Journal of Nonlinear and Convex Analysis Volume 14, Number 2, 2013, 415–422



# HOMOTOPY PRINCIPLES FOR *d*-ESSENTIAL ACYCLIC MAPS

### DONAL O'REGAN

ABSTRACT. This paper discusses acyclic maps and we present a definition of a d-essential map in this setting. Continuation theorems are presented for this type of map.

## 1. INTRODUCTION

The notion of an essential map was introduced by Granas [3] and he showed for single valued maps that if a map F is essential and  $F \cong G$  then G is essential. This notion was extended to d-essential maps by Precup [6]. In this paper we discuss d-essential maps for a very large class of maps, namely the class of acyclic maps.

Let X and Z be subsets of Hausdorff topological spaces. We will consider maps  $F: X \to K(Z)$ ; here K(Z) denotes the family of nonempty compact subsets of Z. A nonempty topological space is said to be acyclic if all its reduced Čech homology groups over the rationals are trivial. Now  $F: X \to K(Z)$  is <u>acyclic</u> if F is upper semicontinuous with acyclic values.

## 2. d-essential maps

Let E be a normed linear space and U an open subset of E.

**Definition 2.1.** We say  $F \in AC(\overline{U}, E)$  if  $F : \overline{U} \to K(E)$  is an acyclic compact map; here  $\overline{U}$  denotes the closure of U in E.

**Definition 2.2.** We say  $F \in AC_{\partial U}(\overline{U}, E)$  if  $F \in AC(\overline{U}, E)$  with  $x \notin F(x)$  for  $x \in \partial U$ ; here  $\partial U$  denotes the boundary of U in E.

For any map  $F \in AC(\overline{U}, E)$  let  $F^* = I \times F : \overline{U} \to K(\overline{U} \times E)$ , with  $I : \overline{U} \to \overline{U}$  given by I(x) = x, and let

(2.1) 
$$d: \left\{ (F^{\star})^{-1} (B) \right\} \cup \{\emptyset\} \to \Omega$$

be any map with values in the nonempty set  $\Omega$ ; here  $B = \{(x, x) : x \in \overline{U}\}$ .

**Definition 2.3.** Let  $F \in AC_{\partial U}(\overline{U}, E)$  with  $F^* = I \times F$ . We say  $F^* : \overline{U} \to K(\overline{U} \times E)$  is *d*-essential if for every map  $J \in AC_{\partial U}(\overline{U}, E)$  with  $J^* = I \times J$  and  $J|_{\partial U} = F|_{\partial U}$  we have that  $d((F^*)^{-1}(B)) = d((J^*)^{-1}(B)) \neq d(\emptyset)$ .

**Remark 2.4.** If  $F^*$  is *d*-essential then

$$\emptyset \neq (F^{\star})^{-1} \ (B) = \{ x \in \overline{U} : \ (x, F(x)) \cap (x, x) \neq \emptyset \},\$$

<sup>2010</sup> Mathematics Subject Classification. 47H10, 47H11.

Key words and phrases. Continuation methods, d-essential, fixed points.

and this together with  $x \notin F(x)$  for  $x \in \partial U$  implies that there exists  $x \in U$  with  $(x, x) \in F^{\star}(x)$  (i.e.  $x \in F(x)$ ).

**Theorem 2.5.** Let E be a normed linear space, U an open subset of E,  $B = \{(x,x) : x \in \overline{U}\}$  and d be the map defined in (2.1). Suppose  $G \in AC_{\partial U}(\overline{U}, E)$ ,  $H: \overline{U} \times [0,1] \to K(E)$  is an upper semicontinuous compact map,  $H_t: \overline{U} \to K(E)$  has acyclic values for each  $t \in [0,1]$  (here  $H_t(x) = H(x,t)$ ) and assume the following hold:

(2.2) 
$$H(x,0) = G(x) \text{ for } x \in \overline{U}$$

(2.3) 
$$G^{\star} = I \times G : \overline{U} \to K(\overline{U} \times E)$$
 is d-essential

and

(2.4) 
$$x \notin H(x,t)$$
 for  $x \in \partial U$  and  $t \in (0,1]$ .

