T7 y)

<j
< 1 — Ky

Koydy + 720

1 —ay 1 —ay

=d (T’%,T’%J) + w < 00
1-— Qo

provided that ag; € [Ko;, 1), V(z,y) € A; X Aiy1; Vj (S k+1) € Zoy, Vi € p, for

some ¢ € p being { = k + i — IntPart (%) p. Note that (2.15) guarantees that

d (Tkx, Tky) and then L (x,y) are bounded for all (z,y) € 4A; x A;11, Vi € pif ag; €
[K2i,1), Vi € p. Then, d (Tkx, Tky) < oo with uniform bound; Vk € Z, depending
on each given (z,y) € A; x Aiy1; Yk € Z . Furthermore, if ao; € [Ko; + p,1); Vi € p
for some p € Ry then v; := 11:—522; < 1; Vi € p so that (2.13) follows from (2.15)

with v := max ;. O
i€p

< L(z,y)

d (T%, Tky> +

Proposition 2.6 implies the subsequent result:
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Proposition 2.7. Under the conditions of Proposition 2.6, the following set of
relations for the distances between the subsets A;, i € p of X hold:

Kopd
(2.16) di = dist (Ai, A1) < dj + %af Vi, j L Ep
Proof. Eq. (2.15) implies directly:
) . Kood Koud
(2.17) diyi < d (T2, Tiy) < d (T’%,T’“;,) e A e
1-— Qo 1-— Qo

V(z,y) € Aix Aiy1,Vj (S k+1) € Zoy , Yk € Zo+ any i € p (since z and y are any
points in A; X A;11; Vi € p ) and some p 2 ¢ = { (i, k) = k+ i — IntPart (%) P.
Hence, the proof since the integers ¢ and k are arbitrary in p x Z,, ¢ takes any
value in p depending on the initial points = and . O

Note that Proposition 2.7 is applied directly to the case that all distances between
adjacent subsets are identical. It is of interest the investigation of the properties
of the selfmap T : |J;c; Ai — U, Ai for distances between non-adjacent subsets.
Assume the following cases:

1EP

a) x,y € A; for some i € p so that Tz, Ty € A;11 subject to:
(2.18) (1= Kuy)d(z,y)+ My (z,y) <d(Tz,Ty) < (1 — Ky)d(z,y) + Mai (z,y)

b) (z,y) € AixA; forsomei,j € psothat (Tx,Ty) € Ajy1xAjp1 withi # j # i+
1 then one gets for any set of points satisfying {a:j €Ajix; =z, =y;l € }\H—l}
the following constraint by using the triangle inequality for distances together with
the upper-bounding constraint in (2.1):

[y

d (va Ty) < d (T{I,‘g, Txf+1>

<.

S
Ll

(2.19)

IN

(1 — Kop)d (z¢, xe41) + Koedy + Moy (24, 041)]
=i
cmax [(1 — Kog)d(x¢, xp41) + Kopdg + Mag (x4, 2011)]
i<l<j—1

< 1—Kop)d Kopdy + M.
< pigI?§?§1( 20) (ﬂfz,xe+1)+i§1}1§§1[ 20dy + Moy (x4, Te1)]

IN

It follows from (2.20) that Theorem 2.2 [(i), (iii)] (i.e. uniform boundedness dis-
tance of iterations for any two initial points in any, in general, distinct non-adjacent,

subsets A; of X under obtained via T : (J;c; Ai = U5 Ai ) still holds irrespective

of i,7 € p 1fpmax(11 Kj‘) < 1, Corollary 2.3 (i) holds if pmeax(ll K?) <1
€p

irrespective of i,j € p. Also, Proposition 2.6 holds under the replacement v :=
maxy; — pv < 1 irrespective of i,7 € p. Note that Theorem 2.5 guaranteeing

1EP
that T : Uieﬁ A — Ulep A; is non-expansive and non-asymptotically expansive also

holds under a close and similar proof to the given one. If the initial points are within
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the same subset A; of X, the above results are still valid under weaker conditions to

the light of (2.18) by zeroing the distances between subsets. Expressions for lower-

bounds can be also derived in a similar way using p '<rlgin ) (1 — Kop)d (xg, z41).
ISES)—

3. MAIN RESULTS BASED ON WORST-CASE MODIFIED P-CYCLIC MEIR-KEELER
CONTRACTIONS

p-cyclic Meir-Keeler contractions have been discussed in a number of papers (see,
for instance, [7,9,16,19]). In the case that (;c; Ai = 0 then T': U;c; Ai = U,ep Ai
has no fixed points and their role is played in this case by the so-called best proximity
points, [1-3,7,11,12,14,16,19,25]. This section is concerned with the extension of
p-cyclic Meir-Keeler contractions to the case of constraints close to (1.1). Roughly
speaking T : Uie;ﬁ A — Uie;a A; is not expansive for large distances of the initial
points in a similar context as that investigated in Section 2 to the light of Banach
contraction principle. A p-cyclic self-map T : Uz‘ep A — Uieﬁ A; is a p-cyclic Meir—
Keeler contraction, [16], if for every e € Ry, 36 =0 (¢) € R, if
(3.1) d(z,y) <di+0+ec=>d(Tz,Ty) <d;+¢
or, equivalently, d (Tz,Ty) < min (d; + &,d (z,y) — ) if d (z,y) > 6.Consider now
according to (1.1), or (2.1), that

