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and this together with x /∈ F (x) for x ∈ ∂U implies that there exists x ∈ U with
(x, x) ∈ F ⋆(x) (i.e. x ∈ F (x)).

Theorem 2.5. Let E be a normed linear space, U an open subset of E, B =
{(x, x) : x ∈ U} and d be the map defined in (2.1). Suppose G ∈ AC∂U (U,E),
H : U × [0, 1] → K(E) is an upper semicontinuous compact map, Ht : U → K(E)
has acyclic values for each t ∈ [0, 1] (here Ht(x) = H(x, t)) and assume the following
hold:

(2.2) H(x, 0) = G(x) for x ∈ U

(2.3) G⋆ = I ×G : U → K(U × E) is d-essential

and

(2.4) x /∈ H(x, t) for x ∈ ∂U and t ∈ (0, 1].

Let F (x) = H(x, 1) for x ∈ U and F ⋆ = I × F . Then

d
(
(F ⋆)−1 (B)

)
= d

(
(G⋆)−1 (B)

)
̸= d(∅).

Proof. Let H⋆ : U × [0, 1] → K(U × E) be given by

H⋆(x, λ) = (x , H(x, λ)).

Consider

D =
{
x ∈ U : (x, x) ∈ H⋆(x, t) for some t ∈ [0, 1]

}
.

Notice D ̸= ∅ since for t = 0, H⋆(x, 0) = G⋆(x) and G⋆ is d–essential (i.e. in
particular there exists x ∈ U with (x, x) ∈ (x,G(x)) = H⋆(x, 0)). Also D is closed
in E. To see this let {xn}∞n=1 ⊆ D with xn → x ∈ U . Now there exists tn ∈ (0, 1]
with

xn ∈ H(xn, tn) for each n ∈ {1, 2, ...}.
Without loss of generality assume tn → t ∈ [0, 1] so (xn, tn) → (x, t). Now since
H : U × [0, 1] → K(E) is a upper semicontinuous map we have x ∈ H(x, t). As a
result (x, x) ∈ H⋆(x, t), so D is closed. Next notice (2.4), with G ∈ AC∂U (U,E),
guarantees that D ∩ ∂U = ∅. Thus there exists a continuous map µ : U → [0, 1]
with µ(∂U) = 0 and µ(D) = 1. Define a map Rµ : U → K(E) by Rµ(x) =

H(x, µ(x)) = Hµ(x)(x) = H ◦ τ(x) and let R⋆
µ = I ×Rµ; here τ : U → U × [0, 1] is

given by τ(x) = (x, µ(x)). Notice Rµ ∈ AC(U,E) (note H : U × [0, 1] → E is an

upper semicontinuous compact map and Ht : U → K(E) has acyclic values for each
t ∈ [0, 1]) and notice Rµ|∂U = G|∂U since µ(∂U) = 0. Thus Rµ ∈ AC∂U (U,E)
with Rµ|∂U = G|∂U and since G⋆ is d–essential we have

(2.5) d
((

R⋆
µ

)−1
(B)

)
= d

(
(G⋆)−1 (B)

)
̸= d(∅).

Also notice since µ(D) = 1 that(
R⋆

µ

)−1
(B) =

{
x ∈ U : (x, x) ∩ (x,H(x, µ(x)) ̸= ∅

}
=

{
x ∈ U : (x, x) ∩ (x,H(x, 1) ̸= ∅

}
= (F ⋆)−1 (B).
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This together with (2.5) yields

d
(
(F ⋆)−1 (B)

)
= d

(
(G⋆)−1 (B)

)
̸= d(∅).

�
Remark 2.6. From the proof we see in Theorem 2.5 that we can replace E being
a normed linear space with E being a normal topological space. Also the map H
being compact could be replaced by H condensing or indeed H satisfying other
compactness type conditions (see [1]).

Remark 2.7. We remark here that acyclic maps are a special case of maps pre-
sented in [4, 5] so the proof presented in Theorem 2.5 is the same as that in [4].
For completeness we include the proof here. Our goal is this paper is to establish a
result so that the map F ⋆ (in Theorem 2.5) is d–essential. Unfortunately the ideas
in [4] do not work for acyclic maps so new ideas are needed here (see Theorem 2.9).

