

POSITIVE STOCHASTIC MATRICES AS CONTRACTION MAPS

MAU-HSIANG SHIH AND WATARU TAKAHASHI

ABSTRACT. It is shown that if $A = (a_{ij})$ is an $n \times n$ positive stochastic matrix, then A is a contraction from the unit (n-1)-simplex into itself with respect to the ℓ_1 norm, with the contraction constant $\frac{1}{2} \max_{i \neq i'} \sum_{i=1}^{n} |a_{ij} - a_{ij'}|$.

Let Δ^{n-1} be the unit (n-1)-simplex in \mathbb{R}^n , i.e.,

$$\Delta^{n-1} = \{ x \in \mathbb{R}^n ; x_1 + x_2 + \dots + x_n = 1 \text{ with all } x_i \ge 0 \}.$$

Let $A=(a_{ij})$ be an $n\times n$ real matrix. The matrix A is called *stochastic* if $a_{ij}\geq 0$ for all $i,j=1,\ldots,n$ and $\sum_{i=1}^n a_{ij}=1$ for all $j=1,\ldots,n$. The matrix A is said to be *positive* if $a_{ij}>0$ for all $i,j=1,\ldots,n$.

We shall establish the following:

Theorem. If $A = (a_{ij})$ is an $n \times n$ positive stochastic matrix, then A is a contraction from the unit (n-1)-simplex into itself with respect to the ℓ_1 norm, with the contraction constant $\frac{1}{2} \max_{j \neq j'} \sum_{i=1}^{n} |a_{ij} - a_{ij'}|$.

Proof. We consider the vector subspace of \mathbb{R}^n given by

$$M = \{x \in \mathbb{R}^n : x_1 + x_2 + \dots + x_n = 0\}.$$

For each $x \in M$, let $(Ax)_i$ denote the *i*th coordinate of Ax. Since A is stochastic, we have

$$\sum_{i=1}^{n} (Ax)_i = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_j = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_j = \sum_{j=1}^{n} x_j = 0$$

for each $x \in M$, so that $AM \subset M$. Since for any $x \in M$ with $x \neq 0$ some component of x must be negative, it follows from the positivity and stochasticity of A that if $x \in M$ with $x \neq 0$ then

$$||Ax||_1 = \sum_{i=1}^n \left| \sum_{j=1}^n a_{ij} x_j \right|$$

$$< \sum_{i=1}^n \sum_{j=1}^n a_{ij} |x_j|$$

$$= \sum_{j=1}^n \sum_{i=1}^n a_{ij} |x_j|$$

²⁰¹⁰ Mathematics Subject Classification. 15A60, 15B51, 47H10. Key words and phrases. Stochastic matrix, contraction, fixed point.

$$= ||x||_1.$$

Thus

$$||Ax||_1 \le \alpha ||x||_1$$
 for all $x \in M$,

where $\alpha = \max\{\|Ax\|_1; x \in M, \|x\|_1 = 1\} < 1$. The constant α can be computed explicitly as follows. Let $S = \{x \in M; \|x\|_1 = 1\}$ be the unit sphere of M, and denote by S_e the set of extreme points of S. Then S_e is composed of all vectors with each vector having exactly two nonzero components $\frac{1}{2}$ and $-\frac{1}{2}$. A computation shows that

$$\alpha = \max_{x \in S} ||Ax||_1 = \max_{x \in S_e} ||Ax||_1 = \frac{1}{2} \max_{j \neq j'} \sum_{i=1}^n |a_{ij} - a_{ij'}|.$$

For all $x, y \in \Delta^{n-1}$, we have $x - y \in M$, so that

$$||Ax - Ay||_1 \le \frac{1}{2} \max_{j \ne j'} \sum_{i=1}^{n} |a_{ij} - a_{ij'}| ||x - y||_1,$$

and the proof is complete.

Observe that if A is a positive stochastic matrix, then $A\Delta^{n-1}$ is contained in the interior of Δ^{n-1} . This observation with the theorem above and the Banach contraction mapping principle implies that if A is a positive stochastic matrix then A has a unique fixed point \hat{x} in Δ^{n-1} with all $\hat{x}_i > 0$ and $\lim_{k \to \infty} A^k x = \hat{x}$ for any x in Δ^{n-1} . Moreover, for any $x \in \Delta^{n-1}$ and any $k = 1, 2, \ldots$,

$$||A^k x - \hat{x}||_1 \le \frac{\left(\frac{1}{2} \max_{j \ne j'} \sum_{i=1}^n |a_{ij} - a_{ij'}|\right)^k}{1 - \frac{1}{2} \max_{j \ne j'} \sum_{i=1}^n |a_{ij} - a_{ij'}|} ||Ax - x||_1.$$

The first part of this remarkable result was given in Ortega [1, p.216]. Ortega's proof is based on Perron's theorem about the spectrum of a positive matrix. The "moreover" part is the "error estimate" aspect of the Banach contraction mapping principle and provides a computational method for approximation of fixed points. It may be mentioned that our proof of the theorem shows that a positive stochastic matrix provides an example that a nonexpansive map on the whole space may become a contraction in a certain smaller set.

References

[1] J. M. Ortega, Matrix Theory, A Second Course, Plenum Press, New, York, 1987.

Mau-Hsiang Shih

Department of Mathematics, National Taiwan Normal University, 88 Sec. 4, Ting Chou Road, Taipei 11677, Taiwan

 $E\text{-}mail\ address{:}\ \mathtt{mhshih@math.ntnu.edu.tw}$

Wataru Takahashi

Department of of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Keio Research and Education Center for Natural Sciences, Keio University, Yokohama 223-8521; and Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552

 $E ext{-}mail\ address:$ wataru@is.titech.ac.jp