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nonempty subsets of Rn. For more details on fractional differential equations and
inclusions, we refer the reader to ([1, 2, 3, 4, 15]).

2. Preliminaries

Let C([0, T ],Rn) denote the Banach space of continuous functions from [0, T ] into
Rn with the norm ∥x∥∞ = supt∈[0,T ] ||x(t)||. Let L1([0, T ],Rn) be the Banach space

of measureable functions x : [0, T ] → Rn which are Lebesgue integrable and normed

by ∥x∥L1 =
∫ T
0 ||x(t)||dt.

Now we recall some basic definitions on multi-valued maps (see [10],[14]).
For a nonempty subset C of a Banach space X := (X, ∥.∥), let P (C) = {Y ⊆ C :

Y ̸= ∅}, Pcl(C) = {Y ∈ P (C) : Y is closed}, Pb(C) = {Y ∈ P (C) : Y is bounded},
Pb,cl(C) = {Y ∈ P (C) : Y is bounded and closed}, Pc,cl(C) = {Y ∈ P (C) :
Y is closed and convex}, Pb,c,cl(C) = {Y ∈ P (C) : Y is bounded, closed and convex},
Pcp(C) = {Y ∈ P (C) : Y is compact}, and Pc,cp(C) = {Y ∈ P (C) : Y is compact
and convex}. A multi-valued map F : C → P (X) is convex (resp. closed) valued
if F (x) is convex (resp. closed) for all x ∈ C. The map F is bounded on bounded
sets if F (B) = ∪x∈BF (x) is bounded in X for all B ∈ Pb(C) (i.e. supx∈B{sup{||y|| :
y ∈ F (x)}} < ∞). The map F is called upper semi-continuous (u.s.c.) if {x ∈ C :
Fx ⊂ V } is open in C whenever V ⊂ X is open. F is called lower semi-continuous
(l.s.c.) if the set {y ∈ C : F (y) ∩ V ̸= ∅} is open for any open set V ⊂ X. F is
called continuous if it is both l.s.c. and u.s.c. F is said to be completely continu-
ous if F (B) is relatively compact for every B ∈ Pb(C). A mapping f : C → X is
called a selection of F : C → X if f(x) ∈ F (x) for every x ∈ C. We say that the
mapping F has a fixed point if there is x ∈ X such that x ∈ F (x). The fixed points
set of the multivalued operator F will be denoted by Fix(F ). A multivalued map
F : [0, T ] → Pcl(Rn) is said to be measurable if for every y ∈ Rn, the function

t 7−→ d(y, F (t)) = inf{||y − z|| : z ∈ F (t)}

is measurable.

Definition 2.1. Let (X, d) be a metric space. Consider H : P (X) × P (X) →
R ∪ {∞} given by

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)},

where d(a,B) = infb∈B d(a, b). H is the (generalized) Pompeiu-Hausdorff func-
tional. It is known that (Pb,cl(X),H) is a metric space and (Pcl(X),H) is a gener-
alized metric space (see [7, 14]).

Definition 2.2. A multivalued operator F : X → Pcl(X) is called (a) k−Lipschitz
if there exists k > 0 such that

H(F (x), F (y)) ≤ kd(x, y) for each x, y ∈ X;

(b) a k−contraction if there exists 0 < k < 1 such that

H(F (x), F (y)) ≤ kd(x, y) for each x, y ∈ X.
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It is known that F : X → Pcp(X) is continuous on X if and only if F is continuous
on X with respect to Hausdorff metric. Also, if F : X → Pb,cl(X) is k-Lipschitz,
then F is continuous with respect to Hausdorff metric.

Lemma 2.3 ([8]). Let (X, d) be a complete metric space. If F : X → Pcl(X) is a
k-contraction, then Fix(F ) ̸= ∅.

Definition 2.4 ([17]). Let X be a normed space and C a nonempty subset of X.
The closure, the convex hull and the closed convex hull of C in X are denoted by
C, coC and coC. Let Ψ be a collection of subsets of coC with the property that for
any M ∈ Ψ, the sets M , coM , M ∪ {u} (u ∈ C) and every subset of M belong to
Ψ.