Remark 2.8. If we discuss the existence of fixed points the function d is

d(Q) =

{
1 if ∅ ̸= Q ⊆ U
0 if Q = ∅

whereas if we discuss degree theory the values of d are usually integers which can
be obtained by means of degree. Recall [2] a map F ∈ AC∂U (U,E) is essential
in AC∂U (U,E) if for any map J ∈ AC∂U (U,E) with J |∂U = F |∂U we have that
there exists a x ∈ U with x ∈ F (x). Notice a map F ∈ AC∂U (U,E) is essential in
AC∂U (U,E) implies that F ⋆ = I × F is d1–essential where

d1(Q) =

{
1 if ∅ ̸= Q ⊆ U
0 if Q = ∅.

To see this suppose F ∈ AC∂U (U,E) is essential in AC∂U (U,E). Then for any
J ∈ AC∂U (U,E) with J |∂U = F |∂U there exists x ∈ U with x ∈ J(x). Thus

(x, x) ∈ (x, J(x)) ≡ J⋆(x) and so (J⋆)−1 (B) ̸= ∅ (in particular (F ⋆)−1 (B) ̸=
∅). Hence d1

(
(J⋆)−1 (B)

)
= 1 and d1

(
(F ⋆)−1 (B)

)
= 1 so d1

(
(J⋆)−1 (B)

)
=

d1

(
(F ⋆)−1 (B)

)
̸= d1(∅).

We now present a result which guarantees that F ⋆ in Theorem 2.5 is d–essential.

Theorem 2.9. Let E be an infinite dimensional normed linear space, U an open
convex subset of E with 0 ∈ U , B = {(x, x) : x ∈ U} and d be the map defined in
(2.1). Suppose F ∈ AC∂U (U,E), G ∈ AC∂U (U,E) with G|∂U = F |∂U . In addition
assume

(2.6) G⋆ = I ×G : U → K(U × E) is d-essential.

Let F ⋆ = I × F . Then d
(
(F ⋆)−1 (B)

)
= d

(
(G⋆)−1 (B)

)
̸= d(∅) and F ⋆ : U →

K(U × E) is d–essential.

Proof. We know [2] there exists a continuous retraction r : U → ∂U . Let

H(x, λ) =

{
G(2λ r(x) + (1− 2λ)x) = G ◦ j (x, λ) for (x, λ) ∈ U ×

[
0, 12

]
F ((2− 2λ) r(x) + (2λ− 1)x) = F ◦ k (x, λ) for (x, λ) ∈ U ×

[
1
2 , 1

]
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where j : U ×
[
0, 12

]
→ U is given by j(x, λ) = 2λ r(x) + (1 − 2λ)x and k :

U ×
[
1
2 , 1

]
→ U is given by k(x, λ) = (2 − 2λ) r(x) + (2λ − 1)x. Note for x ∈ U

that G◦j
(
x, 12

)
= G(r(x)) and F ◦k

(
x, 12

)
= F (r(x)) = G(r(x)) = G◦j

(
x, 12

)
since

G|∂U = F |∂U . Note H : U×[0, 1] → K(E) is an upper semicontinuous compact map
and Ht : U → K(E) has acyclic values for each t ∈ [0, 1] (here Ht(x) = H(x, t)).
Also notice x /∈ H(x, t) for x ∈ ∂U and t ∈ (0, 1] since if there exists a x ∈ ∂U and
without loss of generality a λ ∈

(
0, 12

]
with x ∈ H(x, λ) then since r(x) = x we have

x ∈ G(2λx + (1 − 2λ)x) = G(x), a contradiction. Now Theorem 2.5 guarantees
that

(2.7) d
(
(F ⋆)−1 (B)

)
= d

(
(G⋆)−1 (B)

)
̸= d(∅).

Next we show F ⋆ : U → K(U × E) is d–essential. Let J ∈ AC∂U (U,E) be any
map with J |∂U = F |∂U . We must show if J⋆ = I × J then

(2.8) d
(
(F ⋆)−1 (B)

)
= d

(
(J⋆)−1 (B)

)
̸= d(∅).

Let

Q(x, λ) =

{
G(2λ r(x) + (1− 2λ)x) = G ◦ j (x, λ) for (x, λ) ∈ U ×

[
0, 12

]
J((2− 2λ) r(x) + (2λ− 1)x) = J ◦ k (x, λ) for (x, λ) ∈ U ×

[
1
2 , 1

]
.