Mo (T72,T7y) < ag; max d (T, T'y) + Yo
01 <i<ly
as assumed in (2.12) with ¢, = 5 (j) ; k= 1,2,V (z,y) € Ajx Ai11; Vi € p,Vj € Zoy
which includes the particular case
M; (z,y) < agid (Tz,Ty) + 2,

studied in Section 2, for the modified Banach contraction principle. Thus, T :
Uiep Ai = Uiy Ai 1s a modified p-cyclic Meir-Keeler contraction if:
(3.2) d(z,y) —di — My (x,y) <d+e=d(Tz,Ty) —d; — My (x,y) < &;

V(m,y) € A; x Aip1; Vi € p.
Also, T': Uiep 4i = Uiep
tion if for any € € R; 3d;; = 6j5 (¢):
(3.3) d(T72,T7y) — d; — ag; max d(T'zx,T'y) — yo; < 6ji + ¢

01 <i<ly

A; is a worst-case modified p-cyclic Meir-Keeler contrac-

=d (Tjﬂx,Tij) —d; —ag; max d (Tix,Tiy) — v < €
£ <i<ls

Theorem 3.1. Assume that T : Uieﬁ A — Uie;a A; is a worst-case modified p-cyclic

Meir-Keeler contraction. Then, d (zj,ij) is bounded for any (x,y) € A; X Ajt1;
Vi € p provided that d (x,y) is bounded.

Proof. One gets from (3.3):
(3.4)

d(Tme,Tj‘Hy) < min <e +d+ as max d(Tix,Tiy) + v, d (Tja:,ij) — 5)

01 <i<la

— min (¢ + d + asd (T2, T'y) + 72, d (TIx, Tiy) — 6)



672 M. DE LA SEN, RAVI P. AGARWAL, AND R. NISTAL

V(x,y) € A; x Ajt1, for some integer i; € [y (j), 2 (j)], some € = £ (j); k= 1,2;

Vi € p,Vj € Zoy, where d = max d;, 7o = maxyy;, @o = maxag; and § = max Jy;
icp icp icp iepleZy

for some sequence of positive real constants {dy; }gzo? Vj € Zot, Vi € p. Proceeding
recursively with (3.4), one gets:

(3.5)
d (Tj'Hx, Tj“y) < min <5 +d+ v+ a ,max d (Tim, Tiy) ,d (Tj:c, ij) — (5>

1<i<hy

= min (¢ +d + 72 + azd (T2, Ty) ,d (T’x, T'y) - 6)

< min (£ +d+ 92+ az (£ +d+ 92 + azd (T2, TH1y)),
d (Tj_lx, Tj_ly) —0,d (Tj:c, ij) —9)

i+l
. k j+2 i, i
<~ <min (e +d+ 72) <1+k§_0a2>+a2 Oé?%;ild(Tx,Ty),

i, (4 (7' ') ~0) )

provided that Orgeig (d (fo,TEy) > (5&). Assume that it exists (x,y) € A; X A;q1
j

such that the real sequence {d (Tj+1:z:,Tj+1y) }j Zos is unbounded so that some
subsequence of it diverges as £ — 4o00. Thus, for some arbitrarily large A € Ro,
Ik = k(no,A) (> ng) € Z;+ and some sufficiently large ng € Z, such that from

(3.5), one gets:

J+1
A i d 1 k J+2 d(Tiz. T
< min ((6+ +72)< +k§_0az)+a2 omax d(T'z,T'y),

s tr -9)

where d = maxd;, 79 = maxy9;, as = maxas; and § = max dy; what implies
i€p icp icp i€pleZy
that ogleig' d (Tgx, sz) is unbounded leading to a contradiction. O
<<y

Some further properties of worst-case modified p-cyclic Meir-Keeler contractions
are now investigated. Define the sequence {fj}go of real functions f; : (Uieﬁ A,;) X
(Uz’ep Ai) x Ror — R; Vj € Zo, from (3.3) for a given sequence of nonnegative real
numbers {m;},° as follows:

(3.6)  fj(z,y,my):=d(TVz,Ty) — oy max d(T'z,T'y) — d — v2 — m;

Fit (@ y,mi1) = gj (2,9, mjg1) o= d (T9F e, TIy)

(3.7) —ao d (Tix, Tiy) —d—"2—mjn

max
JH1—£2<i<j+1—4;
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where d (ijn,ij) > as max d (Ti:v,Tiy) +d + v + m; + M for some
J—l2<i<j—t

M € Ryy; Vj € Zoy and d = maxd;, 72 = maxyy; and ag = maxag;, V(z,y) €
1€p 1€p 1€p

<Uieﬁ Ai> X (Uiaj Ai) ;Vi € p. It is assumed for simplicity that ¢; o € Zo are con-

stant with ¢ > ¢; > 0 The following result is an ad-hoc extension of [16], Lemma
2.2, [18,26], which is useful for studying worst-case modified p-cyclic Meir-Keeler
contractions:

Lemma 3.2. Assume that

J Jar) > i i ) .
d(T xz, T y) _a2j—£2I2?§Xj—£1d(T x, T y) +d+ v +m; + M;

