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and fixed point problems. Recently, Lemaire et al [17] further extended the result
in [16] by considering perturbations.

Very recently, motivated by the mentioned work as above, Fang, Huang and
Yao [11] investigated the well-posedness of a mixed variational inequality which
includes as a special case the classical variational inequality. They gave some met-
ric characterizations of its well-posedness and establish the links with the well-
posedness of inclusion problems and fixed point problems. Furthermore, they proved
that under suitable conditions, the well-posedness of the mixed variational inequal-
ity is equivalent to the existence and uniqueness of its solutions, and the well-
posedness in the generalized sense is equivalent to the existence of solutions.

In this paper, inspired by Fang, Huang and Yao [11], we generalize the concept
of well-posedness to a general mixed implicit quasi-variational inequality which in-
cludes as a special case the mixed variational inequality. We derive some met-
ric characterizations of its well-posedness and establish the links with the well-
posedness of inclusion problems and fixed point problems. Finally we also prove
that under appropriate conditions, the well-posedness of the general mixed implicit
quasi-variational inequality is equivalent to the existence and uniqueness of its solu-
tions, and the well-posedness in the generalized sense is equivalent to the existence
of solutions. The results presented in this paper are the improvements and extension
of the corresponding ones in Fang, Huang and Yao [11].

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. In order
to show the main results, we need the follow concepts and results.

Definition 2.1. A mapping g : H → H is said to be
(i) monotone if

⟨g(x)− g(y), x− y⟩ ≥ 0, ∀x, y ∈ H;

(ii) δ-strongly monotone if there exists a constant δ > 0 such that

⟨g(x)− g(y), x− y⟩ ≥ δ∥x− y∥2, ∀x, y ∈ H;

(iii) σ-Lipschitz continuous if there exists a constant σ > 0 such that

∥g(x)− g(y)∥ ≤ σ∥x− y∥, ∀x, y ∈ H.

We remark that if mapping g : H → H is δ-strongly monotone and σ-Lipschitz
continuous then g is a homeomorphism.

Let φ : H → R∪{+∞} be a proper, convex and lower semicontinuous functional.
Denote by domφ the efficient domain of φ, i.e.,

domφ = {x ∈ H : φ(x) < +∞}.
Denote by ∂φ and ∂ϵφ the subdifferential and ϵ-subdifferential of φ respectively,

i.e.,

∂φ(x) = {x∗ ∈ H : φ(y)− φ(x) ≥ ⟨x∗, y − x⟩, ∀y ∈ H}, ∀x ∈ domφ

and

∂ϵφ(x) = {x∗ ∈ H : φ(y)− φ(x) ≥ ⟨x∗, y − x⟩ − ϵ, ∀y ∈ H}, ∀x ∈ domφ.
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It is known that ∂ϵφ(x) ⊃ ∂φ(x) ̸= ∅ for all x ∈ domφ and for all ϵ > 0.
Now, let F, g : H → H be two mappings and ϕ : H×H → R∪{+∞} be such that

for each fixed y ∈ H, ϕ(·, y) : H → H is a proper, convex and lower semicontinuous
functional on H and g(H)∩ dom∂ϕ(·, y) ̸= ∅. Consider the following general mixed
implicit quasi-variational inequality associated with (F, g, ϕ):

GMIQVI(F, g, ϕ) :

{
Find x ∈ H such that g(x) ∈ dom∂ϕ(·, x) and
⟨F (x), g(x)− y⟩+ ϕ(g(x), x)− ϕ(y, x) ≤ 0, ∀y ∈ H,

which has been studied intensively in Ding [6].

Some special cases.

(i) If ϕ(x, y) = φ(x) for all x, y ∈ H, the GMIQVI(F, g, ϕ) reduces to the following
general mixed variational inequality associated with (F, g, φ):

GMVI(F, g, φ) :

{
Find x ∈ H such that g(x) ∈ dom∂φ and
⟨F (x), g(x)− y⟩+ φ(g(x))− φ(y) ≤ 0, ∀y ∈ H,

which was considered and studied by Hassouni and Moudafi [13].
(ii) If g = I the identity mapping of H, then the GMVI(F, g, φ) reduces to the

following mixed variational inequality associated with (F,φ):

MVI(F,φ) : Find x ∈ H such that ⟨F (x), x− y⟩+ φ(x)− φ(y) ≤ 0, ∀y ∈ H,

which has been studied intensively (see, e.g., [3, 9, 11,29,35,36]).
(iii) If K : H → 2H is a given multifunction such that each K(x) is a closed

convex subset of H (or K(x) = m(x) + K where m : H → H and K is a closed
convex subset of H) and if ϕ : H ×H → R∪{+∞} is defined by

ϕ(x, y) = δK(y)(x), ∀x, y ∈ H,

where δK(y)(x) is the indicator function of K(y), i.e.,

δK(y)(x) =

{
0, if x ∈ K(y),
+∞, otherwise,

then the GMIQVI(F, g, ϕ) reduces to the following strongly nonlinear quasi-variational
inequality:

SNQVI(F, g,K) :

{
Find x ∈ H such that g(x) ∈ K(x) and
⟨F (x), g(x)− y⟩ ≤ 0, ∀y ∈ K(x),

which includes a number of classes of variational inequalities, quasi-variational in-
equalities, complementarity and quasi-complementarity problems, studied previ-
ously by many authors, see, e.g., [6, 12,30,33,34].

It is easy to see that ∂ϵϕ(x, y) ⊃ ∂ϕ(x, y) ̸= ∅ for all x ∈ domϕ(·, y) and for all
ϵ > 0. In terms of ∂ϕ(·, y), GMIQVI(F, g, ϕ) is equivalent to the following inclusion
problem associated with (F, g, ϕ):

IP(F, g, ϕ) : Find x ∈ H such that 0 ∈ F (x) + ∂ϕ(g(x), x).

For each fixed y ∈ H, the resolvent operator of ∂ϕ(·, y) is defined by

J
∂ϕ(·,y)
λ (x) = (I + λ∂ϕ(·, y))−1(x), ∀x ∈ H,
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which is well-defined, single-valued and nonexpansive, where λ > 0 is a constant.
Recall that a mapping T : H → H is said to be nonexpansive if ∥Tx−Ty∥ ≤ ∥x−y∥
for all x, y ∈ H. In terms of J

∂ϕ(·,x)
λ , GMIQVI(F, g, ϕ) is also equivalent to the

following fixed point problem associated with (F, g, ϕ):

FP(F, g, ϕ) : Find x ∈ H such that x = x− g(x) + J
∂ϕ(·,x)
λ (g(x)− λF (x)).

Summarizing the above results, we have the following lemma:

Lemma 2.2. Let F, g : H → H be two mappings and ϕ : H ×H → R∪{+∞} be
such that for each fixed y ∈ H, ϕ(·, y) is a proper, convex and lower semicontinuous
functional satisfying g(H) ∩ dom∂ϕ(·, y) ̸= ∅. Then the following conclusions are
equivalent:

(i) x solves GMIQVI(F, g, ϕ);
(ii) x solves IP(F, g, ϕ);
(iii) x solves FP(F, g, ϕ), where λ > 0 is a constant.

Proof. For the sake of completeness we give the proof of the lemma. Observe that
for each y ∈ H,

x solves GMIQVI(F, g, ϕ)
⇔ ⟨F (x), g(x)− y⟩+ ϕ(g(x), x)− ϕ(y, x) ≤ 0
⇔ ϕ(y, x)− ϕ(g(x), x) ≥ ⟨−F (x), y − g(x)⟩
⇔ −F (x) ∈ ∂ϕ(g(x), x)
⇔ 0 ∈ F (x) + ∂ϕ(g(x), x),

and for some λ > 0

0 ∈ F (x) + ∂ϕ(g(x), x)
⇔ g(x)− λF (x) ∈ g(x) + λ∂ϕ(g(x), x)
⇔ g(x) = (I + λ∂ϕ(·, x))−1(g(x)− λF (x))

⇔ x = x− g(x) + J
∂ϕ(·,x)
λ (g(x)− λF (x)).

Thus, conclusions (i)-(iii) are equivalent. �

Definition 2.3. Let F, g : H → H be two mappings. F is said to be g-hemicontinuous
if for any x, y ∈ H, the function t 7→ ⟨F (x+ t(y − x)), g(y)− g(x)⟩ from [0, 1] into
R is continuous at 0+.

Clearly, the continuity implies the hemicontinuity, but the converse is not true in
general.

Definition 2.4. A mapping F : H → H is said to be uniformly continuous if for any
neighborhood V of 0, there exists a neighborhood U of 0 such that F (x)−F (y) ∈ V
for all x, y ∈ H with x − y ∈ U . Obviously, the uniform continuity implies the
hemicontinuity.

Definition 2.5. Let F, g : H → H be two mappings.
(i) F is said to be g-monotone if

⟨F (x)− F (y), g(x)− g(y)⟩ ≥ 0, ∀x, y ∈ H.

At the same time, g is said to be F -monotone.
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(ii) F is said to be g-convex if for each λ ∈ [0, 1] and each x, y ∈ H,

⟨F (wλ), g(wλ)⟩ ≤ λ⟨F (wλ), g(x)⟩+ (1− λ)⟨F (wλ), g(y)⟩
where wλ = λx+ (1− λ)y.

Lemma 2.6. Let g : H → H be a homeomorphism. Let F : H → H be g-monotone,
g-convex and g-hemicontinuous. Let ϕ : H ×H → R∪{+∞} be such that for each
fixed y ∈ H, ϕ(g(·), y) is a proper, convex and lower semicontinuous functional, and
x ∈ H a given point. Then

⟨F (x), g(x)− y⟩+ ϕ(g(x), x)− ϕ(y, x) ≤ 0, ∀y ∈ H

if and only if

⟨F (y), g(x)− y⟩+ ϕ(g(x), x)− ϕ(y, x) ≤ 0, ∀y ∈ H.

Proof. Suppose

(2.1) ⟨F (x), g(x)− y⟩+ ϕ(g(x), x)− ϕ(y, x) ≤ 0, ∀y ∈ H.

Since g : H → H is a homeomorphism, we know that inequality (2.1) is equivalent
to the following inequality

⟨F (x), g(x)− g(y)⟩+ ϕ(g(x), x)− ϕ(g(y), x) ≤ 0, ∀y ∈ H.

