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(x̄, f(x̄)) = lim
m→+∞

(xk,m, ftk,m(xk,m)),

x∗k,m ∈ ∂ftk,m(xk,m) and w∗
m ∈ N(dom f, x̄).

(resp.

x∗ = lim
j∈J

(w∗
j+

∑
k∈N

λk,jx
∗
k,j) in (X∗,w(X∗,X)), and (x̄, f(x̄)) = lim

j∈J
(xk,j, ftk,j(xk,j)),

x∗k,j ∈ ∂ftk,j (xk,j) and w∗
j ∈ N(L ∩ dom f, x̄) for j = (i, L).

A. Hantoute and M. Lopez provided in ([3]) a general formula without qualifica-
tion condition for the supremum of a family of proper lower semicontinuous convex
functions defined on a finite dimensional vector space. An extension to any locally
convex vector space X has been established in ([4]). This formula is in terms of
ε-approximate subdifferentials of the functions at the fixed point of reference. In
the case of finite (resp. infinite) dimensional Banach space, using this formula and
a version of the Brøndsted-Rockafellar theorem, we prove the existence of the se-
quences (resp. nets) considered above. We refer to ([17, 18, 19, 14, 9, 2, 10, 6, 12])
and the references therein for sequential formulas concerning finite sum, chain rule,
and integral sum.

In Section 1 we will recall the supremum formula proved in ([3]) and ([4]) along
with the Brøndsted-Rockafellar theorem. Section 2 is devoted to proving our se-
quential formula relative to the supremum function defined in (1.1). We will also
show in Section 3 how the general formula in [8, 20] under a general qualification
condition can be derived from the sequential formula.

2. Preliminary results

We start this section by recalling the main results of Hantoute and Lopez [3], and
of Hantoute, Lopez and Zalinescu [4]. We will also give a version of the Brønsted-
Rockafellar theorem which will be used in Section 2. Before stating these theorems,
let us recall that, for any convex function f from a (Hausdorff) topological lo-
cally convex vector space X into R ∪ {+∞} and for any real number ε ≥ 0, the
ε−subdifferential of f at any x ∈ dom f := {u ∈ X : f(u) < ∞} is defined by

∂fε(x) = {x∗ ∈ X∗ : ⟨x∗, u− x⟩ ≤ f(u)− f(x) + ε for all u ∈ X}.
If ε = 0, ∂εf(x) corresponds to what is called the subdifferential ∂f(x) of f at x.
When dom f ̸= ∅ one says that f is proper and for x /∈ dom f one puts ∂fε(x) = ∅.
For x ∈ dom f the ε-subdifferential is known to be described also by

∂εf(x) = {x∗ ∈ X∗ : ⟨x∗, u⟩ ≤ f ′
ε(x;u)},

where f ′
ε is the directional ε-derivative of f at x in the direction u defined by

(2.1) f ′
ε(x;u) := inf

θ>0
θ−1[f(x+ θu)− f(x) + ε] = lim

θ↓0
θ−1[f(x+ θu)− f(x) + ε].

It will be sometimes convenient in the paper to use the graph

gph ∂εf := {(x, x∗) ∈ X ×X∗ : x∗ ∈ ∂εf(x)}
of the set-valued mapping ∂εf .

We also recall that the indicator function δC of a convex subset C of X is defined
by δC(x) = 0 if x ∈ C and δC(x) = +∞ if x ∈ X \ C. The subdifferential ∂δC(x)
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for x ∈ C is called the normal cone of C at x and it is denoted by N(C, x). The
weak star topology of the topological dual space X∗ will be denoted by σ(X∗, X).
When X is a normed space, BX and BX∗ will denote the closed unit ball of X and
X∗ centered at the origin.

Theorem 2.1 (see Hantoute and Lopez [3], Hantoute, Lopez and Zalinescu [4]).
Let X be a (Hausdorff) locally convex vector space and (ft)t∈T be a family of proper
lower semicontinuous convex functions. Consider the pointwise supremum function
f defined in (1.1), x̄ ∈ dom f and for each ε > 0 consider also the set

Tε(x̄) := {t ∈ T : ft(x̄) ≥ f(x̄)− ε}.
Then the following assertions hold.

