

FIXED POINT THEOREMS AND CONVERGENCE THEOREMS FOR GENERALIZED HYBRID NON-SELF MAPPINGS IN HILBERT SPACES

MAYUMI HOJO, TAKAMASA SUZUKI, AND WATARU TAKAHASHI

ABSTRACT. In this paper, we first prove a fixed point theorem for normal generalized hybrid non-self mappings in a Hilbert space. In the proof, we show that widely more generalized hybrid mappings are deduced from normal generalized hybrid non-self mappings. Next, we prove a weak convergence theorem of Mann's type [20] for widely more generalized hybrid non-self mappings in a Hilbert space. For the proof, we use the demi-closedness property for widely more generalized hybrid non-self mappings. Finally, using an idea of mean convergence by Shimizu and Takahashi [21] and [22], we prove a mean strong convergence theorem for widely more generalized hybrid mappings in a Hilbert space. This theorem generalizes Hojo and Takahashi's mean strong convergence theorem [9] for generalized hybrid mappings.

1. Introduction

Let H be a real Hilbert space and let C be a non-empty subset of H. Kocourek, Takahashi and Yao [16] introduced a broad class of nonlinear mappings in a Hilbert space which covers nonexpansive mappings, nonspreading mappings [18] and hybrid mappings [27]. A mapping $T: C \to H$ is said to be generalized hybrid if there exist $\alpha, \beta \in \mathbb{R}$ such that

$$\alpha ||Tx - Ty||^2 + (1 - \alpha)||x - Ty||^2 \le \beta ||Tx - y||^2 + (1 - \beta)||x - y||^2$$

for all $x, y \in C$, where \mathbb{R} is the set of real numbers. We call such a mapping an (α, β) -generalized hybrid mapping. An (α, β) -generalized hybrid mapping is nonexpansive for $\alpha = 1$ and $\beta = 0$, i.e.,

$$||Tx - Ty|| \le ||x - y||$$

for all $x, y \in C$. It is nonspreading for $\alpha = 2$ and $\beta = 1$, i.e.,

$$2\|Tx - Ty\|^2 \le \|x - Ty\|^2 + \|y - Tx\|^2$$

for all $x, y \in C$. Furthermore, it is hybrid for $\alpha = \frac{3}{2}$ and $\beta = \frac{1}{2}$, i.e.,

$$3||Tx - Ty||^2 \le ||x - Ty||^2 + ||y - Tx||^2 + ||y - x||^2$$

for all $x, y \in C$. They proved fixed point theorems and nonlinear ergodic theorems of Baillon's type [2] for generalized hybrid mappings; see also Kohsaka and Takahashi [17] and Iemoto and Takahashi [12]. Very recently, Kawasaki and Takahashi

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10; Secondary 47H05.

Key words and phrases. Hilbert space, nonexpansive mapping, nonspreading mapping, hybrid mapping, fixed point, mean convergence, weak convergence.

The third author is partially supported by Grant-in-Aid for Scientific Research No. 23540188 from Japan Society for the Promotion of Science.

[15] introduced a more broad class of nonlinear mappings in a Hilbert space. A mapping T from C into H is said to be widely more generalized hybrid if there exist $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta \in \mathbb{R}$ such that

(1.1)
$$\alpha \|Tx - Ty\|^2 + \beta \|x - Ty\|^2 + \gamma \|Tx - y\|^2 + \delta \|x - y\|^2 + \varepsilon \|x - Tx\|^2 + \zeta \|y - Ty\|^2 + \eta \|(x - Tx) - (y - Ty)\|^2 \le 0$$

for all $x,y \in C$. Such a mapping T is called an $(\alpha,\beta,\gamma,\delta,\varepsilon,\zeta,\eta)$ -widely more generalized hybrid mapping. In particular, an $(\alpha,\beta,\gamma,\delta,0,0,0)$ -widely more generalized hybrid mapping is called $(\alpha,\beta,\gamma,\delta)$ -normal generalized hybrid; see Takahashi, Wong and Yao [29]. An $(\alpha,\beta,\gamma,\delta)$ -normal generalized hybrid mapping is generalized hybrid in the sense of Kocourek, Takahashi and Yao [16] if $\alpha+\beta=-\gamma-\delta=1$. and $\varepsilon=\zeta=\eta=0$. A generalized hybrid mapping with a fixed point is quasi-nonexpansive. However, a widely more generalized hybrid mapping is not quasi-nonexpansive generally even if it has a fixed point. In [15], Kawasaki and Takahashi proved fixed point theorems and nonlinear ergodic theorems of Baillon's type for such new mappings in a Hilbert space. In particular, by using their fixed point theorems, they proved directly Browder and Petryshyn's fixed point theorem [5] for strict pseudo-contractive mappings and Kocourek, Takahashi and Yao's fixed point theorem [16] for super generalized hybrid mappings.

In this paper, motivated by these mappings and results, we first prove a fixed point theorem for normal generalized hybrid non-self mappings in a Hilbert space. In the proof, we show that widely more generalized hybrid mappings are deduced from normal generalized hybrid non-self mappings and then we prove a fixed point theorem for the mappings by using Kawasaki and Takahashi's fixed point theorem for widely more generalized hybrid mappings. Next, we prove a weak convergence theorem of Mann's type [20] for widely more generalized hybrid non-self mappings in a Hilbert space. For the proof, we use the demi-closedness property for widely more generalized hybrid non-self mappings. Finally, using an idea of mean convergence by Shimizu and Takahashi [21] and [22], we prove a mean strong convergence theorem for widely more generalized hybrid mappings in a Hilbert space. This theorem generalizes Hojo and Takahashi's mean strong convergence theorem [9] for generalized hybrid mappings.