V(ey) €V (#0) € (UiepAi) % (Uiep Ai) 1V € Zos.
Then, the following properties are equivalent:
(1) For each M € Ry = 36 =6 (M) € Ry such that M < f; (xz,y,m;) < M +
d=0< fip(z,y,mjp1) <M for (z,y) € Y and some mj, mj1 € Roy.
(2) 3 a nondecreasing continuous L-function ¢ :
Roy — Rot (i.e.p(0) = 0 and 36 € Ry fulfilling 0 < ¢ (t) < s; Vt €
[s,s 4+ 0], [16, 18, 26]) such that for m;,m;y1 € Roy fulfilling the above
property (1):
fi(@,y,my) > 0= fi(z,y,mip) < o (f; (z,y,m5)) < fj (2,y,m;), for (z,y) €
Y, the second inequality following sine ¢ is an L-function, and
f] (:U,y,m]) =0= fj+1 (l'ayvijrl) =0
The following result is concerned with the boundedness of
d(Tz,T0y) — d(T'z, T
< (T72.77) ® ottt (T'a. y)>
if Lemma 3.2 holds.

Lemma 3.3. Assume that T : J;c; Ai — U
Meir-Keeler contraction which satisfies

icp A; is a worst-case modified p-cyclic

Jo Tiy) > iy T e
d(Tazc,Ty)_042ji€2r£1ia§xj41d(Tac,Ty)+d—|—’yz+mj—i-M7

V(ey) €Y (#0) C (UiepAi) % (Uiep As) Vi € Zos.

Assume also that Lemma 3.2 holds with {m;};° being an uniformly bounded non-
negative real sequence; ¥j € Zoy. Then, the real sequence

(3.8) S = {sk =d (T2, T7y) —ao max d(T'z, Tiy)}

j—ta<i<j—0 .

is uniformly bounded from below and from above.

Proof. 1t is directly bounded from below. It is now proven that it is bounded from

above. d (zj,ij) —ay max d (Tiaz,Tiy) > d+ v +mj + M. First note
J—la<i<j—{

that s € Rgy. The proof follows by contradiction. Assume that S is unbounded



674 M. DE LA SEN, RAVI P. AGARWAL, AND R. NISTAL

to that there is a strictly monotone increasing subsequence S° := {s;, }jk cz.» With
Z> C Z being countable, such that sj — oo as ji — oo. Then, s; > 6 for any
prefixed arbitrary § € Ry and all £ (> N) € S for some N =N () € S'.

From Lemma 3.2(i), for each M € Ry = 30 = § (M) € R such that

(39) &+M > fj(z,y,my)

= d (zj, ij) — agjibrg?ngiel d (Tix, Tiy) —d—"y2—m;

> max (M,0 —d— v —m;),
(3.10) M > fin(@,y,mip) >0 —d—v2 —mjn
=0<MA+d+vy+mjp1 < M+d+y+ max m;
0<j<00
so that 6 cannot be fixed arbitrarily what leads to a contradiction. O

The above result together with Lemma 3.2 lead to the self-map
T: UZ-sz A — Uieﬁ A; to be neither expansive nor asymptotically expansive.

_A; is a worst-case modified

Proposition 3.4. Assume that T : U;c; A — Uigp

p-cyclic Meir-Keeler contraction which satisfies

J Ta) > i i . .
d(T x, T y) > agjiézrg%xjield(T x, T y) +d+ 2 +m; + M;

V(z,y) € Y (#£0) C (Uiep Ai) X (Uieﬁ Ai>; Vj € Zoy. Assume also that Lemma
3.2 holds with {mj}go being a nonnegative monotone decreasing real sequence. Then,
T: Uie;ﬁ A — Uie;a A; is neither expansive nor asymptotically expansive.
Proof.

fi1 (@y,mipr) = d (T2, T0ty)

—ao d (Tia?, Tiy) —d—2—mj1

max

JH1—£2<i<j4+1—-4;
(3.11) < fj(z,y,my)

- Tix TIy) — Tio T — d — ~o — s

d(T7z,Ty) a2j,g212?§j,gld( z,T'y) —d— 2 —m;

= d (Tj+1$, Tj+1y) —d (zj, ij)

+ao < max d (Tiac,Tiy) — max d (Tix,Tiy)>
J—a<i<j—b JH1—lo<i<j+1-4

— (g (it i) — d(T'z,T!
(d@ ety —ay e (@)

— (d (Tjac, ij) — ozgj_&rg%xj_gl d (Ti337 le)> < Mjy1 —my

From Lemma 3.3, the real sequence S consisting of elements s = d (Tj x, T7 y) —

d (T'z, T'y) is uniformly bounded for k € Zg,:
a2j7€2H§1?§Xjfél ( x, y) 1s uniformly bounded for K € Loy

(3.12)c0 > 2C >d(Tz,Ty) — d (T z, TV y)
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+a < max d (Tia:, Tiy) — max d (Tia?, Tiy)>
JH1—la<i<j+1-0; J—l2<i<j—l

= <d (Tjac, ij) —ay max d (Tix, Tiy)>

J—<i<j—b
—(d (77 2, 77 y) — « max d(T'x, T
< ( ’ v) 2 j1-tasi<jt1-ty (T, T)
> my —mjy1 > 0

The following situations can occur for the sequences below:

)