Since F is g-monotone, we have

⟨F (y)− F (x), g(y)− g(x)⟩ ≥ 0, ∀y ∈ H

and hence

⟨F (y), g(y)− g(x)⟩+ ϕ(g(y), x)− ϕ(g(x), x)

≥ ⟨F (x), g(y)− g(x)⟩+ ϕ(g(y), x)− ϕ(g(x), x) ≥ 0,

for all y ∈ H. Consequently,

⟨F (y), g(x)− g(y)⟩+ ϕ(g(x), x)− ϕ(g(y), x) ≤ 0, ∀y ∈ H.

Utilizing again the condition that g : H → H is a homeomorphism, we deduce that

(2.2) ⟨F (y), g(x)− y⟩+ ϕ(g(x), x)− ϕ(y, x) ≤ 0, ∀y ∈ H.

Conversely, suppose inequality (2.2) is valid. Since g : H → H is a homeomor-
phism, we deduce that inequality (2.2) is equivalent to the following inequality

⟨F (y), g(y)− g(x)⟩+ ϕ(g(y), x)− ϕ(g(x), x) ≥ 0, ∀y ∈ H.

For any given y ∈ H we define yt = ty+(1− t)x for all t ∈ (0, 1). Replacing y by yt
in the left-hand side of the last inequality, and utilizing the convexity of ϕ(g(·), x)
and the g-convexity of F , we derive for each t ∈ (0, 1),

0 ≤ ⟨F (yt), g(yt)− g(x)⟩+ ϕ(g(yt), x)− ϕ(g(x), x)
= ⟨F (yt), g(yt)⟩ − ⟨F (yt), g(x)⟩+ ϕ(g(yt), x)− ϕ(g(x), x)
≤ t⟨F (yt), g(y)⟩+ (1− t)⟨F (yt), g(x)⟩ − ⟨F (yt), g(x)⟩
+tϕ(g(y), x) + (1− t)ϕ(g(x), x)− ϕ(g(x), x)
= t[⟨F (yt), g(y)− g(x)⟩+ ϕ(g(y), x)− ϕ(g(x), x)],

which hence implies that

(2.3) ⟨F (yt), g(x)− g(y)⟩+ ϕ(g(x), x)− ϕ(g(y), x) ≤ 0, ∀t ∈ (0, 1).
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Since F is g-hemicontinuous, we conclude from (2.3) that as t → 0+,

⟨F (x), g(x)− g(y)⟩+ ϕ(g(x), x)− ϕ(g(y), x) ≤ 0.

Since g : H → H is a homeomorphism, from the arbitrariness of y we obtain

⟨F (x), g(x)− y⟩+ ϕ(g(x), x)− ϕ(y, x) ≤ 0, ∀y ∈ H.

This completes the proof. �
Definition 2.7 (See [15]). Let A be a nonempty subset of H. The measure of
noncompactness µ of the set A is defined by

µ(A) = inf{ϵ > 0 : A ⊂ ∪n
i=1Ai, diamAi < ϵ, i = 1, 2, ..., n},

where diam means the diameter of a set.

Definition 2.8. Let A,B be nonempty subsets of H. The Hausdorff metric H(·, ·)
between A and B is defined by

H(A,B) = max{e(A,B), e(B,A)},
where e(A,B) = supa∈A d(a,B) with d(a,B) = infb∈B ∥a − b∥. Let {An} be a
sequence of nonempty subsets of H. We say that An converges to A in the sense of
Hausdorff metric if H(An, A) → 0. It is easy to see that e(An, A) → 0 if and only
if d(an, A) → 0 for all section an ∈ An. For more details on this topic, we refer the
readers to [1, 15].

3. Well-posedness and metric characterization

In this section we introduce sone concepts of well-posedness of the general mixed
implicit quasi-variational inequality and establish their metric characterizations.
Let α ≥ 0 be a given number and let H,F, g, ϕ be defined as in the previous section.

Definition 3.1. Let g : H → H be a homeomorphism. A sequence {xn} ⊂ H
is said to be an α-approximating sequence for GMIQVI(F, g, ϕ) if there exists a
sequence {ϵn} of nonnegative numbers with ϵn → 0 such that

g(xn) ∈ domϕ(·, xn),

⟨F (xn), g(xn)− y⟩+ ϕ(g(xn), xn)− ϕ(y, xn) ≤
α

2
∥xn − g−1(y)∥2 + ϵn, ∀y ∈ H

for all n ∈ N . If α1 > α2 ≥ 0, then every α2-approximating sequence is α1-
approximating. When α = 0, we say that {xn} is approximating for GMIQVI(F, g, ϕ).

Definition 3.2. We say that GMIQVI(F, g, ϕ) is strongly (resp. weakly) α-well-
posed if GMIQVI(F, g, ϕ) has a unique solution and every α-approximating sequence
converges strongly (resp. weakly) to the unique solution. In the sequel, strong (resp.
weak) 0-well-posedness is always called as strong (resp. weak) well-posedness. If
α1 > α2 ≥ 0, then strong (resp. weak) α1-well-posedness implies strong (resp.
weak) α2-well-posedness.

Remark 3.3. When ϕ(x, y) = δK(x) and g = I where K is a closed convex subset
ofH, Definition 3.2 reduces to the definition of strong (resp. weak) α-well-posedness
for the classical variational inequality. For details, we refer the readers to [7,19,20]
and the references therein.
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Definition 3.4. We say that GMIQVI(F, g, ϕ) is strongly (resp. weakly) α-well-
posed in the generalized sense if GMIQVI(F, g, ϕ) has a nonempty solution set S
and every α-approximating sequence has a subsequence which converges strongly
(resp. weakly) to some point of S. When α = 0, we say that GMIQVI(F, g, ϕ) is
strongly (resp. weakly) well-posed in the generalized sense. Clearly, if α1 > α2 ≥ 0,
then strong (resp. weak) α1-well-posedness in the generalized sense implies strong
(resp. weak) α2-well-posedness in the generalized sense.

Remark 3.5. When ϕ(x, y) = δK(x) and g = I where K is a closed convex subset
ofH, Definition 3.4 reduces to the definition of strong (resp. weak) α-well-posedness
in the generalized sense for the classical variational inequality. For details, we refer
the readers to [7, 19,20] and the references therein.

Let g : H → H be a homeomorphism. The α-approximating solution set of
GMIQVI(F, g, ϕ) is defined by

Ωα(ϵ) = {x ∈ H : ⟨F (x), g(x)− y⟩+ ϕ(g(x), x)− ϕ(y, x)

≤ α

2
∥x− g−1(y)∥2 + ϵ, ∀y ∈ H}, ∀ϵ ≥ 0.

Now we give a metric characterization of strong α-well-posedness for GMIQVI(F, g, ϕ).

Theorem 3.6. Let g : H → H be a homeomorphism. Let F : H → H be g-
monotone, g-convex and g-hemicontinuous. Assume that for each fixed y ∈ H there
hold the following conditions for a proper functional ϕ : H ×H → R∪{+∞}:

(i) x 7→ ϕ(g(x), y) is convex;
(ii) x 7→ ϕ(g(x), x)− ϕ(g(y), x) is lower semicontinuous.

Then GMIQVI(F, g, ϕ) is strongly α-well-posed if and only if

(3.1) Ωα(ϵ) ̸= ∅, ∀ϵ > 0 and diamΩα(ϵ) → 0 as ϵ → 0.

Proof. Suppose that GMIQVI(F, g, ϕ) is strongly α-well-posed. Then GMIQVI(F, g,
ϕ) has a unique solution which lies in Ωα(ϵ) for all ϵ > 0. If diamΩα(ϵ) ̸→ 0 as
ϵ → 0, then there exist constant l > 0 and sequences {ϵn} ⊂ R+ with ϵn → 0, and
{un}, {vn} with un, vn ∈ Ωα(ϵn) such that

(3.2) ∥un − vn∥ > l, ∀n ∈ N.

Since un, vn ∈ Ωα(ϵn), both {un} and {vn} are α-approximating sequences for
GMIQVI(F, g, ϕ). So they have to converge strongly to the unique solution of
GMIQVI(F, g, ϕ), a contraction to (3.2).

Conversely, suppose that condition (3.1) holds. Let {xn} ⊂ H be an α-
approximating sequence for GMIQVI(F, g, ϕ). Then there exists a sequence {ϵn} ⊂
R+ with ϵn → 0 such that

g(xn) ∈ domϕ(·, xn),

⟨F (xn), g(xn)− y⟩+ ϕ(g(xn), xn)− ϕ(y, xn) ≤
α

2
∥xn − g−1(y)∥2 + ϵn, ∀y ∈ H

for all n ∈ N . This implies that xn ∈ Ωα(ϵn). From (3.1), we know that {xn}
is a Cauchy sequence and so it converges strongly to a point x̄ ∈ H. Note that
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g : H → H is a homeomorphism. Hence the last inequality is equivalent to the
following inequality

(3.3) ⟨F (xn), g(xn)−g(y)⟩+ϕ(g(xn), xn)−ϕ(g(y), xn) ≤
α

2
∥xn−y∥2+ϵn, ∀y ∈ H.

Since F is g-monotone and functional x 7→ ϕ(g(x), x)− ϕ(g(y), x) is lower semicon-
tinuous for each fixed y ∈ H, it follows from (3.3) that

⟨F (y), g(x̄)− g(y)⟩+ ϕ(g(x̄), x̄)− ϕ(g(y), x̄)
≤ lim inf

n→∞
{⟨F (y), g(xn)− g(y)⟩+ ϕ(g(xn), xn)− ϕ(g(y), xn)}

≤ lim inf
n→∞

{⟨F (xn), g(xn)− g(y)⟩+ ϕ(g(xn), xn)− ϕ(g(y), xn)}

≤ lim inf
n→∞

{α
2
∥xn − y∥2 + ϵn}

= α
2 ∥x̄− y∥2, ∀y ∈ H.

For any y ∈ H, put yt = (1− t)x̄+ ty, ∀t ∈ (0, 1). Then

⟨F (yt), g(x̄)− g(yt)⟩+ ϕ(g(x̄), x̄)− ϕ(g(yt), x̄) ≤
α

2
∥x̄− yt∥2, ∀t ∈ (0, 1).

Since F is g-convex and ϕ(g(·), x̄) is convex, we have

⟨F (yt), g(x̄)− g(y)⟩+ ϕ(g(x̄), x̄)− ϕ(g(y), x̄) ≤ tα

2
∥x̄− y∥2, ∀t ∈ (0, 1).

Letting t → 0+ in the last inequality, from the g-hemicontinuity of F we get

⟨F (x̄), g(x̄)− g(y)⟩+ ϕ(g(x̄), x̄)− ϕ(g(y), x̄) ≤ 0

for each y ∈ H. Since g : H → H is a homeomorphism, we have

⟨F (x̄), g(x̄)− y⟩+ ϕ(g(x̄), x̄)− ϕ(y, x̄) ≤ 0, ∀y ∈ H.

