

FIXED POINT THEOREMS FOR SINGLE-VALUED AND MULTI-VALUED MIXED MONOTONE OPERATORS OF MEIR-KEELER TYPE

FARSHID KHOJASTEH* AND ABDOLRAHMAN RAZANI

ABSTRACT. In (2008), Zhang proved the existence of fixed points of mixed monotone operators along with certain convexity and concavity conditions. In this paper, mixed monotone single-valued and multi-valued operators of Meir-Keeler type are defined and two fixed point theorems are proved. Our results, extend the results of Zhang.

1. Introduction

In (1969), Meir and Keeler [4] introduced a new fixed point theorem as a generalization of Banach fixed point theorem. On the other hand, in (1987), mixed monotone operators were introduced by Guo and Lakshmikantham [1]. Then many authors studied them in Banach spaces and obtained lots of interesting results (see [2, 3] and [5]-[9]).

In this paper, weak and strong mixed monotone single-valued and multi-valued operator of Meir-Keeler type are defined. Then two fixed point theorems for this kind of operators are proved. These results extend the results given by Zhang [7].

Let E be a real Banach space. The zero element of E is denoted by θ . A subset P of E is called a cone if and only if:

- P is closed, nonempty and $P \neq \{\theta\}$,
- $a, b \in \mathbb{R}$, $a, b \ge 0$ and $x, y \in P$ imply that $ax + by \in P$,
- $x \in P$ and $-x \in P$ imply that $x = \theta$.

Given a cone $P \subset E$, a partial ordering \leq with respect to P is defined by $x \leq y$ if and only if $y-x \in P$. We write x < y to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ stand for $y-x \in intP$, where intP denotes the interior of P. The cone P is called normal if there exist a number K > 0 such that $\theta \leq x \leq y$ implies $||x|| \leq K||y||$, for every $x, y \in E$. The least positive number satisfying this, is called the normal constant of P.

Assume $u_0, v_0 \in E$ and $u_0 \leq v_0$. The set $\{x \in E : u_0 \leq x \leq v_0\}$ is denoted by $[u_0, v_0]$.

Now, we recall the following definitions from [2, 3].

 $^{2010\} Mathematics\ Subject\ Classification.\ 47H10,47H07.$

Key words and phrases. Mixed monotone operator, Meir-Keeler type, multi-valued, Increasing inward mappings, \mathcal{L}' -function.

^{*}Corresponding author.

The second author would like to thank the School of Mathematics of the Institute for Research in fundamental Sciences (IPM), Tehran, Iran, for supporting this research (Grant No.89470126).

Definition 1.1. Let P be a cone of a real Banach space E. Suppose $D \subset P$ and $\alpha \in (-\infty, +\infty)$. An operator $A: D \to D$ is said to be α -convex (α -concave), if it satisfies $A(tx) \leq t^{\alpha}Ax$ ($A(tx) \geq t^{\alpha}Ax$) for $(t, x) \in (0, 1) \times D$.

Definition 1.2. Let E be an ordered Banach space and $D \subset E$. An operator is called mixed monotone on $D \times D$, if $A: D \times D \to E$ and $A(x_1, y_1) \leq A(x_2, y_2)$ for any $x_1, x_2, y_1, y_2 \in D$, where $x_1 \leq x_2$ and $y_2 \geq y_1$. Also, $x^* \in D$ is called a fixed point of A, if $A(x^*, x^*) = x^*$.

Let C(E) be the collection of all closed subsets of E.

Definition 1.3. For two subsets X, Y of E, we write

- $X \leq Y$, if for all $x \in X$, there exists $y \in Y$ such that $x \leq y$.
- $x \ll X$, if there exists $z \in X$, such that $x \ll z$,
- $X \ll x$, if for all $z \in X$, $z \ll x$.

Definition 1.4. Let D be a nonempty subset of E. $T:D\to \mathcal{C}(E)$ is called, increasing (decreasing) upward, if $u,v\in D,\,u\leq v$ and $x\in T(u)$ imply there exists $y\in T(v)$ such that $x\leq y$ ($x\geq y$). Similarly, $T:D\to \mathcal{C}(E)$ is called increasing (decreasing) downward, if $u,v\in D,\,u\leq v$ and $y\in T(v)$ imply there exists $x\in T(u)$ such that $x\leq y$ ($x\geq y$). T is called increasing (decreasing), if T is an increasing (decreasing) upward and downward.