(3.13) d (T2, T7y) —d (T" 'z, T7ty)

d(T'z,T'y) — d(T'z, T
(j+1—zzr§?sxj+1—z1 (T'z T'y) 0SSty (T, y)>
if aig # 0 are both bounded real sequences. Then, T : Uiep A; — Uieﬁ A; is neither
expansive nor asymptotically expansive.
2)
(3.14) d(T?2,T7y) —d (19 2, Tt y),
d(T'z, T'y) — d(T'z,T"
“ <j+1—42n§l?sxj+1—e1 (T'z T'y) i—t2Si%y—ty (T'z, y>)

are unbounded sequences with the first one having a sequence diverging to +oo and
the second one having a sequence diverging at the same rate to —oco or vice-versa.
In the first case, d (TVz, T7y) > d (T7*1z, T9y) for j € Zo C Zoy and Z, being
countable of infinite cardinal. This implies that 1" : (J;c; Ai — Uj;ep 4i is neither
expansive nor asymptotically expansive. In the contrary case, there is a diverging
sequence fulfilling
7 7 7 7
-1t 4(T"a,T'y) > j—tagii—t, 4 (T, T'y)

so that d(TYitig, TIitiy) > d (Tt Ti%y) for some integers jip1 =
Jit1 (Z + 1) > 7 = Ji (Z) with j; € [Z — by, 1 — 61]. Again, T : UieﬁAi — Uieﬁ A; is
neither expansive nor asymptotically expansive. ]

Remark 3.5. Note that if ¢; = ¢; (k) = 0, then Lemmas 3.3-3.4 imply that
d(T7z,Tiy) > drretm M while T U.es 4i — U

1—as
asymptotically expansive.

iep icp A; is neither expansive nor

Some elementary results concerning the comparative values of interest of dis-
tances through the worst-case modified p-cyclic self-map T : Uieﬁ A — Uz-eﬁ A;
are provided in the next two Propositions. Some conditions for the above self-map
being non expansive, non asymptotically expansive or expansive are discussed in
the next two results.
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Proposition 3.6. Assume that 3M € R, 30; = 0; (M) € Ry and 3{m;}° being

a nonnegative monotone nonincreasing real sequence such that

(3.15)

M < fj(x,y,m;) =d (zj,ij) —ay  max d (Tix,Tiy)—d—fyg—mj < 0j+M
J—2<i<j—l

= [fi+1 (x,y,mjq1) = gj (x,y,mjp1) < M

o d (T e, TIHy)) < d(T'x, T d , M
(17" 2, T y) oy JeX. (T'2, T'y) + d + 72 +mjp1 +

equivalently f; (x,y,m;) > M, for (z,y) €Y C (Uie;ﬁ Ai) X (Uieﬁ Ai).
Then, the following inequalities hold:

d (Tj'Hm, Tj+1y) <d (ij, ij)
max d (Ti:v, Tiy) < max d (Tix, Tiy)

JH1=la<i<j+1-{; T je<i<i—bh
(3.16)
max d (TiCL‘, Tiy) < max <d (Tj_bx, Tj_@y) , max d (Tix, le)>
J—l2<i<j—{1 JH1—6a<i<j+1-4;

or, equivalently one has according to Lemma 3.2:
(3.17) M < fj(2,y,mj) <6+ M = fj1(z,y,mjp1) < M;VM € Ry]
& [f (@,y,my) > 0= (fi41 (z,y,mi11) <o (f; (z,y,my)) < fj (2,y,m;))
N (2, y,mg) = 0= fip (2,9, mjp1) = 0]

For some real sequence {PJ}So satisfying 0 < Pj < 0;; Vj € Zoy the second starting
inequality is equivalently rewritten an inequality as follows:

(3.18) d(TVz,T'y) =as max d(T'z,T) +d -+~ +mj+M+3; — P
J—la<i<j—h

= d (T2, TPy < d (T, T d ; M
( x y) az . Joex (T, T'y) + d + 2 + mjy1 +

=ao max d (Tia:, T"y)

J—l2<i<j—t
d(T'z,T'y) — d(T'z, T
vy, s ATRTY) < s A7) )
+d+y2+mjp+ M
=d (zj,ij)
d(T'z,T'y) — d(T'z, T
e <j+1—z211§1?§j+1—e1 (T, T'y) j—taSisi—b (T, y)>
+mj+1—mj—(5j—|—Pj
<d (zj,ij)
+ a2 < max d (Tix,Tiy) — max d (Tia:,Tiy)>
GH1—lo<i<j+1—fy J—t2<i<j—t

+mjpr —m;
Two cases can occur, namely:
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a) Case 1:

3.19 d(Tix, Thy) < d(T'z, T
(3.19) 2, AT Ty) < | max | d (T T')

= max (d (Tj_bzv, Tj_e"’y) ,d (Tj+1_£1x, TjH_ely)) < max d (Tix, Tiy)
J—la<i<j—ly
Then, it follows that

(3.20) d (Tj‘Hx, Tj+1y) <d (zj, ij) +mj —my; <d (zj,ij)

so that T : Uie5 A — Uz‘ep A; is not either expansive or asymptotically expansive.
b) Case 2:

3.21 d (Tj“—‘l ,Tit1-h ) - d(T'z, T

(321 nTTTN) S B, T T)

> max  d (T%z, T
J—la<i<j—t ( y)

= d (Tj—h%Tj—ély) <d (Tj+1—€1x’Tj+1—f1y) Vi€ Zoy

then {d (Tj+1_£1:c,Tj+1_£1y) }80 18 unbounded so that it has a subsequence which
diverges. With no loss in generality, assume that {d (Tﬁl*flx,TjH*ely)}go di-
verges so that, one gets from the worst-case modified p-cyclic contraction properties
in Lemma 3.2:

, , _ GH1 . il Y i i
(3.22) fij41 (z,y,mjq1) d(T" e, T y) — ap j+1_£211§1?§xj+1_€1 d(T'z, T'y)

—d =2 —mjq1
— d (Tj+1x’Tj+1y) — aod <Tj+1—£1$’Tj+1—€1y)

—d—=m2—mjy <M

—~d (Tj+11:’Tj+1y) _d (Tj+1—€1x7Tj+1—£1y>

<—(1—-ay)d (Tj“—%, TJ'“—fly) +d+v2+mjs + M

G+, pitl,) i, T
S d (T x, T y) j+14§2?§xj+141 d (T x, T y)

< = (1= ag)d (TH1 =0, THI0y) 4 d oty g + M <0

provided that 0 < ap < 1 and d (T9H1 -0z, TIt1"0y) > W. As a result,
if {d (TjH*Kl:J:,TjH*ely)}go is unbounded then

limsupd(zj,ij) < ooV (z,y) €Y C UAi X UAi
J—roo iep i€p
what leads to a contradiction. As a result, T : ;5 Ai — U

expansive or asymptotically expansive.

iep iepAi cannot be either

Proposition 3.7. The following properties hold:
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(i) If d (zj,ij) >ay max d (Tix,Tiy) +d+y2+mj+M; Vi€ Zoy
J—02<i<j—t

then d (T9 'z, T ly) > d(T'z, T'y) if and only i
en ( x, y) j_&rg?;(j_el ( x, y) if and only if

d (T7z,T7y) > asmax <j_£2121?<xj_£1 d(T'z,T'y) ,d (T9a, TV y) — pj+1>

+d+v2 +mj+ M

for some positive real sequence {py}q°. Also,

d(TJ+1:E,T]+1y) > ; en<1?<xj , d(T’x,TZy) if and only if the constraint
—L2xt>)—4

holds with the above sequence being identically zero.

(ii) Ifd(zj,ij) > Jmax d(Tim,Tiy)+d+'yQ+mj+M , Vi€ Zpy (ie.
J—E2x1sg—4

ag >1) thenT :|J,.- Ai — U

icp iep Ai 15 expansive.

Proof. Tt follows directly from the following relations:

d(zj,ij) > g max d(Tia:,Tiy)—Fd—F’yg—ij—i—M
J—l2<i<j—{

= ay (d (T2, T y) — pjs1) +d+ 2 +mj+ M
& d (zj,ij) — aad (Tj‘H:U,Tj‘Hy) > agpjr1 +d+ vy +my+ M.
If ag € [0, 1), one gets proceeding recursively:

G Tig) > i i .
d(T:U,Ty) > agjibrg?ngield(T:U,Ty)+d—|—’yz+m]+M

v

k-1
k i i ¢ .
O o miisi<iot d(T'z, T'y) + (;_; O‘2> (d+2+mj+ M)

k—1
> <Za§> (d+y2+mj+ M)

for any fixed k € Z,, and

. . d i+ M
liminfd(TJm,ij)z T2 tmyt V(z,y#x) € Ay x Aiy1;3Vi€p

Jj—o0 1-— (%)

even in the event that a fixed point z € ﬂieﬁ A; exists if the sets A; intersect

provided that either x # 2 or y # z since it exists k € Z such that Vi € p

Tkx + Tky = [Jax d (Tza:, le) # 0. On the other hand, if as > 1 then from the
<i<oo

above relationships:

lim d (zj,ij) = lim supd (zj,ij) = liminfd (zj,ij) = +o0
j—0o0

Jj—00 j—00

so that T': ;e Ai = U,ep Ai is expansive. O
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Remark 3.8 ([16]). An important result for p-cyclic contractive self-maps T :
UiepAi — UiEﬁAi’ namely, ag; = v9; = M (x,y) = 0; Vi € p, Vo,y € UieﬁAi
is that since they are non-expansive they have the same distance between any
pair of subsets; i.e. d; = d; Vi € p so that a fixed point exists in ﬂz‘ep A; pro-
vided that such an intersection is non-empty. If the intersection of the subsets

is empty and those subsets are closed and convex then lim d (T jp”x,ij“y) =
j*)OO

lim d (T9P 2, TP 241) = d (2, Tz); V(2,y) € A; x Ajyq where z; € A, 241 €
j—)OO

Aiq1; Vi € p are best proximity points.

4. EXAMPLES

Example 4.1. In order to discuss the feasibility of (1.1) for p=1; i.e. the self-map
T : X — X is not p-cyclic under the constraint Moy; (z,y) = My (x,y) = M €
Roy;Vz,y € X, note the following:

1) If M =0 and K € (0,1] then (2.1) is the usual contractive constraint of Banach
contraction principle and T : X — X is strictly contractive. If K = M = 0 then
T : X — X is non-expansive. If M = 0, K =1 and the inequality in (2.1) is strict
for z,y (# x) € X then T : X — X is weakly contractive.