2. Preliminaries

Throughout this paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let H be a (real) Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$, respectively. We denote the strong convergence and the weak convergence of $\{x_n\}$ to $x \in H$ by $x_n \to x$ and $x_n \rightharpoonup x$, respectively. From [26], we know the following basic equality: For $x, y \in H$ and $\lambda \in \mathbb{R}$, we have

Furthermore, we know that for $x, y, u, v \in H$

$$(2.2) 2\langle x-y, u-v\rangle = \|x-v\|^2 + \|y-u\|^2 - \|x-u\|^2 - \|y-v\|^2.$$

Let C be a nonempty subset of H and let T be a mapping from C into itself. Then, we denote by F(T) the set of fixed points of T. A mapping $T: C \to H$ is said to be nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. A mapping $T: C \to H$ with $F(T) \ne \emptyset$ is called quasi-nonexpansive if $||x - Ty|| \le ||x - y||$ for all $x \in F(T)$ and $y \in C$. Let C be a nonempty closed convex subset of H and $x \in H$. Then, we know that there exists a unique nearest point $z \in C$ such that $||x - z|| = \inf_{y \in C} ||x - y||$. We denote such a correspondence by $z = P_C x$. The mapping P_C is called the metric projection of H onto C. It is known that P_C is nonexpansive and

$$\langle x - P_C x, P_C x - u \rangle \ge 0$$

for all $x \in H$ and $u \in C$. Furthermore, we know that

for all $x, y \in H$; see [26] for more details. For proving main results in this paper, we also need the following lemmas proved in [28] and [1].

Lemma 2.1. Let D be a nonempty closed convex subset of H. Let P be the metric projection from H onto D. Let $\{u_n\}$ be a sequence in H. If $||u_{n+1} - u|| \le ||u_n - u||$ for any $u \in D$ and $n \in \mathbb{N}$, then $\{Pu_n\}$ converges strongly to some $u_0 \in D$.

Lemma 2.2 (Aoyama-Kimura-Takahashi-Toyoda [1]). Let $\{s_n\}$ be a sequence of nonnegative real numbers, let $\{\alpha_n\}$ be a sequence of [0,1] with $\sum_{n=1}^{\infty} \alpha_n = \infty$, let $\{\beta_n\}$ be a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} \beta_n < \infty$, and let $\{\gamma_n\}$ be a sequence of real numbers with $\lim \sup_{n\to\infty} \gamma_n \leq 0$. Suppose that

$$s_{n+1} \le (1 - \alpha_n)s_n + \alpha_n \gamma_n + \beta_n$$

for all $n = 1, 2, \ldots$ Then $\lim_{n \to \infty} s_n = 0$.

Let l^{∞} be the Banach space of bounded sequences with supremum norm. Let μ be an element of $(l^{\infty})^*$ (the dual space of l^{∞}). Then we denote by $\mu(f)$ the value of μ at $f = (x_1, x_2, x_3, \ldots) \in l^{\infty}$. Sometimes, we denote by $\mu_n(x_n)$ the value $\mu(f)$. A linear functional μ on l^{∞} is called a mean if $\mu(e) = \|\mu\| = 1$, where $e = (1, 1, 1, \ldots)$. A mean μ is called a Banach limit on l^{∞} if $\mu_n(x_{n+1}) = \mu_n(x_n)$. We know that there exists a Banach limit on l^{∞} . If μ is a Banach limit on l^{∞} , then for $f = (x_1, x_2, x_3, \ldots) \in l^{\infty}$,

$$\liminf_{n \to \infty} x_n \le \mu_n(x_n) \le \limsup_{n \to \infty} x_n.$$

In particular, if $f = (x_1, x_2, x_3, ...) \in l^{\infty}$ and $x_n \to a \in \mathbb{R}$, then we have $\mu(f) = \mu_n(x_n) = a$. See [24] for the proof of existence of a Banach limit and its other elementary properties.

3. Fixed point theorem for non-self mappings

In this section, we prove a fixed point theorem for normal generalized hybrid non-self mappings in a Hilbert space. For proving the result, we need the following fixed point theorem obtained by Kawasaki and Takahashi [15].

Theorem 3.1 ([15]). Let H be a Hilbert space, let C be a non-empty, closed and convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into itself, i.e., there exist $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta \in \mathbb{R}$ such that

$$\alpha ||Tx - Ty||^2 + \beta ||x - Ty||^2 + \gamma ||Tx - y||^2 + \delta ||x - y||^2$$

$$+ \varepsilon ||x - Tx||^2 + \zeta ||y - Ty||^2 + \eta ||(x - Tx) - (y - Ty)||^2 \le 0$$

for all $x, y \in C$. Suppose that it satisfies the following condition (1) or (2):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma + \varepsilon + \eta > 0$ and $\zeta + \eta \ge 0$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta + \zeta + \eta > 0$ and $\varepsilon + \eta \ge 0$.

Then T has a fixed point if and only if there exists $z \in C$ such that $\{T^n z \mid n = 0, 1, \ldots\}$ is bounded. In particular, a fixed point of T is unique in the case of $\alpha + \beta + \gamma + \delta > 0$ on the conditions (1) and (2).

In particular, we have the following theorem from Theorem 3.1.

Theorem 3.2. Let H be a real Hilbert space, let C be a bounded closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into itself which satisfies the following condition (1) or (2):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma + \varepsilon + \eta > 0$ and $\zeta + \eta \ge 0$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta + \zeta + \eta > 0$ and $\varepsilon + \eta \ge 0$.

Then T has a fixed point. In particular, a fixed point of T is unique in the case of $\alpha + \beta + \gamma + \delta > 0$ on the conditions (1) and (2).

Using Theorem 3.2, we obtain the following fixed point theorem for normal generalized hybrid non-self mappings in a Hilbert space.

Theorem 3.3. Let C be a non-empty, bounded, closed and convex subset of a Hilbert space H. Let $T: C \to H$ be an $(\alpha, \beta, \gamma, \delta)$ -normal generalized hybrid mapping, i.e., there exist $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that

$$\alpha \|Tx - Ty\|^2 + \beta \|x - Ty\|^2 + \gamma \|Tx - y\|^2 + \delta \|x - y\|^2 \le 0$$

for all $x, y \in C$. Suppose that it satisfies the following condition (1) or (2):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma > 0$ and $\alpha + \beta \ge 0$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta > 0$ and $\alpha + \gamma \ge 0$.

Assume that there exists m > 1 such that for any $x \in C$,

$$Tx = x + t(y - x)$$

for some $y \in C$ and t with $0 < t \le m$. Then T has a fixed point in C. In particular, a fixed point of T is unique in the case of $\alpha + \beta + \gamma + \delta > 0$ on the conditions (1) and (2).

