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A CLASS OF RENORMINGS OF ℓ2 WITH THE FIXED POINT

PROPERTY

ANTONIO JIMÉNEZ MELADO AND ENRIQUE LLORENS-FUSTER

Abstract. A famous open question in metric fixed point theory is whether
every Banach space which is isomorphic to the Hilbert space ℓ2 has the fixed
point property for nonexpansive mappings. In this paper, we give a fixed point
theorem for a class of renormings of ℓ2 which generalizes some previous results.
We also show that some spaces of this class lack of the more recent sufficient
conditions for the fixed point property given by Prus and Szczpanik, Fetter and
Gamboa de Buen, and Dowling et al.

1. Introduction

Suppose that (X, ∥ · ∥) is a Banach space, C is a subset of X and T : C → X
is a mapping. We say that T is nonexpansive if ∥T (x) − T (y)∥ ≤ ∥x − y∥ for all
x, y ∈ C, and we say that (X, ∥ · ∥) has the fixed point property (FPP for short) if
every nonexpansive self-mapping of each nonempty bounded closed convex subset
C of X has a fixed point. If the same property holds for every weakly compact
convex subset of X we say that (X, ∥ · ∥) has the weak fixed point property (WFPP
for short). Obviously, FPP equals WFPP for reflexive spaces.

In 1965, W.A. Kirk [20] proved that those Banach spaces which satisfy a geomet-
rical property named normal structure have the WFPP. This result includes the case
in which the Banach space (X, ∥·∥) is a Hilbert space or, more generally, a uniformly
convex space. Since then, it has been discovered a forest of geometrical conditions
which can replace normal structure in Kirk’s theorem. For instance, three recent
conditions which we shall be concerned with in this paper are the Prus-Szczepanik
condition, the E-convexity and the WORTH property.

On the other hand, a fundamental question of this theory, Does every reflexive
Banach space have the FPP?, remains unanswered. (See [21] for more about this
problem). Two results that may make us inclined to think that the answer is yes
were given by D.E. Alspach in 1981 [1] and by P.N. Dowling and C.J. Lennard in
1997 [4], who proved, respectively, that L1([0, 1]) fails to have the WFPP and that
a subspace of L1([0, 1]) has the WFPP if and only if it is reflexive.

A more restrictive, but also unsolved, question in the theory is:
Does every (equivalent) renorming of ℓ2 have the FPP?
Of course, the answer to this question would be affirmative if the same were

true for the more general previous question, or if it were true that the FPP is
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invariant under renormings, but presently little is known about this fact. However,
positive results have been given for some specific classes of renormings of ℓ2 (See,
for instance, [6, 19, 29]).

In this note we prove that renormings of ℓ2 of the form |x| = max{∥x∥2, p(x)},
where p(x) is a certain seminorm, have the FPP, thus generalizing the results ob-
tained in [6, 19, 29]). We also show that some members of this family fail to have
any of the three geometrical conditions mentioned above, as well as orthogonal
convexity and asymptotic normal structure.

All the results of this paper are established in ℓ2, the classical real space of all
sequences x = (xn) =

(
x(n)

)
for which

∑∞
i=1 x

2
i < ∞. The Euclidean norm ∥x∥2 :=√∑∞

i=1 x
2
i is associated to the ordinary inner product < x, y >=

∑∞
n=1 xnyn. Also

the ”sup” norm ∥x∥∞ = sup{|x(n)| : n = 1, . . .} will be sometimes considered. The
standard Schauder basis of (ℓ2, ∥ · ∥2) will be denoted by (en).

If ∥ · ∥ is a norm on ℓ2 equivalent to ∥ · ∥2, we say that ∥ · ∥ is a renorming
of ℓ2. Given such a renorming, we denote the closed unit ball and unit sphere as
B∥·∥ := {x ∈ ℓ2 : ∥x∥ ≤ 1}, S∥·∥ := {x ∈ ℓ2 : ∥x∥ = 1}.