Note for x ∈ U that G ◦ j
(
x, 12

)
= G(r(x)) and J ◦ k

(
x, 12

)
= J(r(x)) = F (r(x)) =

G(r(x)) = G ◦ j
(
x, 12

)
since J |∂U = F |∂U = G|∂U .

Let Q⋆ : U × [0, 1] → K(U × E) be given by

Q⋆(x, λ) = (x , Q(x, λ))

and consider

D =
{
x ∈ U : (x, x) ∈ Q⋆(x, t) for some t ∈ [0, 1]

}
.

The same reasoning as in Theorem 2.5 guarantees that D ̸= ∅ is closed. Suppose
there exists x ∈ D with x ∈ ∂U . Then x ∈ Q(x, λ) for some λ ∈ [0, 1]. Suppose
λ ∈

[
0, 12

]
. Then since x ∈ ∂U we have r(x) = x so x ∈ G(2λx+(1−2λ)x) = G(x),

a contradiction. Next suppose λ ∈
[
1
2 , 1

]
. Then x ∈ J((2−2λ) r(x)+(2λ−1)x) =

J(x) = F (x) since J |∂U = F |∂U , a contradiction. Thus D ∩ ∂U = ∅. Thus there
exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(D) = 1. Define
a map Φµ : U → K(E) by Φµ(x) = Q(x, µ(x)) = Qµ(x)(x) = Q ◦ τ(x) and

let Φ⋆
µ = I × Φµ; here τ : U → U × [0, 1] is given by τ(x) = (x, µ(x)). Notice

Φµ ∈ AC(U,E) with Φµ|∂U = G|∂U since µ(∂U) = 0. Since G⋆ is d–essential we
have

(2.9) d
((

Φ⋆
µ

)−1
(B)

)
= d

(
(G⋆)−1 (B)

)
̸= d(∅).

However notice since µ(D) = 1 that(
Φ⋆
µ

)−1
(B) =

{
x ∈ U : (x, x) ∩ (x,Q(x, µ(x)) ̸= ∅

}
=

{
x ∈ U : (x, x) ∩ (x,Q(x, 1) ̸= ∅

}
= (J⋆)−1 (B).
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and so with (2.9) we have

(2.10) d
(
(J⋆)−1 (B)

)
= d

(
(G⋆)−1 (B)

)
̸= d(∅).

Combine (2.7) and (2.10) and we have

d
(
(F ⋆)−1 (B)

)
= d

(
(J⋆)−1 (B)

)
̸= d(∅).

�

For completeness we present a more general formulation for new d–essential maps
(a bigger class than in Definition 2.3). Let E be a normed linear space and U an
open subset of E.

Definition 2.10. Let F, G ∈ AC∂U (U,E). We say F ∼= G in AC∂U (U,E) if
there exists a upper semicontinuous compact map Ψ : U × [0, 1] → K(E) with
Ψt ∈ AC∂U (U,E) for each t ∈ [0, 1], Ψ0 = F and Ψ1 = G (here Ψt(x) = Ψ(x, t)).

Remark 2.11. It is easy to see that ∼= is an equivalence relation in AC∂U (U,E).

Definition 2.12. Let F ∈ AC∂U (U,E) with F ⋆ = I × F . We say F ⋆ : U →
K(U × E) is d–essential if for every map J ∈ AC∂U (U,E) with J⋆ = I × J

and J |∂U = F |∂U and J ∼= F in AC∂U (U,E) we have that d
(
(F ⋆)−1 (B)

)
=

d
(
(J⋆)−1 (B)

)
̸= d(∅). Otherwise F ⋆ is d–inessential. It is easy to check that

this means either d
(
(F ⋆)−1 (B)

)
= d(∅) or there exists a map J ∈ AC∂U (U,E)

with J⋆ = I × J and J |∂U = F |∂U and J ∼= F in AC∂U (U,E) such that

d
(
(F ⋆)−1 (B)

)
̸= d

(
(J⋆)−1 (B)

)
.

Out main result is the following.

Theorem 2.13. Let E be a normed linear space, U an open subset of E, B =
{(x, x) : x ∈ U} and d be the map defined in (2.1). Suppose F ∈ AC∂U (U,E).
Then the following are equivalent:

(i). F ⋆ = I × F : U → K(U × E) is d–inessential;

(ii). d
(
(F ⋆)−1 (B)

)
= d(∅) or there exists a map G ∈ AC∂U (U,E) with G⋆ = I×G

and G ∼= F in AC∂U (U,E) such that d
(
(F ⋆)−1 (B)

)
̸= d

(
(G⋆)−1 (B)

)
.