(a) If X is finite dimensional, then

∂f(x̄) =
∩
ε>0

cl
(
co{

∪
t∈Tε(x̄)

∂εft(x̄)}+N(dom f, x̄)
)
.

(b) If X is infinite dimensional, then

∂f(x̄) =
∩

L∈Fx̄,ε>0

cl∗
(
co{

∪
t∈Tε(x̄)

∂εft(x̄)}+N(L ∩ dom f, x̄)
)
,

where Fx̄ denotes the set of all finite dimensional vector subspaces of X containing
x̄, and cl∗ denotes the closure with respect to the weak-star topology on X∗.

The assertion of (a) has been proved in [3] and that of (b) in [4].

Theorem 2.2 (A version of the Brøndsted-Rockafellar theorem, see [1, 18]). Let
X be a Banach space and f : X→ R ∪ {+∞} be a proper lower semicontinuous
convex function. Then for any real number ε > 0 and x∗ ∈ ∂εf(x̄) there exists
(xε, x

∗
ε) ∈ X ×X∗ such that

(a) x∗ε ∈ ∂f(xε);
(b) ∥xε − x̄∥ ≤

√
ε;

(c) ∥x∗ − x∗ε∥ ≤
√
ε;

(d) |f(xε)− ⟨x∗ε , xε − x̄⟩ − f(x̄)| ≤ 2ε.

3. Sequential calculus for the supremum function

Throughout this section we assume that the function f is given by (1.1) and the
functions ft : X → R ∪ {+∞} are proper lower semicontinuous and convex on the
Banach space X.

Theorem 3.1. Let X be a finite dimensional vector space.
For any x̄ ∈ dom f, one has x∗ ∈ ∂f(x̄) if and only if there are sequences (εn)n∈N in
]0,+∞[ with εn ↓ 0, (λk,n)(k,n)∈N×N in [0, 1], (tk,n)(k,n)∈N×N in T , (xk,n)(k,n)∈N×N

in X, (x∗k,n)(k,n)∈N×N in X, (w∗
n)n∈N in X such that, for each n ∈ N, the sequence

(λk,n)k∈N has a finite support and such that

(a) tk,n ∈ Tεn(x̄) where Tεn(x̄) := {t ∈ T : ft(x̄) ≥ f(x̄)− εn} ;
(b)

∑
k∈N λk,n = 1 ;

(c) w∗
n ∈ N(dom f, x̄) ;
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(d) x∗k,n ∈ ∂ftk,n(xk,n) ;

(e) x∗ = lim
n→∞

(w∗
n +

∑
k∈N

λk,nx
∗
k,n) ;

(f) x̄ = lim
n→∞

xk,n, the limit being uniform with respect to the integer k ∈ N ;

(g) lim
n→∞

(
ftk,n(xk,n) − ⟨x∗k,n, xk,n − x̄⟩

)
= f(x̄), the limit being uniform with

respect to the integer k ∈ N.

Proof. • Suppose that x∗ ∈ ∂f(x̄).
Using (a) of Theorem 2.1 with ε = 1

n , we have for every integer n ∈ N,

x∗ ∈ co{
∪

t∈T 1
n
(x̄)

∂ 1
n
ft(x̄)}+N(dom f, x̄) +

1

n
BX .