This shows that x̄ solves GMIQVI(F, g, ϕ).
To complete the proof, we need only to prove that GMIQVI(F, g, ϕ) has a unique

solution. Assume by contradiction that GMIQVI(F, g, ϕ) has two distinct solutions
x1 and x2. Then it is easy to see that x1, x2 ∈ Ωα(ϵ) for all ϵ > 0 and

0 < ∥x1 − x2∥ ≤ diamΩα(ϵ) → 0 as ϵ → 0,

a contradiction to (3.1). This completes the proof. �

Remark 3.7. Theorem 3.6 generalizes Theorem 3.1 of [11], and hence Proposition
2.2 of [7].

In terms of noncompact measure, we have the following analogous metric char-
acterization of strong α-well-posedness in the generalized sense.

Theorem 3.8. Let g : H → H be a homeomorphism and F : H → H be such
that the functional x 7→ ⟨F (x), g(x) − g(y)⟩ is lower semicontinuous for each fixed
y ∈ H. Let ϕ : H×H → R∪{+∞} be a proper functional such that x 7→ ϕ(g(x), x)−
ϕ(g(y), x) is lower semicontinuous for each fixed y ∈ H. Then GMIQVI(F, g, ϕ) is
strongly α-well-posed in the generalized sense if and only if

(3.4) Ωα(ϵ) ̸= ∅, ∀ϵ > 0 and µ(Ωα(ϵ)) → 0 as ϵ → 0.
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Proof. Suppose that GMIQVI(F, g, ϕ) is strongly α-well-posed in the generalized
sense. Let S be the solution set of GMIQVI(F, g, ϕ). Then S is nonempty and
compact. Indeed, let {xn} be any sequence in S. Then {xn} is α-approximating for
GMIQVI(F, g, ϕ). Since GMIQVI(F, g, ϕ) is strongly α-well-posed in the generalized
sense, {xn} has a subsequence which converges strongly to some point of S. Thus
S is compact. Clearly, Ωα(ϵ) ⊃ S ̸= ∅ for all ϵ > 0. Now let us show that

µ(Ωα(ϵ)) → 0 as ϵ → 0.

Observe that for every ϵ > 0,
H(Ωα(ϵ), S) = max{e(Ωα(ϵ), S), e(S,Ωα(ϵ))} = e(Ωα(ϵ), S).

Taking into account the compactness of S, we get
µ(Ωα(ϵ)) ≤ 2H(Ωα(ϵ), S) = 2e(Ωα(ϵ), S).

To prove (3.4), it is sufficient to show that

e(Ωα(ϵ), S) → 0 as ϵ → 0.

If e(Ωα(ϵ), S) ̸→ 0 as ϵ → 0, then there exist l > 0 and {ϵn} ⊂ R+ with ϵn → 0,
and xn ∈ Ωα(ϵn) such that

(3.5) xn ̸∈ S +B(0, l), ∀n ∈ N,

where B(0, l) is the closed ball centered at 0 with radius l. Because of xn ∈ Ωα(ϵn),
{xn} is an α-approximating sequence for GMIQVI(F, g, ϕ). Since GMIQVI(F, g, ϕ)
is strongly α-well-posed in the generalized sense, there exists a subsequence {xnk

}
of {xn} converging strongly to some point of S. This contradicts to (3.5) and so

e(Ωα(ϵ), S) → 0 as ϵ → 0.

Conversely, assume that (3.4) holds. First, let us show that Ωα(ϵ) is closed for
all ϵ > 0. Let {xn} ⊂ Ωα(ϵ) with xn → x. Then

⟨F (xn), g(xn)− y⟩+ ϕ(g(xn), xn)− ϕ(y, xn) ≤
α

2
∥xn − g−1(y)∥2 + ϵ, ∀y ∈ H.

Since g : H → H is a homeomorphism, the last inequality is equivalent to the
following one

⟨F (xn), g(xn)− g(y)⟩+ ϕ(g(xn), xn)− ϕ(g(y), xn) ≤
α

2
∥xn − y∥2 + ϵ, ∀y ∈ H.

Since z 7→ ⟨F (z), g(z)− g(y)⟩ and z 7→ ϕ(g(z), z)− ϕ(g(y), z) are lower semicontin-
uous for each fixed y ∈ H, we deduce that

⟨F (x), g(x)− g(y)⟩+ ϕ(g(x), x)− ϕ(g(y), x) ≤ α

2
∥x− y∥2 + ϵ, ∀y ∈ H.

Since g : H → H is a homeomorphism, the last inequality is equivalent to the
following one

⟨F (x), g(x)− y⟩+ ϕ(g(x), x)− ϕ(y, x) ≤ α

2
∥x− g−1(y)∥2 + ϵ, ∀y ∈ H.

This shows that x ∈ Ωα(ϵ) and so Ωα(ϵ) is nonempty closed for all ϵ > 0. Observe
that

S =
∩
ϵ>0

Ωα(ϵ).
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Since µ(Ωα(ϵ)) → 0, the Theorem on page 412 of [15] can be applied and one
concludes that S is nonempty and compact with

e(Ωα(ϵ), S) = H(Ωα(ϵ), S) → 0 as ϵ → 0.
Let {un} ⊂ H be an α-approximating sequence for GMIQVI(F, g, ϕ). Then there
exists ϵn > 0 with ϵn → 0 such that

g(un) ∈ domϕ(·, un),

⟨F (un), g(un)− y⟩+ ϕ(g(un), un)− ϕ(y, un) ≤
α

2
∥un − g−1(y)∥2 + ϵn, ∀y ∈ H

for all n ∈ N . So un ∈ Ωα(ϵn) follows from definition. It follows from (3.4) that

d(un, S) ≤ e(Ωα(ϵn), S) → 0.

Since S is compact, there exists x̄n ∈ S such that

∥un − x̄n∥ = d(un, S) → 0.

Again from the compactness od S, {x̄n} has a subsequence {x̄nk
} converging strongly

to x̄ ∈ S. Hence the corresponding subsequence {unk
} of {un} converges strongly

to x̄. Thus GMIQVI(F, g, ϕ) is strongly α-well-posed in the generalized sense. �
Now we give the following example as an application of Theorem 3.6.

Example 3.9. Let H be the 2-dimensional Euclidean space R2. As usual, its inner
product and norm are defined as

⟨x, y⟩ = x1y1 + x2y2 and ∥x∥ =
√

x21 + x22, ∀x, y ∈ H

where x = (x1, x2) and y = (y1, y2). Define mappings F, g : H → H and functional
ϕ : H ×H → R∪{+∞} as follows

F (x) = g(x) = (x1 − x2, x1 + x2) and ϕ(x, y) = ∥x∥2 + ∥y∥2, ∀x, y ∈ H

where x = (x1, x2) and y = (y1, y2). Clearly, g is a homeomorphism, F is g-
monotone, g-convex and g-hemicontinuous, and ϕ is a proper functional such that
for each fixed y ∈ H the following conditions are satisfied:

(i) ϕ(g(x), y) = 2∥x∥2 + ∥y∥2 is convex in the variable x;
(ii) ϕ(g(x), x)−ϕ(g(y), x) = 2(∥x∥2−∥y∥2) is lower semicontinuous in the variable

x.
Let α = 4. Then

Ω4(ϵ)

= {x ∈ H : ⟨F (x), g(x)− y⟩+ ϕ(g(x), x)− ϕ(y, x) ≤ α

2
∥x− g−1(y)∥2 + ϵ, ∀y ∈ H}

= {x ∈ H : ⟨F (x), g(x)− g(y)⟩+ ϕ(g(x), x)− ϕ(g(y), x) ≤ α

2
∥x− y∥2 + ϵ, ∀y ∈ H}

= {x ∈ H : 2⟨x, x− y⟩+ 2(∥x∥2 − ∥y∥2) ≤ 2∥x− y∥2 + ϵ, ∀y ∈ H}

= {x ∈ H : ⟨x, x− y⟩+ ∥x∥2 − ∥y∥2 − ∥x− y∥2 − ϵ

2
≤ 0, ∀y ∈ H}

= {x ∈ H : −2∥y − x

4
∥2 + 9∥x∥2

8
− ϵ

2
≤ 0, ∀y ∈ H}

= {x ∈ H : ∥x∥ ≤ 2
√
ϵ

3
}.
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By Theorem 3.6, GMIQVI(F, g, ϕ) is 4-well-posed since diamΩ4(ϵ) = 4
√
ϵ

3 → 0 as
ϵ → 0.

4. Links with well-posedness of inclusion problems

In this section we shall investigate the relations between the well-posedness of gen-
eral mixed implicit quasi-variational inequalities and the well-posedness of inclusion
problems. In what follows we always denote by → and ⇀ the strong convergence
and weak convergence, respectively. Let A : H → 2H be a set-valued mapping. The
inclusion problem associated with A is defined by

IP(A) : Find x ∈ H such that 0 ∈ A(x).

Definition 4.1 ( [16, 17]). A sequence {xn} ⊂ H is called an approximating se-
quence for IP(A) if d(0, A(xn)) → 0, or equivalently, there exists yn ∈ A(xn) such
that ∥yn∥ → 0 as n → ∞.

Definition 4.2 ( [16,17]). We say that IP(A) is strongly (resp. weakly) well-posed if
it has a unique solution and every approximating sequence converges strongly (resp.
weakly) to the unique solution of IP(A). IP(A) is said to be strongly (resp. weakly)
well-posed in the generalized sense if the solution set S of IP(A) is nonempty and
every approximating sequence has a subsequence which converges strongly (resp.
weakly) to a point of S.

Definition 4.3. A proper functional ϕ : H×H → R∪{+∞} is said to be diagonally
convex if for each (ui, vi) ∈ H ×H, i = 1, 2 and each λ ∈ [0, 1]

ϕ(λu1 + (1− λ)u2, λv1 + (1− λ)v2) ≤ λϕ(u1, v1) + (1− λ)ϕ(u2, v2).

Remark 4.4. If a proper functional ϕ : H ×H → R∪{+∞} is diagonally convex,
then for each fixed (x, y) ∈ H ×H the functionals u 7→ ϕ(u, y) and v 7→ ϕ(x, v) are
convex. Now we illustrate the concept of diagonal convexity. Take two fixed vectors
a, b ∈ H. Define a proper functional ϕ : H ×H → R∪{+∞} as follows

ϕ(x, y) = ∥x∥2 + ⟨a, y − b⟩, ∀(x, y) ∈ H ×H.

