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HOMOTOPY PRINCIPLES FOR d-ESSENTIAL ACYCLIC MAPS

DONAL O’'REGAN

ABSTRACT. This paper discusses acyclic maps and we present a definition of a
d—essential map in this setting. Continuation theorems are presented for this
type of map.

1. INTRODUCTION

The notion of an essential map was introduced by Granas [3] and he showed for
single valued maps that if a map F' is essential and F' 22 GG then G is essential. This
notion was extended to d—essential maps by Precup [6]. In this paper we discuss
d—essential maps for a very large class of maps, namely the class of acyclic maps.

Let X and Z be subsets of Hausdorff topological spaces. We will consider maps
F:X — K(Z); here K(Z) denotes the family of nonempty compact subsets of Z.
A nonempty topological space is said to be acyclic if all its reduced Cech homology
groups over the rationals are trivial. Now F : X — K(Z) is acyclic if F' is upper
semicontinuous with acyclic values.

2. d—ESSENTIAL MAPS

Let E be a normed linear space and U an open subset of FE.

Definition 2.1. We say F' € AC(U,E) if F : U — K(FE) is an acyclic compact
map; here U denotes the closure of U in FE.

Definition 2.2. We say F € ACyy(U,E) if F € AC(U,E) with = ¢ F(z) for
x € QU; here U denotes the boundary of U in E.

For any map F € AC(U,E) let F*=IxF:U — K(U x E), with [ : U - U
given by I(x) =z, and let

(2.1) d: {(F*)_l (B)} U{0} — 0
be any map with values in the nonempty set 2; here B = {(m, x): x € U}.

Definition 2.3. Let F € ACyy(U,E) with F* = I x F. We say F* : U —
K(U x E) is d-essential if for every map J € ACpy (U, E) with J* =1 x J and

Jlov = Flou we have that d ((F*)’l (B)) =d ((J*)’l (B)) £ d(0).
Remark 2.4. If F'* is d—essential then
0#(F) " (B)={xeU: (z,F(x)n (z,z)# 0},
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and this together with = ¢ F(x) for = € OU implies that there exists x € U with
(z,z) € F*(x) (i.e. z € F(x)).

Theorem 2.5. Let E be a normed linear space, U an open subset of E, B =
{(z,2) : x € U} and d be the map defined in (2.1). Suppose G € ACyy (U, E),
H:U x [0,1] = K(E) is an upper semicontinuous compact map, Hy : U — K(FE)
has acyclic values for eacht € [0, 1] (here Hy(xz) = H(x,t)) and assume the following
hold:

(2.2) H(z,0) = G(z) for €U

(2.3) G*=IxG:U— KU x E) is d-essential
and

(2.4) x ¢ H(z,t) for x € 0U and t e (0,1].

Let F(z) = H(x,1) for €U and F* =1 x F. Then
a((F)71 (B)) =a((G")" (B)) #d(0).
Proof. Let H*: U x [0,1] = K(U x E) be given by
H*(z,\) = (xz, H(z,\)).
Consider
D={z€U: (z,x) € H(x,t) for some t € [0,1]}.
Notice D # () since for t = 0, H*(x,0) = G*(z) and G* is d-essential (i.e. in
particular there exists x € U with (z,z) € (z,G(z)) = H*(x,0)). Also D is closed
in E. To see this let {z,}°°; C D with z,, — x € U. Now there exists t, € (0,1]
with
Ty € H(zp,t,) for each ne{1,2,...}.
Without loss of generality assume ¢, — ¢t € [0,1] so (zp,tn) — (z,t). Now since
H:U x [0,1] = K(E) is a upper semicontinuous map we have z € H(x,t). As a
result (z,7) € H*(x,t), so D is closed. Next notice (2.4), with G € ACpy (U, E),
guarantees that D N QU = (). Thus there exists a continuous map p : U — [0,1]
with u(0U) = 0 and p(D) = 1. Define a map R, : U — K(E) by R,(z) =
H(z,1(x)) = Hypy(z) = Hor(z) and let R =1 x Ry; here 7:U — U x [0,1] is
given by 7(z) = (z,u(z)). Notice R, € AC(U,E) (note H : U x [0,1] — E is an
upper semicontinuous compact map and H; : U — K(E) has acyclic values for each

t € [0,1]) and notice R,|oy = Gloy since u(0U) = 0. Thus R, € ACyy (U, E)
with R,|ou = Gloy and since G* is d-essential we have

(2.5) a((R) " (B)) =a((G)7" (B)) # d(0).
Also notice since pu(D) = 1 that
(7)™ (B) = {we
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This together with (2.5) yields

a((F)71 (B)) =a((G)" (B)) #d0).
Il

Remark 2.6. From the proof we see in Theorem 2.5 that we can replace E being
a normed linear space with F being a normal topological space. Also the map H
being compact could be replaced by H condensing or indeed H satisfying other
compactness type conditions (see [1]).