Let F(x) = H(x, 1) for  $x \in \overline{U}$  and  $F^{\star} = I \times F$ . Then

$$d\left(\left(F^{\star}\right)^{-1}(B)\right) = d\left(\left(G^{\star}\right)^{-1}(B)\right) \neq d(\emptyset).$$

*Proof.* Let  $H^{\star}: \overline{U} \times [0,1] \to K(\overline{U} \times E)$  be given by

$$H^{\star}(x,\lambda) = (x, H(x,\lambda)).$$

Consider

$$D = \{ x \in U : (x, x) \in H^{\star}(x, t) \text{ for some } t \in [0, 1] \}$$

Notice  $D \neq \emptyset$  since for t = 0,  $H^*(x, 0) = G^*(x)$  and  $G^*$  is *d*-essential (i.e. in particular there exists  $x \in U$  with  $(x, x) \in (x, G(x)) = H^*(x, 0)$ ). Also D is closed in E. To see this let  $\{x_n\}_{n=1}^{\infty} \subseteq D$  with  $x_n \to x \in \overline{U}$ . Now there exists  $t_n \in (0, 1]$  with

$$x_n \in H(x_n, t_n)$$
 for each  $n \in \{1, 2, ...\}$ .

Without loss of generality assume  $t_n \to t \in [0,1]$  so  $(x_n,t_n) \to (x,t)$ . Now since  $H: \overline{U} \times [0,1] \to K(E)$  is a upper semicontinuous map we have  $x \in H(x,t)$ . As a result  $(x,x) \in H^*(x,t)$ , so D is closed. Next notice (2.4), with  $G \in AC_{\partial U}(\overline{U}, E)$ , guarantees that  $D \cap \partial U = \emptyset$ . Thus there exists a continuous map  $\mu: \overline{U} \to [0,1]$  with  $\mu(\partial U) = 0$  and  $\mu(D) = 1$ . Define a map  $R_{\mu}: \overline{U} \to K(E)$  by  $R_{\mu}(x) = H(x,\mu(x)) = H_{\mu(x)}(x) = H \circ \tau(x)$  and let  $R^*_{\mu} = I \times R_{\mu}$ ; here  $\tau: \overline{U} \to \overline{U} \times [0,1]$  is given by  $\tau(x) = (x,\mu(x))$ . Notice  $R_{\mu} \in AC(\overline{U}, E)$  (note  $H: \overline{U} \times [0,1] \to E$  is an upper semicontinuous compact map and  $H_t: \overline{U} \to K(E)$  has acyclic values for each  $t \in [0,1]$ ) and notice  $R_{\mu}|_{\partial U} = G|_{\partial U}$  since  $\mu(\partial U) = 0$ . Thus  $R_{\mu} \in AC_{\partial U}(\overline{U}, E)$  with  $R_{\mu}|_{\partial U} = G|_{\partial U}$  and since  $G^*$  is d-essential we have

(2.5) 
$$d\left(\left(R_{\mu}^{\star}\right)^{-1}(B)\right) = d\left(\left(G^{\star}\right)^{-1}(B)\right) \neq d(\emptyset).$$

Also notice since  $\mu(D) = 1$  that

$$(R^{\star}_{\mu})^{-1} (B) = \{ x \in \overline{U} : (x, x) \cap (x, H(x, \mu(x)) \neq \emptyset \}$$
  
=  $\{ x \in \overline{U} : (x, x) \cap (x, H(x, 1) \neq \emptyset \}$   
=  $(F^{\star})^{-1} (B).$ 

This together with (2.5) yields

$$d\left(\left(F^{\star}\right)^{-1}(B)\right) = d\left(\left(G^{\star}\right)^{-1}(B)\right) \neq d(\emptyset).$$

**Remark 2.6.** From the proof we see in Theorem 2.5 that we can replace E being a normed linear space with E being a normal topological space. Also the map H being compact could be replaced by H condensing or indeed H satisfying other compactness type conditions (see [1]).