Recall that the modulus of convexity of (X, ∥·∥) is the function δX : [0, 2] → [0, 1]
given by

δX(ε) := inf
{
1−

∥∥1
2(x+ y)

∥∥ : x, y ∈ BX , ∥x− y∥ ≥ ε
}

,

and also that the characteristic of convexity of (X, ∥ · ∥) is the real number

ε0(X) := sup{ε ∈ [0, 2] : δX(ε) = 0} .
We say that (X, ∥·∥) is uniformly convex if ε0(X) = 0, and that (X, ∥·∥) is uniformly
nonsquare if ε0(X) < 2.

2. A family of renormings of ℓ2 enjoying the FPP

Suppose that p : ℓ2 → [0,∞) is a seminorm on ℓ2 and consider the norm | · |
defined by

|x| = max{∥x∥2, p(x)} .
This norm is equivalent to ∥ · ∥2 if p satisfies

(H1) There exists L > 0 such that p(x) ≤ L∥x∥2 for all x ∈ ℓ2.
We shall also need consider the additional assumption

(H2) There exists k ∈ N such that for all x1, . . . , xk in ℓ2 with pairwise disjoint
supports we have

p(z) ≤ max{p(z − x1), . . . , p(z − xk)}
for all z ∈ ℓ2 (recall that the support of x ∈ ℓ2 is the set supp(x) = {n ∈ N : x(n) ̸=
0}).

We are going to proof that the Banach spaces (ℓ2, | · |) enjoy the FPP. To do this
we will follow standard arguments that make use of some well known facts in fixed
point theory for nonexpansive maps. Next we recall some of them.

Suppose that T : K → K is a nonexpansive map defined on a nonempty, weakly
compact and convex subset of the Banach space (Y, | · |). The first fact is an imme-
diate consequence of Zorn’s lemma.
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(F1) There exists a nonempty, weakly compact and convex subset C of K which
is minimal for T , that is, minimal for the properties of being nonempty, weakly
compact, convex and T -invariant.

The next fact is a consequence of the Banach contraction principle.

(F2) There exists a sequence (xn) in K such that xn − T (xn) → 0.
We say that (xn) is an approximate fixed point sequence (a.f.p.s.) for T in K.

The third fact shows a strange behavior of the a.f.p.s.’s for T in a minimal set,
and is known as the Goebel-Karlovitz Lemma (see [22])

(F3) If C is minimal for T and (xn) is an a.f.p.s. for T in C, then |xn − x| →
diam (C) for all x ∈ C.
Observe that if T has no fixed point in C, then d = diam (C) > 0, and (F3)

exhibits a behavior of a.f.p.s.’s which is not merely strange, but even pathological.
Observe also that those Banach spaces which do not admit this pathology have the
FPP.

This observation suggests a strategy to obtain new fixed point theorems since the
more the pathology, the larger the class of Banach spaces enjoying the FPP is. A
remarkable result in this direction is due to Maurey [24], who proved that for any
two a.f.p.s.’s (xn) and (yn), there is another a.f.p.s. (zn), with zn an almost metric
midpoint of xn and yn. The following fact is a generalization of Maurey’s result,
which may be attributed to Elton et al. [6].

(F4) If {x1n}, . . . ,{xkn} are k a.f.p.s.’s for T in K, then there exists an a.f.p.s. for
T in K, (zn), such that

lim sup |zn − xjn| ≤
k − 1

k
d

for all j ∈ {1, . . . , k}.
We are now ready to prove our theorem.

Theorem 2.1. Suppose that p is a seminorm on ℓ2 and consider the norm defined
by

|x| = max{∥x∥2, p(x)}
for all x ∈ ℓ2. If p satisfies (H1) and (H2), then (ℓ2, | · |) has the FPP.

Proof. We argue by contradiction. Suppose that (ℓ2, | · |) lacks of the FPP and let
T : K → K be a fixed point free nonexpansive map defined on the nonempty, closed,
bounded and convex set C. Observe that the norm | · | is equivalent to ∥ ·∥2 because
p satisfies (H1). Hence, K is weakly compact and, by (F1), we may assume that K
is minimal for T . Let (xn) be an a.f.p.s. for T in K. Since K is weakly compact,
(xn) has a weakly convergent subsequence, which is also an a.f.p.s. for T , and that
we keep denoting by (xn). Since d = diam (K) > 0, we may additionally assume,
by translating and dilating K, that 0 ∈ K, d = 1 and that (xn) is weakly null. Using
that (xn) is weakly null and that the unitary vectors of ℓ2 form a Schauder basis
of ℓ2, we may obtain a subsequence of (xn), still denoted by (xn), and a sequence
(un) in ℓ2 such that