Then, by definition of the convex hull of a set, for each n ∈ N there exist mn in N,
t1,n, . . . , tmn,n in T 1

n
(x̄), λ1,n, . . . , λmn,n in [0, 1], u∗1,n, . . . , u

∗
mn,n, w

∗
n, b

∗
n in X, such

that u∗k,n ∈ ∂ 1
n
ftk,n(x̄), b

∗
n ∈ BX , w∗

n ∈ N(dom f, x̄), x∗ =
mn∑
k=1

λk,mu∗k,n + w∗
n + 1

nb
∗
n,

mn∑
k=1

λk,m = 1. Consequently, for each n ∈ N, we have a sequence (λk,n)k∈N with a

finite support, tk,n ∈ T 1
n
(x̄) for all k ∈ N and

(3.1) u∗k,n ∈ ∂ 1
n
ftk,n(x̄) , b∗n ∈ BX , w∗

n ∈ N(dom f, x̄),

along with

(3.2) x∗ =
∑
k∈N

λk,nu
∗
k,n + w∗

n +
1

n
b∗n,

∑
k∈N

λk,n = 1.

For each k ∈ N and ε = 1
2n , we now apply Theorem 2.2 to get (xk,n, x

∗
k,n) ∈ X2

such that

(i) x∗k,n ∈ ∂ftk,n(xk,n),

(ii) ∥x∗k,n − u∗k,n∥ ≤ 1√
2n
,

(iii) ∥xk,n − x̄∥ ≤ 1√
2n
,

(iv) |ftk,n(xk,n)− ⟨x∗k,n, xk,n − x̄⟩ − ftk,n(x̄)| ≤ 1
n .

Since tk,n ∈ T 1
n
(x̄), we have |ftk,n(x̄)− f(x̄)| ≤ 1

n and then

|ftk,n(xk,n)− ⟨x∗k,n, xk,n − x̄⟩ − f(x̄)|
≤ |ftk,n(x̄)− f(x̄)|+ |ftk,n(xk,n)− ⟨x∗k,n, xk,n − x̄⟩ − ftk,n(x̄)|

≤ 2

n
,

which ensures that

sup
k∈N

|ftk,n(xk,n)− ⟨x∗k,n, xk,n − x̄⟩ − f(x̄)| −→
n→∞

0.

It remains to prove the assertion (e) of the theorem. By (3.2) we have

x∗ = w∗
n +

∑
k∈N

λk,nx
∗
k,n +

∑
k∈N

λk,n(u
∗
k,n − x∗k,n) +

1

n
b∗n,
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which entails by (3.1), (3.2) and (ii) that

∥x∗ − (w∗
n +

∑
k∈N

λk,nx
∗
k,n)∥ ≤

∑
k∈N

λk,n∥x∗k,n − u∗k,n∥+
1

n
∥b∗n∥

≤ 1√
2n

+
1

n
,

and hence
(w∗

n +
∑
k∈N

λk,nx
∗
k,n) −→

n→∞
x∗.

So the implication ⇒ of the theorem is etablished.

• Now suppose that, for (x̄, x∗) ∈ X × X, there exist sequences (εn)n in ]0,+∞[,
(λk,n)(k,n)∈N×N in [0, 1], (tk,n)(k,n)∈N×N in T, (xk,n)(k,n)∈N×N in X, (x∗k,n)(k,n)∈N×N

in X, and (w∗
n)n∈N in X satisfying the assertions of the theorem.

Let x ∈ dom f. According to (g) we have

ε′n := sup
k∈N

|ftk,n(xk,n)− ⟨x∗k,n, xk,n − x̄⟩ − f(x̄)| −→
n→∞

0

and taking (d) and (a) into account we also have

⟨x∗k,n, x− x̄⟩ = ⟨x∗k,n, x− xk,n⟩+ ⟨x∗k,n, xk,n − x̄⟩
≤ ftk,n(x)− ftk,n(xk,n) + ⟨x∗k,n, xk,n − x̄⟩,
≤ ftk,n(x)− f(x̄)− (ftk,n(xk,n)− ⟨x∗k,n, xk,n − x̄⟩ − f(x̄)),

≤ f(x)− f(x̄)− (ftk,n(xk,n)− ⟨x∗k,n, xk,n − x̄⟩ − f(x̄)).

We deduce that
⟨x∗k,n, x− x̄⟩ ≤ f(x)− f(x̄) + ε′n.