Let A be a partially ordered set with the partial ordering ≤, and φ : A → A a
function. A function γ : Ψ → A is said to be a φ-measure of noncompactness on C
if the following conditions are satisfied for any M ∈ Ψ:

(i) γ(M) = γ(M);
(ii) if u ∈ C, then γ(M ∪ {u}) = γ(M);
(iii) if N ⊂ M , then γ(N) ≤ γ(M);
(iv) γ(coM) ≤ φ(γ(M)).

γ is called a measure of noncompactness if instead of (iv), we have the
following

(iv)* γ(coM) ≤ γ(M).

Let γ be a φ-measure of noncompactness on C. A map F : C → Pc,cl(X) is
said to be (γ, φ)-condensing if for every S ⊂ C, the inequality γ(S) ≤ φ(γ(F (S)))
implies that F (S) is relatively compact. In particular, if φ is the identity map, then
F is called γ-condensing. For details, we refer the reader to [12, 13, 17].

Let us recall some definitions on fractional calculus [16, 22, 28].

Definition 2.5. For a n−times continuously differentiable function w : [0,∞) → R,
the Caputo derivative of fractional order q is defined as

cDqw(t) =
1

Γ(n− q)

∫ t

0
(t− s)n−q−1w(n)(s)ds, n− 1 < q < n, n = [q] + 1, q > 0,

where [q] denotes the integer part of the real number q and Γ denotes the gamma
function.

Definition 2.6. The Riemann-Liouville fractional integral of order q for a contin-
uous function w is defined as

Iqw(t) =
1

Γ(q)

∫ t

0

w(s)

(t− s)1−q
ds, q > 0,

provided the right hand side is pointwise defined on (0,∞).

Definition 2.7. The Riemann-Liouville fractional derivative of order q for a con-
tinuous function w is defined by

Dqw(t) =
1

Γ(n− q)

( d

dt

)n
∫ t

0

w(s)

(t− s)q−n+1
ds, n = [q] + 1, q > 0,

provided the right hand side is pointwise defined on (0,∞).
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Let g : C([0, T ],Rn) → Rn satisfy ||g(x) − g(y)|| ≤ κ2||x − y||∞ for all x, y ∈
C([0, T ],Rn) and some κ2 > 0. To define the solution of (1.1), we consider the
following lemma.

Lemma 2.8. For a given σ ∈ C([0, T ],Rn), the unique solution of the problem{
cDqx(t) = σ(t), 0 < t < T, q ∈ (0, 1),

x(0) + g(x) = x0
(2.2)

is given by

x(t) = x0 − g(x) +

∫ t

0

(t− s)q−1

Γ(q)
σ(s)ds. (2.3)

Definition 2.9. A function x ∈ C([0, T ],Rn) is a solution of the problem (1.1) if
there exists a function f ∈ L1([0, T ],Rn) such that f(t) ∈ F (t, x(t)) a.e. on [0, T ]
and

x(t) = x0 − g(x) +

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds.

Let Sx0([0, α]) denote the set of all solutions of (1.1) on the interval [0, α], where
0 < α ≤ T .

3. Fixed point theorems

We need the following result in the sequel.

Lemma 3.1 ([17]). Let C be a nonempty closed convex subset of a Banach space
X. Suppose that γ is a φ-measure of noncompactness on C and F : C → Pc,cl(C)
is an upper semicontinuous (γ, φ)-condensing map. Then Fix(F ) is nonempty.

The following is the well-known Schauder fixed point theorem [11].

Theorem 3.2 (Schauder’s theorem). Let C be a nonempty closed convex subset of
a Banach space X. Suppose that f be a continuous mapping of C into a compact
subset of C. Then Fix(f) is nonempty.

Theorem 3.3. Let C be a nonempty closed convex subset of a Banach space X.
Suppose that γ is a φ-measure of noncompactness on C and F : C → Pc,cl(C) is
an upper semicontinuous (γ, φ)-condensing map. If f : C → C is a continuous
selection of F , then Fix(f) is nonempty.

