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FIXED POINT THEOREMS FOR SINGLE-VALUED AND
MULTI-VALUED MIXED MONOTONE OPERATORS OF
MEIR-KEELER TYPE

FARSHID KHOJASTEH" AND ABDOLRAHMAN RAZANI

ABSTRACT. In (2008), Zhang proved the existence of fixed points of mixed mono-
tone operators along with certain convexity and concavity conditions. In this
paper, mixed monotone single-valued and multi-valued operators of Meir-Keeler
type are defined and two fixed point theorems are proved. Our results, extend
the results of Zhang.

1. INTRODUCTION

In (1969), Meir and Keeler [4] introduced a new fixed point theorem as a gen-
eralization of Banach fixed point theorem. On the other hand, in (1987), mixed
monotone operators were introduced by Guo and Lakshmikantham [1]. Then many
authors studied them in Banach spaces and obtained lots of interesting results (see
[2, 3] and [5]-[9]).

In this paper, weak and strong mixed monotone single-valued and multi-valued
operator of Meir-Keeler type are defined. Then two fixed point theorems for this
kind of operators are proved. These results extend the results given by Zhang [7].

Let E be a real Banach space. The zero element of F is denoted by 6. A subset
P of E is called a cone if and only if:

e P is closed, nonempty and P # {6},
e a.bceR, a,b>0and z,y € P imply that ax + by € P,
e r € Pand —x € P imply that x = 6.

Given a cone P C E, a partial ordering < with respect to P is defined by = < y if
and only if y—x € P. We write z < y to indicate that z < y but x # y, while z < y
stand for y — x € intP, where intP denotes the interior of P. The cone P is called
normal if there exist a number K > 0 such that § < x <y implies ||z|| < K]||y||,
for every z,y € E. The least positive number satisfying this, is called the normal
constant of P.

Assume ug,v9 € E and ug < vg. The set {z € F : uyp < z < v} is denoted by
[UQ, ’Uo].

Now, we recall the following definitions from [2, 3].
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Definition 1.1. Let P be a cone of a real Banach space E. Suppose D C P and
a € (—00,400). An operator A : D — D is said to be a-convex (a-concave), if it
satisfies A(tx) < t*Ax (A(tz) > t*Ax) for (t,z) € (0,1) x D.

Definition 1.2. Let E be an ordered Banach space and D C F. An operator is
called mixed monotone on D x D, if A: D x D — FE and A(x1,y1) < A(xg,y2) for
any x1,x2,y1,y2 € D, where x1 < 29 and yo > y1. Also, 2* € D is called a fixed
point of A, if A(z*, z*) = x*.

Let C(F) be the collection of all closed subsets of E.

Definition 1.3. For two subsets X,Y of F, we write
o X <Y if for all x € X, there exists y € Y such that x < y.
e r < X, if there exists z € X, such that r < z,
o X <ux,ifforall ze X, z < .

Definition 1.4. Let D be a nonempty subset of E. T : D — C(F) is called,
increasing (decreasing) upward, if u,v € D, u < v and x € T(u) imply there exists
y € T(v) such that < y (x > y). Similarly, 7' : D — C(FE) is called increasing
(decreasing) downward, if u,v € D, u < v and y € T'(v) imply there exists z € T'(u)
such that <y (z > y). T is called increasing (decreasing), if 7" is an increasing
(decreasing) upward and downward.

Definition 1.5. Let D be a nonempty subset of . A multi-valued operator T :
D x D — C(F) is said to be mixed monotone upward, if 7'(z, y) is increasing upward
in x and decreasing upward in y, i.e.,
(Ay): for each y € D and any x1,x2 € D with x1 < x9, if u; € T(x1,y) then
there exists a ug € T'(x2,y) such that uy < ug;
(Ag): for each x € D and any y;,y2 € D with y; < yo, if v1 € T(z,y1) then
there exists a vo € T'(x,y2) such that v; > vs.

Definition 1.6. z* € D is called a fixed point of T if 2* € T'(z*, z*).

2. MAIN RESULTS

In this section, we introduce two new fixed point theorems in the class of mixed
monotone operators. These are new generalizations of the results given by Zhang
[7]. Due to this, two definitions are presented as follows:

Definition 2.1. A mixed monotone operator A : D x D — FE is said to be a Weak
Mixed Monotone single-valued operator of Meir-Keeler type(WM3K property, for
short), if for each € > 0 and ¢ € (0, 1), there exists ¢ > 0 such that

(2.1) e < A(z,ty) < e+ 0 implies A(tz,y) <e,
for all (x,y) € D x D.