a) |un − xn| → 0.
b) For every positive integer n, the set supp (un) = {i : un(i) ̸= 0} is finite.
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c) max supp (un) < min supp (un+1) for all n ∈ N.
By assumption, p satisfies (H2) and, since (H2) is satisfied for any k′ > k, we

may assume that k > L.
Consider the a.f.p.s.’s for T given by x1n = xkn,. . . , x

k
n = xkn+k−1, and use (F4)

to obtain an a.f.p.s. for T , (zn), such that

(2.1) lim sup
n→∞

|zn − xjn| ≤
k − 1

k

for all j ∈ {1, . . . , k}.
Since 0 ∈ K, then lim sup |zn| = 1, by (F3). Next, we shall obtain a contradiction

with this. Since |zn| = max{∥zn∥2, p(zn)}, we need prove that lim sup ∥zn∥2 < 1
and that lim sup p(zn) < 1.

Start with lim sup ∥zn∥2 < 1. Denote by {u1n}, . . . ,{ukn} the sequences defined by
u1n = ukn,. . . , u

k
n = ukn+k−1 and use a) and (2.1) to obtain

lim sup
n→∞

|zn − ujn| ≤
k − 1

k

for all j ∈ {1, . . . , k}. Next, use b) to check the equality

k∑
j=1

∥zn − ujn∥22 =
∥∥∥ k∑

j=1

ujn − zn

∥∥∥2
2
+ (k − 1)∥zn∥22 ,

and use that ∥x∥2 ≤ |x| for all x ∈ ℓ2 to obtain

∥zn∥22 ≤
1

k − 1

k∑
j=1

|zn − ujn|2

for all n ∈ N. From this and (2.1),

lim sup ∥zn∥22 ≤ 1
k−1

∑k
j=1 lim sup |zn − ujn|2

≤ 1
k−1

∑k
j=1

(k−1)2

k2

≤ k−1
k .

To prove that lim sup p(zn) < 1, use (H2), a), b) and (2.1) to obtain

lim sup p(zn) ≤ lim supmax{p(zn − u1n), . . . , p(zn − ukn)}
≤ max{lim sup |zn − u1n|, . . . , lim sup |zn − ukn|}
≤ k−1

k .

Hence, we have arrived to a contradiction and, consequently, (ℓ2, | · |) has the
FPP. �

3. A large subfamily

In this section we introduce a family of renormings of ℓ2, X = X(a, b, c, d), and
use the previous theorem to show that each member of the family has the FPP.

For x ∈ ℓ2 define

M(x) := sup{|x(2i− 1)|+ |x(2j)| : i, j ∈ N},
and

S(x) := sup{|x(1) + x(n) + x(n+ 1) + x(n+ 2)| : n ≥ 2}.
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It is easy to see that, for every x ∈ ℓ2, M(x) ≤
√
2∥x∥2 and S(x) ≤ 2∥x∥2.

For a > 0 and b, c, d ≥ 0, let X = X(a, b, c, d) be the Banach space (ℓ2, ∥ · ∥),
where the norm ∥ · ∥ is defined by

∥x∥ := max{a∥x∥2, bM(x), cS(x), d ∥x∥∞}.

The norm ∥ · ∥ is equivalent to ∥ · ∥2, since for every x ∈ ℓ2 we have

a∥x∥2 ≤ ∥x∥ ≤ m∥x∥2,

where m = max{a, b
√
2, 2c, d}.

Corollary 3.1. X has the FPP.

Proof. Observe that the norm ∥ · ∥ is of the form ∥x∥ = a|x|, where

|x| = max{∥x∥2, p(x)} ,

and p is the seminorm on ℓ2 defined by

p(x) = max
{ b

a
M(x),

c

a
S(x), d

a
∥x∥∞

}
.