Definition 1.5. Let D be a nonempty subset of E. A multi-valued operator T: $D \times D \to \mathcal{C}(E)$ is said to be mixed monotone upward, if T(x,y) is increasing upward in x and decreasing upward in y, i.e.,

(A₁): for each $y \in D$ and any $x_1, x_2 \in D$ with $x_1 \leq x_2$, if $u_1 \in T(x_1, y)$ then there exists a $u_2 \in T(x_2, y)$ such that $u_1 \leq u_2$;

(A₂): for each $x \in D$ and any $y_1, y_2 \in D$ with $y_1 \leq y_2$, if $v_1 \in T(x, y_1)$ then there exists a $v_2 \in T(x, y_2)$ such that $v_1 \geq v_2$.

Definition 1.6. $x^* \in D$ is called a fixed point of T if $x^* \in T(x^*, x^*)$.

2. Main results

In this section, we introduce two new fixed point theorems in the class of mixed monotone operators. These are new generalizations of the results given by Zhang [7]. Due to this, two definitions are presented as follows:

Definition 2.1. A mixed monotone operator $A: D \times D \to E$ is said to be a **W**eak **M**ixed **M**onotone single-valued operator of **M**eir-**K**eeler type(**WM**₃**K** property, for short), if for each $\epsilon \gg 0$ and $t \in (0,1)$, there exists $\delta \gg 0$ such that

(2.1)
$$\epsilon \leq A(x, ty) < \epsilon + \delta$$
 implies $A(tx, y) < \epsilon$, for all $(x, y) \in D \times D$.

Definition 2.2. A mixed monotone operator $A: D \times D \to E$ is said to be a **S**trong Mixed Monotone single-valued operator of Meir-Keeler type($\mathbf{SM}_3\mathbf{K}$ property, for short), if for each $\epsilon \gg 0$ and $t \in (0,1)$, there exists $\delta \gg 0$ such that

$$(2.2) \qquad \qquad \epsilon \leq A(x,tx) < \epsilon + \delta \ \ \text{implies} \ \ A(tx,x) < \epsilon,$$

for all $x \in D$.

Theorem 2.3. Let P be a normal cone of E, S be a completely ordered closed subset of E with $S_0 = S \setminus \{\theta\} \subset intP \text{ and } \lambda S \subset S, \text{ for all } \lambda \in [0,1].$ Let $u_0, v_0 \in S_0$, $A: P \times P \rightarrow E$ be a weak mixed monotone operator of Meir-Keeler type with $A(([\theta, v_0] \cap S) \times ([\theta, v_0] \cap S)) \subset S$ and satisfies the following conitions:

- (I) there exists $r_0 > 0$ such that $u_0 \ge r_0 v_0$,
- (II) $A(u_0, v_0) \ll u_0 \ll v_0 \ll A(v_0, u_0)$,
- (III) for $u, v \in [u_0, v_0] \cap S$ with $A(u, v) \ll u \ll v$, there exists $u' \in S$ such that $u \leq A(u',v) \ll u' \ll v$; similarly, for $u,v \in [u_0,v_0] \cap S$ with $u \ll v \ll v$ A(v, u), there exists $v' \in S$ such hat $u \ll v' \ll A(v', u) \leq v$.

Then, A has at least one fixed point $x^* \in [u_0, v_0] \cap S$.

Proof. By the above condition (III), there exists $u_1 \in S$ such that $u_0 \leq A(u_1, v_0) \ll 1$ $u_1 \ll v_0$. Then, there exists $v_1 \in S$ such that $u_1 \ll v_1 \ll A(v_1, u_1) \leq v_0$. Likewise, there exists $u_2 \in S$ such that $u_1 \leq A(u_2, v_1) \ll u_2 \ll v_1$. Then, there exists $v_2 \in S$ such that $u_2 \ll v_2 \ll A(v_2, u_2) \leq v_1$. In general, there exists $u_n \in S$ such that $u_{n-1} \leq A(u_n, v_{n-1}) \ll u_n \ll v_{n-1}$. Then, there exists $v_n \in S$ such that $u_n \ll v_n \ll A(v_n, u_n) \le v_{n-1} \ (n = 1, 2, \dots).$