Definition 2.2. A mixed monotone operator A : D x D — F is said to be a Strong
Mixed Monotone single-valued operator of Meir-Keeler type(SM3K property, for
short), if for each € > 0 and ¢ € (0, 1), there exists ¢ > 0 such that

(2.2) e < A(z,tx) < e+ 6 implies A(tx,x) <e,
for all x € D.
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Theorem 2.3. Let P be a normal cone of E, S be a completely ordered closed
subset of E with Sy = S\{0} C intP and NS C S, for all X\ € [0,1]. Let ugp, vy € So,
A: Px P — FE be a weak mized monotone operator of Meir-Keeler type with
A(([0,v0] N'S) x ([0,v0] N'S)) C S and satisfies the following conitions:
(I) there exists o > 0 such that uy > rovo,
(II) A(UO,’U()) <L u K K A(U07u0);
(IIT) for u,v € [ug,vo] NS with A(u,v) < u < v, there exists u' € S such that
u < A(u,v) < v < v; similarly, for u,v € [ug,vo] NS with u <€ v K
A(v,u), there exists v/ € S such hat u < v/ < A(v',u) < wv.
Then, A has at least one fixed point x* € [ug,vo] NS.

Proof. By the above condition (IIT), there exists u; € S such that uy < A(u,vy) <K
u; < vg. Then, there exists v; € S such that u; < v; < A(v1,u1) < vg. Likewise,
there exists ug € S such that u; < A(ug,v1) < ug < v1. Then, there exists
vy € S such that uy < v9 < A(ve,u2) < vi. In general, there exists u, € S
such that u,—1 < A(up,vp—1) < Uy < vp—1. Then, there exists v, € S such that
Up K Uy K Alvp,tp) <vpop (n=1,2,...).

Take rp, = sup{r € (0,1) : up, > 105}, thus 0 < rg < 7r; < - <1y < Tpp1 <
-+ < 1,and limr, =sup{r, : n=10,1,2,...} =r* € (0,1]. Since ryp4; > r, =

n—o0

sup{r € (0,1) : u,, > vy}, thus u, # rni+1v,. In addition, S is completely ordered
and \S C S, for all A € [0,1], then u, < rp11v,. Now, one can prove r* = 1.
Otherwise, r* € (0,1). Note that

(2.3) Un < A(tn+1,vn41) < AL/r")ung1, 77 0n41).

Since u, < rp41v, and Ty < 7, hence, u, < r*v,. So, if

(2.4) e = A((1/7")uns1, 7" vn41),

there exists 0 > 0 such that

(2.5) e < A1/ uns1, 7" vns1) < rp AL/ )upg1, 7 vng1) + 0 = €+ 6.
Therefore, by (2.1), (2.5) and u, < 7*v,, we have

Un, A(un-l—b Un—i—l)

A (U g1, vmsn)

€

TnA((l/r*)un-‘rla ""*Un—i-l)
TnA(Un-i—h Un—i—l)

T'nUn.

(2.6)

INA AT IA

Hence, u,, < rpv,, which is a contradiction. Thus, 7* =1 and

(2.7) [|on = ]| < K (1 —=rp)[|on]| < K*(1 = 70)|Jvol|-
This means that, lim u, = lim v,.
n—oo n—oo

For all n,p > 1,
(2.8) [ — Unpl] < Kl|on —up|| =0 (n,p — 00).
Also,

(2.9) untp = unll < Kljon = un|| = 0 (n,p = 00).
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Hence, {u,} and {v,} are Cauchy sequences in E, then there exist u*,v* € E, such
that u, — u*,v, = v* (n = c0) and u* = v*. Write z* = u* = v*.

It is easy to see, up < up, < u* < v, < vy, for alln =1,2,.... In addition, S is
closed, then u* € [uy,v,] NS C [ug,v] NS (n=0,1,2,...).

Finally, by the mixed monotone property of A,

(2.10) Up—1 < Aup, v,) < Az, 2%) < A(up, vn) < Up—1.