**Remark 2.7.** We remark here that acyclic maps are a special case of maps presented in [4, 5] so the proof presented in Theorem 2.5 is the same as that in [4]. For completeness we include the proof here. Our goal is this paper is to establish a result so that the map  $F^*$  (in Theorem 2.5) is *d*-essential. Unfortunately the ideas in [4] do not work for acyclic maps so new ideas are needed here (see Theorem 2.9).

**Remark 2.8.** If we discuss the existence of fixed points the function d is

$$d(Q) = \begin{cases} 1 & \text{if } \emptyset \neq Q \subseteq \overline{U} \\ 0 & \text{if } Q = \emptyset \end{cases}$$

whereas if we discuss degree theory the values of d are usually integers which can be obtained by means of degree. Recall [2] a map  $F \in AC_{\partial U}(\overline{U}, E)$  is essential in  $AC_{\partial U}(\overline{U}, E)$  if for any map  $J \in AC_{\partial U}(\overline{U}, E)$  with  $J|_{\partial U} = F|_{\partial U}$  we have that there exists a  $x \in U$  with  $x \in F(x)$ . Notice a map  $F \in AC_{\partial U}(\overline{U}, E)$  is essential in  $AC_{\partial U}(\overline{U}, E)$  implies that  $F^* = I \times F$  is  $d_1$ -essential where

$$d_1(Q) = \begin{cases} 1 & \text{if } \emptyset \neq Q \subseteq \overline{U} \\ 0 & \text{if } Q = \emptyset. \end{cases}$$

To see this suppose  $F \in AC_{\partial U}(\overline{U}, E)$  is essential in  $AC_{\partial U}(\overline{U}, E)$ . Then for any  $J \in AC_{\partial U}(\overline{U}, E)$  with  $J|_{\partial U} = F|_{\partial U}$  there exists  $x \in U$  with  $x \in J(x)$ . Thus  $(x, x) \in (x, J(x)) \equiv J^*(x)$  and so  $(J^*)^{-1}(B) \neq \emptyset$  (in particular  $(F^*)^{-1}(B) \neq \emptyset$ ). Hence  $d_1((J^*)^{-1}(B)) = 1$  and  $d_1((F^*)^{-1}(B)) = 1$  so  $d_1((J^*)^{-1}(B)) = d_1((F^*)^{-1}(B)) \neq d_1(\emptyset)$ .

We now present a result which guarantees that  $F^*$  in Theorem 2.5 is d-essential.

**Theorem 2.9.** Let E be an infinite dimensional normed linear space, U an open convex subset of E with  $0 \in U$ ,  $B = \{(x, x) : x \in \overline{U}\}$  and d be the map defined in (2.1). Suppose  $F \in AC_{\partial U}(\overline{U}, E)$ ,  $G \in AC_{\partial U}(\overline{U}, E)$  with  $G|_{\partial U} = F|_{\partial U}$ . In addition assume

(2.6)  $G^* = I \times G : \overline{U} \to K(\overline{U} \times E)$  is d-essential.

Let  $F^* = I \times F$ . Then  $d\left((F^*)^{-1}(B)\right) = d\left((G^*)^{-1}(B)\right) \neq d(\emptyset)$  and  $F^* : \overline{U} \to K(\overline{U} \times E)$  is d-essential.

*Proof.* We know [2] there exists a continuous retraction  $r: \overline{U} \to \partial U$ . Let

$$H(x,\lambda) = \begin{cases} G(2\lambda r(x) + (1-2\lambda)x) = G \circ j(x,\lambda) & \text{for } (x,\lambda) \in U \times \lfloor 0, \frac{1}{2} \rfloor \\ F((2-2\lambda)r(x) + (2\lambda-1)x) = F \circ k(x,\lambda) & \text{for } (x,\lambda) \in \overline{U} \times \lfloor \frac{1}{2}, 1 \end{bmatrix}$$