We shall prove that (ℓ2, | · |) has the FPP as a consequence of the previous
theorem, and it is not hard to obtain from this that X also has the FPP. Hence,
we only need check that p satisfies (H1) and (H2). That p satisfies (H1), with
L = 1

a max{b
√
2, 2c, d}, is easy. We proceed to check that p also satisfies (H2),

with K = 5. Hence, assume that x1, . . . , x5 are points in ℓ2 with pairwise disjoint
supports and let z ∈ ℓ2 be arbitrarily chosen. Then

p(z) = max
{ b

a
M(z),

c

a
S(z), d

a
∥z∥∞} ≤ max{p(z − x1), . . . , p(z − x5)

}
.

We shall only check that

c
aS(z) = c

a sup{|z(1) + z(n) + z(n+ 1) + z(n+ 2)| : n ≥ 2}
≤ max{p(z − x1), . . . , p(z − x5)},

since the other cases are similar. For this, take an integer n ≥ 2 at random. Since
the supports of x1, . . . , x5 are pairwise disjoint, there is one of them, say xj , such
that supp(xj)

∩
{1, n, n+ 1, n+ 2} = ∅. Then,

c

a
|z(1) + z(n) + z(n+ 1) + z(n+ 2)| =

=
c

a
|(z − xj)(1) + (z − xj)(n) + (z − xj)(n+ 1) + (z − xj)(n+ 2)|

≤ c

a
S(z − xj)

≤ p(z − xj)

≤ max{p(z − x1), . . . , p(z − x5)}.

�



356 A. J. MELADO AND E. LLORENS-FUSTER

4. A quite pathological space. The case a = 1
3 , b = 1, c = 1, d = 0

In this section we show that the space X̃ = X(13 , 1, 1, 0), which have the FPP,
fails to have the most recent geometrical properties which have been known that are
sufficient conditions for the FPP. To start with, we shall check that X̃ also lacks of
the more classical conditions known as asymptotic normal structure and orthogonal
convexity.

4.1. Asymptotic normal structure. Browder and Göhde, independently, proved
in 1965 that uniformly convex Banach spaces have the FPP. In the same year, W.A.
Kirk discovered that those reflexive Banach spaces that have a geometrical property
called normal structure (NS) also have the FPP. (See [20]). After this seminal work,
many authors have obtained a wide range of sufficient conditions for NS in reflexive
spaces. Among many others,

(1) Uniform convexity (Belluce, Kirk, 1967).
(2) ε0(X) < 1 (Goebel, 1970).
(3) Uniform smoothness (Turret, 1982).
(4) Uniform convexity in every direction (Garkavi, 1962).
(5) Opial condition, (Gossez Lami Dozo, 1972).
(6) Near uniform convexity (Van Dulst, 1981).
(7) F -convexity (Saejung, 2008).

Asymptotic normal structure (ANS) is a geometric property of Banach spaces in-
troduced by Baillon and Schöneberg in 1981 [2]. It is a generalization of NS that
also implies the FPP, and is defined as follows: we say that a Banach space (X, ∥·∥)
has asymptotic normal structure if for each nonempty, closed, bounded an convex
subset C of X and any sequence (xn) in X, with xn−xn+1 → 0, there exists a point
x ∈ C such that lim inf ∥xn − x∥ < diam (C).

Proposition 4.1. X̃ does not have asymptotic normal structure.

Proof. Consider the set C defined as

C=

{(
x(n)

)
: ∥x∥2 ≤ 1, ∥x∥∞ ≤ 1

2
, x(n) ≥ 0 (n ≥ 1), x(3k + 1) = 0 (k = 0, 1, ...)

}
.

We claim that C is a closed, bounded and convex set, with diam ∥.∥(C) = 1,
which contains a diametral sequence (xn) with xn+1 − xn → 0 .

That C is closed and convex is easy. To see that diam ∥.∥(C) = 1 observe that
for all x, y ∈ C,

1

3
∥x− y∥2 =

1

3
[∥x∥22 + ∥y∥22 − 2⟨x, y⟩]

1
2 ≤ 1

3
[∥x∥22 + ∥y∥22]

1
2 ≤ 1.