By taking limit from (2.10) when n — oo, we have A(z*,z*) = z*. This means z*
is a fixed point of A in [ug, v N S. O

Theorem 2.4. Let P be a normal cone of E, S be a completely ordered closed
subset of E with Sy = S\{0} C intP and \S C S, for all A € [0,1]. Let ug,vp € So,
A: Px P — FE be a strong mized monotone operator of Meir-Keeler type with
A(([0,v0] N S) x ([0,v0] N'S)) C S and satisfies the following conditions:

(I) there exists o > 0 such that uy > rovo,
(I1) A(ug,vp) < ug K vg < A(vg, up),
(IIT) for u,v € [ug,vo) NS with A(u,v) < u <K v, there exists u' € S such that
u < A(u,v) < W < v; similarly, for u,v € [ug,vo] NS with u < v K
A(v,u), there exists v' € S such hat u < v < A(V',u) < v.

Then, A has at least one fized point x* € [ug,vo] NS.

Proof. By the above condition (IIT), there exists u; € S such that uy < A(u,vg) <K
u; < vg. Then, there exists v1 € S such that u; < v; < A(v1,u1) < vg. Likewise,
there exists ug € S such that u; < A(ug,v1) € uz < v1. Then, there exists
vy € S such that ug € vo < A(va,u2) < vi. In general, there exists u, € S
such that u,—1 < A(up,vp—1) < Uy < vp—1. Then, there exists v, € S such that
Up K Uy K A(Vp,up) <vpp (Rn=1,2,...).

Take r, = sup{r € (0,1) : up, > rvn}, then 0 <79 <71 < -+ < 1 < Tpg1 <
- <1, and nli_{Iolorn =sup{r, : n=0,1,2,...} =r* € (0,1]. Since rpt1 > 1 =
sup{r € (0,1) : u, > rv,}, then u, 2 rn41v,. In addition, S is completely ordered
and \S C S, for all A € [0,1], then u, < rp11v,. Now, one can prove r* = 1.
Otherwise, r* € (0,1). Note that

(2.11) Up < A(Uunt1,Vnt1) < A(upsr, (/75 )ups1).

Since uy, < rp4+10, and r 1 < 7, hence, u, < r*v,. So, if € = r A((1/r*)unt1, Unt1),
there exists > 0 such that

(2.12) e <A1/ ) uns1, unt1) < A(L/r" ) ups1, uns1) +0 = €+ 0.
Therefore, by (2.2), (2.12) and u,, < r*v,, we have

A(Un+1, vn+l)
A(up+1, (1/7")tn11)

€

T AL/ ) tn11, Unt1)
TnA(Un—i-lp un—i—l)

TnUn.

Unp

(2.13)

VANWANEE | IVANRVANIVAN
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Hence, u,, < r,v,, which is a contradiction. Thus, 7* =1 and
(2.14) [|on = ]| < K (1 —=rp)[|on]| < K*(1 = 70)|Jvol|-

This means that, lim u, = lim v,.
n—o0 n—0o0
For all n,p > 1,

(2.15) [vn — Vnpl| < Kl|vn — upl|[ = 0 (n,p — o0).
Also,
(2.16) || tn1p — unl|| < K||vn — up|| = 0 (n,p — 00).

Hence, {u,} and {v,} are Cauchy sequences in E, then there exist u*,v* € E, such
that u, — u*,v, = v* (n — 00) and u* = v*. Write z* = u* = v*.

It is easy to see, ug < up, < u* < v, < g, for all n =1,2,.... In addition S is
closed, then u* € [uy,v,] NS C [ug,vo] NS (n=0,1,2,...).

Finally, by the mixed monotone property of A,

(2.17) Un—1 < A, vp) < Az, 2") < A(tn, vn) < Up—1.

By taking limit from (2.17), when n — oo, we have A(z*, z*) = z*. This means x*
is a fixed point of A in [ug,vo] N S. O

Definition 2.5. A function ¥ : [0,1) x P x P x E — E is called a £'—function,
if U(t,z,y,0) =0, ¥(t,x,y,s) > 0 for s > 0, and for all s > 0, there exits § > 0
such that U(t,z,y,2) < s for all s < z < s+ 4. Also, ¥(t,z,x,2) < tz, for all
(t,z,x,2z) €[0,1) x Px P x E.

Corollary 2.6. Let P be a normal cone of E, S be a completely ordered closed
subset of E with So = S\{0} C intP and \S C S, for all A € [0,1]. Let up, vy € So,
A: P x P — E satisfies

(2.18) Altz,y) < V(t,z,y, Az, ty)),
for each x,y € P and t € [0,1], where ¥ is a L'—function, A(([0,vo] NS) x ([0, vo] N
S)) C S and satisfies the following conditions:

(I) there exists ro > 0 such that uy > rovo,
(I1) A(ug, v) < up < vo < A(vo,up),
(III) for u,v € [ug,vo) NS with A(u,v) < u < v, there exists u' € S such that
u < AW v) < v < v; similarly, for u,v € [ug,vo] NS with u <€ v K
A(v,u), there exists v' € S such hat u < v/ < A(v',u) < wv.

