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FIXED POINT THEOREMS AND CONVERGENCE THEOREMS
FOR GENERALIZED HYBRID NON-SELF MAPPINGS
IN HILBERT SPACES

MAYUMI HOJO, TAKAMASA SUZUKI, AND WATARU TAKAHASHI

ABSTRACT. In this paper, we first prove a fixed point theorem for normal gen-
eralized hybrid non-self mappings in a Hilbert space. In the proof, we show that
widely more generalized hybrid mappings are deduced from normal generalized
hybrid non-self mappings. Next, we prove a weak convergence theorem of Mann’s
type [20] for widely more generalized hybrid non-self mappings in a Hilbert space.
For the proof, we use the demi-closedness property for widely more generalized
hybrid non-self mappings. Finally, using an idea of mean convergence by Shimizu
and Takahashi [21] and [22], we prove a mean strong convergence theorem for
widely more generalized hybrid mappings in a Hilbert space. This theorem gener-
alizes Hojo and Takahashi’s mean strong convergence theorem [9] for generalized
hybrid mappings.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a non-empty subset of H. Kocourek,
Takahashi and Yao [16] introduced a broad class of nonlinear mappings in a Hilbert
space which covers nonexpansive mappings, nonspreading mappings [18] and hybrid
mappings [27]. A mapping T': C' — H is said to be generalized hybrid if there exist
a, B € R such that

af| T = Ty[l* + (1 — a)llz = Tyl < BTz —y|* + (1 = B) |z -y’
for all x,y € C, where R is the set of real numbers. We call such a mapping
an (a, f)-generalized hybrid mapping. An («, ()-generalized hybrid mapping is
nonexpansive for « =1 and g =0, i.e.,
[Tz =Tyl < llz —yll
for all x,y € C. It is nonspreading for « =2 and g =1, i.e.,
2Tz = Ty|* < |lz = Ty|* + |ly — T

for all z,y € C. Furthermore, it is hybrid for a = % and 8 = %, ie.,

3Tz — Ty|* < ||z — Tyl* + lly — T|* + [ly — =||?

for all z,y € C. They proved fixed point theorems and nonlinear ergodic theorems
of Baillon’s type [2] for generalized hybrid mappings; see also Kohsaka and Taka-
hashi [17] and Iemoto and Takahashi [12]. Very recently, Kawasaki and Takahashi
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[15] introduced a more broad class of nonlinear mappings in a Hilbert space. A
mapping 1" from C' into H is said to be widely more generalized hybrid if there
exist «, 8,7,9,¢,(,n € R such that

11 alTe=Ty|? + Bllz — Tyll* ++I|Tx - yl* + &)z — y|*
+elle = Tz|* + Clly = Tyl® +nll(z — Tz) — (y = Ty)|I> < 0

for all x,y € C. Such a mapping T is called an (a, 8,7, d, €, ¢, n)-widely more gener-
alized hybrid mapping. In particular, an («, 3,7, 9,0, 0,0)-widely more generalized
hybrid mapping is called («, 3, v, )-normal generalized hybrid; see Takahashi, Wong
and Yao [29]. An («, 3,7,0)-normal generalized hybrid mapping is generalized hy-
brid in the sense of Kocourek, Takahashi and Yao [16] if « + 3 = —y — 0 = 1.
and e = ( = n = 0. A generalized hybrid mapping with a fixed point is quasi-
nonexpansive. However, a widely more generalized hybrid mapping is not quasi-
nonexpansive generally even if it has a fixed point. In [15], Kawasaki and Takahashi
proved fixed point theorems and nonlinear ergodic theorems of Baillon’s type for
such new mappings in a Hilbert space. In particular, by using their fixed point
theorems, they proved directly Browder and Petryshyn’s fixed point theorem [5] for
strict pseudo-contractive mappings and Kocourek, Takahashi and Yao’s fixed point
theorem [16] for super generalized hybrid mappings.