### DONAL O'REGAN

where  $j: \overline{U} \times [0, \frac{1}{2}] \to \overline{U}$  is given by  $j(x, \lambda) = 2\lambda r(x) + (1 - 2\lambda)x$  and  $k: \overline{U} \times [\frac{1}{2}, 1] \to \overline{U}$  is given by  $k(x, \lambda) = (2 - 2\lambda)r(x) + (2\lambda - 1)x$ . Note for  $x \in \overline{U}$  that  $G \circ j(x, \frac{1}{2}) = G(r(x))$  and  $F \circ k(x, \frac{1}{2}) = F(r(x)) = G(r(x)) = G \circ j(x, \frac{1}{2})$  since  $G|_{\partial U} = F|_{\partial U}$ . Note  $H: \overline{U} \times [0, 1] \to K(E)$  is an upper semicontinuous compact map and  $H_t: \overline{U} \to K(E)$  has acyclic values for each  $t \in [0, 1]$  (here  $H_t(x) = H(x, t)$ ). Also notice  $x \notin H(x, t)$  for  $x \in \partial U$  and  $t \in (0, 1]$  since if there exists a  $x \in \partial U$  and without loss of generality a  $\lambda \in (0, \frac{1}{2}]$  with  $x \in H(x, \lambda)$  then since r(x) = x we have  $x \in G(2\lambda x + (1 - 2\lambda)x) = G(x)$ , a contradiction. Now Theorem 2.5 guarantees that

(2.7) 
$$d\left((F^{\star})^{-1}(B)\right) = d\left((G^{\star})^{-1}(B)\right) \neq d(\emptyset).$$

Next we show  $F^* : \overline{U} \to K(\overline{U} \times E)$  is *d*-essential. Let  $J \in AC_{\partial U}(\overline{U}, E)$  be any map with  $J|_{\partial U} = F|_{\partial U}$ . We must show if  $J^* = I \times J$  then

(2.8) 
$$d\left((F^{\star})^{-1} (B)\right) = d\left((J^{\star})^{-1} (B)\right) \neq d(\emptyset).$$

Let

$$Q(x,\lambda) = \begin{cases} G(2\lambda r(x) + (1-2\lambda)x) = G \circ j(x,\lambda) & \text{for } (x,\lambda) \in \overline{U} \times [0,\frac{1}{2}] \\ J((2-2\lambda)r(x) + (2\lambda-1)x) = J \circ k(x,\lambda) & \text{for } (x,\lambda) \in \overline{U} \times [\frac{1}{2},1] . \end{cases}$$

Note for  $x \in \overline{U}$  that  $G \circ j(x, \frac{1}{2}) = G(r(x))$  and  $J \circ k(x, \frac{1}{2}) = J(r(x)) = F(r(x)) = G(r(x)) = G \circ j(x, \frac{1}{2})$  since  $J|_{\partial U} = F|_{\partial U} = G|_{\partial U}$ . Let  $O^* : \overline{U} \times [0, 1] \to K(\overline{U} \times E)$  be given by

Let  $Q^{\star}: \overline{U} \times [0,1] \to K(\overline{U} \times E)$  be given by

$$Q^{\star}(x,\lambda) = (x, Q(x,\lambda))$$

and consider

$$D = \left\{ x \in \overline{U} : (x, x) \in Q^{\star}(x, t) \text{ for some } t \in [0, 1] \right\}$$

The same reasoning as in Theorem 2.5 guarantees that  $D \neq \emptyset$  is closed. Suppose there exists  $x \in D$  with  $x \in \partial U$ . Then  $x \in Q(x, \lambda)$  for some  $\lambda \in [0, 1]$ . Suppose  $\lambda \in [0, \frac{1}{2}]$ . Then since  $x \in \partial U$  we have r(x) = x so  $x \in G(2\lambda x + (1-2\lambda)x) = G(x)$ , a contradiction. Next suppose  $\lambda \in [\frac{1}{2}, 1]$ . Then  $x \in J((2-2\lambda)r(x) + (2\lambda - 1)x) =$ J(x) = F(x) since  $J|_{\partial U} = F|_{\partial U}$ , a contradiction. Thus  $D \cap \partial U = \emptyset$ . Thus there exists a continuous map  $\mu : \overline{U} \to [0, 1]$  with  $\mu(\partial U) = 0$  and  $\mu(D) = 1$ . Define a map  $\Phi_{\mu} : \overline{U} \to K(E)$  by  $\Phi_{\mu}(x) = Q(x, \mu(x)) = Q_{\mu(x)}(x) = Q \circ \tau(x)$  and let  $\Phi_{\mu}^{*} = I \times \Phi_{\mu}$ ; here  $\tau : \overline{U} \to \overline{U} \times [0, 1]$  is given by  $\tau(x) = (x, \mu(x))$ . Notice  $\Phi_{\mu} \in AC(\overline{U}, E)$  with  $\Phi_{\mu}|_{\partial U} = G|_{\partial U}$  since  $\mu(\partial U) = 0$ . Since  $G^{*}$  is *d*-essential we have