Then it is easy to see that ϕ : H ×H → R∪{+∞} is diagonally convex. Meantime,
it is clear that ϕ(y, ·) is affine for each fixed y ∈ H.

The following theorems establish the relations between the strong (resp. weak)
well-posedness of general mixed implicit quasi-variational inequalities and the strong
(resp. weak) well-posedness of inclusion problems.

Theorem 4.5. Let g : H → H be a homeomorphism which is affine and σ-Lipschitz
continuous. Let F : H → H be g-monotone and g-hemicontinuous. Let ϕ : H×H →
R∪{+∞} be a proper and diagonally convex functional such that for each fixed
y ∈ H there hold the following conditions:

(i) ϕ(y, ·) is affine;
(ii) ϕ(·, y) is a lower semicontinuous functional satisfying g(H)∩dom∂ϕ(·, y) ̸= ∅;
(iii) x 7→ ϕ(g(x), x)− ϕ(g(y), x) is weakly lower semicontinuous.

If GMIQVI(F, g, ϕ) is weakly well-posed, then IP(F, g, ϕ) is weakly well-posed.
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Proof. Suppose that GMIQVI(F, g, ϕ) is weakly well-posed. Then GMIQVI(F, g, ϕ)
has a unique solution x∗. By Lemma 2.2, x∗ is also the unique solution of IP(F, g, ϕ).
Let {xn} be an approximating sequence for IP(F, g, ϕ). Then there exists yn ∈
F (xn) + ∂ϕ(g(xn), xn) such that ∥yn∥ → 0. It follows that

ϕ(y, xn)− ϕ(g(xn), xn) ≥ ⟨yn − F (xn), y − g(xn)⟩, ∀y ∈ H,n ∈ N.

Since g : H → H is a homeomorphism, the last inequality is equivalent to the
following one

(4.1) ϕ(g(y), xn)− ϕ(g(xn), xn) ≥ ⟨yn − F (xn), g(y)− g(xn)⟩, ∀y ∈ H,n ∈ N.

If {xn} is unbounded, without loss of generality, we may assume that ∥xn∥ → +∞.
Let

tn =
1

∥xn − x∗∥
, zn = x∗ + tn(xn − x∗).

Without loss of generality, we may assume that tn ∈ (0, 1] and zn ⇀ z(̸= x∗). For
any y ∈ H, it follows from the affinity of g that

⟨F (y), g(z)− g(y)⟩ = ⟨F (y), g(z)− g(zn)⟩+ ⟨F (y), g(zn)− g(x∗)⟩
+⟨F (y), g(x∗)− g(y)⟩

= ⟨F (y), g(z)− g(zn)⟩+ tn⟨F (y), g(xn)− g(x∗)⟩.(4.2)

+⟨F (y), g(x∗)− g(y)⟩
= ⟨F (y), g(z)− g(zn)⟩+ tn⟨F (y), g(xn)− g(y)⟩

+(1− tn)⟨F (y), g(x∗)− g(y)⟩

Since F is g-monotone,

(4.3) ⟨F (y), g(x∗)− g(y)⟩ ≤ ⟨F (x∗), g(x∗)− g(y)⟩
and ⟨F (y), g(xn)− g(y)⟩ ≤ ⟨F (xn), g(xn)− g(y)⟩.

Furthermore, since x∗ is the unique solution of GMIQVI(F, g, ϕ), we have

⟨F (x∗), g(x∗)− y⟩+ ϕ(g(x∗), x∗)− ϕ(y, x∗) ≤ 0, ∀y ∈ H

which is equivalent to the following inequality

(4.4) ⟨F (x∗), g(x∗)− g(y)⟩+ ϕ(g(x∗), x∗)− ϕ(g(y), x∗) ≤ 0, ∀y ∈ H.

Also, since ϕ is diagonally convex, and both ϕ(g(y), ·) and g are affine, it follows
from (4.1)-(4.4) that

⟨F (y), g(z)− g(y)⟩
≤ ⟨F (y), g(z)− g(zn)⟩+ tnϕ(g(y), xn)− tnϕ(g(xn), xn) + tn⟨yn, g(xn)− g(y)⟩
+(1− tn)[ϕ(g(y), x

∗)− ϕ(g(x∗), x∗)]
= ⟨F (y), g(z)− g(zn)⟩+ tnϕ(g(y), xn) + (1− tn)ϕ(g(y), x

∗)

−[tnϕ(g(xn), xn) + (1− tn)ϕ(g(x
∗), x∗)] + ⟨yn,g(xn)−g(y)⟩

∥xn−x∗∥
≤ ⟨F (y), g(z)− g(zn)⟩+ ϕ(g(y), zn)− ϕ(g(zn), zn) +

⟨yn,g(xn)−g(y)⟩
∥xn−x∗∥

≤ ⟨F (y), g(z)− g(zn)⟩+ ϕ(g(y), zn)− ϕ(g(zn), zn) + σ∥yn∥ ∥xn−y∥
∥xn−x∗∥ .
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Note that x 7→ ϕ(g(x), x)−ϕ(g(y), x) is weakly lower semicontinuous. Utilizing the
fact that every convex and lower semicontinuous functional has to be weakly lower
semicontinuous, we deduce that

⟨F (y), g(z)− g(y)⟩

≤ lim sup
n→∞

{⟨F (y), g(z)− g(zn)⟩+ ϕ(g(y), zn)− ϕ(g(zn), zn) + σ∥yn∥
∥xn − y∥
∥xn − x∗∥

}

≤ ϕ(g(y), z)− ϕ(g(z), z),

which is equivalent to the following inequality

⟨F (y), g(z)− y⟩+ ϕ(g(z), z)− ϕ(y, z) ≤ 0, ∀y ∈ H.

This together with Lemma 2.6 yields that z solves GMIQVI(F, g, ϕ), a contradiction.
Thus, {xn} is bounded.

Let {xnk
} be any subsequence of {xn} such that xnk

⇀ x̄ as k → ∞. It follows
from (4.1) that

⟨F (xnk
), g(xnk

)− g(y)⟩+ ϕ(g(xnk
), xnk

)− ϕ(g(y), xnk
) ≤ ⟨ynk

, g(xnk
)− g(y)⟩,

∀y ∈ H,n ∈ N.

Since g is affine, F is g-monotone, x 7→ ϕ(g(x), x) − ϕ(g(y), x) is weakly lower
semicontinuous, and ∥yn∥ → 0, we have

⟨F (y), g(x̄)− g(y)⟩+ ϕ(g(x̄), x̄)− ϕ(g(y), x̄)
≤ lim inf

n→∞
{⟨F (y), g(xnk

)− g(y)⟩+ ϕ(g(xnk
), xnk

)− ϕ(g(y), xnk
)}

≤ lim inf
n→∞

{⟨F (xnk
), g(xnk

)− g(y)⟩+ ϕ(g(xnk
), xnk

)− ϕ(g(y), xnk
)}

≤ lim inf
n→∞

⟨ynk
, g(xnk

)− g(y)⟩
≤ lim inf

n→∞
σ∥ynk

∥∥xnk
− y∥ = 0, ∀y ∈ H,

which is equivalent to the following inequality

⟨F (y), g(x̄)− y⟩+ ϕ(g(x̄), x̄)− ϕ(y, x̄) ≤ 0, ∀y ∈ H.

This together with Lemma 2.6 yields that x̄ solves GMIQVI(F, g, ϕ). We have
x̄ = x∗ since GMIQVI(F, g, ϕ) has a unique solution x∗. Therefore {xn} converges
weakly to x∗ and so IP(F, g, ϕ) is weakly well-posed. �

Theorem 4.6. Let g : H → H be a homeomorphism whose inverse g−1 is uniformly
continuous. Let F : H → H be uniformly continuous and g-monotone, and let
ϕ : H×H → R∪{+∞} be such that for each fixed y ∈ H, ϕ(·, y) is a proper, convex
and lower semicontinuous functional satisfying g(H) ∩ dom∂ϕ(·, y) ̸= ∅. Assume
that for any bounded sequences {xn}, {yn} in H there holds the following:

∥xn−yn∥ → 0 (n → ∞) ⇒ ∂ϕ(g(yn), xn) ⊂ ∂ϕ(g(yn), yn) for n sufficiently large.

If IP(F, g, ϕ) is strongly (resp. weakly) well-posed, then GMIQVI(F, g, ϕ) is strongly
(resp. weakly) well-posed.

Proof. Let {xn} be an approximating sequence for GMIQVI(F, g, ϕ). Then there
exists ϵn > 0 with ϵn → 0 such that

ϕ(g(xn), xn) ≤ ϕ(y, xn) + ⟨F (xn), y − g(xn)⟩+ ϵn, ∀y ∈ H,n ∈ N.
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Define ϕ̃n : H → R∪{+∞} as follows:

ϕ̃n(y) = ϕ(y, xn) + ⟨F (xn), y − g(xn)⟩, ∀y ∈ H.

Clearly ϕ̃n is proper, convex and lower semicontinuous and 0 ∈ ∂ϵn ϕ̃n(g(xn)) for all
n ∈ N . By the Brøndsted-Rockafellar theorem [4], there exists x̄n ∈ H and

x∗n ∈ ∂ϕ̃n(g(x̄n)) = ∂ϕ(g(x̄n), xn) + F (xn)

such that

∥g(xn)− g(x̄n)∥ ≤
√
ϵn, ∥x∗n∥ ≤

√
ϵn.

It follows that

x∗n + F (x̄n)− F (xn) ∈ F (x̄n) + ∂ϕ(g(x̄n), xn) ⊂ F (x̄n) + ∂ϕ(g(x̄n), x̄n)

for n sufficiently large. Since g−1, F : H → H are uniformly continuous, we deduce
that

∥xn − x̄n∥ = ∥g−1(g(xn))− g−1(g(x̄n))∥ → 0

and hence

∥x∗n + F (x̄n)− F (xn)∥ ≤ ∥x∗n∥+ ∥F (x̄n)− F (xn)∥ → 0.

So {x̄n} is an approximating sequence for IP(F, g, ϕ).
Let x∗ be the unique solution of GMIQVI(F, g, ϕ). By Lemma 2.2, x∗ is also the

unique solution of IP(F, g, ϕ).
If IP(F, g, ϕ) is strongly well-posed, then x̄n → x∗. It follows that

∥xn − x∗∥ ≤ ∥xn − x̄n∥+ ∥x̄n − x∗∥ → 0

and so GMIQVI(F, g, ϕ) is strongly well-posed.
If IP(F, g, ϕ) is weakly well-posed, then x̄n ⇀ x∗. For any f ∈ H, we have

|⟨f, xn − x∗⟩| ≤ |⟨f, xn − x̄n⟩|+ |⟨f, x̄n − x∗⟩| ≤ ∥f∥∥xn − x̄n∥+ |⟨f, x̄n − x∗⟩| → 0.