Then, A has at least one fized point x* € [ug,vo] N S.

Proof. Let (z,y) € Px P, e > 0 and t € (0,1). Choose 6 > 0 such that ¢ <
A(x,ty) < e+ 0. Since ¥ is a L'—function thus

(2.19) U(t,z,y, Az, ty)) < e.

Therefore, by (2.18), A(tz,y) < ¥(t,z,y, A(z,ty)) < e. Hence, A satisfies (2.1) and
by Theorem 2.3, A has a fixed point z*. O
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Corollary 2.7. Let P be a normal cone of E, S be a completely ordered closed
subset of E with Sy = S\{0} C intP and NS C S, for all X\ € [0,1]. Let ugp, vy € So,
A: PxP — E be a mixed monotone operator with A(([0,vo]NS) x ([@,v0]NS)) C S
and A(up,vo) < up < vg <K A(vo,up). Assume, there exists a function ¢ : (0,1) x
([wo,v0]NS) x ([uo, vo]NS) — (0,4+00) such that A(tx,y) < ¢(t,z,y)A(x, ty), where
0 < ¢(t,z,z) <t, for all (t,z,y) € (0,1) x ([ug,vo] N S) x ([ug,v0] N S). Suppose
(I) for u,v € [ug,vo] N S with A(u,v) < u < v, there exists v’ € S such that
u < A v) < v < v; similarly, for u,v € [ug,vg] NS with u € v K
A(v,u), there exists v' € S such hat u < v < A(V',u) < wv.
(IT) there exists an element wy € [ug, vo]NS such that ¢(t, z, x) < ¢(t, wo, wo), for
all (t,x) € (0,1) x ([ug,vo] N'S), and liI{l o(s,wo,wp) < t, for all t € (0,1).
S—1—

Then, A has at least one fixed point x* € [ug,vo] N S.

Proof. Set ¥(t,x,y,z) = z¢(t,z,y). Then, ¥ satisfies all the conditions of Definition
2.5. Thus, by Corollary 2.6, the result is obtained. ]

Corollary 2.8. Let P be a normal cone of E, S be a completely ordered closed
subset of E with So = S\{0} C intP and \S C S, for all X € [0,1]. Let ug, vy € So,
A: PxP — E be a mized monotone operator with A(([0,vo]NS) x ([0, v9]NS)) C S
and A(up,vo) <K up < vg <K A(vg,up). Assume, there exists a function n : (0,1) x
([wg,vo] NS) = (0,+00) such that A(tx,x) < n(t,z)A(x,tx), where 0 < n(t,z) < t,
for all (t,x) € (0,1) x ([ug,v0] N S). Suppose
(I) for u,v € [ug,vo] N S with A(u,v) < u < v, there exists u' € S such that
u < AW v) < W < v; similarly, for u,v € [ug,vo] NS with u < v K
A(v,u), there exists v' € S such hat u < v < A(V',u) < v.
(IT) there exists an element wo € [up,vo] NS such that n(t,x) < n(t,wo), for all
(t,xz) € (0,1) x ([ug,v0] N'S), and lir? n(s,wp) < t, for all t € (0,1).
s—t™

Then, A has at least one fized point x* € [ug,vo] N S.

Proof. Set ¥(t,z,y,z) = zn(t,x). Then, ¥ satisfies all conditions of Definition 2.5.
Thus, by Corollary 2.6, the result is obtained. O

Remark 2.9. The following notes are considerable:

e Corollary 2.6 is a direct result of Theorem 2.3.
e Corollary 2.7 and Corollary 2.8 are direct results of Corollary 2.6.

3. M4K PROPERTY

In this section, we introduce a new fixed point theorem in the class of multi-valued
mixed monotone operators. Due to this, the following definition is given.

Definition 3.1. A mixed monotone operator T : D x D — C(FE) is said to be a
Mixed Monotone Multi-valued operator of Meir-Keeler type(M4K property, for
short), if for each € > 0 and ¢ € (0, 1), there exits 6 > 0 such that w < e+9, implies
there exists z € T'(tx, y) such that z <, for all w € T'(x,ty) and (z,y) € D x D.