Further, by (b) we may write that

⟨
∑
k∈N

λk,nx
∗
k,n, x− x̄⟩ ≤ f(x)− f(x̄) + ε′n,

and this combined with (c) gives

⟨w∗
n +

∑
k∈N

λk,nx
∗
k,n, x− x̄⟩ ≤ f(x)− f(x̄) + ε′n.

Using (e) and taking the limit as n → ∞ in the previous inequality we obtain

⟨x∗, x− x̄⟩ ≤ f(x)− f(x̄) for all x ∈ dom f,

which entails that x∗ ∈ ∂f(x̄). The proof is then complete. �
In the case of a Banach space we have :

Theorem 3.2. Let X be a Banach space.
For any x̄ ∈ dom f , one has x∗ ∈ ∂f(x̄) if and only if there are nets (w∗

i,L) in

X∗, (εi,L) ∈]0,+∞[ indexed by (i, L) ∈ I × Fx̄ and which do not depend on k, and
simultaneously for each k ∈ N there are nets (λk,i,L) in [0, 1], (tk,i,L) in T, (xk,i,L)
in X, (x∗k,i,L) in X∗ (indexed by (i, L) ∈ I × Fx̄) such that for each (i, L) ∈ I × Fx̄

the sequence (λk,i,L)k∈N has a finite support and such that
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(a) tk,i,L ∈ Tεi,L(x̄) where

Tεi,L(x̄) := {t ∈ T : ft(x̄) ≥ f(x̄)− εi,L}, lim
(i,L)∈I×Fx̄

εi,L = 0 ;

(b)
∑

k∈N λk,i,L = 1 ;
(c) w∗

i,L ∈ N(L ∩ dom f, x̄) ;

(d) x∗k,i,L ∈ ∂ftk,i,L(xk,i,L) ;

(e) x∗ = lim
(i,L)∈L×Fx̄

(w∗
i,L +

∑
k∈N λk,i,Lx

∗
k,i,L) in (X∗, σ(X∗, X)) ;

(f) x̄ = lim
(i,L)∈I×Fx̄

xk,i,L in (X, ∥ ∥), the limit being uniform with respect to the

integer k ∈ N ;
(g) lim

(i,L)∈I×Fz̄

(
ftk,i,L(xk,i,L)−⟨x∗k,i,L, xk,i,L− x̄⟩

)
= f(x̄), the limit being uniform

with respect to the integer k ∈ N.

When T is finite, say T = {1, . . . , p}, in assertions (b) and (e) the sum over N has
to be replaced by the sum with k ∈ {1, . . . , p} and the assertion (a) becomes

(a) tk,i,L ∈ T (x̄) where T (x̄) := {t ∈ T : ft(x̄) = f(x̄)}.

Proof. • Suppose that x∗ ∈ ∂f(x̄) and denote by VX∗(0) the set of weak star
neighborhoods of zero in X∗. Using (b) of Theorem 2.1 with ε = 1

n , we have for all
(n, V, L) ∈ N× VX∗(0)×Fx̄

x∗ ∈ co{
∪

t∈T 1
n
(x̄)

∂ 1
n
ft(x̄)}+N(L ∩ dom f, x̄) + V.

Put I := N× VX∗(0), εi,L := 1
n if i = (n, V ) and consider the following preorder

(n, V, L) ≼ (n′, V ′, L′) if n ≤ n′, V ′ ⊆ V, and L ⊂ L′.

Obviously (I×Fz̄,≼) is a directed set and lim
(i,L)∈I×Fz̄

εi,L = 0. To complete the proof

of the implication ⇒, it is sufficient to proceed like in the proof of Theorem 3.1.