Proof. (i) implies (ii) is immediate. Next we prove (ii) implies (i). If d
(
(F ⋆)−1 (B)

)
=

d(∅) then trivially (i) is true. Next suppose there exists a map G ∈ AC∂U (U,E)

with G⋆ = I × G and G ∼= F in AC∂U (U,E) such that d
(
(F ⋆)−1 (B)

)
̸=

d
(
(G⋆)−1 (B)

)
. Let H : U × [0, 1] → K(E) be a upper semicontinuous com-

pact map with Ht ∈ AC∂U (U,E) for each t ∈ [0, 1], H0 = F and H1 = G (here
Ht(x) = H(x, t)). Let H⋆ : U × [0, 1] → K(U ×E) be given by

H⋆(x, λ) = (x , H(x, λ)).
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Consider

D =
{
x ∈ U : (x, x) ∈ H⋆(x, t) for some t ∈ [0, 1]

}
.

If D = ∅ then in particular (H⋆(x, 0))−1 (B) = ∅ i.e. (F ⋆)−1 (B) = ∅ so

d
(
(F ⋆)−1 (B)

)
= d(∅), so F ⋆ is d–inessential. Next suppose D ̸= ∅. Note D is

closed in E. Also since x /∈ Ht(x) for x ∈ ∂U and t ∈ [0, 1] then D ∩ ∂U = ∅.
Thus there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(D) = 1.
Define a map Rµ : U → K(E) by Rµ(x) = H(x, µ(x)) and let R⋆

µ = I ×Rµ. As in

Theorem 2.5 note Rµ ∈ AC∂U (U,E) with Rµ|∂U = H0|∂U = F |∂U since µ(∂U) =

0. Note also (see Theorem 2.5) since µ(D) = 1 that
(
R⋆

µ

)−1
(B) = (G⋆)−1 (B) so

d
((

R⋆
µ

)−1
(B)

)
= d

(
(G⋆)−1 (B)

)
. Thus d

(
(F ⋆)−1 (B)

)
̸= d

((
R⋆

µ

)−1
(B)

)
.

We now claim

(2.11) Rµ
∼= F in AC∂U (U,E).

Let Q : U × [0, 1] → K(E) be given by Q(x, t) = H(x, t µ(x)). Now Q0 = F ,
Q1 = Rµ, Q : U × [0, 1] → K(E) is an upper semicontinuous compact map with

Qt ∈ AC(U,E) for each t ∈ [0, 1]. Also x /∈ Qt(x) for x ∈ ∂U and t ∈ [0, 1]
since if there exists t ∈ [0, 1] and x ∈ ∂U with x ∈ Qt(x) then x ∈ H(x, t µ(x))
so x ∈ D and as a result µ(x) = 1 i.e. x ∈ H(x, t), a contradiction. Thus (2.11)
holds.

Consequently F ⋆ is d-inessential (take J = Rµ in the definition of d-inessential).
�

Now Theorem 2.13 immediately yields the following continuation theorem.

Theorem 2.14. Let E be a normed linear space, U an open subset of E, B =
{(x, x) : x ∈ U} and d be the map defined in (2.1). Suppose Φ and Ψ are two
maps in AC∂U (U,E) with Φ⋆ = I × Φ and Ψ⋆ = I × Ψ and with Φ ∼= Ψ in
AC∂U (U,E). The Φ⋆ is d-inessential if and only if Ψ⋆ is d-inessential.

Proof. Assume Φ⋆ is d-inessential. Then (see Theorem 2.13) either d
(
(Φ⋆)−1 (B)

)
=

d(∅) or there exists a map Q ∈ AC∂U (U,E) with Q⋆ = I × Q and Q ∼= Φ in

AC∂U (U,E) such that d
(
(Φ⋆)−1 (B)

)
̸= d

(
(Q⋆)−1 (B)

)
.

Suppose first that d
(
(Φ⋆)−1 (B)

)
= d(∅). There are two cases to consider, either

d
(
(Ψ⋆)−1 (B)

)
̸= d(∅) or d

(
(Ψ⋆)−1 (B)

)
= d(∅).