Thus GMIQVI(F, g, ϕ) is weakly well-posed. �

For the well-posedness in the generalized sense, we have the following analogous
results.

Theorem 4.7. Let g : H → H be a homeomorphism which is σ-Lipschitz contin-
uous, and F : H → H be g-hemicontinuous and g-monotone. Let ϕ : H × H →
R∪{+∞} be such that for each fixed y ∈ H, ϕ(·, y) is a proper, convex and lower
semicontinuous functional satisfying g(H) ∩ dom∂ϕ(·, y) ̸= ∅. If GMIQVI(F, g, ϕ)
is strongly (resp. weakly) σ2-well-posed in the generalized sense, then IP(F, g, ϕ) is
strongly (resp. weakly) well-posed in the generalized sense.

Proof. Let {xn} be an approximating sequence for IP(F, g, ϕ). Then there exists
yn ∈ F (xn) + ∂ϕ(g(xn), xn) such that ∥yn∥ → 0. It follows that

ϕ(y, xn)− ϕ(g(xn), xn) ≥ ⟨yn − F (xn), y − g(xn)⟩, ∀y ∈ H,n ∈ N,

which is equivalent to the following inequality

ϕ(g(y), xn)− ϕ(g(xn), xn) ≥ ⟨yn − F (xn), g(y)− g(xn)⟩, ∀y ∈ H,n ∈ N.
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Hence we have

⟨F (xn), g(xn)− g(y)⟩+ ϕ(g(xn), xn)− ϕ(g(y), xn)
≤ ⟨yn, g(xn)− g(y)⟩
≤ 1

2∥g(xn)− g(y)∥2 + 1
2∥yn∥

2

≤ σ2

2 ∥xn − y∥2 + 1
2∥yn∥

2, ∀y ∈ H,n ∈ N,

which is equivalent to the following inequality

⟨F (xn), g(xn)− y⟩+ ϕ(g(xn), xn)− ϕ(y, xn) ≤
σ2

2
∥xn − g−1(y)∥2 + 1

2
∥yn∥2,

∀y ∈ H,n ∈ N.

This together with ∥yn∥ → 0 implies that {xn} is σ2-approximating for
GMIQVI(F, g, ϕ). Since GMIQVI(F, g, ϕ) is strongly (resp. weakly) σ2-well-posed
in the generalized sense, {xn} converges strongly (resp. weakly) to some solution
x∗ of GMIQVI(F, g, ϕ). By Lemma 2.2, x∗ is also a solution of IP(F, g, ϕ). So
IP(F, g, ϕ) is strongly (resp. weakly) well-posed in the generalized sense. �
Theorem 4.8. Let g : H → H be a homeomorphism whose inverse g−1 is uniformly
continuous. Let F : H → H be uniformly continuous and g-monotone, and let
ϕ : H×H → R∪{+∞} be such that for each fixed y ∈ H, ϕ(·, y) is a proper, convex
and lower semicontinuous functional satisfying g(H) ∩ dom∂ϕ(·, y) ̸= ∅. Assume
that for any bounded sequences {xn}, {yn} in H there holds the following:

∥xn−yn∥ → 0 (n → ∞) ⇒ ∂ϕ(g(yn), xn) ⊂ ∂ϕ(g(yn), yn) for n sufficiently large.

If IP(F, g, ϕ) is strongly (resp. weakly) well-posed in the generalized sense, then
GMIQVI(F, g, ϕ) is strongly (resp. weakly) well-posed in the generalized sense.

Proof. The conclusion follows from the arguments similar to that of Theorem 4.6.
�

5. Links with well-posedness of fixed point problems

In this section, we shall investigate the relations between the well-posedness of
general mixed implicit quasi-variational inequalities and the well-posedness of fixed
point problems. Let T : H → H be a single-valued mapping. The fixed-point
problem associated with T is defined by

FP(T ) : Find x ∈ H such that T (x) = x.

We first recall some concepts.

Definition 5.1 ( [16, 17]). A sequence {xn} ⊂ H is called an approximating se-
quence for FP(T ) if ∥xn − T (xn)∥ → 0 as n → ∞.

Definition 5.2 ( [16, 17]). We say that FP(T ) is strongly (resp. weakly) well-
posed if FP(T ) has a unique solution and every approximating sequence for FP(T )
converges strongly (resp. weakly) to the unique solution. FP(T ) is said to be
strongly (resp. weakly) well-posed in the generalized sense if FP(T ) has a nonempty
solution set S and every approximating sequence for FP(T ) has a subsequence which
converges strongly (resp. weakly) to some point of S.
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Theorem 5.3. Let g : H → H be a homeomorphism which is affine and σ-Lipschitz
continuous. Let F : H → H be Lipschitz continuous and g-monotone. Let ϕ :
H×H → R∪{+∞} be a proper and diagonally convex functional such that for each
fixed y ∈ H there hold the following conditions:

(i) ϕ(y, ·) is affine;
(ii) ϕ(·, y) is a lower semicontinuous functional satisfying g(H)∩dom∂ϕ(·, y) ̸= ∅;
(iii) for any weak convergence sequence {zn} ⊂ H with zn ⇀ z ∈ H and any

sequence {en} ⊂ H with en → 0, there holds for each fixed y ∈ H

lim inf
n→∞

[ϕ(g(zn) + en, zn)− ϕ(g(y), zn)] ≥ ϕ(g(z), z)− ϕ(g(y), z);

(iv) for any sequences {xn}, {wn} ⊂ H with ∥wn∥ → +∞ and ∥xn − wn∥ → 0,

lim sup
n→∞

⟨F (xn), g(wn)− g(xn) + xn − wn⟩
∥wn∥

≤ 0.

If GMIQVI(F, g, ϕ) is weakly well-posed, then FP(F, g, ϕ) is weakly well-posed, where
λ > 0 is a constant.

Remark 5.4. It is easy to see that condition (iv) of Theorem 5.3 holds if one of
the following statements (a), (b) holds:

(a) g = I the identity mapping of H;
(b) F : H → H is Lipschitz continuous.

In addition, if g = I the identity mapping of H and ϕ(x, y) = φ(x) is a proper,
convex and lower semicontinuous functional, then there is no doubt that condition
(iii) in Theorem 5.3 holds.

Proof of Theorem 5.3. Suppose that GMIQVI(F, g, ϕ) is weakly well-posed. Let x∗

be the unique solution of GMIQVI(F, g, ϕ). By Lemma ??, x∗ is also the unique
solution of FP(F, g, ϕ). Let {xn} be an approximating sequence for FP(F, g, ϕ).
Then ∥xn − wn∥ → 0, where

wn = xn − g(xn) + J
∂ϕ(·,xn)
λ (g(xn)− λF (xn)).

By the definition of J
∂ϕ(·,x)
λ ,

xn − wn

λ
− F (xn) ∈ ∂ϕ(wn − xn + g(xn), xn).

It follows that

(5.1)

ϕ(y, xn)− ϕ(wn − xn + g(xn), xn) ≥ ⟨xn − wn

λ
− F (xn), y − (wn − xn + g(xn))⟩,

∀y ∈ H,n ∈ N,

which is equivalent to the following inequality

(5.2)

ϕ(g(y), xn)−ϕ(wn−xn+g(xn), xn) ≥ ⟨xn − wn

λ
−F (xn), g(y)−(wn−xn+g(xn))⟩,

∀y ∈ H,n ∈ N.
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If {wn} is unbounded, without loss of generality, we may assume that ∥wn∥ →
+∞. Let

tn =
1

∥wn − x∗∥
, zn = x∗ + tn(xn − x∗).

Without loss of generality, we may assume that tn ∈ (0, 1) and zn ⇀ z(̸= x∗). From
the affinity of g it follows that

⟨F (y), g(z)− g(y)⟩ = ⟨F (y), g(z)− g(zn)⟩+ ⟨F (y), g(zn)− g(x∗)⟩
+⟨F (y), g(x∗)− g(y)⟩

= ⟨F (y), g(z)− g(zn)⟩+ tn⟨F (y), g(xn)− g(y)⟩(5.3)

+(1− tn)⟨F (y), g(x∗)− g(y)⟩.

Since x∗ is the unique solution of GMIQVI(F, g, ϕ), we have

⟨F (x∗), g(x∗)− y⟩+ ϕ(g(x∗), x∗)− ϕ(y, x∗) ≤ 0, ∀y ∈ H,n ∈ N,

which is equivalent to the following inequality

(5.4) ⟨F (x∗), g(x∗)− g(y)⟩+ ϕ(g(x∗), x∗)− ϕ(g(y), x∗) ≤ 0, ∀y ∈ H,n ∈ N.

Note that ϕ is diagonally convex and g and ϕ(g(y), ·) are affine. Hence it follows
from (13)-(15) that for all y ∈ H and n ∈ N ,

⟨F (y), g(z)− g(y)⟩
≤ ⟨F (y), g(z)− g(zn)⟩+ tn⟨F (xn), g(xn)− g(y)⟩+ (1− tn)⟨F (x∗), g(x∗)− g(y)⟩
≤ ⟨F (y), g(z)− g(zn)⟩+ tn[ϕ(g(y), xn)− ϕ(wn − xn + g(xn), xn)
+⟨wn−xn

λ , g(y)− (wn − xn + g(xn))⟩+ ⟨F (xn), g(wn)− g(xn) + xn − wn⟩]
+(1− tn)[ϕ(g(y), x

∗)− ϕ(g(x∗), x∗)]
= ⟨F (y), g(z)− g(zn)⟩+ tnϕ(g(y), xn) + (1− tn)ϕ(g(y), x

∗)
−[tnϕ(wn − xn + g(xn), xn) + (1− tn)ϕ(g(x

∗), x∗)]
+tn[⟨wn−xn

λ , g(y)− (wn − xn + g(xn))⟩+ ⟨F (xn), g(wn)− g(xn) + xn − wn⟩]
≤ ⟨F (y), g(z)− g(zn)⟩+ ϕ(g(y), zn)− ϕ(g(zn) + tn(wn − xn), zn)
+tn[⟨wn−xn

λ , g(y)− (wn − xn + g(xn))⟩+ ⟨F (xn), g(wn)− g(xn) + xn − wn⟩].