Proof. We give the proof for the case of (1). By the assumption, we have that for any $x \in C$, there exist $y \in C$ and t with $0 < t \le m$ such that Tx = x + t(y - x). From this, we have Tx = ty + (1 - t)x and hence

$$y = \frac{1}{t}Tx + \frac{t-1}{t}x.$$

Define $Ux \in C$ as follows:

$$Ux = \left(1 - \frac{t}{m}\right)x + \frac{t}{m}y = \left(1 - \frac{t}{m}\right)x + \frac{t}{m}\left(\frac{1}{t}Tx + \frac{t-1}{t}x\right).$$

We obtain that $Ux = \frac{1}{m}Tx + \frac{m-1}{m}x$. Taking $\lambda > 0$ with $m = 1 + \lambda$, we have that

$$Ux = \frac{1}{1+\lambda}Tx + \frac{\lambda}{1+\lambda}x$$

and hence

$$(3.1) T = (1+\lambda)U - \lambda I.$$

Since $T: C \to H$ is an $(\alpha, \beta, \gamma, \delta)$ -normal generalized hybrid mapping, we have from (3.1) and (2.1) that for any $x, y \in C$,

$$\begin{split} \alpha\|(1+\lambda)Ux - \lambda x - ((1+\lambda)Uy - \lambda y)\|^2 \\ + \beta\|x - ((1+\lambda)Uy - \lambda y)\|^2 + \gamma\|(1+\lambda)Ux - \lambda x - y\|^2 + \delta\|x - y\|^2 \\ = \alpha\|(1+\lambda)(Ux - Uy) - \lambda(x - y)\|^2 \\ + \beta\|(1+\lambda)(x - Uy) - \lambda(x - y)\|^2 + \gamma\|(1+\lambda)(Ux - y) - \lambda(x - y)\|^2 \\ + \delta\|x - y\|^2 \\ = \alpha(1+\lambda)\|Ux - Uy\|^2 - \alpha\lambda\|x - y\|^2 + \alpha\lambda(1+\lambda)\|x - y - (Ux - Uy)\|^2 \\ + \beta(1+\lambda)\|x - Uy\|^2 - \beta\lambda\|x - y\|^2 + \beta\lambda(1+\lambda)\|y - Uy\|^2 \\ + \gamma(1+\lambda)\|Ux - y\|^2 - \gamma\lambda\|x - y\|^2 + \gamma\lambda(1+\lambda)\|x - Ux\|^2 + \delta\|x - y\|^2 \\ = \alpha(1+\lambda)\|Ux - Uy\|^2 + \beta(1+\lambda)\|x - Uy\|^2 + \gamma(1+\lambda)\|Ux - y\|^2 \\ + (-\alpha\lambda - \beta\lambda - \gamma\lambda + \delta)\|x - y\|^2 \\ + (-\alpha\lambda - \beta\lambda - \gamma\lambda + \delta)\|x - y\|^2 \\ + \gamma\lambda(1+\lambda)\|x - Ux\|^2 + \beta\lambda(1+\lambda)\|y - Uy\|^2 \\ + \alpha\lambda(1+\lambda)\|x - y - (Ux - Uy)\|^2 \le 0. \end{split}$$

This implies that U is widely more generalized hybrid. Since $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma > 0$ and $\alpha + \beta \ge 0$, we obtain that

$$\alpha(1+\lambda) + \beta(1+\lambda) + \gamma(1+\lambda) - \alpha\lambda - \beta\lambda - \gamma\lambda + \delta = \alpha + \beta + \gamma + \delta \ge 0,$$

$$\alpha(1+\lambda) + \gamma(1+\lambda) + \gamma\lambda(1+\lambda) + \alpha\lambda(1+\lambda) = (\alpha+\gamma)(1+\lambda)^2 > 0,$$

$$\beta\lambda(1+\lambda) + \alpha\lambda(1+\lambda) = (\alpha+\beta)\lambda(1+\lambda) \ge 0.$$

By Theorem 3.2, we obtain that $F(U) \neq \emptyset$ and hence $F(T) \neq \emptyset$ from F(U) = F(T). Suppose that $\alpha + \beta + \gamma + \delta > 0$. Let p_1 and p_2 be fixed points of T. We have that

$$\alpha ||Tp_1 - Tp_2||^2 + \beta ||p_1 - Tp_2||^2 + \gamma ||Tp_1 - p_2||^2 + \delta ||p_1 - p_2||^2$$

= $(\alpha + \beta + \gamma + \delta) ||p_1 - p_2||^2 \le 0$

and hence $p_1 = p_2$. Therefore a fixed point of T is unique.

Similarly, we can obtain the desired result for the case when $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta > 0$ and $\alpha + \gamma \ge 0$. This completes the proof.

Let us give an example of mappings $T: C \to H$ such that for any $x \in C$, there are $y \in C$ and t with $0 < t \le m$ such that Tx = x + t(y - x). In the case of $H = \mathbb{R}$, consider a mapping $T: [0,1] \to \mathbb{R}$:

$$Tx = (1 + 2x)\cos x - 2x^2, \quad \forall x \in [0, 1].$$

Then, we have

$$Tx = (1 + 2x)(\cos x - x) + x, \quad \forall x \in [0, 1].$$

Take m = 3. For any $x \in [0, 1]$, take t = 1 + 2x and $y = \cos x$. Then, we have that Tx = t(y - x) + x, $y = \cos x \in [0, 1]$ and $0 < t = 1 + 2x \le 3$.

4. Weak convergence theorems of Mann's type

In this section, we prove a weak convergence theorem of Mann's type [20] for widely more generalized hybrid mappings in a Hilbert space. Before proving the result, we need the following two lemmas. As in the proof in [15], we can first prove the following lemma for widely more generalized hybrid non-self mappings.

Lemma 4.1. Let C be a non-empty, closed and convex subset of a Hilbert space H and let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into H with $F(T) \neq \emptyset$ which satisfies the condition (1) or (2):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta > 0$ and $\zeta + \eta \ge 0$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma > 0$ and $\varepsilon + \eta \ge 0$.

Then T is quasi-nonexpansive.