In this paper, motivated by these mappings and results, we first prove a fixed
point theorem for normal generalized hybrid non-self mappings in a Hilbert space.
In the proof, we show that widely more generalized hybrid mappings are deduced
from normal generalized hybrid non-self mappings and then we prove a fixed point
theorem for the mappings by using Kawasaki and Takahashi’s fixed point theorem
for widely more generalized hybrid mappings. Next, we prove a weak convergence
theorem of Mann’s type [20] for widely more generalized hybrid non-self mappings
in a Hilbert space. For the proof, we use the demi-closedness property for widely
more generalized hybrid non-self mappings. Finally, using an idea of mean conver-
gence by Shimizu and Takahashi [21] and [22], we prove a mean strong convergence
theorem for widely more generalized hybrid mappings in a Hilbert space. This the-
orem generalizes Hojo and Takahashi’s mean strong convergence theorem [9] for
generalized hybrid mappings.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a (real) Hilbert space with inner product (-,- ) and
norm || - ||, respectively. We denote the strong convergence and the weak convergence
of {zp} to x € H by =, — = and z,, — z, respectively. From [26], we know the
following basic equality: For z,y € H and A € R, we have

(2.1) 1Az + (1= Nyl = AMlzl* + (1= Myl = 21 = Nz - yl*
Furthermore, we know that for z,y,u,v € H
(22) 2(z —y,u—v) =z —ol* + lly = ull® = o —ul® = ly — ]

Let C' be a nonempty subset of H and let T be a mapping from C' into itself.
Then, we denote by F(T) the set of fixed points of T. A mapping T : C — H
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is said to be nonexpansive if || Tz — Ty| < ||z —y| for all z,y € C. A mapping
T :C — H with F(T) # () is called quasi-nonexpansive if ||x — Ty|| < ||z — y|| for
all z € F(T) and y € C. Let C be a nonempty closed convex subset of H and
x € H. Then, we know that there exists a unique nearest point z € C such that
|z — 2| = infyec ||z — y||. We denote such a correspondence by z = Pox. The
mapping Pc is called the metric projection of H onto C. It is known that P is
nonexpansive and

(x — Pox, Pox —u) >0
for all x € H and v € C. Furthermore, we know that
(2.3) |Pox — Peyll® < {& -y, Pex — Poy)

for all x,y € H; see [26] for more details. For proving main results in this paper,
we also need the following lemmas proved in [28] and [1].

Lemma 2.1. Let D be a nonempty closed conver subset of H. Let P be the metric
projection from H onto D. Let {u,} be a sequence in H. If ||ups11 — ul|| < ||up — ul|
for any uw € D and n € N, then {Puy} converges strongly to some uy € D.

Lemma 2.2 (Aoyama-Kimura-Takahashi-Toyoda [1]). Let {s,} be a sequence of
nonnegative real numbers, let {ay,} be a sequence of [0,1] with Y " | oy, = o0, let
{Bn} be a sequence of nonnegative real numbers with Yo" | Bn < 00, and let {v,}
be a sequence of real numbers with lim sup,,_,., vn < 0. Suppose that

Sn+1 < (1 - an)sn + anYn + Bn

foralln=1,2,.... Then lim,_ 0 Sp, = 0.

Let [*° be the Banach space of bounded sequences with supremum norm. Let
i be an element of (I°°)* (the dual space of ). Then we denote by u(f) the
value of p at f = (z1,22,23,...) € [°°. Sometimes, we denote by p,(z,) the value
w(f). A linear functional p on I*° is called a mean if u(e) = ||u|| = 1, where
e=(1,1,1,...). A mean p is called a Banach limit on [°° if p,(zp4+1) = pin(xn).
We know that there exists a Banach limit on {*°. If y is a Banach limit on [*°, then
for f = (z1,22,23,...) € 1%,

liminf z,, < pp(zy,) < limsup z,.
n—00 n—o0

In particular, if f = (z1,22,23,...) € [ and x,, — a € R, then we have u(f) =
tn(xyn) = a. See [24] for the proof of existence of a Banach limit and its other
elementary properties.

3. FIXED POINT THEOREM FOR NON-SELF MAPPINGS

In this section, we prove a fixed point theorem for normal generalized hybrid
non-self mappings in a Hilbert space. For proving the result, we need the following
fixed point theorem obtained by Kawasaki and Takahashi [15].