2) If K=1 then d (Tx,Ty) < M; Vx,y € X. Since T is a self-map on X, the validity
of the constraint (2.1) is limited to the set family

Ap = {Ai CcX: (diam (Ai) < M AT (A;) C Aj; someA;j € AT>}

of bounded subsets of X. In this case, d (zj, ij) < M; Vj € Z, provided that

x,y € Ay € Apand T maps X to some member A; of Aq for each givenz,y € X. In
other words, the image of T is restricted so that T': X — X|A; (for some A; € Ap
which depends, in general, on x and y) so that d (Tx,Ty) < M in order to (2.1)
to be feasible, i.e. Tz, Ty are in some set of the family Aqp if the pair x, y in X
is such that d(z,y) > M. Note that T : X — X is not necessarily a retraction
from X to some element of Ap since T (Aij) CAjfor Aj, Aj (# Ay) € Ap. Note that
T:X — X|A,; can possess a fixed point if K=1 and (2.1) holds.

3)If K > 1thend(v,y) > M/(K—1)=0<d(T2,Ty) <d(z,y) — 24 < d(z,y)
if x,y(# ) € X.

As a result, if x,y € X exist such that d(z,y) € (0, %) then the constraint
(2.1) is impossible for any self-map T on X since it would imply d (Tz,Ty) < 0.
But for large enough distances satisfying d (z,y) € [%, oo) (d(z,y) € <%, oo>,
the self-map T : X — X is locally non-expansive (locally contractive). This can be
expected to the light of some results provided in [6]. Fixed points can exist only in
trivial cases as, for instance, X := {x cd(x,y) > %; Yy € X} is a set of isolated

points with a minimum pair-wise distance threshold so that T : X — X is such
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that T'(y) =z € X; Vy € X.

4) The case of interest discussed through this paper for (2.1) is when M > 0 and
K €0,1). It is shown that the self-map T : X — X exhibits contractive properties
for sufficiently large distances which exceed a minimum real threshold while it might
possibly be expansive for distances under such a threshold. A related motivating
example follows.

Example 4.2. Note that the second inequality in (2.1) with p = 1, Keid;+
My (z,y) = Kod 4+ My (z,y) = M,d = 0;Vx,y € X is equivalent to:

(4.1) d(Tx,Ty) < (1—-K)d(z,y) + MVz,y € X

for some M > 0
Eq. (4.1) is relevant, for instance, in the following important problem. Let a
linear time-invariant n-th order dynamic system be:

(4.2) i (t) = Az (t) + 1 ()

with A € R™*"™ being a stability matrix whose fundamental matrix satisfies HeAt H <

Koe~ 0!Vt > 0 for some positive real constants Ky (being norm-dependent) and

ap and 7 : [0,00) X X — R"™ being an unknown uniformly bounded perturbation of

essential supremum bound satisfying ess sup |1, (t)|| < My < oo; Vo € X. The
>0

o>t
unique solution of (4.2) for x (0) = =z is:

t
(4.3) z(t) = ety + / AT, (1) dr.
0
Direct calculation with (2.4) for the norm-induced distance d(z,y) = |z —y|;
Vz,y € X yields:
(4.4) d(z(t),y(t) = =) —y@
—a K,
< Koe  flao —goll + > sup_ [l (7) =y (7))
Qap 0<r< o0

< (U= K)d(angn) + Mi¥e > ho o= - ln
with co > M > %, K = 1— Kpe @™ ¢ (0,1). Now, let X C R" the
state space of (4.2), generated by (4.5) , subject to g € X and (X,d) is a com-
plete metric space. Define the state transformation Tpz (kh) = z[(k+ 1)h] on
X which generates the sequence of states being in X if g € X with h being
any real constant which satisfies h > hg. Then, the self-map T, : X — X sat-
isfies (4.1). Note that the system (4.3) is always globally Lyapunov stable for
any bounded initial conditions in view of (4.5). If the perturbation is identi-
cally zero then the origin is globally asymptotically Lyapunov stable since A is
a stability matrix. This follows also from (4.5) since the self-map T} on X is
a contraction which has zero as its unique fixed and equilibrium point so that
x(kh+71) = ez (kh) — 0 as k — oo; V7 € [0,h); Yh > hg. Thus, z(t) — 0 as
t — oo . However, in the presence of the perturbation, the origin is not globally
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asymptotically stable (although the system is globally stable) and it exhibits ulti-
mate boundedness since for sufficiently large distances d (Tj,z (kh), Ty (kh)) > %
(vespectively, d (z (kh),y (kh)) > 4% ), the self- map is non-expansive (respectively,
contractive). Then, 0 < d(Tpz (kh),Thy (kh)) < d(z (kh),y(kh)) respectively,
d (Thz (kh),Thy (kh)) < d(x (kh),y (kh)) ). But such properties are not guaran-
teed if d (x (kh),y (kh)) < 3 which can lead to T, : X — X being expansive.

Examples 4.1-4.2 emphasize the fact that some real-world problems exist where
certain self-maps T from X to X are neither contractive nor expansive everywhere
in X while such a map is guaranteed to be contractive for sufficiently large dis-
tances between any two points in X exceeding a known real threshold. For small
distances, the self-map could be potentially expansive, or, as in the dynamic system
of Example 4.1, unclassified as expansive, non-expansive or contractive since those
potential behaviors have a local character. Note that in the self-map X on X is
point-wise nonexpansive, contractive or potentially expansive for each given pair in
X accordingly to the distance between them.