• Suppose conversely that the properties of theorem hold.
Then, there exist nets (εi,L)(i,L)∈I×Fx̄

, (λk,i,L)(i,L)∈I×Fx̄
, (tk,i,L)(i,L)∈×I×Fx̄

,
(xk,i,L)(i,L)∈×I×Fx̄

, (x∗k,i,L)(i,L)∈×I×Fz̄
, (w∗

i,L)(i,L)∈I×Fx̄
, satisfying assertions (a)-(g)

of the theorem.
Let x ∈ dom f and Fx̄,x be the collection of vector subspaces L ∈ Fx̄ containing

x. Note that the set I × Fx̄,x endowed with the induced preorder (still denoted by
≼) is a directed set. Let (i, L) ∈ I ×Fx̄,x. By (d), (a) one has

⟨x∗k,i,L, x− x̄⟩ = ⟨x∗k,i,L, x− xk,i,L⟩+ ⟨x∗k,i,L, xk,i,L − x̄⟩
≤ ftk,i,L(x)− ftk,i,L(xk,i,L) + ⟨x∗k,i,L , xk,i,L − x̄⟩,
≤ ftk,i,L(x)− f(x̄)− (ftk,i,L(xk,i,L)− ⟨x∗k,i,L, xk,i,L − x̄⟩ − f(x̄)),

≤ f(x)− f(x̄)− [ftk,i,L(xk,i,L)− ⟨x∗k,i,L, xk,i,L − x̄⟩ − f(x̄)].(3.3)

If we put ηi,L := sup
k∈N

|ftk,i,L(xk,i,L)−⟨x∗k,i,L, xk,i,L−x̄⟩−f(x̄)|, by (g) we have ηi,L →
i,L

0

and the last inequality in (3.3) becomes

(3.4) ⟨x∗k,i,L, x− x̄⟩ ≤ f(x)− f(x̄) + ηi,L.
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Then, by (b) we may write

⟨
∑
k∈N

λk,i,Lx
∗
k,i,L, x− x̄⟩ ≤ f(x)− f(x̄) + ηi,L,

and it follows from (c) that

(3.5) ⟨w∗
i,L +

∑
k∈N

λk,i,Lx
∗
k,i,L, x− x̄⟩ ≤ f(x)− f(x̄) + ηi,L.

However, (ηi,L)(i,L)∈I×Fx̄,x
, (εi,L)(i,L)∈I×Fx̄,x

, (λk,i,L)(i,L)∈I×Fx̄,x
, (tk,i,L)(i,L)∈I×Fx̄,x

,
(xk,i,L)(i,L)∈I×Fx̄,x

, (x∗k,i,L)(i,L)∈×I×Fx̄,x
, (w∗

i,L)(i,L)∈I×Fx̄,x
are subnets of correspond-

ing nets, then we can use (e) to get through (3.5)

⟨x∗, x− x̄⟩ ≤ f(x)− f(x̄) for all x ∈ dom f,

which entails that x∗ ∈ ∂f(x̄). The proof is then complete. �

4. Application to some basic results

As a first application, it is not difficult through the qualification (QC) below to
deduce the following theorem of M. Volle [23] from Theorem 3.2.

Theorem 4.1 (see [23]). Assume here that T = {1, . . . , p} and that f1, . . . , fp :
X → R ∪ {+∞} are proper convex lower semicontinuous functions on the Banach
space X. Assume also that the following qualification condition holds :

(QC) there exist some x0 ∈ dom fp such that f1, . . . , fp−1 are finite at x0 and
continuous at x0.

Then for any x̄ ∈ dom f (where f is given by (1.1)) one has

∂f(x̄) = co{∂ft(x̄) : ft(x̄) = f(x̄)}+
p∑

t=1

N(dom ft, x̄).

�
Remark 4.2. 1) In his theorem, Volle does not assume the lower semicontinuity of
functions fk. Nevertheless, using the fact that ∂f(x̄) = ∂(cl f)(x̄) and f(x̄) = cl f(x̄)
whenever ∂f(x̄) ̸= ∅, the desired equality is reduced to the above case. Here cl f
means the closure hull of the function f (see [13]).

2) Observe that the normal cone cannot be removed in the formula of Theorem 3.2.
As a simple example, consider for all x ∈ X

f1(x) := δ[0,+∞)(x), f2(x) = 1.