Theorem 3.1 ([15]). Let H be a Hilbert space, let C be a non-empty, closed and
convez subset of H and let T be an («, 3,7,0,¢,(,n)-widely more generalized hybrid
mapping from C into itself, i.e., there exist o, B,7,9d,,(,n € R such that

o Tz—Ty|? + Bllz — Ty||* + v Tz — y||* + 6|z — y|?
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+elle = Ta|® +¢lly = Tyl* +nll(z — Tz) = (y = Ty)|> <0
for all x,y € C. Suppose that it satisfies the following condition (1) or (2):
1) a+B+v+62>20,a+y+ec+n>0and (+n>0;
(2) a+B+v+6>0,a+B+(¢+n>0ande+n>0.
Then T has a fized point if and only if there exists z € C such that {T"z | n =

0,1,...} is bounded. In particular, a fized point of T is unique in the case of o +
B+~ +3d >0 on the conditions (1) and (2).

In particular, we have the following theorem from Theorem 3.1.

Theorem 3.2. Let H be a real Hilbert space, let C be a bounded closed convex subset
of H and let T be an («, 5,7, 9, ¢, (,n)-widely more generalized hybrid mapping from
C into itself which satisfies the following condition (1) or (2):

(1) a+B+~v+6>0,a+vy+e+n>0and (+n>0;

(2) a+p+v+6>0,a+8+(+n>0andec+n>0.
Then T has a fized point. In particular, a fixed point of T is unique in the case of
a+ B+~y+06 >0 on the conditions (1) and (2).

Using Theorem 3.2, we obtain the following fixed point theorem for normal gen-
eralized hybrid non-self mappings in a Hilbert space.

Theorem 3.3. Let C' be a non-empty, bounded, closed and convex subset of a Hilbert
space H. Let T : C — H be an («a, 3,7, 0 )-normal generalized hybrid mapping, i.e.,
there exist a, 3,7, € R such that

al|Tz — Ty|? + Bllz — Ty|)> + 4Tz — y|> + dljz —y[|> <0
for all z,y € C. Suppose that it satisfies the following condition (1) or (2):
(1) a+B4+7+6>0,a+~>0and a+ > 0;
(2 a+B8+v+5>0,a+5>0and a+v>0.
Assume that there exists m > 1 such that for any x € C,

Ter=x+1t(y — )

for somey € C andt with 0 <t <m. Then T has a fixed point in C. In particular,
a fixed point of T is unique in the case of a + 5+~ + 6 > 0 on the conditions (1)
and (2).

Proof. We give the proof for the case of (1). By the assumption, we have that for
any x € C, there exist y € C' and ¢t with 0 < ¢t < m such that Tz = z + t(y — z).
From this, we have Tx = ty + (1 — t)x and hence

1 t—1

=-T
Y : T+

x.

Define Uz € C as follows:

t t t t (1 t—1
U:r-(l—)x—i—y—(l—)m—l—(Tm—l—m).
m m m m \ 't t

We obtain that Uz = %Tﬂ? + %x Taking A > 0 with m = 1 + A, we have that
1 A
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and hence
(3.1) T=(1+MNU -

Since T': C' — H is an («, 3,7, 0)-normal generalized hybrid mapping, we have from
(3.1) and (2.1) that for any x,y € C,