Example 4.3. Let the metric space be (R, d) endowed with Euclidean distance.
Consider the self-map T : X — X defining the discrete scalar dynamic controlled
system:

(4.5) Tpr1 = apxp + bpug; Vk € Zoy, x (0) = x9
subject to by > b > 0 under the control law
_ — Kz sgnapifrg #0
(4.6) Uk = { 0 ifzr =0
A+ ak
4.7 K.=K — kTR
(4.7) k k() br, sgnxy,

is a sequence from (R\ {0}) X Zo4+ — R x Zo+ where )y, is a discrete real sequence on
[0,1). Consider the self-map T : R — R defining the discrete closed-loop dynamic
system obtained by combining (4.5)-(4.7).

(4.8) Tpr1 = T = agxy + bpur = (ar — b Ky sgnxy) xy,

= =Mz Vk € Zoy, z (0) = 20
which is also valid for z; = 0. Define subsets A7 = Rgy and A2 = Ro_ of R
and note that the self-map is a 2-cyclic self-map from R = A;J As to itself with
A1 N Az = {0} fulfilling TA; 2 = As1. Note that 0 € F(T) . Since A € [0,1),
xr — 0 € F(T) for any o € R so that T': Ay |J A2 — A1 |J Az is a 2-cyclic strict
contraction.

Example 4.4. Example 4.3 is re-examined under a class of parametrical perturba-
tions. Let the system be modified as follows:

(4.9) Tyl = (ak + aok) T + bpug; Vk € Zog, x (0) = X

subject to by > b > 0 under the parametrical perturbation constraint
aor, € [0, ap]. Now, redefine Ay = Rp. :={z € R:2z>¢ >0} and
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As =R_g. := {2z € R: 2z < —e <0} for some given ¢ € Ry as two disjoint sets of
R. The control law is:

1
(4.10) up = Koy = o (1 + ar + ag — 6k sgnxy) T
k

A direct calculation shows that
(4.11) Tk € A1 = [I‘kJrl = —Tk — (ao — Qo + 5k) T < — (1 + 5k)5] = Tr41 € AQ
T € A2 = [$k+1 = (1 + ag — agr, + 5k) |{Ek| > (1 + 5k) 6] = Tr41 € A1

where {05} is any arbitrary nonnegative real sequence. One gets from (4.11) that

(4.12) 14 "53’;:1 = — (ag — ao + 0) ; Yk € Zo

If {0x};° is identically zero and agr = ao; Vk € Zoy then ag — agr + 0 =0
k
—Tpy1 =z = (—1)" sgnxo

so that zp11 € A4 if x, € A; provided that |zg| > €. If a9 — agr + 9 — 0 as
k — oo then sgnzp41 = —sgnxy and 41 — —x — L as kK — oo for some real
constant L € (—oo, —¢||J [, 00) provided that |zg| > €.

If the control law (4.10) is replaced with:

1—aF
(4.13) up = Kyrp = — 5 (14 ay + agr)
k
for some « € [0,1), Yk € Zoy. Then, sgnxyy1 = —sgnay, Tp41 — —x) — L€ as

k — oo if |zo| > e.

Example 4.5. A variant of Example 4.4 is re-examined under additive perturba-
tions. Let the system be modified as follows:

(4.14) Tpt1 = apxi + bpuk + gr; Vk € Zoy, x (0) = xo

The control law is computed so that xp1 = —Axzy provided that the real additive
perturbation sequence {gx},° is identically zero. This yields:

(4.15) U = —b,;l (Ak + CLk) Tk = Thil = — ATk + Gk

(4.16) Tp > €= [Xpy1 = Mtk + g < —€] © g < Mgz — €

and the last implication is guaranteed if g < (A —1)e < (A — 1)e. Also,
(4.17) Tp < —€ = [Xpy1 = —MeTk + gk > €] & g > Mg+ €

and the last implication is guaranteed if g5 > (1 — A)e > (1 — Ag) €. Then,
(4.18)
[Cl?k ceA NG < (A—l)é‘] = Tp41 € Ag,[xk € Ay N g > (1—&)6} = Tk41 € Ay
provided that 1 < )\ < Oinin Aj = gp/e € [1=AA—1]; Vk € Zo;. Note that
Sy<oo

if A = 1 then {gx}, is identically zero and no disturbance is admitted. The 2-
cyclic self-map T': Ay |J Az — A |J Az fulfils TA; 2 = Ag1 and is expansive for the
class of perturbations fulfilling gx/e € [1 — A,A— 1] if A > 1 and nonexpansive if
A=1with g =0. If gx/e € [1 — A\, \p — 1]; with Ay > 1, Vk € Zoy then T can
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be iteration-dependent locally expansive or non-expansive depending on \; being
unity or larger than unity.

Example 4.6. Example 4.5 is reformulated by modifying the controls to better
overcome the perturbations as follows. Assume that the perturbation sequence is
unknown but upper-bounding and lower-bounding sequences of it {gx1}o . {gr2}o"
are known and the controls are corrected with the sequence {wy}o” by using the
above knowledge so that:

(4.19) u, = —by (A + ag) zp, + wi] s Yk € Zoy
in order to achieve that that 7" : A; | J A2 — A1 |J A2 be a 2-cyclic self-map so that:
(4.20) €A1 = a1 (€ As) =M+ g —wWg =€+ Vgy1 > €

T € Ay = w1 (€EA) = Mg+ g —wip = — (4+vpa) < —¢

with {14}~ being some real nonnegative sequence. Combining these two constraints
with (4.19) and replacing the obtained results in (4.14) yields for the elements of