(2.9) 
$$d\left(\left(\Phi_{\mu}^{\star}\right)^{-1}(B)\right) = d\left(\left(G^{\star}\right)^{-1}(B)\right) \neq d(\emptyset).$$

However notice since  $\mu(D) = 1$  that

$$\left( \Phi_{\mu}^{\star} \right)^{-1} (B) = \left\{ x \in \overline{U} : (x, x) \cap (x, Q(x, \mu(x)) \neq \emptyset \right\}$$
$$= \left\{ x \in \overline{U} : (x, x) \cap (x, Q(x, 1) \neq \emptyset \right\}$$
$$= (J^{\star})^{-1} (B).$$

and so with (2.9) we have

(2.10) 
$$d\left((J^{\star})^{-1} (B)\right) = d\left((G^{\star})^{-1} (B)\right) \neq d(\emptyset).$$

Combine (2.7) and (2.10) and we have

$$d\left((F^{\star})^{-1}(B)\right) = d\left((J^{\star})^{-1}(B)\right) \neq d(\emptyset).$$

For completeness we present a more general formulation for new d-essential maps (a bigger class than in Definition 2.3). Let E be a normed linear space and U an open subset of E.

**Definition 2.10.** Let  $F, G \in AC_{\partial U}(\overline{U}, E)$ . We say  $F \cong G$  in  $AC_{\partial U}(\overline{U}, E)$  if there exists a upper semicontinuous compact map  $\Psi : \overline{U} \times [0,1] \to K(E)$  with  $\Psi_t \in AC_{\partial U}(\overline{U}, E)$  for each  $t \in [0,1], \Psi_0 = F$  and  $\Psi_1 = G$  (here  $\Psi_t(x) = \Psi(x,t)$ ).

**Remark 2.11.** It is easy to see that  $\cong$  is an equivalence relation in  $AC_{\partial U}(\overline{U}, E)$ .

**Definition 2.12.** Let  $F \in AC_{\partial U}(\overline{U}, E)$  with  $F^* = I \times F$ . We say  $F^* : \overline{U} \to K(\overline{U} \times E)$  is *d*-essential if for every map  $J \in AC_{\partial U}(\overline{U}, E)$  with  $J^* = I \times J$ and  $J|_{\partial U} = F|_{\partial U}$  and  $J \cong F$  in  $AC_{\partial U}(\overline{U}, E)$  we have that  $d\left((F^*)^{-1}(B)\right) = d\left((J^*)^{-1}(B)\right) \neq d(\emptyset)$ . Otherwise  $F^*$  is *d*-inessential. It is easy to check that this means either  $d\left((F^*)^{-1}(B)\right) = d(\emptyset)$  or there exists a map  $J \in AC_{\partial U}(\overline{U}, E)$ with  $J^* = I \times J$  and  $J|_{\partial U} = F|_{\partial U}$  and  $J \cong F$  in  $AC_{\partial U}(\overline{U}, E)$  such that  $d\left((F^*)^{-1}(B)\right) \neq d\left((J^*)^{-1}(B)\right).$ 

Out main result is the following.

**Theorem 2.13.** Let E be a normed linear space, U an open subset of E,  $B = \{(x, x) : x \in \overline{U}\}$  and d be the map defined in (2.1). Suppose  $F \in AC_{\partial U}(\overline{U}, E)$ . Then the following are equivalent:

(i).  $F^{\star} = I \times F : \overline{U} \to K(\overline{U} \times E)$  is *d*-inessential;

(ii).  $d\left((F^{\star})^{-1}(B)\right) = d(\emptyset)$  or there exists a map  $G \in AC_{\partial U}(\overline{U}, E)$  with  $G^{\star} = I \times G$ and  $G \cong F$  in  $AC_{\partial U}(\overline{U}, E)$  such that  $d\left((F^{\star})^{-1}(B)\right) \neq d\left((G^{\star})^{-1}(B)\right)$ .