Consequently, from conditions (i), (iii) and (iv) it follows that

⟨F (y), g(z)− g(y)⟩
≤ lim sup

n→∞
{⟨F (y), g(z)− g(zn)⟩+ ϕ(g(y), zn)− ϕ(g(zn) + tn(wn − xn), zn)

+tn[⟨wn−xn
λ , g(y)− (wn − xn + g(xn))⟩+ ⟨F (xn), g(wn)− g(xn) + xn − wn⟩]}

≤ ϕ(g(y), z)− ϕ(g(z), z), ∀y ∈ H.

This together with Lemma 2.6 implies that z solves GMIQVI(F, g, ϕ), a contradic-
tion. Thus, {wn} is bounded.

Let {wnk
} be any subsequence of {wn} such that wnk

⇀ w̄ as k → ∞. From
(5.2) we have

⟨F (wnk
), (wnk

−xnk
+ g(xnk

))− g(y)⟩+ϕ(wnk
−xnk

+ g(xnk
), xnk

)−ϕ(g(y), xnk
)

≤ ⟨xnk
− wnk

λ
, (wnk

− xnk
+ g(xnk

))− g(y)⟩

+ ⟨F (wnk
)− F (xnk

), (wnk
− xnk

+ g(xnk
))− g(y)⟩,
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for all y ∈ H. Since F is g-monotone and uniformly continuous, from condition (iii)
and the affinity of g we obtain

⟨F (y), g(w̄)− g(y)⟩+ ϕ(g(w̄), w̄)− ϕ(g(y), w̄)
≤ lim inf

n→∞
{⟨F (y), g(wnk

)− g(y)⟩+ ϕ(wnk
− xnk

+ g(xnk
), xnk

)− ϕ(g(y), xnk
)}

≤ lim inf
n→∞

{⟨F (wnk
), g(wnk

)− g(y)⟩+ ⟨F (wnk
), g(xnk

)− g(wnk
) + wnk

− xnk
⟩

+ϕ(wnk
− xnk

+ g(xnk
), xnk

)− ϕ(g(y), xnk
)}

≤ lim inf
n→∞

{⟨xnk
− wnk

λ
, (wnk

− xnk
+ g(xnk

))− g(y)⟩
+⟨F (wnk

)− F (xnk
), (wnk

− xnk
+ g(xnk

))− g(y)⟩}
= 0, ∀y ∈ H.

This together with Lemma 2.6 yields that w̄ solves GMIQVI(F, g, ϕ). We have
wn ⇀ x∗ since GMIQVI(F, g, ϕ) has a unique solution x∗. For any f ∈ H, it follows
that

|⟨f, xn − x∗⟩| ≤ |⟨f, xn − wn⟩|+ |⟨f, wn − x∗⟩|
≤ ∥f∥∥xn − wn∥+ |⟨f, wn − x∗⟩| → 0.

Therefore, x ⇀ x∗ and so FP(F, g, ϕ) is weakly well-posed. �

Theorem 5.5. Let g : H → H be a homeomorphism whose inverse g−1 is uniformly
continuous. Let F : H → H be uniformly continuous and g-monotone, and let
ϕ : H×H → R∪{+∞} be such that for each fixed y ∈ H, ϕ(·, y) is a proper, convex
and lower semicontinuous functional satisfying g(H) ∩ dom∂ϕ(·, y) ̸= ∅. Assume
that for any bounded sequences {xn}, {yn} in H there holds the following:

∥xn−yn∥ → 0 (n → ∞) ⇒ ∂ϕ(g(yn), xn) ⊂ ∂ϕ(g(yn), yn) for n sufficiently large.

If FP(F, g, ϕ) is strongly (resp. weakly) well-posed, then GMIQVI(F, g, ϕ) is strongly
(resp. weakly) well-posed.

Proof. Let {xn} be an approximating sequence for GMIQVI(F, g, ϕ). Then there
exists ϵn > 0 with ϵn → 0 such that

ϕ(g(xn), xn) ≤ ϕ(y, xn) + ⟨F (xn), y − g(xn)⟩+ ϵn, ∀y ∈ H,n ∈ N.

Define ϕ̃n : H → R∪{+∞} as follows:

ϕ̃n(y) = ϕ(y, xn) + ⟨F (xn), y − g(xn)⟩, ∀y ∈ H.

Clearly ϕ̃n is proper, convex and lower semicontinuous and 0 ∈ ∂ϵn ϕ̃n(g(xn)) for all
n ∈ N . By the Brøndsted-Rockafellar theorem [4], there exists x̄n ∈ H and

(5.5) x∗n ∈ ∂ϕ̃n(g(x̄n)) = ∂ϕ(g(x̄n), xn) + F (xn)

such that

(5.6) ∥g(xn)− g(x̄n)∥ ≤
√
ϵn, ∥x∗n∥ ≤

√
ϵn.

It follows that

g(x̄n) + λ(x∗n − F (xn)) ∈ ∂ϕ(g(x̄n), xn) + g(x̄n)
⊂ g(x̄n) + λ∂ϕ(g(x̄n), x̄n) + g(x̄n)
= (I + λ∂ϕ(·, x̄n))(g(x̄n)),
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and hence

(5.7) x̄n = x̄n − g(x̄n) + J
∂ϕ(·,x̄n)
λ (g(x̄n) + λ(x∗n − F (xn))).

It follows from (5.5)-(5.7) that

∥x̄n − (x̄n − g(x̄n) + J
∂ϕ(·,x̄n)
λ (g(x̄n)− λF (x̄n)))∥

= ∥J∂ϕ(·,x̄n)
λ (g(x̄n) + λ(x∗n − F (xn)))− J

∂ϕ(·,x̄n)
λ (g(x̄n)− λF (x̄n))∥

≤ ∥(g(x̄n) + λ(x∗n − F (xn)))− (g(x̄n)− λF (x̄n))∥
≤ λ∥x∗n∥+ λ∥F (x̄n)− F (xn)∥ → 0

and so {x̄n} is an approximating sequence for FP(F, g, ϕ).
Let x∗ be the unique solution of FP(F, g, ϕ). By Lemma 2.2, x∗ is also the unique

solution of GMIQVI(F, g, ϕ).
If FP(F, g, ϕ) is strongly well-posed, then x̄n → x∗. It follows that

∥xn − x∗∥ ≤ ∥xn − x̄n∥+ ∥x̄n − x∗∥ → 0.

Thus GMIQVI(F, g, ϕ) is strongly well-posed.
If FP(F, g, ϕ) is weakly well-posed, then x̄n ⇀ x∗. For any f ∈ H, we have

|⟨f, xn − x∗⟩| ≤ |⟨f, xn − x̄n⟩|+ |⟨f, x̄n − x∗⟩| ≤ ∥f∥
√
ϵn + |⟨f, x̄n − x∗⟩| → 0

and so GMIQVI(F, g, ϕ) is weakly well-posed. �

Theorem 5.6. Let g : H → H be a homeomorphism which is σ-Lipschitz continu-
ous, and F : H → H be uniformly continuous and g-monotone. Let ϕ : H ×H →
R∪{+∞} be such that for each fixed y ∈ H, ϕ(·, y) is a proper, convex and lower
semicontinuous functional satisfying g(H) ∩ dom∂ϕ(·, y) ̸= ∅. For any approximat-
ing sequence {xn} ⊂ H of FP(F, g, ϕ), suppose for each n ∈ N there exists δn > 0
such that

|ϕ(g(wn), wn)−ϕ(wn−xn+g(xn), xn)| ≤ δn and |ϕ(y, xn)−ϕ(y, wn)| ≤ δn, ∀y ∈ H,

where δn → 0 and wn = xn−g(xn)+J
∂ϕ(·,xn)
λ (g(xn)−λF (xn)). If GMIQVI(F, g, ϕ)

is strongly (resp. weakly) (1+ 1
λ)-well-posed in the generalized sense, then FP(F, g, ϕ)

is strongly (resp. weakly) well-posed in the generalized sense, where λ > 0 is a
constant.

Proof. Let {xn} be an approximating sequence for FP(F, g, ϕ). Then ∥xn−wn∥ → 0,
where

wn = xn − g(xn) + J
∂ϕ(·,xn)
λ (g(xn)− λF (xn)).

By the definition of J∂ϕ(·,xn),

xn − wn

λ
− F (xn) ∈ ∂ϕ(wn − xn + g(xn), xn).

From the definition of subdifferential, we get

ϕ(y, xn)− ϕ(wn − xn + g(xn), xn) ≥ ⟨xn − wn

λ
− F (xn), y − (wn − xn + g(xn))⟩,

∀y ∈ H,n ∈ N,

which is equivalent to the following inequality
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ϕ(g(y), xn)−ϕ(wn−xn+g(xn), xn) ≥ ⟨xn − wn

λ
−F (xn), g(y)−(wn−xn+g(xn))⟩,

∀y ∈ H,

for all n ∈ N . It follows from g-monotonicity that

⟨F (wn), (wn − xn + g(xn))− g(y)⟩+ ϕ(wn − xn + g(xn), xn)− ϕ(g(y), xn)
≤ ⟨F (wn)− F (xn), (wn − xn + g(xn))− g(y)⟩

+ 1
λ⟨xn − wn, (wn − xn + g(xn))− g(y)⟩

≤ ⟨F (wn)− F (xn), wn − xn + g(wn)− g(y)⟩
+ 1

λ⟨xn − wn, g(xn)− g(wn) + g(wn)− g(y)⟩
= ⟨F (wn)− F (xn), wn − xn⟩+ ⟨F (wn)− F (xn), g(wn)− g(y)⟩
+ 1

λ⟨xn − wn, g(xn)− g(wn)⟩+ 1
λ⟨xn − wn, g(wn)− g(y)⟩

≤ 1
2(1 +

1
λ)∥g(wn)− g(y)∥2 + (12∥F (wn)− F (xn)∥2 + 1

2λ∥xn − wn∥2)
+⟨F (wn)− F (xn), wn − xn⟩+ 1

λ⟨xn − wn, g(xn)− g(wn)⟩, ∀y ∈ H,

for all n ∈ N . Thus from the last inequality we get

⟨F (wn), g(wn)− g(y)⟩+ ϕ(g(wn), wn)− ϕ(g(y), wn)
≤ 1

2(1 +
1
λ)∥g(wn)− g(y)∥2 + (12∥F (wn)− F (xn)∥2 + 1

2λ∥xn − wn∥2)
+⟨F (wn)− F (xn), wn − xn⟩+ 1

λ⟨xn − wn, g(xn)− g(wn)⟩
+⟨F (wn), xn − wn + g(wn)− g(xn)⟩+ ϕ(g(wn), wn)− ϕ(wn − xn + g(xn), xn)
+ϕ(g(y), xn)− ϕ(g(y), wn)
≤ 1

2(1 +
1
λ)∥g(wn)− g(y)∥2 + (12∥F (wn)− F (xn)∥2 + 1

2λ∥xn − wn∥2)
+|⟨F (wn)− F (xn), wn − xn⟩|+ 1

λ |⟨xn − wn, g(xn)− g(wn)⟩|
+|⟨F (wn), xn − wn + g(wn)− g(xn)⟩|+ 2δn, ∀y ∈ H,n ∈ N.