Proof. Suppose that the condition (2) holds. We have from (1.1) that for any $x \in C$ and for any $y \in F(T)$,

$$\alpha \|Tx - Ty\|^{2} + \beta \|x - Ty\|^{2} + \gamma \|Tx - y\|^{2} + \delta \|x - y\|^{2} + \varepsilon \|x - Tx\|^{2} + \zeta \|y - Ty\|^{2} + \eta \|(x - Tx) - (y - Ty)\|^{2}$$

$$= (\alpha + \gamma) \|Tx - y\|^{2} + (\beta + \delta) \|x - y\|^{2} + (\varepsilon + \eta) \|x - Tx\|^{2} \le 0.$$

We obtain from $\alpha + \gamma > 0$ that

$$||Tx - y||^2 \le -\frac{\beta + \delta}{\alpha + \gamma} ||x - y||^2 - \frac{\varepsilon + \eta}{\alpha + \gamma} ||x - Tx||^2.$$

Since $-\frac{\beta+\delta}{\alpha+\gamma} \leq 1$ from $\alpha+\beta+\gamma+\delta \geq 0$ and $-\frac{\varepsilon+\eta}{\alpha+\gamma} \leq 0$ from $\varepsilon+\eta \geq 0$, we obtain that $\|Tx-y\|^2 \leq \|x-y\|^2$ and hence $\|Tx-y\| \leq \|x-y\|$. Thus T is quasi-nonexpansive. Similarly, we can obtain the desired result for the case of the condition (1).

If $T: C \to H$ is quasi-nonexpansive, then F(T) is closed and convex; see Itoh and Takahashi [13]. It is not difficult to prove such a result in a Hilbert space. In fact, for proving that F(T) is closed, take a sequence $\{z_n\} \subset F(T)$ with $z_n \to z$. Since C is weakly closed, we have $z \in C$. Furthermore, from

$$||z - Tz|| < ||z - z_n|| + ||z_n - Tz|| < 2||z - z_n|| \to 0$$

z is a fixed point of T and so F(T) is closed. Let us show that F(T) is convex. For $x, y \in F(T)$ and $\alpha \in [0, 1]$, put $z = \alpha x + (1 - \alpha)y$. Then we have from (2.1) that

$$||z - Tz||^{2} = ||\alpha x + (1 - \alpha)y - Tz||^{2}$$

$$= \alpha ||x - Tz||^{2} + (1 - \alpha)||y - Tz||^{2} - \alpha(1 - \alpha)||x - y||^{2}$$

$$\leq \alpha ||x - z||^{2} + (1 - \alpha)||y - z||^{2} - \alpha(1 - \alpha)||x - y||^{2}$$

$$= \alpha(1 - \alpha)^{2} ||x - y||^{2} + (1 - \alpha)\alpha^{2} ||x - y||^{2} - \alpha(1 - \alpha)||x - y||^{2}$$

$$= \alpha(1 - \alpha)(1 - \alpha + \alpha - 1)||x - y||^{2}$$

$$= 0$$

and hence Tz = z. This implies that F(T) is convex.

Lemma 4.2. Let H be a Hilbert space and let C be a non-empty, closed and convex subset of H. Let $T: C \to H$ be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping. Suppose that it satisfies the following condition (1) or (2):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$ and $\alpha + \gamma + \varepsilon + \eta > 0$;
- (2) $\alpha + \beta + \gamma + \delta > 0$ and $\alpha + \beta + \zeta + \eta > 0$.

If $x_n \rightharpoonup z$ and $x_n - Tx_n \to 0$, then $z \in F(T)$.

Proof. We give the proof for the case of (2). Let T be an $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping and suppose that $x_n \to z$ and $x_n - Tx_n \to 0$. Replacing x by x_n in (1.1), we have that

(4.1)
$$\alpha \|Tx_n - Ty\|^2 + \beta \|x_n - Ty\|^2 + \gamma \|Tx_n - y\|^2 + \delta \|x_n - y\|^2 + \varepsilon \|x_n - Tx_n\|^2 + \zeta \|y - Ty\|^2 + \eta \|(x_n - Tx_n) - (y - Ty)\|^2 < 0.$$

From this inequality, we have that

$$\alpha(\|Tx_n - x_n\|^2 + \|x_n - Ty\|^2 + 2\langle Tx_n - x_n, x_n - Ty\rangle) + \beta\|x_n - Ty\|^2 + \gamma(\|Tx_n - x_n\|^2 + \|x_n - y\|^2 + 2\langle Tx_n - x_n, x_n - y\rangle) + \delta\|x_n - y\|^2 + \varepsilon\|x_n - Tx_n\|^2 + \zeta\|y - Ty\|^2 + \eta\|(x_n - Tx_n) - (y - Ty)\|^2 \le 0.$$

We apply a Banach limit μ to both sides of this inequality. We have that

$$\alpha \mu_n(\|Tx_n - x_n\|^2 + \|x_n - Ty\|^2 + 2\langle Tx_n - x_n, x_n - Ty \rangle) + \beta \mu_n \|x_n - Ty\|^2$$

$$+ \gamma \mu_n(\|Tx_n - x_n\|^2 + \|x_n - y\|^2 + 2\langle Tx_n - x_n, x_n - y \rangle) + \delta \mu_n \|x_n - y\|^2$$

$$+ \varepsilon \mu_n \|x_n - Tx_n\|^2 + \zeta \mu_n \|y - Ty\|^2 + \eta \mu_n \|(x_n - Tx_n) - (y - Ty)\|^2 \le 0$$

and hence

$$\alpha \mu_n \|x_n - Ty\|^2 + \beta \mu_n \|x_n - Ty\|^2 + \gamma \mu_n \|x_n - y\|^2 + \delta \mu_n \|x_n - y\|^2 + \zeta \mu_n \|y - Ty\|^2 + \eta \mu_n \|y - Ty\|^2 \le 0.$$