The functions f1 and f2 are clearly proper, convex and lower semicontinuous. The
qualification condition (QC) is obviously satisfied and

f(x) := max{f1(x), f2(x)} = 1 + δ[0,+∞)(x).

Then, an easy subdifferential calculus gives

∂f(0) =]−∞; 0] and co(
2∪

k=1

{∂fk(0) : fk(0) = f(0)}) = {0}.
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The next theorem gives a description of the subdifferential of f = supt∈T ft at
a continuity point x̄ and in the case where T is a compact topological space. It
was demonstrated by B.N. Psenichnyi ([15]) when X is a normed space assuming
that functions ft are Gâteaux differentiable and by M. Valadier ([20]) when X is
a topological vector space assuming that the function (t, x) 7→ ft(x) is finite and
continuous on T×U (where U is a neighbourhood of x̄). The case where the functions
ft are finite and continuous at x̄ for all t ∈ T and where, for some neighbourhood
V of x̄, the functions t 7→ ft(x) are finite and continuous on T for all x ∈ V is due
R.T. Rockafellar as said in Valadier’s thesis [21]. A.D. Ioffe and V.M. Tikhomirov
([8]) gave a version of this result in the case where X is a locally convex topological
vector space with weaker assumptions than those recalled above. Since our result
is valid only in a Banach space, we prove the Ioffe and Tikhomirov version in the
context of a Banach space.

Theorem 4.3 (see [8]). Let X be a Banach space, T be a compact topological space,
ft : X → R∪{+∞} be a proper lower semicontinuous convex function for each t ∈ T
and let f be given by (1.1). Assume that the following properties hold for x̄ ∈ X
and a neighbourhood V of x̄:

(i) for each x ∈ V , t 7→ ft(x) is upper semicontinuous (usc);
(ii) for each t ∈ T , the convex function x 7→ ft(x) is finite at x̄ and continuous

at x̄.

Then
∂f(x̄) = co∗({

∪
t∈T (x̄)

∂ft(x̄)}) ,

where T (x̄) := {t ∈ T : ft(x̄) = f(x̄)} and co∗ denotes the weak star closed convex
hull.

Proof. We only need to prove that the first member is included in the second one
since the reverse inclusion is easily seen. Let x∗ ∈ ∂f(x̄).

• Step 1. Recall that Fx̄ is the set of finite dimensional vector subspaces con-
taining x̄ and, for u ∈ X, denote by Fx̄,u the set of L ∈ Fx̄ with u ∈ L. By
Theorem 3.2, there exist nets (εi,L)(i,L)∈I×Fx̄

, (λk,i,L)(i,L)∈I×Fx̄
, (tk,i,L)(i,L)∈I×Fx̄

,
(xk,i,L)(i,L)∈I×Fx̄

, (x∗k,i,L)(i,L)∈I×Fx̄
, (w∗

i,L)(i,L)∈I×Fx̄
, satisfying assertions (a)-(g),

where (g) means limi,L ηi,L = 0, for

ηi,L := sup
k∈N

|ftk,i,L(xk,i,l)− ⟨x∗k,i,L, xk,i,L − x̄⟩ − f(x̄)|.

For each (i, L) ∈ I ×Fx̄ we put Ki,L := {k ∈ N : λk,i,L ̸= 0}.
Fix any u ∈ X and choose ρ > 0 such that x̄ + [0, ρ]u ⊂ V . For each τ ∈ T , by

the continuity of fτ at x̄, there exists some ρ(τ) ∈ ]0, ρ] such that

fτ (x̄+ ρ(τ)u) < fτ (x̄) + 1 ≤ f(x̄) + 1.