Since F and g are uniformly continuous and ∥wn − xn∥ → 0, we deduce that {wn}
is (1 + 1

λ)-approximating for GMIQVI(F, g, ϕ).

If GMIQVI(F, g, ϕ) is strongly (1 + 1
λ)-well-posed in the generalized sense, then

{wn} has a subsequence {wnk
} such that wnk

→ x∗ as k → ∞, where x∗ is a solution
of GMIQVI(F, g, ϕ). By Lemma 2.2, x∗ is also a solution of FP(F, g, ϕ). It follows
that

∥xnk
− x∗∥ ≤ ∥xnk

− wnk
∥+ ∥wnk

− x∗∥ → 0

as k → ∞. Thus FP(F, g, ϕ) is strongly well-posed in the generalized sense.
If GMIQVI(F, g, ϕ) is weakly (1 + 1

λ)-well-posed in the generalized sense, then
{wn} has a subsequence {wnk

} such that wnk
⇀ x∗ as k → ∞, where x∗ is a solution

of GMIQVI(F, g, ϕ). By Lemma 2.2, x∗ is also a solution of FP(F, g, ϕ). For any
f ∈ H, it follows that, as k → ∞,

|⟨f, xnk
− x∗⟩| ≤ |⟨f, xnk

− wnk
⟩|+ |⟨f, wnk

− x∗⟩|
≤ ∥f∥ · ∥xnk

− wnk
∥+ |⟨f, wnk

− x∗⟩| → 0.

Thus FP(F, g, ϕ) is weakly well-posed in the generalized sense. �
Theorem 5.7. Let g : H → H be a homeomorphism whose inverse g−1 is uniformly
continuous. Let F : H → H be uniformly continuous and g-monotone, and let
ϕ : H×H → R∪{+∞} be such that for each fixed y ∈ H, ϕ(·, y) is a proper, convex
and lower semicontinuous functional satisfying g(H) ∩ dom∂ϕ(·, y) ̸= ∅. Assume
that for any bounded sequences {xn}, {yn} in H there holds the following:

∥xn−yn∥ → 0 (n → ∞) ⇒ ∂ϕ(g(yn), xn) ⊂ ∂ϕ(g(yn), yn) for n sufficiently large.



WELL-POSEDNESS OF GMIQVI, INCLUSION AND FPT PROBLEMS 409

If FP(F, g, ϕ) is strongly (resp. weakly) well-posed in the generalized sense, then
GMIQVI(F, g, ϕ) is strongly (resp. weakly) well-posed in the generalized sense.

Proof. The conclusion follows from the arguments similar to that of Theorem 5.5.
�

6. Conclusions for well-posedness

In this section we shall prove that under suitable conditions the well-posedness of
the general mixed implicit quasi-variational inequality is equivalent to the existence
and uniqueness of its solutions, and the well-posedness in the generalized sense is
equivalent to the existence of its solutions.

Theorem 6.1. Let g : H → H be a homeomorphism which is affine and σ-Lipschitz
continuous. Let F : H → H be g-monotone and g-hemicontinuous. Let ϕ : H×H →
R∪{+∞} be a proper and diagonally convex functional such that for each fixed
y ∈ H there hold the following conditions:

(i) ϕ(y, ·) is affine;
(ii) ϕ(·, y) is a lower semicontinuous functional satisfying g(H)∩dom∂ϕ(·, y) ̸= ∅;
(iii) x 7→ ϕ(g(x), x)− ϕ(g(y), x) is weakly lower semicontinuous.

If GMIQVI(F, g, ϕ) is weakly well-posed if and only if it has a unique solution.

Proof. The necessity is obvious. For the sufficiency, suppose that GMIQVI(F, g, ϕ)
has a unique solution x∗. If GMIQVI(F, g, ϕ) is not weakly well-posed, then there
exists an approximating sequence {xn} for GMIQVI(F, g, ϕ) such that xn ̸⇀ x∗.
Thus, there exists ϵn > 0 with ϵn → 0 such that

⟨F (xn), g(xn)− y⟩+ ϕ(g(xn), xn)− ϕ(y, xn) ≤ ϵn, ∀y ∈ H,n ∈ N,

which is equivalent to the following inequality

(6.1) ⟨F (xn), g(xn)− g(y)⟩+ ϕ(g(xn), xn)− ϕ(g(y), xn) ≤ ϵn, ∀y ∈ H,n ∈ N.

If {xn} is unbounded, without loss of generality, we may assume that ∥xn∥ → +∞.
Let

tn =
1

∥xn − x∗∥
, zn = x∗ + tn(xn − x∗).

Without loss of generality, we may assume that tn ∈ (0, 1] and zn ⇀ z(̸= x∗). By
the arguments similar to that of Theorem 4.5, we have

⟨F (y), g(z)− g(y)⟩ ≤ ⟨F (y), g(z)− g(zn)⟩+ ϕ(g(y), zn)− ϕ(g(zn), zn) + tnϵn,

∀y ∈ H,n ∈ N.

It follows that

⟨F (y), g(z)− g(y)⟩ ≤ lim sup
n→∞

{⟨F (y), g(z)− g(zn)⟩

+ϕ(g(y), zn)− ϕ(g(zn), zn) + tnϵn}
≤ ϕ(g(y), z)− ϕ(g(z), z), ∀y ∈ H,

which is equivalent to the following inequality

⟨F (y), g(z)− y⟩ ≤ ϕ(y, z)− ϕ(g(z), z), ∀y ∈ H.
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This together with Lemma 2.6 yields that z solves GMIQVI(F, g, ϕ), a contradiction.
Thus, {xn} is bounded.

Let {xnk
} be any subsequence of {xn} such that xnk

⇀ x̄ as k → ∞. It follows
from (6.1) that

⟨F (xnk
), g(xnk

)− g(y)⟩+ ϕ(g(xnk
), xnk

)− ϕ(g(y), xnk
) ≤ ϵnk

, ∀y ∈ H, k ∈ N.

Since F is g-monotone, from condition (iii) we conclude that

⟨F (y), g(x̄)− g(y)⟩+ ϕ(g(x̄), x̄)− ϕ(g(y), x̄)
≤ lim inf n → ∞{⟨F (y), g(xnk

)− g(y)⟩+ ϕ(g(xnk
), xnk

)− ϕ(g(y), xnk
)}

≤ lim inf n → ∞{⟨F (xnk
), g(xnk

)− g(y)⟩+ ϕ(g(xnk
), xnk

)− ϕ(g(y), xnk
)}

≤ lim inf n → ∞ϵn = 0, ∀y ∈ H.

This together with Lemma 2.6 yields that x̄ solves GMIQVI(F, g, ϕ). We have
x̄ = x∗ since GMIQVI(F, g, ϕ) has a unique solution x∗. Thus {xn} converges
weakly to x∗, a contradiction. So GMIQVI(F, g, ϕ) is weakly well-posed. �

Example 6.2. Let H,F, g be as in Example 3.9 and ϕ be as in Remark 4.4. Clearly,
g : H → H be a homeomorphism which is affine and σ-Lipschitz continuous. More-
over, F : H → H be g-monotone and g-hemicontinuous. On the other hand,
ϕ : H×H → R∪{+∞} is obviously a proper and diagonally convex functional such
that for each fixed y ∈ H there hold the following conditions:

(i) ϕ(y, ·) is affine;
(ii) ϕ(·, y) is a lower semicontinuous functional satisfying g(H)∩dom∂ϕ(·, y) ̸= ∅;
(iii) x 7→ ϕ(g(x), x)− ϕ(g(y), x) is weakly lower semicontinuous.

Furthermore, it is easy to see that GMIQVI(F, g, ϕ) has a unique solution x∗ = 0.
By Theorem 6.1, GMIQVI(F, g, ϕ) is well-posed.

Theorem 6.3. Let g : Rm → Rm be a homeomorphism which is affine and σ-
Lipschitz continuous. Let F : H → H be g-monotone and g-hemicontinuous. Let
ϕ : Rm ×Rm → R∪{+∞} be a proper and diagonally convex functional such that
for each fixed y ∈ Rm there hold the following conditions:

(i) ϕ(y, ·) is affine;
(ii) ϕ(·, y) is a lower semicontinuous functional satisfying g(Rm)∩dom∂ϕ(·, y) ̸=

∅;
(iii) x 7→ ϕ(g(x), x)− ϕ(g(y), x) is lower semicontinuous.

If there exists some ϵ > 0 such that Ωα(ϵ) is nonempty bounded, then GMIQVI(F, g, ϕ)
is α-well-posed in the generalized sense.

Proof. Let {xn} be an α-approximating sequence for GMIQVI(F, g, ϕ). Then there
exists ϵn > 0 with ϵn → 0 such that for all y ∈ Rm and all n ∈ N

⟨F (xn), g(xn)− y⟩+ ϕ(g(xn), xn)− ϕ(y, xn) ≤
α

2
∥xn − g−1(y)∥2 + ϵn,

which is equivalent to the following inequality

(6.2) ⟨F (xn), g(xn)− g(y)⟩+ ϕ(g(xn), xn)− ϕ(g(y), xn) ≤
α

2
∥xn − y∥2 + ϵn.

Let ϵ > 0 be such that Ωα(ϵ) is nonempty bounded. Then there exists n0 such that
xn ∈ Ωα(ϵ) for all n > n0. This implies that {xn} is bounded and so there exists a
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subsequence {xnk
} of {xn} such that xnk

→ x̄ as k → ∞. Since g is affine and F is
g-monotone, it follows from (6.2) and condition (iii) that for all y ∈ Rm

⟨F (y), g(x̄)− g(y)⟩+ ϕ(g(x̄), x̄)− ϕ(g(y), x̄)
≤ lim inf

k→∞
{⟨F (y), g(xnk

)− g(y)⟩+ ϕ(g(xnk
), xnk

)− ϕ(g(y), xnk
)}

≤ lim inf
k→∞

{⟨F (xnk
), g(xnk

)− g(y)⟩+ ϕ(g(xnk
), xnk

)− ϕ(g(y), xnk
)}

≤ lim inf
k→∞

{α
2
∥xnk

− y∥2 + ϵnk
}

= α
2 ∥x̄− y∥2.