Thus we have

$$(\alpha + \beta)\mu_n \|x_n - Ty\|^2 + (\gamma + \delta)\mu_n \|x_n - y\|^2 + (\zeta + \eta)\|y - Ty\|^2 \le 0.$$
From $\|x_n - Ty\|^2 = \|x_n - y\|^2 + \|y - Ty\|^2 + 2\langle x_n - y, y - Ty \rangle$, we also have
$$(\alpha + \beta)(\mu_n \|x_n - y\|^2 + \|y - Ty\|^2 + 2\mu_n \langle x_n - y, y - Ty \rangle)$$

$$+ (\gamma + \delta)\mu_n \|x_n - y\|^2 + (\zeta + \eta)\|y - Ty\|^2 \le 0.$$

From $\alpha + \beta + \gamma + \delta \ge 0$ we obtain that

$$(\alpha + \beta) \|y - Ty\|^2 + 2(\alpha + \beta)\mu_n \langle x_n - y, y - Ty \rangle$$
$$+ (\zeta + \eta) \|y - Ty\|^2 \le 0$$

and hence

$$(\alpha + \beta + \zeta + \eta) \|y - Ty\|^2 + 2(\alpha + \beta)\mu_n \langle x_n - y, y - Ty \rangle \le 0.$$

Since $x_n \rightharpoonup z$, we have that

$$(\alpha+\beta+\zeta+\eta)\|y-Ty\|^2+2(\alpha+\beta)\langle z-y,y-Ty\rangle\leq 0.$$

Putting y = z, we have that

$$(\alpha + \beta + \zeta + \eta) \|z - Tz\|^2 \le 0.$$

Since $\alpha + \beta + \zeta + \eta > 0$, we have that $z \in F(T)$.

Similarly, by replacing the variables x and y in (1.1), we can obtain the desired result for the case when $\alpha + \beta + \gamma + \delta \ge 0$ and $\alpha + \gamma + \varepsilon + \eta > 0$. This completes the proof.

Using Lemmas 4.1, 4.2 and the technique developed by Ibaraki and Takahashi [10, 11], we can prove the following weak convergence theorem.

Theorem 4.3. Let H be a Hilbert space and let C be a non-empty, closed and convex subset of H. Let $T: C \to H$ be a widely more generalized hybrid mapping with $F(T) \neq \emptyset$ which satisfies the condition (1) or (2):

- (1) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \gamma > 0$ and $\varepsilon + \eta \ge 0$;
- (2) $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta > 0$ and $\zeta + \eta \ge 0$.

Let P be the mertic projection of H onto F(T). Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \le \alpha_n \le 1$ and $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$. Suppose $\{x_n\}$ is the sequence generated by $x_1 = x \in C$ and

$$x_{n+1} = P_C \left(\alpha_n x_n + (1 - \alpha_n) T x_n \right), \quad n \in \mathbb{N}.$$

Then $\{x_n\}$ converges weakly to $v \in F(T)$, where $v = \lim_{n \to \infty} Px_n$.

Proof. Since $T: C \to H$ is quasi-nonexpansive, we have from Lemma 4.1 that F(T) is closed and convex. Furthermore, we have that for any $z \in F(T)$,

$$||x_{n+1} - z||^2 \le ||\alpha_n x_n + (1 - \alpha_n) T x_n - z||^2$$

$$\le \alpha_n ||x_n - z||^2 + (1 - \alpha_n) ||T x_n - z||^2$$

$$\le \alpha_n ||x_n - z||^2 + (1 - \alpha_n) ||x_n - z||^2$$

$$= ||x_n - z||^2$$

for all $n \in \mathbb{N}$. Hence $\lim_{n\to\infty} ||x_n - z||^2$ exists. Then $\{x_n\}$ is bounded. We also have from (2.1) that

$$||x_{n+1} - z||^{2} \le ||\alpha_{n}x_{n} + (1 - \alpha_{n})Tx_{n} - z||^{2}$$

$$= \alpha_{n}||x_{n} - z||^{2} + (1 - \alpha_{n})||Tx_{n} - z||^{2} - \alpha_{n}(1 - \alpha_{n})||Tx_{n} - x_{n}||^{2}$$

$$\le \alpha_{n}||x_{n} - z||^{2} + (1 - \alpha_{n})||x_{n} - z||^{2} - \alpha_{n}(1 - \alpha_{n})||Tx_{n} - x_{n}||^{2}$$

$$= ||x_{n} - z||^{2} - \alpha_{n}(1 - \alpha_{n})||Tx_{n} - x_{n}||^{2}.$$

Thus we have

$$\alpha_n(1-\alpha_n)||Tx_n-x_n||^2 \le ||x_n-z||^2 - ||x_{n+1}-z||^2.$$

Since $\lim_{n\to\infty} ||x_n-z||^2$ exists and $\lim\inf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$, we have that

$$(4.2) ||Tx_n - x_n|| \to 0.$$

Since $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \rightharpoonup v$. By Lemma 4.2 and (4.2), we obtain that $v \in F(T)$. Let $\{x_{n_i}\}$ and $\{x_{n_j}\}$ be two subsequences of $\{x_n\}$ such that $x_{n_i} \rightharpoonup v_1$ and $x_{n_j} \rightharpoonup v_2$. To complete the proof, we show $v_1 = v_2$. We know that $v_1, v_2 \in F(T)$ and hence $\lim_{n\to\infty} ||x_n - v_1||^2$ and $\lim_{n\to\infty} ||x_n - v_2||^2$ exist. Put

$$a = \lim_{n \to \infty} (\|x_n - v_1\|^2 - \|x_n - v_2\|^2).$$

Note that for $n = 1, 2, \ldots$,

$$||x_n - v_1||^2 - ||x_n - v_2||^2 = 2\langle x_n, v_2 - v_1 \rangle + ||v_1||^2 - ||v_2||^2$$

From $x_{n_i} \rightharpoonup v_1$ and $x_{n_i} \rightharpoonup v_2$, we have

$$(4.3) a = 2\langle v_1, v_2 - v_1 \rangle + ||v_1||^2 - ||v_2||^2$$

and

$$(4.4) a = 2\langle v_2, v_2 - v_1 \rangle + ||v_1||^2 - ||v_2||^2.$$

Combining (4.3) and (4.4), we obtain $0 = 2\langle v_2 - v_1, v_2 - v_1 \rangle$. Thus we obtain $v_2 = v_1$. This implies that $\{x_n\}$ converges weakly to an element $v \in F(T)$. Since $||x_{n+1} - z|| \le ||x_n - z||$ for all $z \in F(T)$ and $n \in \mathbb{N}$, we obtain from Lemma 2.1 that $\{Px_n\}$ converges strongly to an element $p \in F(T)$. On the other hand, we have from the property of P that

$$\langle x_n - Px_n, Px_n - u \rangle \ge 0$$

for all $u \in F(T)$ and $n \in \mathbb{N}$. Since $x_n \to v$ and $Px_n \to p$, we obtain

$$\langle v - p, p - u \rangle \ge 0$$

for all $u \in F(T)$. Putting u = v, we obtain p = v. This means $v = \lim_{n \to \infty} Px_n$. This completes the proof.