Take $r_n = \sup\{r \in (0,1) : u_n \ge rv_n\}$, thus $0 < r_0 < r_1 < \cdots < r_n < r_{n+1} < \cdots < r_n < r_{n+1} < \cdots < r_n < r$ $\cdots < 1$, and $\lim_{n \to \infty} r_n = \sup\{r_n : n = 0, 1, 2, \dots\} = r^* \in (0, 1]$. Since $r_{n+1} > r_n = 1$ $\sup\{r\in(0,1):u_n\geq rv_n\}$, thus $u_n\not\geq r_{n+1}v_n$. In addition, S is completely ordered and $\lambda S \subset S$, for all $\lambda \in [0,1]$, then $u_n < r_{n+1}v_n$. Now, one can prove $r^* = 1$. Otherwise, $r^* \in (0,1)$. Note that

$$(2.3) u_n \le A(u_{n+1}, v_{n+1}) \le A((1/r^*)u_{n+1}, r^*v_{n+1}).$$

Since $u_n < r_{n+1}v_n$ and $r_{n+1} < r^*$, hence, $u_n < r^*v_n$. So, if

(2.4)
$$\epsilon = r_n A((1/r^*)u_{n+1}, r^*v_{n+1}),$$

there exists $\delta \gg 0$ such that

$$(2.5) \epsilon \le A((1/r^*)u_{n+1}, r^*v_{n+1}) \le r_n A((1/r^*)u_{n+1}, r^*v_{n+1}) + \delta = \epsilon + \delta.$$

Therefore, by (2.1), (2.5) and $u_n < r^*v_n$, we have

(2.6)
$$u_{n} \leq A(u_{n+1}, v_{n+1})$$

$$= A(r^{*}(1/r^{*})u_{n+1}, v_{n+1})$$

$$< \epsilon$$

$$= r_{n}A((1/r^{*})u_{n+1}, r^{*}v_{n+1})$$

$$< r_{n}A(v_{n+1}, u_{n+1})$$

$$\leq r_{n}v_{n}.$$

Hence, $u_n < r_n v_n$, which is a contradiction. Thus, $r^* = 1$ and

$$(2.7) ||v_n - u_n|| \le K(1 - r_n)||v_n|| \le K^2(1 - r_n)||v_0||.$$

This means that, $\lim_{n\to\infty} u_n = \lim_{n\to\infty} v_n$. For all $n, p \ge 1$,

$$(2.8) ||v_n - v_{n+p}|| \le K||v_n - u_n|| \to 0 (n, p \to \infty).$$

Also,

$$(2.9) ||u_{n+p} - u_n|| \le K||v_n - u_n|| \to 0 (n, p \to \infty).$$

Hence, $\{u_n\}$ and $\{v_n\}$ are Cauchy sequences in E, then there exist $u^*, v^* \in E$, such that $u_n \to u^*, v_n \to v^*$ $(n \to \infty)$ and $u^* = v^*$. Write $x^* = u^* = v^*$.

It is easy to see, $u_0 \le u_n \le u^* \le v_n \le v_0$, for all $n = 1, 2, \ldots$ In addition, S is closed, then $u^* \in [u_n, v_n] \cap S \subset [u_0, v_0] \cap S$ $(n = 0, 1, 2, \ldots)$.

Finally, by the mixed monotone property of A,

$$(2.10) u_{n-1} \le A(u_n, v_n) \le A(x^*, x^*) \le A(u_n, v_n) \le u_{n-1}.$$

By taking limit from (2.10) when $n \to \infty$, we have $A(x^*, x^*) = x^*$. This means x^* is a fixed point of A in $[u_0, v_0] \cap S$.