So, the set Wτ := {t ∈ T : ft(x̄ + ρ(τ)u) < f(x̄) + 1} is nonempty, and it is
also open in T according to the upper semicontinuity of t 7→ ft(x̄ + ρ(τ)u). Since
ft(x̄) < f(x̄)+1 and ft is convex, we note, for each t ∈ Wτ , that ft(x̄+θu) < f(x̄)+1
for all θ ∈ [0, ρ(τ)]. From the open cover (Wτ )τ∈T of T , taking as in [8] a finite cover
(Wτ )τ∈S of the compact set T and putting θ0(u) := minτ∈S ρ(τ) yields, for every
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θ ∈ [0, θ0(u)], that ft(x̄ + θ u) < f(x̄) + 1 for all t ∈ T and hence x̄ + θ u ∈ dom f .
Consequently, for each L ∈ Fx̄, taking any u ∈ L we have x̄ + θu ∈ L ∩ dom f for
all θ ∈ ]0, θ0(u)], which in particular gives, according to (c) of Theorem 3.2,

(4.1) w∗
i,L ∈ L⊥ for all i ∈ I.

• Step 2. We prove that x∗ ∈ ∂φ(x̄) where φ(y) := sup
t∈T (x̄)

ft(y) for all y ∈ X.

Observe first, for any x ∈ X, we have by (d), for all (i, L) ∈ I ×Fx̄,

⟨x∗k,i,L, x− x̄⟩ = ⟨x∗k,i,L, x− xk,i,L⟩+ ⟨x∗k,i,L, xk,i,L − x̄⟩
≤ ftk,i,L(x)− ftk,i,L(xk,i,L) + ⟨x∗k,i,L, xk,i,L − x̄⟩
= ftk,i,L(x)− f(x̄)− [ftk,i,L(xk,i,L)− ⟨x∗k,i,L, xk,i,L − x̄⟩ − f(x̄)]

≤ fk,i,L(x)− f(x̄) + ηi,L.(4.2)

Fix any u ∈ X, θ ∈ ]0, θ0(u)] and L ∈ Fx̄,u. We note that x̄ + θu ∈ L, that is,
L ∈ Fx̄+θu. By (4.2) and by (b) of Theorem 3.2 we have

(4.3) ⟨w∗
i,L +

∑
k∈Ki,L

λk,i,Lx
∗
k,i,L, θu⟩ ≤

∑
k∈Ki,L

λk,i,Lftk,i,L(x̄+ θu)− f(x̄) + ηi,L.

By the compactness of Tεi,L(x̄) (keep in mind (i) and the compactness of T ) and
by (4.3) and the assumption (i), there exists t̄i,L ∈ Tεi,L(x̄) (depending on θ and u)
such that ft̄i,L(x̄+ θu) = maxt∈Tεi,L

ft(x̄+ θu), thus

⟨w∗
i,L +

∑
k∈Ki,L

λk,i,Lx
∗
k,i,L, θu⟩ ≤ ft̄i,L(x̄+ θu)− f(x̄) + ηi,L.

By the compactness of T there exist t̄ ∈ T , a directed set J and a directed mapping
s : J → I ×Fx̄,u such that limj∈J t̄s(j) = t̄ with t̄ ∈ T (x̄). Further, for all j ∈ J , we
have

⟨w∗
s(j) +

∑
k∈Ks(j)

λk,s(j)x
∗
k,s(j), θu⟩ ≤ ft̄s(j)(x̄+ θu)− f(x̄) + ηs(j).

Then, using (e) of Theorem 3.2, the upper semicontinuity of t 7→ ft(x̄ + θu) and
taking the limit superior in both members of the last inequality, we obtain

⟨x∗ , θu⟩ ≤ ft̄(x̄+ θu)− f(x̄)

≤ sup
t∈T (x̄)

ft(x̄+ θu)− f(x̄), because t̄ ∈ T (x̄)

= φ(x̄+ θu)− φ(x̄),

which implies ⟨x∗, u⟩ ≤ φ′(x̄;u) and completes this step.

• Step 3. We claim that we may suppose : For each (i, L) ∈ I ×Fx̄ and k ∈ Ki,L,

(4.4) x∗k,i,L ∈ ∂ηi,Lftk,i,L(x̄) and tk,i,L ∈ T (x̄).