Theorem 3.2. Let P be a normal cone of E, S be a completely ordered closed
subset of E with So = S\{0} C intP and \S C S, for all X € [0,1]. Let up, vy € So,
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T:Px P — C(E) be a mized monotone multi-valued operator of Meir-Keeler type
with T(([0,v0] NS) x ([0,v0] N S)) C S and satisfies the following conditions:

(I) there exists o > 0 such that uy > rovo,

(H) T(UO, Uo) KU K K T(’Uo, uo),

(IIT) for w,v € [ug,vo] NS with T'(u,v) < u K v, there exists v’ € S such that
u < T, v) < v < v; similarly, for u,v € [ug,vo] NS with u € v K
T(v,u), there exists v' € S such hat u < v' K T(V',u) < wv.

Then, T has at least one fized point x* € [ug,vo] N S.

Proof. By the above condition (III), there exists u; € S such that ug < T'(u,v9) <
u; < vg. Then, there exists v1 € S such that u; < v1 < T'(v1,u1) < vg. Likewise,
there exists ug € S such that u; < T(ug,v1) < ug < v1. Then, there exists
vy € S such that uy < vy < T(vg,uz) < vi. In general, there exists u, € S
such that u,—1 < T(up,vp—1) K Uy < vp—1. Then, there exists v, € S such that
Up K Uy L T(pyun) <vp—1 (n=1,2,...).

Take r, = sup{r € (0,1) : up, > 105}, thus 0 <79 <711 < -+ <7y < Tpy1 <
-+ < 1,and limr, = sup{r, : n =0,1,2,...} = r* € (0,1]. Since rpy1 > 1, =

n—o0

sup{r € (0,1) : up, > rv,}, thus u, 2 rp+1v,. In addition, S is completely ordered
and \S C S, for all A € [0,1], then u, < rp11v,. Now, one can prove r* = 1.
Otherwise, r* € (0,1). We claim

(3.1) (st 0ns1) < DL/ Vi, 7 vns1).

Suppose z € T'(unt1,Vn+1) be arbitrary. We have up+1 < (1/7*)upy1. If 21 = upy,
xo = (1/r*)upy1 and y = v,y1, then by (A1) of Definition 1.5, there exists z €
T((1/r*)up41,vp41) such that = < z. Thus, T (up+1,0n4+1) < T((1/r*)unt1, Unt1)-

Also, if y1 = 7 Upt1, Y2 = vp41 and x = (1/r*)up41, then for w €
T((1/r*)ups1,7*vps1), there exists b € T((1/r*)un+1,vnt1) such that w > h. It
means that,

(3.2) T/ Yumst ™ 0nsr) > T/ Yims1, vt
Thus,
(3.3) T(un+1,vn41) < T((1/7")unt1, 7" 0n41).

Assume ky, € T((1/r*)upy1,7*vn41) is arbitrary. So, if € = r,k,, there exists 6 > 0
such that k, < rp,k, + 6. By Definition 3.1, for all

(3-4) s € T(r*((1/r")unt1), vng1) = T(tnt1, vny1),

s < rpky. Since u, < T(Up41,Unt1) by Definition 1.3, there exists l,, € T'(up+1, Vn+1)
such that u, <1,. Also, l,, < r,ky, thus u, < rpk,.

If we apply the above argument again, we gain k, < v,. Thus, u, < r,v,, which
is a contradiction by the choice of r,. Therefore, r* = 1 and

(3.5) [lon = un|| < K (1 —ra)l[onl| < K*(1 —74)l[voll,

It means that, lim u, = lim v,.
n—oo n—oo

For all n,p > 1,

(3.6) [on = Vnapl| < KlJvn — un|| = 0 (n,p — 00).
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Also,
(3.7) untp = un|| < K|vn = un|| = 0 (n,p — o0).

Hence, {u,} and {v,} are Cauchy sequences in F, then there exists u*,v* € E, such
that u, — u*,v, = v* (n — 00) and u* = v*. Write z* = u* = v*.
It is easy to see that u, < T'(up+1,vn+1) < T(x*,2%) < T(vpt1, Un+1) < vy, for

all n = 1,2,.... Thus, there exists z, € T(z*, 2*) such that u, < z, < v,. By
normality of P and taking limit from both sides of (3.5),

(3.8) 20 — unll < K(1—rn)log|| < K*(1—1)lfvol| = 0.

So z, — x*. Since T has closed values, then z* € T'(z*,2*) and x* € [u,, v, NS C
[UO, Uo] ns. O

Remark 3.3. In Theorem 3.2, set T'(z,y) = {A(x,y)}, where A is a mixed mono-
tone single-valued operator, then Theorem 2.3 is concluded.
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