Using Theorem 4.3, we can show the following weak convergence theorem of Mann's type for generalized hybrid mappings in a Hilbert space.

Theorem 4.4 (Kocourek, Takahashi and Yao [16]). Let H be a Hilbert space and let C be a non-empty, closed and convex subset of H. Let $T: C \to C$ be a generalized hybrid mapping with $F(T) \neq \emptyset$. Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \leq \alpha_n \leq 1$ and $\liminf_{n \to \infty} \alpha_n (1 - \alpha_n) > 0$. Suppose that $\{x_n\}$ is the sequence generated by $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n, \quad n \in \mathbb{N}.$$

Then the sequence $\{x_n\}$ converges weakly to an element $v \in F(T)$.

Proof. Since $T:C\to C$ is a generalized hybrid mapping, there exist $\alpha,\beta\in\mathbb{R}$ such that

$$\alpha ||Tx - Ty||^2 + (1 - \alpha)||x - Ty||^2 \le \beta ||Tx - Ty||^2 + (1 - \beta)||x - Ty||^2$$

for all $x, y \in C$. We have that an (α, β) -generalized hybrid mapping is an $(\alpha, 1 - \alpha, -\beta, -(1-\beta), 0, 0, 0)$ -widely more generalized hybrid mapping which satisfies the condition (2) in Theorem 4.3. Therefore, we have the desired result from Theorem 4.3.

5. Strong convergence theorem

In this section, using an idea of mean convergence by Shimizu and Takahashi [21] and [22], we prove the following strong convergence theorem for widely more generalized hybrid mappings in a Hilbert space.

Theorem 5.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let T be a widely more generalized hybrid mapping of C into itself which satisfies the following condition (1) or (2):

$$\begin{array}{ll} (1) \ \alpha+\beta+\gamma+\delta\geq 0, \ \alpha+\gamma>0, \ \varepsilon+\eta\geq 0 \ and \ \zeta+\eta\geq 0; \\ (2) \ \alpha+\beta+\gamma+\delta\geq 0, \ \alpha+\beta>0, \ \zeta+\eta\geq 0 \ and \ \varepsilon+\eta\geq 0. \end{array}$$

(2)
$$\alpha + \beta + \gamma + \delta \ge 0$$
, $\alpha + \beta > 0$, $\zeta + \eta \ge 0$ and $\varepsilon + \eta \ge 0$.

Let $u \in C$ and define sequences $\{x_n\}$ and $\{z_n\}$ in C as follows: $x_1 = x \in C$ and

$$\begin{cases} x_{n+1} = \alpha_n u + (1 - \alpha_n) z_n, \\ z_n = \frac{1}{n} \sum_{k=0}^{n-1} T^k x_n \end{cases}$$

for all n = 1, 2, ..., where $0 \le \alpha_n \le 1$, $\alpha_n \to 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$. If $F(T) \ne \emptyset$, then $\{x_n\}$ and $\{z_n\}$ converge strongly to Pu, where P is the metric projection of Honto F(T).

Proof. Since $T: C \to C$ be a widely more generalized hybrid mapping, there exist $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta \in \mathbb{R}$ such that

(5.1)
$$\alpha \|Tx - Ty\|^2 + \beta \|x - Ty\|^2 + \gamma \|Tx - y\|^2 + \delta \|x - y\|^2 + \varepsilon \|x - Tx\|^2 + \zeta \|y - Ty\|^2 + \eta \|(x - Tx) - (y - Ty)\|^2 \le 0$$

for any $x, y \in C$. Since $F(T) \neq \emptyset$, we have that for all $q \in F(T)$ and $n = 1, 2, 3, \ldots$,

(5.2)
$$||z_n - q|| = \left\| \frac{1}{n} \sum_{k=0}^{n-1} T^k x_n - q \right\| \le \frac{1}{n} \sum_{k=0}^{n-1} ||T^k x_n - q||$$

$$\le \frac{1}{n} \sum_{k=0}^{n-1} ||x_n - q|| = ||x_n - q||.$$

Thus we have that

$$||x_{n+1} - q|| = ||\alpha_n u + (1 - \alpha_n)z_n - q||$$

$$\leq \alpha_n ||u - q|| + (1 - \alpha_n)||z_n - q||$$

$$\leq \alpha_n ||u - q|| + (1 - \alpha_n)||x_n - q||.$$

Hence, by induction, we obtain

$$||x_n - q|| \le \max\{||u - q||, ||x - q||\}$$

for all $n \in \mathbb{N}$. Then $\{x_n\}$ and $\{z_n\}$ are bounded. Since $||T^nx_n - q|| \le ||x_n - q||$, we have also that $\{T^nx_n\}$ is bounded.

We also obtain from (5.1) that for any $x, z \in C$ and $n \in \mathbb{N}$,

$$\alpha \|Tx - T^{n+1}z\|^2 + \beta \|x - T^{n+1}z\|^2 + \gamma \|Tx - T^nz\|^2 + \delta \|x - T^nz\|^2 + \varepsilon \|x - Tx\|^2 + \zeta \|T^nz - T^{n+1}z\|^2 + \eta \|(x - Tx) - (T^nz - T^{n+1}z)\|^2 \le 0$$

for any $n \in \mathbb{N} \cup \{0\}$ and $x \in C$. By (2.2) we obtain that

$$\begin{aligned} \|(x-Tx) - (T^n z - T^{n+1} z)\|^2 \\ &= \|x - Tx\|^2 + \|T^n z - T^{n+1} z\|^2 - 2\langle x - Tx, T^n z - T^{n+1} z\rangle \\ &= \|x - Tx\|^2 + \|T^n z - T^{n+1} z\|^2 + \|x - T^n z\|^2 + \|Tx - T^{n+1} z\|^2 \\ &- \|x - T^{n+1} z\|^2 - \|Tx - T^n z\|^2. \end{aligned}$$