Moreover for positive integers i ̸= j we have that x(i), y(i), x(j), y(j) ∈ [0, 12 ], which
implies that

|x(i)− y(i)|+ |x(j)− y(j)| ≤ 1.

Thus, M(x− y) ≤ 1.
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That S(x−y) ≤ 1 follows from x(1) = y(1) = 0, and the fact that in the following
inequality one of the three summands on the right hand side is zero,

|x(n)− y(n) + x(n+ 1)− y(n+ 1) + x(n+ 2)− y(n+ 2)|
≤ |x(n)− y(n)|+ |x(n+ 1)− y(n+ 1)|+ |x(n+ 2)− y(n+ 2)| .

These previous calculations show that diam ∥.∥(C) ≤ 1. To see the equality

consider the sequence (vn) in C defined by vn := 1
2(e3n+2 + e3n+3), and notice that

∥vn − vn+1∥ = 1.

Let us consider the sequence (xn) in C defined by

xn :=
(2k + 1)2 − n

4k + 1
vk + vk+1 if (2k)2 < n ≤ (2k + 1)2

xn := vk+1 +
n− (2k + 1)2

4k + 3
vk+2 if (2k + 1)2 < n ≤ (2k + 2)2


It is straightforward (but tedious) to check that xn+1 − xn → 0.

To see that (xn) is a diametral sequence observe that vk, vk+1 =
1
2(e3k+5+e3k+6)

and vk+2 have disjoint supports, and then we can write

xn − x =
(
. . . ,

1

2
− x(3k + 5),

1

2
− x(3k + 6), . . .

)
where either (2k)2 < n ≤ (2k + 1)2 or (2k + 1)2 < n ≤ (2k + 2)2. Consequently,

1 ≥ ∥xn−x∥ ≥ M(xn−x) ≥
∣∣∣1
2
−x(3k+5)

∣∣∣+∣∣∣1
2
−x(3k+6)

∣∣∣ = 1−x(3k+5)−x(3k+6) ,

and since x ∈ ℓ2, this shows that

lim
n→∞

∥xn − x∥ = 1 = diam (C).

�

4.2. Orthogonal convexity. Orthogonal convexity is a geometric property of Ba-
nach spaces which is independent of normal structure and implies the WFPP (See
[16, 17]). It is defined as follows: we say that a Banach space (X, ∥ · ∥) is or-
thogonally convex (OC) if for every weakly null sequence (xn) with D[(xn)] :=
lim supn(lim supm ∥xn − xm∥) > 0 there exists λ > 0 such that Aλ[(xn)] < D[(xn)],
where

Aλ[(xn)] := lim sup
n

(lim sup
m

|Mλ(xn, xm)|),

Mλ(x, y) := {z ∈ X : max{∥z − x∥, ∥z − y∥} ≤ 1 + λ

2
∥x− y∥}

for any x, y ∈ X, and |A| := sup{∥z∥ : z ∈ A} for any subset A of X.

Proposition 4.2. The space X̃ is not orthogonally convex.

Proof. Consider the sequence of unitary vectors xn = en+1. Then, ∥xn∥ = 1 for
all n ∈ N and ∥xn − xn+2k+1∥ = 2 for all n, k ∈ N, from which D[(xn)] = 2. We
also have that xn + xn+2k+1 is a metric midpoint of xn and xn+2k+1, and since
∥xn + xn+2k+1∥ = 2, we conclude that Aλ[(xn)] = D[(xn)] = 2 for all λ > 0. Hence,

X̃ is not OC. �
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Among the more recent and important results in the fixed point theory of nonex-
pansive mappings in superreflexive spaces is the one due to Eva Mazcuñán Navarro
who showed in 2003 (see [25], [14]) that every Banach space X with characteristic
of convexity ε0(X) < 2 has the FPP.

Needless to say that ε0(X̃) = 2, because ∥e1∥ = 1 = ∥e2∥ and ∥e1 ± e2∥ = 2.

Thus, X̃ does no fall into the scope of the Mazcuñán Theorem. Very recently,
Mazcuñán Theorem has been generalized by S. Prus and M. Szczepanik [28] and
also by P.N. Dowling, B. Randrianantoanina and B. Turett [5]. In the next two

sections we show that X̃ also fails to satisfy these two new conditions.