a1+ MUz — Az — (L+ MUy — \y) |)?
+Bllz = (L+ MUy = 2y) |2 +41l(L+ N0z = Az = y||* + 6|z -y
= al|(1+ M) (Uz - Uy) = Mz —y)|”
+ B+ M@ = Uy) = Mz = )2 + 711+ N Uz —y) = Az — y)|I
+ 6|z -y
= a(1+N)||Uz — Uy|]* = arl|z — y|I> + aA(1 + N)|Jz — y — (Uz — Uy)||®
+ B+ Nl = Uyll* = Bl = y* + BAQ + Ny — Uy|?
+(L+ MUz = y|? = Az =yl + A1+ N[l = Uz|® + 6|z — y|?
= a(l+N)|Uz = Uy|® + L+ Nz = Uyl* + (1 + V) [|[Uz - y|*
+(—aX = BA = A+ 8) ||z — y]?
AL+ W)z = Usl? 4+ BA(1+ V)ly — Uy?
+a 1+ Nz —y— Uz —Uy)|? <.
This implies that U is widely more generalized hybrid. Since o+ 5+ v+ 6 > 0,
a+v>0and a+ 8 >0, we obtain that
a(l+XN)+ 81 +N)+v(1+N)—aX\=pBA—yA+d0=a+B+7+0 >0,
AL+ X))+ 71+ XN + AL+ A) + a1+ A) = (a+7)(1+A)? >0,
BAL+XN)+aA(14+)N) = (a+ B)A(1+A) >0.
By Theorem 3.2, we obtain that F'(U) # () and hence F(T) # () from F(U) = F(T).
Suppose that a« + 8+ + 9 > 0. Let p; and pa be fixed points of T. We have that
al|Tpr — Tpa|* + Bllpr — To2|* + A Tp1 — p2||* + 6llp1 — pal|®
= (a+ B+ +0)|lp1 —p2f* <0

and hence p; = po. Therefore a fixed point of T is unique.
Similarly, we can obtain the desired result for the case when o+ 8+~ + 9 > 0,
a+ 6 >0and a+ v > 0. This completes the proof. O

Let us give an example of mappings T : C' — H such that for any « € C, there
are y € C and t with 0 < ¢t < m such that Tx = x +t(y — z). In the case of H = R,
consider a mapping 7" : [0, 1] — R:

Tz = (1+2z)cosx — 2%, Va € [0,1].
Then, we have
Tx = (1+2z)(cosx —x)+z, VYael0,1].

Take m = 3. For any = € [0,1], take t = 1 + 2z and y = cosz. Then, we have that
Ter=t(y—z)+z,y=cosze€[0,1] and 0 <t =1+2z <3.
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4. WEAK CONVERGENCE THEOREMS OF MANN’S TYPE

In this section, we prove a weak convergence theorem of Mann’s type [20] for
widely more generalized hybrid mappings in a Hilbert space. Before proving the
result, we need the following two lemmas. As in the proof in [15], we can first prove
the following lemma for widely more generalized hybrid non-self mappings.

Lemma 4.1. Let C be a non-empty, closed and convex subset of a Hilbert space H
and let T be an (o, B,7,9,¢,(,n)-widely more generalized hybrid mapping from C
into H with F(T) # 0 which satisfies the condition (1) or (2):

(1) a+B+7+6>0,a+ >0 and {+n>0;
(2) a+p+v7+6>0,a+~v>0andec+n>0.

Then T is quasi-nonexpansive.

Proof. Suppose that the condition (2) holds. We have from (1.1) that for any =z € C
and for any y € F(T),

a|Ta = Ty|]? + Bllz — Ty|l* ++| Tz — y|* + 8]« — y||?
+ellz = Ta|® + Clly = Tyll” +nll(z — Tx) — (y — Ty)|”
= (@ + Tz =yl + (8 + )|l — y|* + (e +n) ||z — Tz|* < 0.
We obtain from a + v > 0 that

1)
tﬂx— 12 - et+n

Tz —yl? < —
ITa =yl < =2yl = 2

|z — T:L'||2.

Since —g—ig <1 from a+8+~v+d > 0and —% < 0 from e+n > 0, we obtain that

Tz —yl||* < ||z —yl||? and hence | Tz — y|| < ||z —y||. Thus T is quasi-nonexpansive.
Similarly, we can obtain the desired result for the case of the condition (1). O

If T: C — H is quasi-nonexpansive, then F(T) is closed and convex; see Itoh
and Takahashi [13]. It is not difficult to prove such a result in a Hilbert space. In
fact, for proving that F(T) is closed, take a sequence {z,} C F(T) with z, — z.
Since C' is weakly closed, we have z € C. Furthermore, from