Theorem 2.4. Let P be a normal cone of E, S be a completely ordered closed subset of E with $S_0 = S \setminus \{\theta\} \subset intP$ and $\lambda S \subset S$, for all $\lambda \in [0,1]$. Let $u_0, v_0 \in S_0$, $A: P \times P \to E$ be a strong mixed monotone operator of Meir-Keeler type with $A(([\theta, v_0] \cap S) \times ([\theta, v_0] \cap S)) \subset S$ and satisfies the following conditions:

- (I) there exists $r_0 > 0$ such that $u_0 \ge r_0 v_0$,
- (II) $A(u_0, v_0) \ll u_0 \ll v_0 \ll A(v_0, u_0)$,
- (III) for $u, v \in [u_0, v_0] \cap S$ with $A(u, v) \ll u \ll v$, there exists $u' \in S$ such that $u \leq A(u', v) \ll u' \ll v$; similarly, for $u, v \in [u_0, v_0] \cap S$ with $u \ll v \ll A(v, u)$, there exists $v' \in S$ such hat $u \ll v' \ll A(v', u) \leq v$.

Then, A has at least one fixed point $x^* \in [u_0, v_0] \cap S$.

Proof. By the above condition (III), there exists $u_1 \in S$ such that $u_0 \leq A(u_1, v_0) \ll u_1 \ll v_0$. Then, there exists $v_1 \in S$ such that $v_1 \ll v_1 \ll A(v_1, u_1) \leq v_0$. Likewise, there exists $v_2 \in S$ such that $v_1 \leq A(v_2, v_1) \ll v_2 \ll v_1$. Then, there exists $v_2 \in S$ such that $v_2 \ll v_2 \ll A(v_2, u_2) \leq v_1$. In general, there exists $v_1 \in S$ such that $v_1 \leq A(v_1, v_1) \ll v_1 \ll v_1$. Then, there exists $v_1 \in S$ such that $v_1 \ll v_1 \ll A(v_1, v_1) \ll v_1 \ll v_1$. Then, there exists $v_1 \in S$ such that $v_1 \ll v_1 \ll A(v_1, v_1) \leq v_1 \ll v_1$.

Take $r_n = \sup\{r \in (0,1) : u_n \geq rv_n\}$, then $0 < r_0 < r_1 < \dots < r_n < r_{n+1} < \dots < 1$, and $\lim_{n \to \infty} r_n = \sup\{r_n : n = 0, 1, 2, \dots\} = r^* \in (0,1]$. Since $r_{n+1} > r_n = \sup\{r \in (0,1) : u_n \geq rv_n\}$, then $u_n \not\geq r_{n+1}v_n$. In addition, S is completely ordered and $\lambda S \subset S$, for all $\lambda \in [0,1]$, then $u_n < r_{n+1}v_n$. Now, one can prove $r^* = 1$. Otherwise, $r^* \in (0,1)$. Note that

$$(2.11) u_n \le A(u_{n+1}, v_{n+1}) \le A(u_{n+1}, (1/r^*)u_{n+1}).$$

Since $u_n < r_{n+1}v_n$ and $r_{n+1} < r^*$, hence, $u_n < r^*v_n$. So, if $\epsilon = r_n A((1/r^*)u_{n+1}, u_{n+1})$, there exists $\delta \gg 0$ such that

$$(2.12) \epsilon \le A((1/r^*)u_{n+1}, u_{n+1}) \le r_n A((1/r^*)u_{n+1}, u_{n+1}) + \delta = \epsilon + \delta.$$

Therefore, by (2.2), (2.12) and $u_n < r^*v_n$, we have

(2.13)
$$u_{n} \leq A(u_{n+1}, v_{n+1})$$

$$\leq A(u_{n+1}, (1/r^{*})u_{n+1})$$

$$< \epsilon$$

$$= r_{n}A((1/r^{*})u_{n+1}, u_{n+1})$$

$$< r_{n}A(v_{n+1}, u_{n+1})$$

$$\leq r_{n}v_{n}.$$

Hence, $u_n < r_n v_n$, which is a contradiction. Thus, $r^* = 1$ and

$$(2.14) ||v_n - u_n|| \le K(1 - r_n)||v_n|| \le K^2(1 - r_n)||v_0||.$$

This means that, $\lim_{n\to\infty} u_n = \lim_{n\to\infty} v_n$. For all $n, p \ge 1$,

$$(2.15) ||v_n - v_{n+p}|| \le K||v_n - u_n|| \to 0 \ (n, p \to \infty).$$

Also,

$$(2.16) ||u_{n+p} - u_n|| \le K||v_n - u_n|| \to 0 \ (n, p \to \infty).$$

Hence, $\{u_n\}$ and $\{v_n\}$ are Cauchy sequences in E, then there exist $u^*, v^* \in E$, such that $u_n \to u^*, v_n \to v^*$ $(n \to \infty)$ and $u^* = v^*$. Write $x^* = u^* = v^*$.