Proof. (i) implies (ii) is immediate. Next we prove (ii) implies (i). If  $d\left((F^*)^{-1}(B)\right) = d(\emptyset)$  then trivially (i) is true. Next suppose there exists a map  $G \in AC_{\partial U}(\overline{U}, E)$  with  $G^* = I \times G$  and  $G \cong F$  in  $AC_{\partial U}(\overline{U}, E)$  such that  $d\left((F^*)^{-1}(B)\right) \neq d\left((G^*)^{-1}(B)\right)$ . Let  $H: \overline{U} \times [0,1] \to K(E)$  be a upper semicontinuous compact map with  $H_t \in AC_{\partial U}(\overline{U}, E)$  for each  $t \in [0,1], H_0 = F$  and  $H_1 = G$  (here  $H_t(x) = H(x,t)$ ). Let  $H^*: \overline{U} \times [0,1] \to K(\overline{U} \times E)$  be given by

$$H^{\star}(x,\lambda) = (x, H(x,\lambda)).$$

### DONAL O'REGAN

Consider

 $D = \left\{ x \in \overline{U} : (x, x) \in H^{\star}(x, t) \text{ for some } t \in [0, 1] \right\}.$ 

If  $D = \emptyset$  then in particular  $(H^*(x,0))^{-1}(B) = \emptyset$  i.e.  $(F^*)^{-1}(B) = \emptyset$  so  $d\left((F^*)^{-1}(B)\right) = d(\emptyset)$ , so  $F^*$  is *d*-inessential. Next suppose  $D \neq \emptyset$ . Note *D* is closed in *E*. Also since  $x \notin H_t(x)$  for  $x \in \partial U$  and  $t \in [0,1]$  then  $D \cap \partial U = \emptyset$ . Thus there exists a continuous map  $\mu : \overline{U} \to [0,1]$  with  $\mu(\partial U) = 0$  and  $\mu(D) = 1$ . Define a map  $R_{\mu} : \overline{U} \to K(E)$  by  $R_{\mu}(x) = H(x,\mu(x))$  and let  $R^*_{\mu} = I \times R_{\mu}$ . As in Theorem 2.5 note  $R_{\mu} \in AC_{\partial U}(\overline{U}, E)$  with  $R_{\mu}|_{\partial U} = H_0|_{\partial U} = F|_{\partial U}$  since  $\mu(\partial U) = 0$ . Note also (see Theorem 2.5) since  $\mu(D) = 1$  that  $(R^*_{\mu})^{-1}(B) = (G^*)^{-1}(B)$  so  $d\left((R^*_{\mu})^{-1}(B)\right) = d\left((G^*)^{-1}(B)\right)$ . Thus  $d\left((F^*)^{-1}(B)\right) \neq d\left((R^*_{\mu})^{-1}(B)\right)$ . We now claim

(2.11) 
$$R_{\mu} \cong F \text{ in } AC_{\partial U}(\overline{U}, E).$$

Let  $Q: \overline{U} \times [0,1] \to K(E)$  be given by  $Q(x,t) = H(x,t\,\mu(x))$ . Now  $Q_0 = F$ ,  $Q_1 = R_{\mu}, Q: \overline{U} \times [0,1] \to K(E)$  is an upper semicontinuous compact map with  $Q_t \in AC(\overline{U}, E)$  for each  $t \in [0,1]$ . Also  $x \notin Q_t(x)$  for  $x \in \partial U$  and  $t \in [0,1]$ since if there exists  $t \in [0,1]$  and  $x \in \partial U$  with  $x \in Q_t(x)$  then  $x \in H(x,t\,\mu(x))$ so  $x \in D$  and as a result  $\mu(x) = 1$  i.e.  $x \in H(x,t)$ , a contradiction. Thus (2.11) holds.

Consequently  $F^*$  is *d*-inessential (take  $J = R_{\mu}$  in the definition of *d*-inessential).