{ve}o

(4.21) Vg1 =Mk — g+ wp —€ > 0= Wi := gpa — M + 0k +€ > g — AT + €
Vk € Zoy if z € Ag, and

(4.22) Vg1 = =M+ g —wp—€ > 0 = wy == gr1 — Ak — 0 —€ < g — AT —€,

Vk € Zoy if . € A1 by using an arbitrary bounded nonnegative real sequence
{ok}y with oy, < 7; Vk € Zoy. Thus, the controller is given by (4.19) together with
the companion equation:
(4.23)

Wi, = { gro — A\pxp +op+e if xp € A

gkl_)\kxk_ak_f ’Lf xkeAl ’ )\ke[oal)aak_o,VkGZO+

The controlled system through (4.19) becomes

(4.24) Tpr1 = — ATk + g — wi; Vk € Zoy
subject to (4.23). Combining (4.22)-(4.24) yields:
(4.25) Tp € A1 = Vg1 = Gk — Gkl + Ok Tk € A2 = Vg1 = Gk2 — gk + 0%
(4.26) Ty € A1 = Tpp1 = Vi1 + € =gk — gk + 0k + &;
Tk € A2 = Tpp1 = — (Vkp1 +€) = gk — gr2 — (0% +€)
Define ¢ := JJax o Then, one gets proceeding inductively from (4.26) provided

that gx := max (|gx1|, [gr2|) < ﬁorgaé(k |zj| for some positive real constant ¥ < 1
<<

(4.27)
|Zpy1]| < gp+0+¢e < ﬂo?f§k|xj| +o+e= Jnax, |z < 190r£1;1§xk |zj| + 7 + e+ |z

&+ ¢+ |xo|
oz bl < =

since max |zr;| < max |z;|. It has been proven the following:
0<;<k 0<j<k-+1
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Proposition 4.7. Assume that the system of Example 4.6 is subject to a controller

(4.19),(4.6), (4.23). Then, the self-map T : A1|J A2 — A1|J Az which defines the

trajectory solution is a 2-cyclic self-map. Furthermore, assume that the perturbation

satisfies |gr| < ¥ max |r;| < max |xj|. Then, the controlled system (4.14), (4.19),
0<j<k 0<j<k

(4.6), (4.23) is globally Lyapunov stable so that the 2-cyclic self-map T : A1 |J Ay —
A1 |J Az is neither expansive nor asymptotically expansive.

The conditions for a modified 2-cyclic contraction under perturbations are ob-
tained by taking three consecutive points of the controlled system trajectory solution
as follows:

(4.28) zp (> e) € Agyyp = xp1 (S —) € Ay
2 (> €) == Tpyo = ypy1 = Typ, = T?xy, € Ao
Proposition 4.8. Assume that Proposition 4.7 holds. Assume also that
M (zg, vp41) < @d (41, Thr2) + 6 = o (|Trr1] + [Tra2]) + 705 VE € Zos

for some uniformly bounded nonnegative real sequence {y} -
Then, T : A1|JAs — A1 A2 a 2-cyclic strict contraction if

max (AgApi1) — @

0<k<oo o+ 7y
AkA 0,1 d Kp:= 0,1
a<og;€é§§o(kk+1)€(,) an 0 T <a+€€[,)
IfE =0 then F(T) = AlﬂAQ = {0}
Proof. Direct calculations yield:
d (g2, 2e41) = d (T, T x) = |vego| + |24
< (1-K)d(zgy1,zr) +2Ke + a(|zg| + |xgs1]) + 7%
(4.29) = (1= K) (lzkga| + [z]) + 2Ke + o ([zpg2] + |zpa1]) + 3
Vk € Z(H—
provided that
1-K K-«
430lensal £ T boul + 2K+ (= 2 ol

_ K-«
= (1 - Kyp)|zk| +2Koe + (’7+O{(1—K0)— T~ a |=Tk+1|>§

Vk € Zoy
where Ko := £=2¢ =1 - =K c[0,1)if a < K := [ max (AeAk+1) € (0,1) and
<oo

l1-a l-a
5 := max ~. Since |zj| > &; Vk € Zoy then (4.14) implies that
0<k<oo
(4.31) |l’k+2| < (1 - Ko) |l‘k| + 2Koe;Vk € Zo

so that T': Ay |J As — A1 |J A2 a 2-cyclic strict contraction if Ky < Ziz €10,1).
Note that if the perturbation is subject to M (xg, xg4+1) < ad (zk, Trr1) + V& =
a (|zg| + |zk|) + Y5 VE € Zos then Proposition 4.8 can be formulated “mutatis-

mutandis” under alternative sufficiency-type conditions. O
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Remark 4.9. Note that if Proposition 4.8 holds then from (4.30) since |zy| > &;
Vk € Zoy: |xpao| — x| < —Ko|zk| + 2Koe = |xpao| < |zk|; Yk € Zos and for any
) € R+ .

(4.32) |Zro| < po :=2e < |xk| < po + O;Vk € Zot
which is equivalent to

(4.33) d(@pt2, 2p41) = |zpgo| + |zpta| < p (k) = po + [wp41] < d (Tpt1, k)
= |$k| + |IL’]€+1| < p(k) + 0;Vk € Zos

so that T : A1 |JAs — A1 |J Az is also a worst-case modified 2-cyclic Meir-Keeler
contraction.
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