It is easy to see, $u_0 \le u_n \le u^* \le v_n \le v_0$, for all $n = 1, 2, \ldots$ In addition S is closed, then $u^* \in [u_n, v_n] \cap S \subset [u_0, v_0] \cap S \ (n = 0, 1, 2, ...).$

Finally, by the mixed monotone property of A,

$$(2.17) u_{n-1} \le A(u_n, v_n) \le A(x^*, x^*) \le A(u_n, v_n) \le u_{n-1}.$$

By taking limit from (2.17), when $n \to \infty$, we have $A(x^*, x^*) = x^*$. This means x^* is a fixed point of A in $[u_0, v_0] \cap S$.

Definition 2.5. A function $\Psi: [0,1) \times P \times P \times E \to E$ is called a \mathcal{L}' -function, if $\Psi(t,x,y,0)=0, \ \Psi(t,x,y,s)\gg 0$ for $s\gg 0$, and for all $s\gg 0$, there exits $\delta\gg 0$ such that $\Psi(t,x,y,z) \leq s$ for all $s \leq z \leq s+\delta$. Also, $\Psi(t,x,x,z) < tz$, for all $(t, x, x, z) \in [0, 1) \times P \times P \times E.$

Corollary 2.6. Let P be a normal cone of E, S be a completely ordered closed subset of E with $S_0 = S \setminus \{\theta\} \subset intP \text{ and } \lambda S \subset S, \text{ for all } \lambda \in [0,1]. \text{ Let } u_0, v_0 \in S_0,$ $A: P \times P \rightarrow E \ satisfies$

(2.18)
$$A(tx, y) < \Psi(t, x, y, A(x, ty)),$$

for each $x, y \in P$ and $t \in [0, 1]$, where Ψ is a \mathcal{L}' -function, $A(([\theta, v_0] \cap S) \times ([\theta, v_0] \cap S))$ $S)) \subset S$ and satisfies the following conditions:

- (I) there exists $r_0 > 0$ such that $u_0 \ge r_0 v_0$,
- (II) $A(u_0, v_0) \ll u_0 \ll v_0 \ll A(v_0, u_0)$,
- (III) for $u, v \in [u_0, v_0] \cap S$ with $A(u, v) \ll u \ll v$, there exists $u' \in S$ such that $u \leq A(u',v) \ll u' \ll v$; similarly, for $u,v \in [u_0,v_0] \cap S$ with $u \ll v \ll v$ A(v, u), there exists $v' \in S$ such hat $u \ll v' \ll A(v', u) \leq v$.

Then, A has at least one fixed point $x^* \in [u_0, v_0] \cap S$.

Proof. Let $(x,y) \in P \times P$, $\epsilon \gg 0$ and $t \in (0,1)$. Choose $\delta \gg 0$ such that $\epsilon \leq 0$ $A(x,ty) < \epsilon + \delta$. Since Ψ is a \mathcal{L}' -function thus

$$(2.19) \Psi(t, x, y, A(x, ty)) < \epsilon.$$

Therefore, by (2.18), $A(tx, y) < \Psi(t, x, y, A(x, ty)) < \epsilon$. Hence, A satisfies (2.1) and by Theorem 2.3, A has a fixed point x^* .

Corollary 2.7. Let P be a normal cone of E, S be a completely ordered closed subset of E with $S_0 = S \setminus \{\theta\} \subset intP$ and $\lambda S \subset S$, for all $\lambda \in [0,1]$. Let $u_0, v_0 \in S_0$, $A: P \times P \to E$ be a mixed monotone operator with $A(([\theta, v_0] \cap S) \times ([\theta, v_0] \cap S)) \subset S$ and $A(u_0, v_0) \ll u_0 \ll v_0 \ll A(v_0, u_0)$. Assume, there exists a function $\phi: (0,1) \times ([u_0, v_0] \cap S) \times ([u_0, v_0] \cap S) \to (0, +\infty)$ such that $A(tx, y) \leq \phi(t, x, y) A(x, ty)$, where $0 < \phi(t, x, x) < t$, for all $(t, x, y) \in (0, 1) \times ([u_0, v_0] \cap S) \times ([u_0, v_0] \cap S)$. Suppose