Now Theorem 2.13 immediately yields the following continuation theorem.

**Theorem 2.14.** Let E be a normed linear space, U an open subset of E,  $B = \{(x,x) : x \in \overline{U}\}$  and d be the map defined in (2.1). Suppose  $\Phi$  and  $\Psi$  are two maps in  $AC_{\partial U}(\overline{U}, E)$  with  $\Phi^* = I \times \Phi$  and  $\Psi^* = I \times \Psi$  and with  $\Phi \cong \Psi$  in  $AC_{\partial U}(\overline{U}, E)$ . The  $\Phi^*$  is d-inessential if and only if  $\Psi^*$  is d-inessential.

Proof. Assume  $\Phi^*$  is *d*-inessential. Then (see Theorem 2.13) either  $d\left((\Phi^*)^{-1}(B)\right) = d(\emptyset)$  or there exists a map  $Q \in AC_{\partial U}(\overline{U}, E)$  with  $Q^* = I \times Q$  and  $Q \cong \Phi$  in  $AC_{\partial U}(\overline{U}, E)$  such that  $d\left((\Phi^*)^{-1}(B)\right) \neq d\left((Q^*)^{-1}(B)\right)$ .

Suppose first that  $d\left((\Phi^*)^{-1}(B)\right) = d(\emptyset)$ . There are two cases to consider, either  $d\left((\Psi^*)^{-1}(B)\right) \neq d(\emptyset)$  or  $d\left((\Psi^*)^{-1}(B)\right) = d(\emptyset)$ .

Case (1). Suppose  $d\left((\Psi^{\star})^{-1}(B)\right) \neq d(\emptyset).$ 

Then  $d((\Phi^*)^{-1}(B)) \neq d((\Psi^*)^{-1}(B))$  and we know  $\Phi \cong \Psi$  in  $AC_{\partial U}(\overline{U}, E)$ . Now Theorem 2.13 (with  $F = \Psi$  and  $G = \Phi$ ) guarantees that  $\Psi^*$  is *d*-inessential. Case (2). Suppose  $d((\Psi^*)^{-1}(B)) = d(\emptyset)$ .

Then by definition  $\Psi^*$  is *d*-inessential.

Next suppose there exists a map  $Q \in AC_{\partial U}(\overline{U}, E)$  with  $Q^* = I \times Q$  and  $Q \cong \Phi$ in  $AC_{\partial U}(\overline{U}, E)$  such that  $d\left((\Phi^*)^{-1}(B)\right) \neq d\left((Q^*)^{-1}(B)\right)$ . Note (since  $\cong$  is an equivalence relation in  $AC_{\partial U}(\overline{U}, E)$ ) also that  $Q \cong \Psi$  in  $AC_{\partial U}(\overline{U}, E)$ . There are two cases to consider, either  $d\left((Q^*)^{-1}(B)\right) \neq d\left((\Psi^*)^{-1}(B)\right)$  or  $d\left((Q^*)^{-1}(B)\right) = d\left((\Psi^*)^{-1}(B)\right)$ .

Case (1). Suppose  $d((Q^{\star})^{-1}(B)) \neq d((\Psi^{\star})^{-1}(B)).$ 

Then Theorem 2.13 (with  $F = \Psi$  and G = Q) guarantees that  $\Psi^*$  is *d*-inessential. Case (2). Suppose  $d\left((Q^*)^{-1}(B)\right) = d\left((\Psi^*)^{-1}(B)\right)$ .

Then  $d((\Phi^*)^{-1}(B)) \neq d((\Psi^*)^{-1}(B))$  and we know  $\Phi \cong \Psi$  in  $AC_{\partial U}(\overline{U}, E)$ . Now Theorem 2.13 (with  $F = \Psi$  and  $G = \Phi$ ) guarantees that  $\Psi^*$  is *d*-inessential.

Thus in all cases  $\Psi^*$  is *d*-inessential.

Similarly if  $\Psi^*$  is *d*-inessential then  $\Phi^*$  is *d*-inessential.