Proof. By Lemma 3.1, Fix(F ) is nonempty. Let u ∈ C and Σ = {S ⊂ C : S =
coS, u ∈ S, F (S) ⊂ S}. Then clearly Σ is nonempty. Let W = ∩S∈ΣS. Then W ∈ Σ
and so V := co(F (W ) ∪ {u}) ⊂ W . Since F (V ) ⊂ F (W ) ⊂ W , it follows that
V ∈ Σ and so W ⊂ V . As a result, we have W = co(F (W ) ∪ {u}). Now since γ is
a φ-measure of noncompactness on C,

γ(W ) ≤ φ(γ(F (W ) ∪ {u})) = φ(γ(F (W ))).

This implies that F (W ) is relatively compact. But f(W ) ⊂ F (W ), thus f(W ) is
relatively compact. Now Schauder’s theorem (Theorem 3.2) guarantees that Fix(f)
is nonempty. �
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It is well-known that if X is a Banach space, C ⊂ X is closed and F : C → Pcp(C)
is a k-contraction, then F is condensing with respect to the Hausdorff measure of
noncompactness (see [5]). Recall that the Hausdorff measure of noncompactness χ
of a bounded set A is defined by

χ(A) = inf{d > 0 : A can be covered by finitely many balls of radii < d}.

Lemma 3.4 ([14], pp.101). Let C be a metric space. Suppose that F : C → Pcp(Rn)
is a Lipschitz map. Then F admits a Lipschitz selection.

Corollary 3.5. Suppose that F : Rn → Pcp(Rn) is a k-contraction. Then there
exists a Lipschitz selection f of F with Fix(f) is nonempty.

Proof. Since F is Lipschitz, by Lemma 3.4 F admits a Lipschitz selection f : Rn →
Rn. Since a condensing map with respect to the Hausdorff measure of noncompact-
ness is (γ, φ)-condensing, the result follows from Theorem 3.3. �

We have the following result of Dzedzej and Gelman [10] as a corollary.

Corollary 3.6. Let C be a nonempty closed convex subset of a Banach space X.
Suppose that F : C → Pcp(C) is a k-contraction. If f : C → C is a continuous
selection of F , then Fix(f) is nonempty.

Proof. Since a condensing map with respect to the Hausdorff measure of noncom-
pactness is (γ, φ)-condensing, the result follows from Theorem 3.3. �

We shall need the following result in the sequel.

Theorem 3.7 (Michael’s selection theorem). [19] Let C be a metric space, X a
Banach space and F : C → Pc,cl(C) a lower semicontinuous map. Then there exists
a continuous selection f : C → X of F .

In the next result, we shall make use of the following lemma due to Saint Raymond
[26].

Lemma 3.8. Let K be a compact metric space with dimK < n, X a Banach
space and F : K → Pb,c,cl(X) a lower semicontinuous map such that 0 ∈ F (x) and
dimF (x) ≥ n for every x ∈ K. Then there exists a continuous selection f of F such
that f(x) ̸= 0 for each x ∈ K.

Theorem 3.9. Let C be a nonempty closed convex subset of a Banach space X.
Suppose that γ is a φ-measure of noncompactness on C and F : C → Pb,c,cl(C)
is a continuous (γ, φ)-condensing map. If dimF (x) ≥ n for each x ∈ C, then
dimFix(F ) ≥ n.

Proof. By Lemma 3.1, Fix(F ) is nonempty. Since Fix(F ) ⊂ coF (Fix(F )) and γ
is a φ-measure of noncompactness on C, we have

γ(Fix(F )) ≤ γ(coF (Fix(F ))) ≤ φ(γ(F (Fix(F )))).

This implies that F (Fix(F )) is relatively compact. As a result, Fix(F ) is compact.
Consider a map I − F : Fix(F ) → Pb,c,cl(C), where I is the identity operator.
Assume that dimFix(F ) < n. Then, by Lemma 3.8, there is a continuous selection
g of I − F such that g(x) ̸= 0 for each x ∈ Fix(F ). This implies that there
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exists a continuous selection h of F : Fix(F ) → Pb,c,cl(C) without fixed points.
Michael’s selection theorem (Theorem 3.7) guarantees that h admits an extension
to continuous selection f : C → C of F with no fixed points, which contradicts
Theorem 3.3. �

As a corollary, we immediately obtain the following result of Dzedzej and Gelman
[10].

Corollary 3.10. Let C be a nonempty closed convex subset of a Banach space X.
Suppose that F : C → Pc,cp(C) is a k-contraction. If dimF (x) ≥ n for each x ∈ C,
then dimFix(F ) ≥ n.