To see that we apply Theorem 3.2 to the function x 7→ supt∈T (x̄) ft(x). As previously

we obtain the existence of some nets satisfying assertions (a)-(e). The difference
here is that tk,i,L ∈ T (x̄). Indeed, if we keep notation in Theorem 3.2, we have to
consider the sets (T (x̄))εi,L(x̄) which clearly coincide with T (x̄).
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Now, observe, for any x ∈ X, that we have by (4.2)

⟨x∗k,i,L, x− x̄⟩ ≤ ftk,i,L(x)− f(x̄) + ηi,L,

≤ ftk,i,L(x)− ftk,i,L(x̄) + ηi,L, because tk,i,L ∈ T (x̄).

Consequently, x∗k,i,L ∈ ∂ηi,Lftk,i,L(x̄). Fix any u ∈ X. The latter inclusion ensures

⟨x∗k,i,L , u⟩ ≤ (ftk,i,L)
′
ηi,k,L

(x̄;u), which combined with (4.1) entails, for each L ∈
Fx̄,u,

⟨x∗k,i,L + w∗
i,L , u⟩ ≤ (ftk,i,L)

′
ηi,L

(x̄;u).

It follows that

⟨w∗
i,L +

∑
k∈Ki,L

λk,i,Lx
∗
k,i,L, u⟩ ≤

∑
k∈Ki,L

λk,i,L sup
t∈T (x̄)

(ft)
′
ηi,L

(x̄;u)

≤ sup
t∈T (x̄)

(ft)
′
ηi,L

(x̄;u).

By definition of T (x̄) one has
(4.5)
(ft)

′
ηi,L

(x̄;u) := inf
θ>0

θ−1[ft(x̄+θu)−ft(x̄)+ηi,L] = inf
0<θ<θ0(u)

θ−1[ft(x̄+θu)−f(x̄)+ηi,L].

Then, by the assumption (i) the function t 7→ (ft)
′
ηi,L

(x̄;u) is upper semicontinuous,

thus by compactness of T (x̄) there exists ti,L ∈ T (x̄) such that

sup
t∈T (x̄)

(ft)
′
ηi,L

(x̄;u) = (fti,L)
′
ηi,L

(x̄;u).

We deduce that for each (i, L) ∈ I ×Fx̄,u

(4.6) ⟨w∗
i,L +

∑
k∈Ki,L

λk,i,Lx
∗
k,i,L, u⟩ ≤ (fti,L)

′
ηi,L

(x̄;u).

Using again the compactness of T (x̄), there exist t̄ ∈ T (x̄), a directed set J , and a
directed mapping s : J → I×Fx̄,u such that limj∈J ts(j) = t̄. By (4.6), for all j ∈ J ,
one has

(4.7) ⟨w∗
s(j) +

∑
k∈Ks(j)

λk,s(j)x
∗
k,s(j), u⟩ ≤ (fts(j))

′
ηs(j)

(x̄;u).

Observe through the last member of (4.5) and through the assumption (i) that the
function (η, t) 7→ (ft)

′
η(x̄;u) is upper semicontinuous on [0,+∞[×T (x̄). So, using

(e) of Theorem 3.2 along with the equality limj∈J ts(j) = t̄ and taking the limit
superior in both members of the inequality in (4.7) we get

(4.8) ⟨x∗ , u⟩ ≤ (ft̄)
′(x̄;u).

• Step 4. We prove that x∗ ∈ co∗(
∪

t∈T (x̄)

∂ft(x̄)).

We note that t̄ ∈ T (x̄) and (ft̄)
′(x̄;u) = max

u∗∈∂ft̄(x̄)
⟨u∗ , u⟩ according to the continuity

of function ft̄ at x̄. Then, from the inequality in (4.8) we deduce that, for each
u ∈ X,

⟨x∗ , u⟩ ≤ max
u∗∈co∗(

∪
t∈T (x̄)

∂ft(x̄))
⟨u∗ , u⟩,
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and this ensures the desired inclusion and finishes the proof of the theorem. �
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