Remark 2.7. We remark here that acyclic maps are a special case of maps pre-
sented in [4, 5] so the proof presented in Theorem 2.5 is the same as that in [4].
For completeness we include the proof here. Our goal is this paper is to establish a
result so that the map F* (in Theorem 2.5) is d-essential. Unfortunately the ideas
in [4] do not work for acyclic maps so new ideas are needed here (see Theorem 2.9).

Remark 2.8. If we discuss the existence of fixed points the function d is

(1 0£QCU
d(Q)—{o it Q=1

whereas if we discuss degree theory the values of d are usually integers which can
be obtained by means of degree. Recall [2] a map F € ACyy (U, E) is essential
in ACpy (U, E) if for any map J € ACyy (U, E) with J|sy = Fl|sy we have that
there exists a x € U with = € F (z). Notice a map F € ACpy (U, E) is essential in
ACpy (U, E) implies that F* = I x F is dj—essential where

d1(Q) —{ (1) if giQ@g v

To see this suppose F € ACyy (U, E) is essential in ACyy (U, E). Then for any
J € ACpy (U, E) with J|sy = Floy there exists # € U with = € J(z). Thus
(z,2) € (z,J(z)) = J*(x) and so (J*)' (B) # 0 (in particular (F*)™' (B) #
0). Hence d; ((J*)—l (B)) =1 and d ((F*)—l (B)) =1 s0d; ((J*)_l (B)) -

a ((F)7 (B)) # i (0).
We now present a result which guarantees that F™* in Theorem 2.5 is d—essential.

Theorem 2.9. Let E be an infinite dimensional normed linear space, U an open
convex subset of E with0 € U, B = {(z,x) LT € U} and d be the map defined in
(2.1). Suppose F' € ACyy (U, E), G € ACyy (U, E) with Glgy = Floy. In addition

assume

(2.6) G*=1xG:U— K(U x E) is d-essential.
Let F* = I x F. Thend(( ) ( )#d(@)andF*:U%
K(U x E) is d-essential.

Proof. We know [2] there exists a continuous retraction r : U — 9U. Let

H( )\)_{ G2Ar(z)+(1—-2XN)z)=Goj(x,A) for (z,A) €U x [0 ,%]
DUV FR(@=-20 (@) + @ =1 z) = Fok(z,)) for (z,)) €U x [,1]
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where j : U x [0,4] — U is given by j(z,A) = 2Ar(z) + (1 — 2X)z and k :
U x [3,1] = U is given by k(z,A) = (2—2\)r(z) + (2A — 1) 2. Note for x € U
that Goj (z,3) = G(r(z)) and Fok (z,%) = F(r(z)) = G(r(z)) = Goj (z, 5) since
Glou = Flou. Note H : U x[0,1] — K(FE) is an upper semicontinuous compact map
and H; : U — K(F) has acyclic values for each t € [0,1] (here Hy(z) = H(x,t)).
Also notice z ¢ H(x,t) for x € QU and t € (0, 1] since if there exists a x € OU and
without loss of generality a A € (0, %] with # € H(z, A) then since r(z) = z we have
x € G2Ax+ (1 —-2X)z) = G(x), a contradiction. Now Theorem 2.5 guarantees
that

(2.7) a((F)7 (B) =a((G)7" (B)) #d(0).

Next we show F* : U — K(U x E) is d-essential. Let J € ACpy (U, E) be any
map with J|gy = Floy. We must show if J* =1 x J then

(2:8) ()7 (B)) = ()7 (B)) #d(),
Let
Qz,\) = { G2Ar(z)+(1—-2X)z)=Goj(z,A) for (z,A) €U x[0,3]

DVTVL I =2 @)+ @ =1 x) = Jok(x,)) for (x,)\) €U x [51].
Note for 2 € U that Go j (z,3) = G(r(z)) and J ok (z,1) = J(r(z)) = F(r(z)) =
G(r(z)) = Goj(x,3) since J]or = Flov = Glav-

Let Q*:U x [0,1] = K(U x E) be given by

Q*(x,A) = (z, Qz, 1))
and consider
D={zeU: (z,x) € Q*(x,t) for some ¢ € [0,1]}.