Iz = Tzll < llz = znll + [l2n = T2l < 2|2 = 2n|| = 0,

z is a fixed point of T" and so F(T) is closed. Let us show that F'(T") is convex. For
z,y € F(T) and a € [0,1], put 2z = ax + (1 — o)y. Then we have from (2.1) that

|z = T2| = llaw + (1 - a)y — T2
— afle = T2 + (1 - a)ly — T2| — a(1 - a) o — y]?
< afle — 2P + (1 — a)lly — 2l — a(1 — o)l — yl?
— a(l - a)le — y[2 + (1 - )a?lle — y[2 — a(l - @)z — y|?
—al-a)(l-a+a- e —y|?
=0

and hence Tz = z. This implies that F'(T') is convex.
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Lemma 4.2. Let H be a Hilbert space and let C' be a non-empty, closed and convex
subset of H. Let T : C'— H be an (a, 3,7, 96,¢,(,n)-widely more generalized hybrid
mapping. Suppose that it satisfies the following condition (1) or (2):

(1) a+B8+~v+d>0anda+~v+e+n>0;
(2) a+B8+~v+d>0and a+ 5+ (+n>0.
If v, — z and x, — Txy, — 0, then z € F(T).

Proof. We give the proof for the case of (2). Let T be an («, 3,7, 9, ¢, (,n)-widely
more generalized hybrid mapping and suppose that z, — 2z and x, — Tz, — 0.
Replacing = by x,, in (1.1), we have that

(A1) alTon — Tyl + Blln — Tyl + A Tn — gl + dlln — I
+ellzn — Taal* + Clly = Tyl + 0ll(zn — Txn) — (y = Ty)|> < 0.
From this inequality, we have that
&[T n = all? + 00 — Tyl + 2T — w0, 30 — Ty)) + Blwn — Ty
(1T = Tl + 20 — 9112 + 2T — Ty — ) + Sl — g2
+ellan = Tl + Clly — Tyl +0lln — Titw) — (g — TYI? < 0.
We apply a Banach limit u to both sides of this inequality. We have that
a1 T — 22 + llo — Tyl2 + 2(T50 — 5y 50 — Ty)) + Bitnlln — Tyl
3t (T — 2l + 1o — Y2 + 2T — 2, 20 — 1)) + Spinlln — 2
+epinlln — Tanl” + Cunlly = TylI” + npll (20 — Txn) — (y = Ty)|I> <0
and hence
et o —Ty|1? + B n — Tyl + yiinllzn — 912 + St lzn — vl
+ Cpanlly — Tyl* + npnlly — TylI* < 0.
Thus we have
(@ + B)pallzn — Tyl + (v + &)l — ylI* + (¢ +m)ly — Tyl* < 0.
From ||z, — Ty||? = ||z — y|1? + |ly — Ty||* + 2(zn, — y,y — Ty), we also have
(e + B) (pnllzn = ylI* + lly = Tyll* + 2z — v,y — Ty))
+ (v + Opnllzn =yl + (€ +m)ly - Tyl* < 0.
From oo+ 8 + v+ > 0 we obtain that
(a+ By = Tyl* +2(a + B)unlzn — y,y — Ty)
+(C+mlly = Tyll* <0
and hence
(a+ B+ C+n)lly = Tyll” +2(c + B)n(an — y,y — Ty) <0

Since x,, — z, we have that

(a+ B+ C+n)lly—Tyl* +2(a+ B)(z —y,y — Ty) <O0.
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Putting y = 2z, we have that
(a+B+¢+mn)z—Tz* <o.

Since a + B+ ¢ +n > 0, we have that z € F(T).

Similarly, by replacing the variables z and y in (1.1), we can obtain the desired
result for the case when o +5+~v+ 90 > 0 and a + v+ € +n > 0. This completes
the proof. O

Using Lemmas 4.1, 4.2 and the technique developed by Ibaraki and Takahashi
[10, 11], we can prove the following weak convergence theorem.

Theorem 4.3. Let H be a Hilbert space and let C' be a non-empty, closed and
convex subset of H. Let T : C — H be a widely more generalized hybrid mapping
with F(T) # (0 which satisfies the condition (1) or (2):

(1) a+B8+~v+5>0,a+y>0andec+n>0;

(2) a+B+~v+d>0,a+p>0and (+n>0.
Let P be the mertic projection of H onto F(T). Let {ay,} be a sequence of real
numbers such that 0 < ay, <1 and liminf, o a,(1 —ay,) > 0. Suppose {z,} is the
sequence generated by 1 =x € C and

Tnt1 = Po(apzn + (1 —ap)Tx,), neN
Then {z,} converges weakly to v € F(T), where v = limy,_,o0 Pxy,.