For any y ∈ Rm, let yt = x̄+ t(y − x̄) for all t ∈ (0, 1). Then

⟨F (yt), g(x̄)− g(yt)⟩+ ϕ(g(x̄), x̄)− ϕ(g(yt), x̄) ≤
α

2
∥x̄− yt∥2.

By the convexity of ϕ(·, x̄) and the affinity of g, we conclude that for all y ∈ Rm

and all t ∈ (0, 1)

⟨F (yt), g(x̄)− g(y)⟩+ ϕ(g(x̄), x̄)− ϕ(g(y), x̄) ≤ tα

2
∥x̄− y∥2.

Letting t → 0+ in the above inequality, we have for all y ∈ Rm

⟨F (y), g(x̄)− g(y)⟩+ ϕ(g(x̄), x̄)− ϕ(g(y), x̄) ≤ 0,

which is equivalent to the following inequality

⟨F (y), g(x̄)− y⟩+ ϕ(g(x̄), x̄)− ϕ(y, x̄) ≤ 0.

This together with Lemma 2.6 implies that x̄ solves GMIQVI(F, g, ϕ). Thus
GMIQVI(F, g, ϕ) is α-well-posed in the generalized sense. �

Theorem 6.3 says nothing but that, under suitable conditions, the α-well-posedness
in the generalized sense is equivalent to the existence of solutions.

The following example shows the assumption that Ωα(ϵ) is nonempty bounded
for some ϵ > 0 is essential in Theorem 6.3.

Example 6.4. Let m = 2, F (x) = 0 and ϕ(x, y) = δK , where K = [0,+∞) ×
[0,+∞). Let g be as in Example 3.9. Then, clearly, F is g-monotone and g-
hemicontinuous, and there hold conditions (i)-(iii) for the proper and diagonally
convex functional ϕ. For any ϵ > 0, we have Ωα(ϵ) = [0,+∞) × [0,+∞). By
Theorem 3.8, GMIQVI(F, g, ϕ) is not α-well-posed in the generalized sense.

7. Conclusions

In this paper we introduce some concepts of well-posedness for general mixed
implicit quasi-variational inequalities. In Section 3, we establish some metric char-
acterizations of strong α-well-posedness. In Section 4, we discuss the connections
between the strong (weak) well-posedness of general mixed implicit quasi-variational
inequalities and strong (weak) well-posedness of inclusion problems. In Section 5,
we further investigate the relationships between the strong (weak) well-posedness
of general mixed implicit quasi-variational inequalities and the strong (weak) well-
posedness of fixed point problems. In Section 6, we prove that under suitable con-
ditions, the well-posedness of general mixed implicit quasi-variational inequalities is
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equivalent to the existence and uniqueness of solutions, and that the well-posedness
in the generalized sense is equivalent to the existence of solutions. Our results are
the improvements and extension of the corresponding ones in [11].

It is known that the concept of α-well-posedness has been introduced and con-
sidered for optimization problems [7], variational inequalities [7,20] and Nash equi-
librium problems [20], mixed variational inequalities [11]. It is worth pointing out
that in [11] there are two unsolved open problems arise in nature way.

Q1 Is it possible to consider the concept of α-well-posedness for the inclusion
problems ?

Q2 Is it possible to give a metric characterization only for weak well-posedness ?

The above two unsolved open problems are interesting and important which de-
serve investigation in the future.

References

[1] Q. H. Ansari and J. C. Yao, Iterative schemes for solving mixed variational-like inequalities,
Journal of Optimization Theory and Applications 108 (2001), 527–541.

[2] E. Bednarczuk and J. P. Penot, Metrically well-set minimization problems, Applied Mathe-
matics and Optimization 26 (1992) 273–285.

[3] H. Brezis, Operateurs Maximaux Monotone et Semigroups de Contractions dans les Espaces
de Hilbert, North-Holland, Amsterdam, 1973.

[4] A. Brøndsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proceed-
ings of the American Mathematical Society 16 (1965), 605–611.

[5] E. Cavazzuti and J. Morgan, Well-posed saddle point problems, in Optimization, Theory and
Algorithms, Hirriart-Urruty, W. Oettli and J. Stoer (eds.), Marcel Dekker, New York, NY,
1983, pp. 61–76.

[6] X. P. Ding and C. L. Luo, Perturbed proximal point algorithms for general quasi-variational-like
inclusions, Journal of Computational and Applied Mathematics 113 (2000), 153–165.

[7] I. Delprete, M. B. Lignola and J. Morgan, New concepts of well-posedness for optimization
problems with variational inequality constraints, Journal of Inequalities in Pure and Applied
Mathematics 4 (2003), 26–43.

[8] A. L. Dontchev and T. Zolezzi, Well-Posed Optimization Problems, Lecture Notes in Mathe-
matics, 1543, Springer-Verlag, Berlin, Germany 1993.

[9] Y. P. Fang and C. X. Deng, Stability of new implicit iteration procedures for a class of non-
linear set-valued mixed variational inequalities, Zeitschrift fur Angewandte Mathematik und
Mechanik 84 (2004), 53–59.

[10] Y. P. Fang and R. Hu, Parametric well-posedness for variational Inequalities defined by bi-
functions, Computers and Mathematics with Applications 53(8) (2007), 1306–1316.

[11] Y. P. Fang, N. J. Huang and J. C. Yao, On the subdifferentiability of convex functions, Inclusion
Problems and Fixed Point Problems, Journal of Global Optimization 41 (2008), 117–133.

[12] J. S. Guo and J. C. Yao, Extension of strong nonlinear quasivariational Inequalities, Applied
Mathematics Letters 5 (1992), 35–38.

[13] A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, Journal of
Mathematical Analysis and Applications 185 (1994), 706–712.

[14] X. X. Huang, Extended and strongly extended well-posedness of set-valued optimization prob-
lems, Mathematical Methods of Operations Research 53 (2001), 101–116.

[15] K. Kuratowski, Topology, 1 and 2 Academic Press, New York, NY, 1968.
[16] B. Lemaire, Well-Posedness, Conditioning, and Regularization of Minimization, Inclusion,

and Fixed-Point Problems, Pliska Studia Mathematica Bulgaria 12 (1998), 71–84.



WELL-POSEDNESS OF GMIQVI, INCLUSION AND FPT PROBLEMS 413

[17] B. Lemaire, C. Ould Ahmed Salem and J. P. Revalski, Well-posedness by perturbations of
variational problems, Journal of Optimization Theory and Applications 115 (2002), 345–368.

[18] M. B. Lignola, Well-posedness and L-well-posedness for quasivariational Iiequalities, Journal
of Optimization Theory and Applications 128 (2006), 119–138.

[19] M. B. Lignola and J. Morgan, Well-posedness for optimization problems with constraints de-
fined by a variational inequality having a unique solution, Journal of Global Optimization 16
(2000), 57–67.

[20] M. B. Ligola and J. Morgan, Approximate solutions and α-well-posedness for variational in-
equalities and Nash equilibria, in Decision and Control in Management Science, G. Zaccour
(ed.), Kluwer Academic Publishers, Dordrecht, Netherlands, 2002, pp. 367–378.

[21] R. Lucchetti and F. Patrone, A characterization of Tykhonov well-posedness for minimum
problems with applications to variational inequalities, Numerical Functional Analysis and Op-
timization 3 (1981), 461–476.

[22] R. Lucchetti and F. Patrone, Hadamard and Tykhonov well-posedness of certain class of convex
functions, Journal of Mathematical Analysis and Applications 88 (1982), 204–215.

[23] R. Lucchetti and J. Revalski (Eds), Recent Developments in Well-Posed Variational Problems,
Kluwer Academic Publishers, Dordrecht, Holland, 1995.

[24] M. Margiocco, F. Patrone and L. Pusillo, A new approach to Tykhonov well-posedness for Nash
equilibria, Optimization 40 (1997), 385–400.

[25] M. Margiocco, F. Patrone and L. Pusillo, Metric characterizations of Tykhonov well-posedness
in value, Journal of Optimization Theory and Applications 100 (1999), 377–387.

[26] M. Margiocco, F. Patrone and L. Pusillo, On the Tykhonov well-posedness of concave games
and cournot oligopoly games, Journal of Optimization Theory and Applications 112 (2002),
361–379.

[27] E. Miglierina and E. Molho, Well-posedness and convexity in vector optimization, Mathemat-
ical Methods of Operations Research 58 (2003), 375–385.

[28] J. Morgan, Approximations and well-posedness in multicriteria games, Annals of Operations
Research 137 (2005), 257–268.

[29] S. Schaible, J. C. Yao and L. C. Zeng, Iterative method for set-valued mixed quasivariational
inequalities in a Banach space, Journal of Optimization Theory and Applications 129 (2006),
425–436.

[30] A. H. Siddiqi and Q. H. Ansari, General Strongly Nonlinear Variational Inequalities, Journal
of Mathematical Analysis and Applications 166 (1992), 386–392.

[31] A. N. Tykhonov, On the stability of the functional optimization problem, USSR Journal of
Computational Mathematics and Mathematical Physics 6 (1966), 631–634.

[32] H. Yang and J. Yu, Unified approaches to well-posedness with some applications, Journal of
Global Optimization 31 (2005), 371–381.

[33] J. C. Yao, Existence of generalized variational inequalities, Operations Research Letters 15
(1994), 35–40.

[34] L. C. Zeng, Iterative algorithms for finding approximate solutions for general strongly nonlinear
variational inequalities, Journal of Mathematical Analysis and Applications 187 (1994), 352–
360.

[35] L. C. Zeng, S. M. Guu and J. C. Yao, Characterization of H-monotone operators with appli-
cations to variational Inclusions, Computers and Mathematics with Applications 50 (2005),
329–337.

[36] L. C. Zeng and J. C. Yao, Existence of solutions of generalized vector variational inequalities
in reflexive Banach spaces, Journal of Global Optimization 36 (2006), 483–496.

[37] T. Zolezzi, Well-posedness criteria in optimization with application to the calculus of varia-
tions, Nonlinear Analysis-TMA 25 (1995), 437–453.

[38] T. Zolezzi, Extended well-posedness of optimization problems, Journal of Optimization Theory
and Applications 91 (1996), 257–266.

Manuscript received September 7, 2011

revised March 28, 2013



414 MU-MING WONG

Mu-Ming Wong
Department of Applied Mathematics, Chung Yuan Christian University, Chung Li, 32023, Taiwan

E-mail address: mmwong@cycu.edu.tw