The same reasoning as in Theorem 2.5 guarantees that D # () is closed. Suppose
there exists x € D with x € 9U. Then = € Q(z, ) for some X\ € [0,1]. Suppose
A € [0,1]. Thensince z € U we have r(z) = x50 z € G2 z+(1-2))z) = G(x),
a contradiction. Next suppose A € [3,1]. Then 2 € J((2—2\)r(z)+(2A—1)z) =
J(z) = F(z) since J|sv = Flou, a contradiction. Thus D N oU = (). Thus there
exists a continuous map p : U — [0,1] with pu(QU) = 0 and u(D) = 1. Define

amap ®, : U — K(E) bz (I)u(ﬁ) = Qx, (7)) = Qua(r) = Qo7(z) and
let @5 = I x ®,; here 7 : U — U x [0,1] is given by 7(z) = (x,u(z)). Notice
®, € AC(U,E) with ®,|sy = Gloy since u(dU) = 0. Since G* is d-essential we
have

(2.9) d ((@;)*1 (B)) —d ((G*)—l (B)) £d(0).

However notice since pu(D) = 1 that

(@;)_1 (B) = {x ceU: (z,2)N(x,Qx, u(z)) # @}
= {xGU: (x,x)ﬂ(x,@(w,l)#@}
= ()7 (B).
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and so with (2.9) we have

(2.10) ()7 (B)) =d ()7 (B)) #d@).
Combine (2.7) and (2.10) and we have

()7 (B)) = ()7 (B)) #d(),
U

For completeness we present a more general formulation for new d—essential maps
(a bigger class than in Definition 2.3). Let E be a normed linear space and U an
open subset of F.

Definition 2.10. Let F, G € ACpy(U,E). We say F = G in ACyy(U,E) if
there exists a upper semicontinuous compact map ¥ : U x [0,1] — K(E) with
U, € ACyy (U, E) for each t € [0,1], U9 = F and ¥y =G (here ¥;(z) = ¥(x,t)).

Remark 2.11. It is easy to see that = is an equivalence relation in ACyy (U, E).

Definition 2.12. Let F' € ACyy (U, E) with F* = T x F. We say F~* : U —
K(U x E) is d-essential if for every map J € ACspy(U,E) with J* = I x J
and J]oy = Floy and J = F in ACyy(U,E) we have that d((F*)_1 (B)) =

d <(J*)_1 (B)) # d(0). Otherwise F* is d-inessential. It is easy to check that
this means either d <(F*)_1 (B)) = d(() or there exists a map J € ACyy (U, E)
with J* = I x J and J]sgy = Floy and J = F in ACsy (U, E) such that
()7 () £ d (197 ().

Out main result is the following.

Theorem 2.13. Let E be a normed linear space, U an open subset of E, B =
{(z,z): x € U} and d be the map defined in (2.1). Suppose F € ACyy(U,E).

Then the following are equivalent:

(i). F*=1xF:U — K(U x E) is d-inessential;

(ii). d ((F*)_1 (B)) = d(0) or there exists a map G € ACyy (U, E) with G* = IxG
and G = F in ACyy(U, E) such that d ((F*)—1 (B)) £d ((G*)—1 (B)).

Proof. (i) implies (ii) is immediate. Next we prove (ii) implies (i). If d ( (B ))
d(() then trivially (i) is true. Next suppose there exists a map G € AC@U(U,E)
with G* = I x G and G = F in ACpy(U,E) such that d(( ~~L (B ))

d <(G*)71 (B)) Let H : U x [0,1] — K(E) be a upper semicontinuous com-

pact map with H; € AC@U@, E) for each t € [0,1], Hyp = F' and H; = G (here
Hy(z) = H(z,t)). Let H*: U x [0,1] - K(U x E) be given by

H*(z,\) = (z, H(z,\)).
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Consider
D={zeU: (z,2) € H*(x,t) for some ¢t € [0,1]}.

If D =  then in particular (H*(z,0))"" (B) = 0 ie. (F*)"'(B) = 0 so
d ((F*)_1 (B)) = d((), so F* is d-inessential. Next suppose D # (). Note D is
closed in E. Also since x ¢ Hy(z) for x € U and ¢ € [0,1] then D NOU = (.
Thus there exists a continuous map p: U — [0,1] with p(0U) =0 and p(D) = 1.
Define a map R, : U — K(E) by R,(z) = H(z,p(z)) and let R; =1 x Ry,. Asin
Theorem 2.5 note R, € ACsy (U, E) with R,|sy = Holov = Flou since p(oU) =
0. Note also (see Theorem 2.5) since p(D) = 1 that (R;)_l (B) = (G*)"" (B) so
d ((R;)‘1 (B)) =d ((G*)’l (B)). Thus d ((F*)’l (B)) £d ((R;)‘1 (B)).

‘We now claim
(2.11) R, 2 F in ACypy(U,E).