4. A Cauchy problem for some fractional differential inclusion

Lemma 4.1. Assume that

(K1) F : [0, T ] × Rn → Pc,cp(Rn) is such that F (., x) : [0, T ] → Pc,cp(Rn) is
measurable for each x ∈ Rn;

(K2) H(F (t, x), F (t, x̄)) ≤ κ1(t)∥x − x̄∥ for almost all t ∈ [0, T ] and x, x̄ ∈ Rn

with κ1 ∈ L1([0, T ],R+) and ||F (t, x)|| = sup{||v|| : v ∈ F (t, x)} ≤ κ1(t) for
almost all t ∈ [0, T ] and x ∈ Rn;

(K3) g : C([0, T ],Rn) → Rn is continuous and ||g(x) − g(y)|| ≤ κ2||x − y||∞ for
all x, y ∈ C([0, T ],Rn) and some κ2 > 0.

Then the Cauchy problem (1.1) has at least one solution on [0, T ] if κ2+
T q−1

Γ(q) ∥κ1∥L1 <

1.

Proof. For each y ∈ C([0, T ],Rn), define the set of selections of F by

SF,y := {v ∈ L1([0, T ],Rn) : v(t) ∈ F (t, y(t)) for a.e. t ∈ [0, T ]}.
Observe that by the assumptions (K1) and (K2), F (., x(.)) is measurable and has
a measureable selection v(.) (see Theorem III.6 [7]). Also κ1 ∈ L1([0, T ],R+) and

||v(t)|| ≤ ||F (t, x(t))|| ≤ κ1(t).

Thus the set SF,x is nonempty for each x ∈ C([0, T ],Rn). Now we show that the
operator Ω defined by

Ω(x) = {h ∈ C([0, T ],Rn) : h(t) = x0 − g(x) +

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds, f ∈ SF,x}

satisfies the assumptions of Lemma 2.3. To show that Ω(x) ∈ Pcl(C([0, T ],Rn))
for each x ∈ C([0, T ],Rn), let {un}n≥0 ∈ Ω(x) be such that un → u (n → ∞) in
C([0, T ],Rn). Then u ∈ C([0, T ],Rn) and there exists vn ∈ SF,x such that, for each
t ∈ [0, T ],

un(t) = x0 − g(x) +

∫ t

0

(t− s)q−1

Γ(q)
vn(s)ds.

As F has compact values, we pass to a subsequence to obtain that vn converges to
v in L1([0, T ],Rn). Thus, v ∈ SF,x and for each t ∈ [0, T ],

un(t) → u(t) = x0 − g(x) +

∫ t

0

(t− s)q−1

Γ(q)
v(s)ds.



DIMENSION OF THE SOLUTION SET FOR FRACTIONAL DIFFERENTIAL INCLUSIONS 325

Hence u ∈ Ω(x).
Next we show that

H(Ω(x),Ω(x̄)) ≤ k∥x− x̄∥∞ for each x, x̄ ∈ C([0, T ],Rn).

Let x, x̄ ∈ C([0, T ],Rn) and h1 ∈ Ω(x). Then there exists v1(t) ∈ SF,x such that, for
each t ∈ [0, T ],

h1(t) = x0 − g(x) +

∫ t

0

(t− s)q−1

Γ(q)
v1(s)ds.

By (K2), we have

H(F (t, x), F (t, x̄)) ≤ κ1(t)||x(t)− x̄(t)||.
So, there exists w ∈ F (t, x̄(t)) such that

||v1(t)− w|| ≤ κ1(t)∥x(t)− x̄(t)∥, t ∈ [0, T ].

Define V : [0, T ] → P (Rn) by

V (t) = {w ∈ Rn : ∥v1(t)− w∥ ≤ κ1(t)∥x(t)− x̄(t)∥}.
Since the nonempty closed valued operator V (t) ∩ F (t, x̄(t)) is measurable (Propo-
sition III.4 [7]), there exists a function v2(t) which is a measurable selection for
V (t) ∩ F (t, x̄(t)). So v2(t) ∈ F (t, x̄(t)) and for each t ∈ [0, T ], we have ∥v1(t) −
v2(t)∥ ≤ κ1(t)∥x(t)− x̄(t)∥.
For each t ∈ [0, T ], let us define

h2(t) = x0 − g(x̄) +

∫ t

0

(t− s)q−1

Γ(q)
v2(s)ds.