Case (1). Suppose d
(
(Ψ⋆)−1 (B)

)
̸= d(∅).

Then d
(
(Φ⋆)−1 (B)

)
̸= d

(
(Ψ⋆)−1 (B)

)
and we know Φ ∼= Ψ in AC∂U (U,E).

Now Theorem 2.13 (with F = Ψ and G = Φ) guarantees that Ψ⋆ is d-inessential.

Case (2). Suppose d
(
(Ψ⋆)−1 (B)

)
= d(∅).

Then by definition Ψ⋆ is d-inessential.
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Next suppose there exists a map Q ∈ AC∂U (U,E) with Q⋆ = I×Q and Q ∼= Φ

in AC∂U (U,E) such that d
(
(Φ⋆)−1 (B)

)
̸= d

(
(Q⋆)−1 (B)

)
. Note (since ∼= is an

equivalence relation in AC∂U (U,E)) also that Q ∼= Ψ in AC∂U (U,E). There are

two cases to consider, either d
(
(Q⋆)−1 (B)

)
̸= d

(
(Ψ⋆)−1 (B)

)
or d

(
(Q⋆)−1 (B)

)
=

d
(
(Ψ⋆)−1 (B)

)
.

Case (1). Suppose d
(
(Q⋆)−1 (B)

)
̸= d

(
(Ψ⋆)−1 (B)

)
.

Then Theorem 2.13 (with F = Ψ and G = Q) guarantees that Ψ⋆ is d-inessential.

Case (2). Suppose d
(
(Q⋆)−1 (B)

)
= d

(
(Ψ⋆)−1 (B)

)
.

Then d
(
(Φ⋆)−1 (B)

)
̸= d

(
(Ψ⋆)−1 (B)

)
and we know Φ ∼= Ψ in AC∂U (U,E).

Now Theorem 2.13 (with F = Ψ and G = Φ) guarantees that Ψ⋆ is d-inessential.

Thus in all cases Ψ⋆ is d-inessential.

Similarly if Ψ⋆ is d-inessential then Φ⋆ is d-inessential. �

Remark 2.15. An obvious question is the condition F ∼= J in AC∂U (U,E) au-
tomatically satisfied in Definition 2.12 i.e. if F and J are in AC∂U (U,E) with
J |∂U = F |∂U is F ∼= J in AC∂U (U,E)? The argument in Theorem 2.9 provides a
partial answer. Let E be a infinite dimensional normed linear space and U an open
convex subset of E with 0 ∈ U . Let F, J be in AC∂U (U,E) with J |∂U = F |∂U .
We know there exists a continuous retraction r : U → ∂U . Let the map F ⋆ be
given by F ⋆(x) = F (r(x)) for x ∈ U . Of course F ⋆(x) = J(r(x)) for x ∈ U since
J |∂U = F |∂U . With

H(x, λ) = J(2λ r(x) + (1− 2λ)x) = J ◦ j (x, λ) for (x, λ) ∈ U ×
[
0,

1

2

]
(here j : U ×

[
0, 12

]
→ U is given by j(x, λ) = 2λ r(x) + (1 − 2λ)x) it is easy to

see that

J ∼= F ⋆ in AC∂U (U,E);

notice if there exists x ∈ ∂U and λ ∈
[
0, 12

]
with x ∈ Hλ(x) then since r(x) = x

we have x ∈ J(2λx+ (1− 2λ)x) = J(x), a contradiction. Similarly with

Q(x, λ) = F ((2− 2λ) r(x) + (2λ− 1)x) for (x, λ) ∈ U ×
[
1

2
, 1

]
it is easy to see that

F ⋆ ∼= F in AC∂U (U,E).

Combining gives J ∼= F in AC∂U (U,E). For a certain subclass of the acyclic maps
we can obtain a more complete answer. We say F ∈ K(U,E) if F : U → CK(E)
is a upper continuous compact map; here CK(E) denotes the family of nonempty,
convex, compact subsets of E. We can also write the analogue of K∂U (U,E),
essential in K∂U (U,E) and ∼= in K∂U (U,E). Let E be a normed linear space and
U an open subset of E. If the maps F and J are in K∂U (U,E) and J |∂U = F |∂U
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then it is easy to see that

Ψ(x, t) = t F (x) + (1− t) J(x)

guarantees that F ∼= J in K∂U (U,E).
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