Thus we have that

$$(\alpha + \eta) \|Tx - T^{n+1}z\|^2 + (\beta - \eta) \|x - T^{n+1}z\|^2 + (\gamma - \eta) \|Tx - T^nz\|^2 + (\delta + \eta) \|x - T^nz\|^2 + (\varepsilon + \eta) \|x - Tx\|^2 + (\zeta + \eta) \|T^nz - T^{n+1}z\|^2 \le 0.$$

From

$$\begin{aligned} &(\gamma - \eta) \|Tx - T^n z\|^2 \\ &= (\alpha + \gamma) (\|x - Tx\|^2 + \|x - T^n z\|^2 - 2\langle x - Tx, x - T^n z\rangle) \\ &- (\alpha + \eta) \|Tx - T^n z\|^2, \end{aligned}$$

we have that

$$\begin{split} &(\alpha+\eta)\|Tx-T^{n+1}z\|^2+(\beta-\eta)\|x-T^{n+1}z\|^2\\ &+(\alpha+\gamma)(\|x-Tx\|^2+\|x-T^nz\|^2-2\langle x-Tx,x-T^nz\rangle)\\ &-(\alpha+\eta)\|Tx-T^nz\|^2+(\delta+\eta)\|x-T^nz\|^2\\ &+(\varepsilon+\eta)\|x-Tx\|^2+(\zeta+\eta)\|T^nz-T^{n+1}z\|^2\leq 0 \end{split}$$

and hence

$$(\alpha + \eta)(\|Tx - T^{n+1}z\|^2 - \|Tx - T^nz\|^2) + (\beta - \eta)\|x - T^{n+1}z\|^2$$
$$-2(\alpha + \gamma)\langle x - Tx, x - T^nz\rangle + (\alpha + \gamma + \delta + \eta)\|x - T^nz\|^2$$
$$+(\alpha + \gamma + \varepsilon + \eta)\|x - Tx\|^2 + (\zeta + \eta)\|T^nz - T^{n+1}z\|^2 < 0.$$

By $\alpha + \beta + \gamma + \delta > 0$, we have that

$$-(\beta - \eta) = -(\beta + \delta) + \delta + \eta < \alpha + \gamma + \delta + \eta.$$

From this inequality and $\zeta + \eta \geq 0$ we obtain that

(5.3)
$$(\alpha + \eta)(\|Tx - T^{n+1}z\|^2 - \|Tx - T^nz\|^2) + (\beta - \eta)(\|x - T^{n+1}z\|^2 - \|x - T^nz\|^2) - 2(\alpha + \gamma)\langle x - Tx, x - T^nz\rangle + (\alpha + \gamma + \varepsilon + \eta)\|x - Tx\|^2 \le 0.$$

From (5.3), we have that

$$(\alpha + \eta)(\|Tz - T^{k+1}x_n\|^2 - \|Tz - T^kx_n\|^2) + (\beta - \eta)(\|z - T^{k+1}x_n\|^2 - \|z - T^kx_n\|^2) - 2(\alpha + \gamma)\langle z - Tz, z - T^kx_n\rangle + (\alpha + \gamma + \varepsilon + \eta)\|z - Tz\|^2 \le 0$$

for any $k \in \mathbb{N} \cup \{0\}$ and $z \in C$. Summing up these inequalities with respect to $k = 0, 1, \ldots, n-1$ and dividing by n, we obtain that

$$\frac{\alpha + \eta}{n} (\|Tz - T^n x_n\|^2 - \|Tz - x_n\|^2) + \frac{\beta - \eta}{n} (\|z - T^n x_n\|^2 - \|z - x_n\|^2) - 2(\alpha + \gamma) \langle z - Tz, z - z_n \rangle + (\alpha + \gamma + \varepsilon + \eta) \|z - Tz\|^2 \le 0.$$

Since $\{z_n\}$ is bounded, there exists a subsequence $\{z_{n_i}\}$ of $\{z_n\}$ such that $z_{n_i} \rightharpoonup w \in H$. Replacing n by n_i , we have that

$$\frac{\alpha + \eta}{n_i} (\|Tz - T^{n_i}x_{n_i}\|^2 - \|Tz - x_{n_i}\|^2) + \frac{\beta - \eta}{n_i} (\|z - T^{n_i}x_{n_i}\|^2 - \|z - x_{n_i}\|^2) - 2(\alpha + \gamma)\langle z - Tz, z - z_{n_i}\rangle + (\alpha + \gamma + \varepsilon + \eta)\|z - Tz\|^2 \le 0.$$

Since $\{x_n\}$ and $\{T^nx_n\}$ are bounded, we have that

$$-2(\alpha+\gamma)\langle z-Tz,z-w\rangle + (\alpha+\gamma+\varepsilon+\eta)\|z-Tz\|^2 \le 0$$

as $i \to \infty$. Putting z = w, we have that

$$(\alpha + \gamma + \varepsilon + \eta) \|w - Tw\|^2 \le 0.$$

Since $\alpha + \gamma + \varepsilon + \eta > 0$, we have that $w \in F(T)$.

On the other hand, since $x_{n+1} - z_n = \alpha_n(u - z_n)$, $\{z_n\}$ is bounded and $\alpha_n \to 0$, we have $\lim_{n\to\infty} ||x_{n+1} - z_n|| = 0$. Let us show

$$\limsup_{n \to \infty} \langle u - Pu, x_{n+1} - Pu \rangle \le 0.$$

We may assume without loss of generality that there exists a subsequence $\{x_{n_i+1}\}$ of $\{x_{n+1}\}$ such that

$$\limsup_{n \to \infty} \langle u - Pu, x_{n+1} - Pu \rangle = \lim_{i \to \infty} \langle u - Pu, x_{n_i+1} - Pu \rangle$$

and $x_{n_i+1} \rightharpoonup v$. From $||x_{n+1}-z_n|| \to 0$, we have $z_{n_i} \rightharpoonup v$. From the above argument, we have $v \in F(T)$. Since P is the metric projection of H onto F(T), we have

$$\lim_{i \to \infty} \langle u - Pu, x_{n_i+1} - Pu \rangle = \langle u - Pu, v - Pu \rangle \le 0.$$