Thus

∥h1(t)− h2(t)∥ ≤ ||g(x)− g(x̄)||+
∫ t

0

|t− s|q−1

Γ(q)
||v1(s)− v2(s)||ds.

Hence

∥h1 − h2∥∞ ≤ κ2||x− x̄||∞ +
(T q−1

Γ(q)

)
||κ1||L1∥x− x∥∞

=
(
κ2 +

T q−1

Γ(q)
||κ1||L1

)
∥x− x∥∞.

Analogously, interchanging the roles of x and x, we obtain

H(Ω(x),Ω(x̄)) ≤ k∥x− x̄∥∞ for each x, x̄ ∈ C([0, T ],Rn),

where k =
(
κ2+

T q−1

Γ(q) ||κ1||L1

)
< 1. Since Ω is a contraction, it follows by Lemma 2.3

that Ω has a fixed point x which is a solution of (1.1). This completes the proof. �
Lemma 4.2. Let F : [0, T ] × Rn → Pc,cp(Rn) satisfy (K1), (K2) and (K3) and
suppose that Ω : C([0, T ],Rn) → P (C([0, T ],Rn)) is defined by

Ω(x) = {h ∈ C([0, T ],Rn) : h(t) = x0 − g(x) +

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds, f ∈ SF,x}.

Then Ω(x) ∈ Pc,cp(C([0, T ],Rn)) for each x ∈ C(([0, T ],Rn)).
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Proof. First we show that Ω(x) is convex for each x ∈ C([0, T ],Rn). For that, let
h1, h2 ∈ Ω(x). Then there exist f1, f2 ∈ SF,x such that for each t ∈ [0, T ], we have

hi(t) = x0 − g(x) +

∫ t

0

(t− s)q−1

Γ(q)
fi(s)ds, i = 1, 2.

Let 0 ≤ λ ≤ 1. Then, for each t ∈ [0, T ], we have

[λh1 + (1− λ)h2](t)

= x0 − g(x) +

∫ t

0

(t− s)q−1

Γ(q)
[λf1(s) + (1− λ)f2(s)]ds.

Since SF,x is convex (F has convex values), therefore it follows that λh1+(1−λ)h2 ∈
Ω(x).
Next, we show that Ω maps bounded sets into bounded sets in C([0, T ],Rn). For
a positive number r, let Br = {x ∈ C([0, T ],Rn) : ∥x∥∞ ≤ r} be a bounded set in
C([0, T ],Rn). Then, for each h ∈ Ω(x), x ∈ Br, there exists f ∈ SF,x such that

h(t) = x0 − g(x) +

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds

and in view of (H1), we have

||h(t)|| ≤ ||x0||+ sup
x∈Br

||g(x)||+
∫ t

0

|t− s|q−1

Γ(q)
||f(s)||ds

≤ ||x0||+ sup
x∈Br

||g(x)||+ T q−1

Γ(q)

∫ T

0
κ1(s)ds.

Thus,

∥h∥∞ ≤ ||x0||+ sup
x∈Br

||g(x)||+ T q−1

Γ(q)
||κ1||L1 .

Now we show that Ω maps bounded sets into equicontinuous sets in C([0, T ],Rn).
Let t′, t′′ ∈ [0, T ] with t′ < t′′ and x ∈ Br, where Br is a bounded set in C([0, T ],Rn).
For each h ∈ Ω(x), we obtain

||h(t′′)− h(t′)|| =
∣∣∣∣∣∣ ∫ t′′

0

(t′′ − s)q−1

Γ(q)
f(s)ds−

∫ t′

0

(t′ − s)q−1

Γ(q)
f(s)ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ ∫ t′

0

[(t
′′ − s)q−1 − (t′ − s)q−1]

Γ(q)
f(s)ds

∣∣∣∣∣∣
+
∣∣∣∣∣∣ ∫ t′′

t′

(t
′′ − s)q−1

Γ(q)
f(s)ds

∣∣∣∣∣∣.
Obviously the right hand side of the above inequality tends to zero independently
of x ∈ Br′ as t′′ − t′ → 0.. By the Arzela-Ascoli Theorem, Ω : C([0, T ],Rn) →
P (C([0, T ],Rn)) is completely continuous. As in Lemma 4.1, Ω is closed-valued.
Consequently, Ω(x) ∈ Pc,cp(C([0, T ],Rn)) for each x ∈ C(([0, T ],Rn)). �
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For 0 < α ≤ T , let us consider the operator

Ω(x) = {h ∈ C([0, α],Rn) : h(t) = x0 − g(x) +

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds, f ∈ SF,x}.