4.3. Prus-Szczepanik condition (PSz). This property was introduced by S.
Prus and M. Szczepanik in 2005 [28]. Given a Banach space X, put

d(ε, x) = inf
(ym)∈NX

lim sup
m→∞

∥x+ εym∥ − ∥x∥,

and

b1(ε, x) = sup
(ym)∈MX

lim inf
m→∞

∥x+ εym∥ − ∥x∥.

where NX := {(xn) : xn ∈ SX n = 1, 2, . . . , xn ⇀ 0X} and MX := {(xn) : xn ∈
BX n = 1, 2, . . . , D[(xn)] ≤ 1, xn ⇀ 0X}.

Definition 4.3. Let X be a non-Schur Banach space. If there exists ε ∈ (0, 1) such
that for every x ∈ SX it is the case that b1 (1, x) < 1− ε or d (1, x) > ε we say that
(X, ∥ · ∥) satisfies the (PSz) condition.

It was shown in [28] that every non-Schur reflexive Banach space with the prop-
erty (PSz) has the FPP.

Properties which are stronger than (PSz) condition are the following.

(1) Uniform noncreasyness (introduced by S. Prus in 1997) (see [27]) and its
generalizations. (See [13, 8, 7]).

(2) Property M(X) > 1. (See [3]). In particular this last condition covers
all the uniformly nonsquare Banach spaces. (See [25, 14]). Other reflexive
Banach spaces X with M(X) > 1 are those satisfying R(X) < 2. (See [11]).

Next, we check that X̃ also fails (PSz) condition.

Proposition 4.4. X̃ lacks of the (PSz) condition.

Proof. We shall prove that, for x = e2, we have b1(1, x) ≥ 1 and d(1, x) = 0.
That b1(1, x) ≥ 1 follows from the fact that for the sequence (xn) given as xn =

e4n+1, n ≥ 1, we have that xn ⇀ 0, D(xn) ≤ 1, ∥xn∥ = 1 for all n ∈ N and also
∥x+ xn∥ = 2 for all n ∈ N.

To see that d(1, x) = 0, consider the sequence yn = e4n. Then, ∥yn∥ = 1 for all
n ∈ N, yn ⇀ 0 and ∥x+ yn∥ = 1 for all n ∈ N. �
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4.4. Banach spaces with O-convex dual. Very recently, in 2008, P.N. Dowling,
B. Randrianantoanina and B. Turett [5], showed that (superreflexive) spaces with
O-convex dual have the FPP. We will recall this result with a bit more details.

For ε ∈ (0, 2), a subset A of X is said to be symmetrically ε-separated if the
distance between any two distinct points of A ∪ (−A) is at least ε and a Banach
space X is O-convex if the unit ball BX contains no symmetrically (2−ε)-separated
subset of cardinality n for some ε > 0 and some n ∈ N. O-convex Banach spaces
are superreflexive ([5]).

Theorem 4.5 ([5]). If X∗ is O-convex, then the Banach space X has the fixed point
property for nonexpansive mappings.

Since ε0(X) < 2 if and only if ε0(X
∗) < 2, uniformly nonsquare Banach spaces

have O-convex dual, and then this theorem is a generalization of the Mazcuñán’s
result above reported.

Naidu and Sastry [26] also characterized the dual property to O-convexity. For
ε > 0, a convex subset A of BX is an ε-flat if A ∩ (1− ε)BX = ∅. A collection D of
ε-flats is jointly complemented (jcc in short) if, for each distinct ε-flats A and B in
D, the sets A ∩B and A ∩ (−B) are nonempty. Define

E(n,X) = inf{ε > 0 : BXcontains a jcc of ε− flats of cardinality n}.

A Banach space X is said to be E-convex if E(n,X) > 0 for some n ∈ N. Since a
Banach space is E-convex if and only if its dual space is O-convex, Theorem 4.5 can
be restated by saying that E-convex Banach spaces have the fixed point property
for nonexpansive mappings.

Proposition 4.6. The space X̃ fails to have O-convex dual, and hence it is not
E-convex.