Proof. Since T : C — H is quasi-nonexpansive, we have from Lemma 4.1 that F(T')
is closed and convex. Furthermore, we have that for any z € F(T),

|Zn+1 — ZH2 <llanzn + (1 = an)Tz, — ZHQ
< apllzn — 2|12 + (1 — an)||Tzn — 2|
< apllzn — ZH2 + (1 — an)llzn — ZH2
= [lzn — 2|

for all n € N. Hence lim,, s ||z, — 2||? exists. Then {z,} is bounded. We also have
from (2.1) that

|41 — ZH2 < lewan + (1 — an) Ty, — ZH2

= apllzn — ZH2 + (1= )| T2y — ZHQ —an(1 = ap)|[ Tz, — mn”Q
< apllzn — ZH2 + (1 — an)ljan — ZH2 —an(l —ap)|| Tz, — anQ
= [lzn — ZHQ —on(1l = ap)|[Tzy — anZ

Thus we have
an(1 = an)|[ Tz, — an2 < lzn — ZH2 — |41 — ZH2

Since lim,, o0 ||, — 2||? exists and lim inf,, o (1 — i) > 0, we have that

(4.2) Tz, — x| — O.

Since {zy} is bounded, there exists a subsequence {x,,} of {z,} such that z,, — v.
By Lemma 4.2 and (4.2), we obtain that v € F(T). Let {x,,} and {z,,} be two
subsequences of {x,} such that z,, — v; and Tp; — va. To complete the proof,
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we show v; = va. We know that vy, vy € F(T) and hence lim,, .o ||, — v1]|? and
lim,, 500 || — v2||? exist. Put

a= lim (||z, —vi]? = ||lzn — v2]]?).
n—oo
Note that forn =1,2,...,
l2n = vrll* = [l2n — val|* = 2(zn, v2 — v1) + [for||* = fJua]*.

From z,,, — vy and x,, — v2, we have

(4.3) a = 2(vi, vy — v1) + [[o1]|* = [Jvz|?
and
(4.4) a = 2(va,v2 — v1) + [[oa]|* = [z

Combining (4.3) and (4.4), we obtain 0 = 2(va — vi,v2 — v1). Thus we obtain
ve = v1. This implies that {x,} converges weakly to an element v € F(T'). Since
|Znt1 — 2| < ||zn — 2| for all z € F(T) and n € N, we obtain from Lemma 2.1 that
{Pz,} converges strongly to an element p € F(T'). On the other hand, we have
from the property of P that

(xp — Pxy, Pz, —u) >0
for all w € F(T) and n € N. Since x,, — v and Px,, — p, we obtain
<?} —Dp,p— U> 2 0

for all w € F(T). Putting u = v, we obtain p = v. This means v = lim;,_,oc Px,.
This completes the proof. O

Using Theorem 4.3, we can show the following weak convergence theorem of
Mann’s type for generalized hybrid mappings in a Hilbert space.

Theorem 4.4 (Kocourek, Takahashi and Yao [16]). Let H be a Hilbert space and let
C be a non-empty, closed and convex subset of H. Let T : C' — C' be a generalized
hybrid mapping with F(T) # (0. Let {a,} be a sequence of real numbers such that
0 < ap <1 and liminf, o an(l — ap) > 0. Suppose that {x,} is the sequence
generated by r1 = x € C and

Tnt1 = nxp + (1 — ap)Tx,, neN.
Then the sequence {x,} converges weakly to an element v € F(T').

Proof. Since T': C' — C is a generalized hybrid mapping, there exist «, 8 € R such
that

allTe = Tyl + (1 — @)l — Ty|]? < BI Tz — Ty|2 + (1 = B) |z — Ty|?

for all z,y € C. We have that an («, §)-generalized hybrid mapping is an (a,1 —
a,—fB,—(1—75),0,0,0)-widely more generalized hybrid mapping which satisfies the
condition (2) in Theorem 4.3. Therefore, we have the desired result from Theorem
4.3. O



372 M. HOJO, T. SUZUKI, AND W. TAKAHASHI

5. STRONG CONVERGENCE THEOREM

In this section, using an idea of mean convergence by Shimizu and Takahashi
[21] and [22], we prove the following strong convergence theorem for widely more
generalized hybrid mappings in a Hilbert space.