It is well-known that Fix(Ω) = Sx0([0, α]) and, in view of Lemma 4.1, it is nonempty
for each 0 < α ≤ T .

The following lemma due to Dzedzej and Gelman [10] is useful in the sequel.

Lemma 4.3. Let F : [0, α] → Pc,cp(Rn) be a measurable map such that the Lebesgue
measure µ of the set {t : dim F (t) < 1} is zero. Then there are arbitrarily many
linearly independent measurable selections x1(.), x2(.), ..., xm(.) of F .

Theorem 4.4. Let F : [0, α] × Rn → Pc,cp(Rn) satisfy (K1), (K2) and (K3) and
suppose that the Lebesgue measure µ of the set{t : dim F (t, x) < 1 for some x ∈ Rn}
is zero. Then for each α, 0 < α < min

{( (1−κ2)Γ(q)
∥κ1∥L1

) 1
q−1 , T

}
, the set Sx0([0, α]) of

solutions of (1.1) has an infinite dimension for any x0.

Proof. Define the operator Ω by

Ω(x) = {h ∈ C([0, α],Rn) : h(t) = x0 − g(x) +

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds, f ∈ SF,x}.

Then by Lemma 4.2, Ω(x) ∈ Pc,cp(C([0, α],Rn)) for each x ∈ C([0, α],Rn) and as

in the proof of Lemma 4.1, it is a contraction if κ2 + αq−1

Γ(q) ||κ1||L1 < 1 or α <( (1−κ2)Γ(q)
∥κ1∥L1

) 1
q−1 . We shall show that dimΩ(x) ≥ m for any x ∈ C([0, α],Rn) and

arbitrary m ∈ N. Consider G(t) = F (t, x(t)). By Lemma 4.3, there exist linearly
independent measurable selections x1(.), x2(.), ..., xm(.) of G. Set yi(t) = x0−g(x)+∫ t
0

(t−s)q−1

Γ(q) xi(s)ds ∈ Ω(x). Assume that
∑m

i=1 aiyi(t) = 0 a.e. in [0, α]. Taking

Caputo derivatives a.e. in [0, α], we have
∑m

i=1 aixi(t) = 0 a.e. in [0, α] and hence
ai = 0 for all i. As a result, yi(.) are linearly independent. Thus Ω(x) contains an
m-dimensional simplex. So dimΩ(x) ≥ m. By Theorem 3.9, Fix(Ω) = Sx0([0, α])
is infinite dimensional. �

A metric space X is an AR-space if, whenever it is nonempty closed subset of
another metric space Y , then there exists a continuous retraction r : Y → X,
r(x) = x for x ∈ X. In particular, it is contractible (and hence connected).

Theorem 4.5 ([23]). Let C be a nonempty closed convex subset of a Banach space
X and F : C → Pc,cp(C) a contraction. Then Fix(F ) is a nonempty AR-space.

Remark 4.6. Under the assumption of Theorem 4.5, Fix(F ) is also compact.
This follows as in the proof of Theorem 3.9 since Ω is condensing with respect to
Hausdorff measure of noncompactness.

The following result follows from Theorem 4.4 and Theorem 4.5.

Corollary 4.7. Let F : [0, α] × Rn → Pc,cp(Rn) satisfy (K1), (K2) and (K3) and
suppose that the Lebesgue measure µ of the set{t : dim F (t, x) < 1 for some x ∈ Rn}
is zero. Then for each α, 0 < α < min

{( (1−κ2)Γ(q)
∥κ1∥L1

) 1
q−1 , T

}
, the set Sx0([0, α]) of

solutions of (1.1) is a compact and infinite dimensional AR-space.
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