This implies

(5.4)
$$\limsup_{n \to \infty} \langle u - Pu, x_{n+1} - Pu \rangle \le 0.$$

Since $x_{n+1} - Pu = (1 - \alpha_n)(z_n - Pu) + \alpha_n(u - Pu)$, from (5.2) we have

$$||x_{n+1} - Pu||^2 = ||(1 - \alpha_n)(z_n - Pu) + \alpha_n(u - Pu)||^2$$

$$\leq (1 - \alpha_n)^2 ||z_n - Pu||^2 + 2\alpha_n \langle u - Pu, x_{n+1} - Pu \rangle$$

$$\leq (1 - \alpha_n) ||x_n - Pu||^2 + 2\alpha_n \langle u - Pu, x_{n+1} - Pu \rangle.$$

Putting $s_n = ||x_n - Pu||^2$, $\beta_n = 0$ and $\gamma_n = 2\langle u - Pu, x_{n+1} - Pu \rangle$ in Lemma 2.2, we have from $\sum_{n=1}^{\infty} \alpha_n = \infty$ and (5.4) that

$$\lim_{n \to \infty} ||x_n - Pu|| = 0.$$

By $\lim_{n\to\infty} ||x_{n+1}-z_n|| = 0$, we also obtain $z_n \to Pu$ as $n \to \infty$.

Similarly, we can obtain the desired result for the case of $\alpha + \beta + \gamma + \delta \ge 0$, $\alpha + \beta > 0$, $\zeta + \eta \ge 0$ and $\varepsilon + \eta \ge 0$.

Using Theorem 5.1, we can show the following result obtained by Hojo and Takahashi [9].

Theorem 5.2 (Hojo and Takahashi [9]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let T be a generalized hybrid mapping of C into itself. Let $u \in C$ and define two sequences $\{x_n\}$ and $\{z_n\}$ in C as follows: $x_1 = x \in C$ and

$$\begin{cases} x_{n+1} = \alpha_n u + (1 - \alpha_n) z_n, \\ z_n = \frac{1}{n} \sum_{k=0}^{n-1} T^k x_n \end{cases}$$

for all n = 1, 2, ..., where $0 \le \alpha_n \le 1$, $\alpha_n \to 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$. If F(T) is nonempty, then $\{x_n\}$ and $\{z_n\}$ converge strongly to $Pu \in F(T)$, where P is the metric projection of H onto F(T).

Proof. As in the proof of Theorem 4.4, a generalized hybrid mapping is a widely more generalized hybrid mapping. Therefore, we have the desired result from Theorem 5.1.

References

- [1] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 2350–2360.
- [2] J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C.R. Acad. Sci. Paris Ser. A-B 280 (1975), 1511-1514.
- [3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145.
- [4] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201–225.
- [5] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197–228.
- [6] P. L. Combettes and A. Hirstoaga, Equilibrium problems in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117–136.
- [7] K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.
- [8] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957–961.
- [9] M. Hojo and W. Takahashi, Weak and strong convergence theorems for generalized hybrid mappings in Hilbert spaces, Sci. Math. Jpn. **73** (2011), 31–40.
- [10] T. Ibaraki and W. Takahashi, Weak convergence theorem for new nonexpansive mappings in Banach spaces and its applications, Taiwanese J. Math. 11 (2007), 929–944.
- [11] T. Ibaraki and W. Takahashi, Fixed point theorems for nonlinear mappings of nonexpansive type in Banach spaces, J. Nonlinear Convex Anal. 10 (2009), 21–32.
- [12] S. Iemoto and W. Takahashi, Approximating fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Anal. 71 (2009), 2082–2089.
- [13] S. Itoh and W. Takahashi, The common fixed point theory of single-valued mappings and multi-valued mappings, Pacific J. Math. 79 (1978), 493–508.
- [14] T. Kawasaki and W. Takahashi, Fixed point and nonlinear ergodic theorems for new nonlinear mappings in Hilbert spaces, J. Nonlinear Convex Anal. 13 (2012), 529–540.
- [15] T. Kawasaki and W. Takahashi, Existence and mean approximation of fixed points of generalized hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 14 (2013), 71–87.
- [16] P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497— 2511.
- [17] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM. J. Optim. 19 (2008), 824–835.

- [18] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. (Basel) 91 (2008), 166–177.
- [19] Y. Kurokawa and W. Takahashi, Weak and strong convergence theorems for nonspreading mappings in Hilbert spaces, Nonlinear Anal. 73 (2010), 1562–1568.
- [20] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- [21] T. Shimizu and W. Takahashi, Strong convergence theorem for asymptotically nonexpansive mappings, Nonlinear Anal. 26 (1996), 265–272.
- [22] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of non-expansive mappings, J. Math. Anal. Appl. 211 (1997), 71–83.
- [23] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253–256.
- [24] W. Takahashi, Nonlinear Functional Analysis, Yokohoma Publishers, Yokohoma, 2000.
- [25] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (in Japanese).
- [26] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohoma Publishers, Yokohoma, 2009.
- [27] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010), 79–88.
- [28] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417–428.
- [29] W. Takahashi, N.-C. Wong and J.-C. Yao, Attractive point and weak convergence theorems for new generalized hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 13 (2012), 745–757.
- [30] W. Takahashi and J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, Taiwanese J. Math. 15 (2011), 457–472.
- [31] W. Takahashi, J.-C. Yao and P. Kocourek, Weak and strong convergence theorems for generalized hybrid nonself-mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 567–586.
- [32] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. (Basel) 58 (1992), 486–491.

Manuscript received May 10, 2011 revised August 31, 2012

Мачимі Нојо

Graduate School of Science and Technology, Niigata University, Niigata, Japan

E-mail address: f07n013g@alumni.niigata-u.ac.jp

Takamasa Suzuki

Graduate school of economics, Keio university, Tokyo, Japan

E-mail address: tsuzuki@gs.econ.keio.ac.jp

Wataru Takahashi

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152–8552, Japan

 $E ext{-}mail\ address:$ wataru@is.titech.ac.jp