Let Q : U x [0,1] — K(E) be given by Q(x,t) = H(z,tu(z)). Now Qy = F,
Q1 =Ry, Q:U x[0,1] = K(F) is an upper semicontinuous compact map with
Qi € AC(U,E) for each t € [0,1]. Also z ¢ Qu(x) for x € U and t € [0,1]
since if there exists t € [0,1] and = € OU with x € Q¢(x) then = € H(z,t u(x))
so ¢ € D and as a result p(x) =1 i.e. x € H(x,t), a contradiction. Thus (2.11)
holds.
Consequently F™* is d-inessential (take J = R,, in the definition of d-inessential).
U

Now Theorem 2.13 immediately yields the following continuation theorem.

Theorem 2.14. Let E be a normed linear space, U an open subset of E, B =
{(z,z): x € U} and d be the map defined in (2.1). Suppose ® and ¥ are two
maps @AC@U(U,E) with & = I x ® and V* = I x U and with ® = U in
ACsy (U, E). The ®* is d-inessential if and only if U* is d-inessential.

Proof. Assume ®* is d-inessential. Then (see Theorem 2.13) either d ((<I>*)_1 (B)) =
d(D) or there exists a map Q € ACyy(U,E) with Q* = I x Q and Q = ® in
ACyy (U, E) such that d(((I)*)’l (B)) ” d((Q*)’l (B)).

Suppose first that d <((I)*)71 (B)) = d((). There are two cases to consider, either
a((w)" (B)) #d(0) or d (w9) " (B)) = d(0).

Case (1). Suppose d ((\I'*)_l (B)) # d(0).

Then d ((cb*)—1 (B)> £ d ((\1/*)—1 (B)> and we know ® = ¥ in ACyy (T, E).
Now Theorem 2.13 (with F' = ¥ and G = ®) guarantees that U* is d-inessential.
Case (2). Suppose d ((\Il*)f1 (B)) = d(0).

Then by definition U* is d-inessential.
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Next suppose there exists a map Q € ACyy (U, E) with Q* =IxQ and Q = &
in ACyy (U, E) such that d ((q»*)*l (B)) £d <(Q*)’1 (B)). Note (since 2 is an
equivalence relation in ACyy (U, E)) also that Q =2 ¥ in ACyy (U, E). There are
two cases to consider, either d ((Q*)_l (B)) #d ((\Il*)_l (B)) ord ((Q*)_l (B)) =

a((w) (B)).

Case (1). Suppose d ((Q*)_l (B)) #d ((\Il*)_l (B))
Then Theorem 2.13 (with F' = ¥ and G = ) guarantees that ¥* is d-inessential.

Case (2). Suppose d ((Q*)_1 (B)) =d ((\II*)_1 (B))

Then d ((@*)—1 (B)) £d ((\I/*)_l (B)) and we know ® = U in ACy(U, E).
Now Theorem 2.13 (with F' = ¥ and G = ®) guarantees that U* is d-inessential.

Thus in all cases U* is d-inessential.

Similarly if U* is d-inessential then ®* is d-inessential. O

Remark 2.15. An obvious question is the condition F = J in ACyy (U, E) au-
tomatically satisfied in Definition 2.12 i.e. if F' and J are in ACyy (U, E) with
Jov = Floy is F = J in ACyy(U,E)? The argument in Theorem 2.9 provides a
partial answer. Let F be a infinite dimensional normed linear space and U an open
convex subset of E with 0 € U. Let F, J be in ACyy (U, E) with J|sy = Flav.
We know there exists a continuous retraction r : U — 9U. Let the map F* be
given by F*(z) = F(r(x)) for z € U. Of course F*(z) = J(r(z)) for x € U since
J|ov = Floy. With

— 1
H(x,AN)=J2Ar(x)+(1—=2N)z)=Joj(x,\) for (z,\) €U x [0, 2}
(here j: U x [0,3] — U is given by j(z,A) = 2Ar(z) + (1 —2X)z) it is easy to
see that
J=F* in ACyy(U, E);

notice if there exists € OU and A € [0,3] with @ € Hy(z) then since r(z) =z
we have =z € J2A Az + (1 —2)\)x) = J(z), a contradiction. Similarly with

Q(z,\) =F(2-2XN)r(x)+(2A—1)z) for (z,)\) €U x [;,1}

it is easy to see that
F*~F in ACyy(U,E).

Combining gives J = F in ACyy (U, E). For a certain subclass of the acyclic maps
we can obtain a more complete answer. We say F € K(U,E) if F:U — CK(E)
is a upper continuous compact map; here CK(E) denotes the family of nonempty,
convex, compact subsets of E. We can also write the analogue of Kyy (U, E),
essential in Ky (U, E) and = in Koy (U, E). Let E be a normed linear space and
U an open subset of E. If the maps F and J are in Koy (U, E) and J|sy = Flau
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then it is easy to see that
U(x,t)=tF(z)+ (1 —1t)J(x)
guarantees that F = J in Kyy (U, E).
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