**Remark 2.15.** An obvious question is the condition  $F \cong J$  in  $AC_{\partial U}(\overline{U}, E)$  automatically satisfied in Definition 2.12 i.e. if F and J are in  $AC_{\partial U}(\overline{U}, E)$  with  $J|_{\partial U} = F|_{\partial U}$  is  $F \cong J$  in  $AC_{\partial U}(\overline{U}, E)$ ? The argument in Theorem 2.9 provides a partial answer. Let E be a infinite dimensional normed linear space and U an open convex subset of E with  $0 \in U$ . Let F, J be in  $AC_{\partial U}(\overline{U}, E)$  with  $J|_{\partial U} = F|_{\partial U}$ . We know there exists a continuous retraction  $r: \overline{U} \to \partial U$ . Let the map  $F^*$  be given by  $F^*(x) = F(r(x))$  for  $x \in \overline{U}$ . Of course  $F^*(x) = J(r(x))$  for  $x \in \overline{U}$  since  $J|_{\partial U} = F|_{\partial U}$ . With

$$H(x,\lambda) = J(2\lambda r(x) + (1-2\lambda)x) = J \circ j(x,\lambda) \text{ for } (x,\lambda) \in \overline{U} \times \left[0,\frac{1}{2}\right]$$

(here  $j: \overline{U} \times [0, \frac{1}{2}] \to \overline{U}$  is given by  $j(x, \lambda) = 2\lambda r(x) + (1 - 2\lambda)x$ ) it is easy to see that

$$J \cong F^{\star}$$
 in  $AC_{\partial U}(\overline{U}, E)$ 

notice if there exists  $x \in \partial U$  and  $\lambda \in [0, \frac{1}{2}]$  with  $x \in H_{\lambda}(x)$  then since r(x) = xwe have  $x \in J(2\lambda x + (1-2\lambda)x) = J(x)$ , a contradiction. Similarly with

$$Q(x,\lambda) = F((2-2\lambda)r(x) + (2\lambda-1)x) \text{ for } (x,\lambda) \in \overline{U} \times \left\lfloor \frac{1}{2}, 1 \right\rfloor$$

it is easy to see that

$$F^{\star} \cong F$$
 in  $AC_{\partial U}(\overline{U}, E)$ .

Combining gives  $J \cong F$  in  $AC_{\partial U}(\overline{U}, E)$ . For a certain subclass of the acyclic maps we can obtain a more complete answer. We say  $F \in K(\overline{U}, E)$  if  $F: \overline{U} \to CK(E)$ is a upper continuous compact map; here CK(E) denotes the family of nonempty, convex, compact subsets of E. We can also write the analogue of  $K_{\partial U}(\overline{U}, E)$ , essential in  $K_{\partial U}(\overline{U}, E)$  and  $\cong$  in  $K_{\partial U}(\overline{U}, E)$ . Let E be a normed linear space and U an open subset of E. If the maps F and J are in  $K_{\partial U}(\overline{U}, E)$  and  $J|_{\partial U} = F|_{\partial U}$  then it is easy to see that

$$\Psi(x,t) = t F(x) + (1-t) J(x)$$

guarantees that  $F \cong J$  in  $K_{\partial U}(\overline{U}, E)$ .

# References

- R. P. Agarwal and D. O'Regan, Homotopy and Leray-Schauder principles for multi maps, Nonlinear Anal. Forum 7 (2002), 103–111.
- [2] R. P. Agarwal and D. O'Regan, A note on the topological transversality theorem for acyclic maps, Appl. Math. Lett. 18 (2005), 17–22.
- [3] A. Granas, Sur la méthode de continuité de Poincare, C.R. Acad. Sci. Paris 282 (1976), 983– 985.
- [4] D. O'Regan, Continuation principles and d-essential maps, Math. Comput. Modelling 30 (1999), 1–6.
- [5] D. O'Regan, Continuation theorems for acyclic maps in topological spaces, Commun. Appl. Anal. 13 (2009), 39–45.
- [6] R. Precup, On the topological transversality principle, Nonlinear Anal. 20 (1993), 1–9.

Manuscript received October 6, 2011

### DONAL O'REGAN

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

*E-mail address*: donal.oregan@nuigalway.ie