- (I) for $u, v \in [u_0, v_0] \cap S$ with $A(u, v) \ll u \ll v$, there exists $u' \in S$ such that $u \leq A(u', v) \ll u' \ll v$; similarly, for $u, v \in [u_0, v_0] \cap S$ with $u \ll v \ll A(v, u)$, there exists $v' \in S$ such hat $u \ll v' \ll A(v', u) \leq v$.
- (II) there exists an element $w_0 \in [u_0, v_0] \cap S$ such that $\phi(t, x, x) \leq \phi(t, w_0, w_0)$, for all $(t, x) \in (0, 1) \times ([u_0, v_0] \cap S)$, and $\lim_{s \to t^-} \phi(s, w_0, w_0) < t$, for all $t \in (0, 1)$.

Then, A has at least one fixed point $x^* \in [u_0, v_0] \cap S$.

Proof. Set $\Psi(t, x, y, z) = z\phi(t, x, y)$. Then, Ψ satisfies all the conditions of Definition 2.5. Thus, by Corollary 2.6, the result is obtained.

Corollary 2.8. Let P be a normal cone of E, S be a completely ordered closed subset of E with $S_0 = S \setminus \{\theta\} \subset intP$ and $\lambda S \subset S$, for all $\lambda \in [0,1]$. Let $u_0, v_0 \in S_0$, $A: P \times P \to E$ be a mixed monotone operator with $A(([\theta, v_0] \cap S) \times ([\theta, v_0] \cap S)) \subset S$ and $A(u_0, v_0) \ll u_0 \ll v_0 \ll A(v_0, u_0)$. Assume, there exists a function $\eta: (0,1) \times ([u_0, v_0] \cap S) \to (0, +\infty)$ such that $A(tx, x) \leq \eta(t, x)A(x, tx)$, where $0 < \eta(t, x) < t$, for all $(t, x) \in (0, 1) \times ([u_0, v_0] \cap S)$. Suppose

- (I) for $u, v \in [u_0, v_0] \cap S$ with $A(u, v) \ll u \ll v$, there exists $u' \in S$ such that $u \leq A(u', v) \ll u' \ll v$; similarly, for $u, v \in [u_0, v_0] \cap S$ with $u \ll v \ll A(v, u)$, there exists $v' \in S$ such hat $u \ll v' \ll A(v', u) \leq v$.
- (II) there exists an element $w_0 \in [u_0, v_0] \cap S$ such that $\eta(t, x) \leq \eta(t, w_0)$, for all $(t, x) \in (0, 1) \times ([u_0, v_0] \cap S)$, and $\lim_{s \to t^-} \eta(s, w_0) < t$, for all $t \in (0, 1)$.

Then, A has at least one fixed point $x^* \in [u_0, v_0] \cap S$.

Proof. Set $\Psi(t, x, y, z) = z\eta(t, x)$. Then, Ψ satisfies all conditions of Definition 2.5. Thus, by Corollary 2.6, the result is obtained.

Remark 2.9. The following notes are considerable:

- Corollary 2.6 is a direct result of Theorem 2.3.
- Corollary 2.7 and Corollary 2.8 are direct results of Corollary 2.6.

3. M_4K Property

In this section, we introduce a new fixed point theorem in the class of multi-valued mixed monotone operators. Due to this, the following definition is given.

Definition 3.1. A mixed monotone operator $T: D \times D \to \mathcal{C}(E)$ is said to be a Mixed Monotone Multi-valued operator of Meir-Keeler type($\mathbf{M}_4\mathbf{K}$ property, for short), if for each $\epsilon \gg 0$ and $t \in (0,1)$, there exists $\delta \gg 0$ such that $w < \epsilon + \delta$, implies there exists $z \in T(tx, y)$ such that $z < \epsilon$, for all $w \in T(x, ty)$ and $(x, y) \in D \times D$.