Proof. To see that X̃∗ is not O-convex consider the functionals fn ∈ X̃∗ defined on
ℓ2 by fn(x) = x2n−1 + x2n, where x = (xn), and n is any positive integer.

For every x ∈ ℓ2,

|fn(x)| ≤ |x2n−1|+ |x2n| ≤ M(x) ≤ ∥x∥.

Moreover ∥e2n∥ = 1 and f(e2n) = 1. Thus, ∥fn∥ = 1.
Let m ̸= n and take

vm,n :=
1

2
(e2n−1 + e2n − e2m−1 − e2m), wm,n =

1

2
(e2n−1 + e2n + e2m−1 + e2m).

It is clear that 1
3∥vm,n∥2 = 1

3∥wm,n∥ = 1
3 and that M(vm,n) = M(wm,n) = 1.

Moreover, if min{m,n} ≥ 2 and |m− n| ≥ 4, we also have S(vm,n) = S(wm,n) = 1.
Now consider the set A = {f4p : p = 1, 2, . . .}. For p ̸= q we have that

min{4p, 4q} ≥ 2 and |4p − 4q| ≥ 4. Then, ∥v4p,4q∥ = ∥w4p,4q∥ = 1, and since
(f4p−f4q)(v4p,4q) = (f4p+f4q)(w4p,4q) = 2, we have ∥f4p−f4q∥X̃∗ = ∥f4p+f4q∥X̃∗ =

2. Thus, A is an infinite 2-symmetrically separated subset of SX̃∗ and hence X̃∗ is
not O-convex. �
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4.5. Property WORTH. A Banach space X has the WORTH property (Rosen-
thal, 1983; Sims 1988) if limn |∥xn − x∥ − ∥xn + x∥| = 0 for all x ∈ X and all weakly
null sequence (xn) in X. The coefficient µ(X) := inf{r > 0 : lim sup ∥xn + x∥ ≤
r lim sup ∥xn − x∥ : xn ⇀ 0X , x ∈ X} was introduced in [18], and measures how
far a Banach space X is from satisfying WORTH property. Obvious consequences
of the definition of µ(X) are the following.

• 1 ≤ µ(X) ≤ 3.
• µ(X) = 1 ⇔ X has WORTH.

B. Sims raised the problem of whether reflexive spaces with WORTH property have
FPP. Many partial affirmative answers were obtained (see, for instance [10, 31])
and, very recently, H. Fetter and B. Gamboa [9] solved this problem affirmatively.
In fact they showed that reflexive spaces with WORTH property enjoy a sufficient
condition for FPP introduced seventeen years before in [12].

Theorem 4.7 (Fetter-Gamboa, 2010). If X is reflexive and µ(X) = 1, then X
enjoys FPP.

However, the space X̃ does not have property WORTH.

Proposition 4.8. µ(X̃) ≥ 2.

Proof. For xn :=
(
0, . . . , 0,

(2n+1)

1/2 , 1/2, 1/2, 0, . . .
)
, one has xn ⇀ 0X̃ and ∥xn∥ = 3/2

(n = 1, 2, . . .). Since e1 ∈ SX̃ , and for n > 1,

∥1
2e1 + xn∥ =

∥∥(1
2 , 0, . . . , 0,

1
2 ,

1
2 ,

1
2 , 0, . . .

)∥∥ = 2.

∥1
2e1 − xn∥ =

∥∥(1
2 , 0, . . . , 0,

−1
2 , −1

2 , −1
2 , 0, . . .

)∥∥ = 1 ,

it follows that µ(X̃) ≥ 2. �

Remark 4.9. Asymptotic normal structure, Orthogonal convexity, Prus-Szczepanik
condition, E-convexity and WORTH property are some of the most relevant (likely
pairwise independent) sufficient conditions for FPP in reflexive spaces. Each one
is maximal in the sense that no other weaker sufficient condition for FPP in such
spaces is known. However, this list of sufficient conditions for FPP is not exhaustive.
There exist other sufficient conditions for FPP, again of geometric type, which are
stated in terms of ultrapowers of the space under consideration, as, for instance,
Property AMC in [12] and Property (S) in [32]. For these kind of properties to
check that a given Banach space enjoys one of them is not an easy task, and we
omit it for our space X̃.
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