Theorem 5.1. Let C' be a nonempty, closed and conver subset of a real Hilbert
space H. Let T be a widely more generalized hybrid mapping of C into itself which
satisfies the following condition (1) or (2):

(1) a4+ B8+7+6>0,a+v>0,e+1n>0and (+n>0;
(2) a+B8+7+6>0,a+8>0,(+n>0ande+n>0.
Let u € C and define sequences {x,} and {z,} in C as follows: v1 = x € C and

Tnt1 = Qpte + (1 — ap) zn,
1 n—1
Zn = — g Tk:[;n
n
k=0

forallm =1,2,..., where 0 < a, <1, ay, = 0 and Y7 o, = 00. If F(T) # 0,
then {x,} and {z,} converge strongly to Pu, where P is the metric projection of H
onto F(T).

Proof. Since T': C' — C be a widely more generalized hybrid mapping, there exist
a, B,7,0,¢,(,n € R such that

(5.1) a| Tz = Ty|P” + Bllz — Ty|* + Tz — y|* + o]z — y?
+elle = Ta|* + Clly = Tyll* +nll(z — Ta) = (y = Ty)|> <0
for any x,y € C. Since F(T) # (), we have that for all g € F(T) and n = 1,2,3,...,

1 n—1 1 n—1
3 T gl < - 3T TR — dl
k=0 k=0
1

n—1
- D lan—all = lzn —al.
k=0

lzn — qll

(5.2)

IN

Thus we have that
[Zn41 — qll = [lanu 4+ (1 — an)z, — 4|
< apllu—qll + (1 —an)llzn — 4|l
< apllu —qll + (1 = an)l|zn — ql|-

Hence, by induction, we obtain

l2n — gl < max{Jlu—qll, ||z - q[[}

for all n € N. Then {x,} and {z,} are bounded. Since || 7"z, — q|| < ||z, — ¢l|, we
have also that {T"x,,} is bounded.
We also obtain from (5.1) that for any z,z € C and n € N,

al| Tz — T2 + Blla — T L2l® + yl|T2 — T"2|* + 6|z — T2
telle = Ta||? + ¢|T"z = T 2?4 ll(z — Tz) — (T2 = T""12) | < 0
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for any n € NU {0} and = € C. By (2.2) we obtain that
I(z = Ta) — (T"z = T""2)|?
= |z — Tz||® + |T"z — T 2||? — 2(x — T2z, T"z — T""12)
= |l = Ta|* + |T"2 = T 12|* + |l = T"2||* + || Tz — T 2|
o — T2 — | Ta - T2 2
Thus we have that
(o + IITz = T 2|2 4 (8 = )l — T 2|2 + (3 — )| T — T
+O e =T 2 + (e +n)lle = Tzl + (¢ + )| Tz = T 2| < 0.
From
(= )T — T2
= (a+7)(lz = Tz|® + ||z = T"2|* - 2{x — T,z — T"z))
—(a+n)|Te - T2,
we have that
(a+ Tz =T 2| + (8 —n)lla — T 2|7
+a+y) |z = Tx|* + ||z — T"2|]? — 2(x — Tz, z — T"2))
—(a+ )Tz = T2\ + (§ + n) ||z — T"=|>
e+ )z =Tzl + (C+ )T = T 2| <0
and hence
(a+n)(|ITz = T 2|2 = [ Tw = T2|2) + (8 — ) 2 — T2 2
—2(a+ )z —Te,x = T"z) + (a+v+ 8 + 1)z — T2
+Ha+y+e+n)z—Tz|?+ ((+n)|T" — T z|* <0.
By a4+ 8+ v+ 9 > 0, we have that
—B-n)=-B+d+d+n<a+y+d+n.
From this inequality and ¢ +n > 0 we obtain that
(@+n)(|Tzx = T 2|? = | Tz — T"2|?)
(5.3) (8= m(le = T2 = flz — T722)
—2a+y)(x—Tz,x —T"2) + (a +v+e+n)||z—Tz|> <0.
From (5.3), we have that
(@+n)(|ITz = TF g | = Tz — T 2, %)
+(B = m)(llz = T an|? = ||z = T 2, |?)
a4+ )z =Tz z2-T'z,) + (a+~v+e+n)|z—Tz* <0
for any k € NU {0} and z € C. Summing up these inequalities with respect to
k=0,1,...,n — 1 and dividing by n, we obtain that
a+tn B-n
n n