Theorem 3.2. Let P be a normal cone of E, S be a completely ordered closed subset of E with $S_0 = S \setminus \{\theta\} \subset intP$ and $\lambda S \subset S$, for all $\lambda \in [0, 1]$. Let $u_0, v_0 \in S_0$,

 $T: P \times P \to \mathcal{C}(E)$ be a mixed monotone multi-valued operator of Meir-Keeler type with $T(([\theta, v_0] \cap S) \times ([\theta, v_0] \cap S)) \subset S$ and satisfies the following conditions:

- (I) there exists $r_0 > 0$ such that $u_0 \ge r_0 v_0$,
- (II) $T(u_0, v_0) \ll u_0 \ll v_0 \ll T(v_0, u_0)$,
- (III) for $u, v \in [u_0, v_0] \cap S$ with $T(u, v) \ll u \ll v$, there exists $u' \in S$ such that $u \leq T(u',v) \ll u' \ll v$; similarly, for $u,v \in [u_0,v_0] \cap S$ with $u \ll v \ll v$ T(v, u), there exists $v' \in S$ such hat $u \ll v' \ll T(v', u) \leq v$.

Then, T has at least one fixed point $x^* \in [u_0, v_0] \cap S$.

Proof. By the above condition (III), there exists $u_1 \in S$ such that $u_0 \leq T(u_1, v_0) \ll 1$ $u_1 \ll v_0$. Then, there exists $v_1 \in S$ such that $u_1 \ll v_1 \ll T(v_1, u_1) \leq v_0$. Likewise, there exists $u_2 \in S$ such that $u_1 \leq T(u_2, v_1) \ll u_2 \ll v_1$. Then, there exists $v_2 \in S$ such that $u_2 \ll v_2 \ll T(v_2, u_2) \leq v_1$. In general, there exists $u_n \in S$ such that $u_{n-1} \leq T(u_n, v_{n-1}) \ll u_n \ll v_{n-1}$. Then, there exists $v_n \in S$ such that $u_n \ll v_n \ll T(v_n, u_n) \le v_{n-1} \ (n = 1, 2, \dots).$

Take $r_n = \sup\{r \in (0,1) : u_n \ge rv_n\}$, thus $0 < r_0 < r_1 < \cdots < r_n < r_{n+1} < \cdots < r_n < r_n$ $\cdots < 1$, and $\lim_{n \to \infty} r_n = \sup\{r_n : n = 0, 1, 2, \dots\} = r^* \in (0, 1]$. Since $r_{n+1} > r_n = 1$ $\sup\{r\in(0,1):u_n\geq rv_n\}$, thus $u_n\not\geq r_{n+1}v_n$. In addition, S is completely ordered and $\lambda S \subset S$, for all $\lambda \in [0,1]$, then $u_n < r_{n+1}v_n$. Now, one can prove $r^* = 1$. Otherwise, $r^* \in (0,1)$. We claim

(3.1)
$$T(u_{n+1}, v_{n+1}) \le T((1/r^*)u_{n+1}, r^*v_{n+1}).$$

Suppose $x \in T(u_{n+1}, v_{n+1})$ be arbitrary. We have $u_{n+1} \leq (1/r^*)u_{n+1}$. If $x_1 = u_{n+1}$, $x_2 = (1/r^*)u_{n+1}$ and $y = v_{n+1}$, then by (A_1) of Definition 1.5, there exists $z \in$ $T((1/r^*)u_{n+1}, v_{n+1})$ such that $x \leq z$. Thus, $T(u_{n+1}, v_{n+1}) \leq T((1/r^*)u_{n+1}, v_{n+1})$.

Also, if $y_1 = r^*v_{n+1}$, $y_2 = v_{n+1}$ and $x = (1/r^*)u_{n+1}$, then for $w \in$ $T((1/r^*)u_{n+1}, r^*v_{n+1})$, there exists $h \in T((1/r^*)u_{n+1}, v_{n+1})$ such that $w \ge h$. It means that,

$$(3.2) T((1/r^*)u_{n+1}, r^*v_{n+1}) \ge T((1/r^*)u_{n+1}, v_{n+1}).$$

Thus,

$$(3.3) T(u_{n+1}, v_{n+1}) \le T((1/r^*)u_{n+1}, r^*v_{n+1}).$$

Assume $k_n \in T((1/r^*)u_{n+1}, r^*v_{n+1})$ is arbitrary. So, if $\epsilon = r_n k_n$, there exists $\delta > 0$ such that $k_n < r_n k_n + \delta$. By Definition 3.1, for all

$$(3.4) s \in T(r^*((1/r^*)u_{n+1}), v_{n+1}) = T(u_{n+1}, v_{n+1}),$$

 $s < r_n k_n$. Since $u_n \le T(u_{n+1}, v_{n+1})$ by Definition 1.3, there exists $l_n \in T(u_{n+1}, v_{n+1})$ such that $u_n \leq l_n$. Also, $l_n < r_n k_n$, thus $u_n < r_n k_n$.

If we apply the above argument again, we gain $k_n \leq v_n$. Thus, $u_n < r_n v_n$, which is a contradiction by the choice of r_n . Therefore, $r^* = 1$ and

$$(3.5) ||v_n - u_n|| \le K(1 - r_n)||v_n|| \le K^2(1 - r_n)||v_0||,$$

It means that, $\lim_{n\to\infty} u_n = \lim_{n\to\infty} v_n$. For all $n, p \ge 1$,

$$(3.6) ||v_n - v_{n+p}|| \le K||v_n - u_n|| \to 0 \ (n, p \to \infty).$$

Also,

$$(3.7) ||u_{n+p} - u_n|| \le K||v_n - u_n|| \to 0 \ (n, p \to \infty).$$

Hence, $\{u_n\}$ and $\{v_n\}$ are Cauchy sequences in E, then there exists $u^*, v^* \in E$, such that $u_n \to u^*, v_n \to v^*$ $(n \to \infty)$ and $u^* = v^*$. Write $x^* = u^* = v^*$.

It is easy to see that $u_n \leq T(u_{n+1}, v_{n+1}) \leq T(x^*, x^*) \leq T(v_{n+1}, u_{n+1}) \leq v_n$, for all $n = 1, 2, \ldots$. Thus, there exists $z_n \in T(x^*, x^*)$ such that $u_n \leq z_n \leq v_n$. By normality of P and taking limit from both sides of (3.5),

$$||z_n - u_n|| \le K(1 - r_n)||v_n|| \le K^2(1 - r_n)||v_0|| \to 0.$$

So $z_n \to x^*$. Since T has closed values, then $x^* \in T(x^*, x^*)$ and $x^* \in [u_n, v_n] \cap S \subset [u_0, v_0] \cap S$.

Remark 3.3. In Theorem 3.2, set $T(x,y) = \{A(x,y)\}$, where A is a mixed monotone single-valued operator, then Theorem 2.3 is concluded.

References

- [1] D. J. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. (TMA) 11 (1987), 623–632.
- [2] D. J. Guo, Fixed points of mixed monotone operators with applications, Appl. Anal. 31 (1988), 215–224.
- [3] Sh. Hong, Fixed points for mixed monotone multivalued operators in Banach spaces with applications, J. Math. Anal. Appl. **337** (2008), 333–342.
- [4] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329.
- [5] Y. Wu, New fixed point theorems and applications of mixed monotone operator, J. Math. Anal. Appl. 341 (2008), 883–893.
- [6] Sh. Xu and B. Jia, Fixed-point theorems of ϕ concave- ψ convex mixed monotone operators and applications, J. Math. Anal. Appl. **295** (2004), 645–657.
- [7] M. Zhang, Fixed point theorems of φ concave -ψ convex mixed monotone operators and applications, J. Math. Anal. Appl. 339 (2008), 970–981.
- [8] Zh. Zhang and K. Wang, On fixed point theorems of mixed monotone operators and applications, Nonlinear Anal. (TMA) 70 (2009), 3279–3284.
- [9] Z. Zhao, Existence and uniqueness of fixed points for some mixed monotone operators, Nonlinear Anal. (TMA) 73 (2010), 1481–1490.

Manuscript received April 20, 2011 revised November 10, 2011

FARSHID KHOJASTEH

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran E-mail address: fr_khojasteh@yahoo.com

Abdolrahman Razani

Department of Mathematics, Faculty of Science, Imam Khomeini International University, Postal code: 34149-16818, Qazvin, Iran

School of Mathematics, Institute for Research in Fundamental Sciences, P. O. Box 19395-5746, Tehran, Iran

E-mail address: razani@ikiu.ac.ir