(172 = T"wn* = | T2 — za®) + (lz = T @]l = Il2 = 2nll?)

—2(a+9)(z = Tz,2 = z) + (a+v+e+n)|z = Tz|* <0.
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Since {z,} is bounded, there exists a subsequence {zy,} of {z,} such that z,, —
w € H. Replacing n by n;, we have that

(lz = T"p, |1 = Iz — 20, |1%)

o+ . -
DTz — T |~ Tz = ) + 22
n; i
2a+y)(z =Tz z2—2p,) + (a+y+e+n)|z—Tz|> <0.
Since {z,,} and {T"x,} are bounded, we have that
20+ )z=Tz,z—w) + (a+v+e+n)|z=Tz|> <0
as ¢ — oco. Putting z = w, we have that
(o 47+ e +n)llw - Tw|® <0.

Since o + 7y + & +n > 0, we have that w € F(T).
On the other hand, since 11 — 2n, = an(u — 25,), {z,} is bounded and «,, — 0,
we have lim,, o ||Zn+1 — 2n|| = 0. Let us show

limsup(u — Pu, xp41 — Pu) <0.

n—o0

We may assume without loss of generality that there exists a subsequence {11}
of {zp41} such that

limsup(u — Pu, xp41 — Pu) = lim (u — Pu, xp,4+1 — Pu)
n—00 100

and zp,+1 — v. From ||z,,11—2,| — 0, we have z,, — v. From the above argument,
we have v € F(T). Since P is the metric projection of H onto F(T'), we have

lim (u — Pu, xp,+1 — Pu) = (u — Pu,v — Pu) <0.

1—00
This implies
(5.4) lim sup(u — Pu, zp+1 — Pu) < 0.

n—oo
Since xp 41 — Pu = (1 — ay)(2n — Pu) + ap(u — Pu), from (5.2) we have
1(1 = an)(zn — Pu) + ag(u — Pu)|?
1 — an)?|zn — Pul|® + 2an(u — Pu,z,,1 — Pu)

1 — ap)||zn — Pul|® + 20, (u — Pu,z,1 — Pu).

ln 1 — Pull?

IN

(
(

IN

Putting s, = ||z, — Pul|?, 8, = 0 and 7, = 2(u — Pu, x4+ — Pu) in Lemma 2.2,
we have from ) 7, a,, = oo and (5.4) that

lim ||z, — Pu| = 0.
n—oo
By limy, o0 || Zn+1 — 2n]| = 0, we also obtain z, — Pu as n — oo.

Similarly, we can obtain the desired result for the case of a + 8+ v+ 6 > 0,
a+p>0,(+n>0andec+n>0. O

Using Theorem 5.1, we can show the following result obtained by Hojo and Taka-
hashi [9].
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Theorem 5.2 (Hojo and Takahashi [9]). Let C' be a nonempty closed convex subset
of a real Hilbert space H. Let T be a generalized hybrid mapping of C into itself.
Let w € C and define two sequences {x,} and {z,} in C as follows: ©1 =z € C
and

Tnt1 = apu + (1 — o) zn,

n—1

ZT’%H

k=0

forallm =1,2,..., where 0 < a, <1, oy = 0 and Y 7 o, = 00. If F(T) is

nonempty, then {x,} and {z,} converge strongly to Pu € F(T), where P is the
metric projection of H onto F(T).

Zn —

S|

Proof. As in the proof of Theorem 4.4, a generalized hybrid mapping is a widely
more generalized hybrid mapping. Therefore, we have the desired result from The-
orem 5.1. g
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