Ry P“é,, .

Journal of Nonlinear and Convex Analysis @ Mdm P"H'She's

Volume 14, Number 2, 2013, 319-329 < WJ ISSN 1880-5221 ONLINE JOURNAL
Yinee |

© copyright 2013

Yo
ko
Yrou®

DIMENSION OF THE SOLUTION SET FOR FRACTIONAL
DIFFERENTIAL INCLUSIONS

RAVI P. AGARWAL, BASHIR AHMAD, AHMED ALSAEDI, AND NASEER SHAHZAD"*

ABSTRACT. In this paper, we investigate the following question in a general set-
ting: For a multi-valued mapping F' on a Banach space X, when does dimF'(x) >
n imply dimFiz(F) > n, where dimF'(z) and dimFiz(F') denote the topological
(covering) dimension of F(z) and the fixed points set Fixz(F') of F respectively?
We apply our results to the solution set of a Cauchy problem for the fractional
differential inclusion with nonlocal condition.

1. INTRODUCTION

Fractional calculus (differentiation and integration of arbitrary order) is proved
to be an important mathematical tool in the modelling of dynamical systems asso-
ciated with phenomena such as fractal and chaos. In fact, this branch of calculus
has found its applications in various disciplines of science and engineering such as
mechanics, electricity, chemistry, biology, economics, control theory, signal and im-
age processing, polymer rheology, regular variation in thermodynamics, biophysics,
blood flow phenomena, aerodynamics, electro-dynamics of complex medium, vis-
coelasticity and damping, control theory, wave propagation, percolation, identifica-
tion, fitting of experimental data, etc. ([16, 18, 22, 25, 28]).

The following problem has been discussed during the last twenty years: If X is a
Banach space, F' is a multi-valued mapping on X, when does dimF'(z) > n imply
dimFiz(F) > n, where dimF'(z) denotes the topological (covering) dimension of
F(z) and dimFiz(F') represents the topological dimension of the fixed points set
Fixz(F) of F? Some answers to the above question were given by some authors;
for instance, see the papers ([6, 10, 20, 21, 23, 24, 26, 27]). In this paper, we first
investigate this question in a general setting. We also illustrate the usefulness of
our results by applying to the solution set of the following Cauchy problem for the
fractional differential inclusion with nonlocal condition

¢Dix(t) € F(t,xz(t)), t€[0,T] (T >0), 0<qg<1 (1.1)
2(0) + g(x) = zo, o €R" '
where ¢D? denote the Caputo fractional derivative of order ¢, g : €([0, T],R") — R"

is continuous, and F : [0,7] x R" — P(R"™), where P(R") is the family of all
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nonempty subsets of R™. For more details on fractional differential equations and
inclusions, we refer the reader to ([1, 2, 3, 4, 15]).

2. PRELIMINARIES

Let (][0, T],R™) denote the Banach space of continuous functions from [0, 7] into
R™ with the norm [|z]|cc = sup,ejo. 7 |#(t)]]- Let L'([0,T],R") be the Banach space
of measureable functions x : [0, 7] — R™ which are Lebesgue integrable and normed

T
by [[#ller = Jo ll=(®)]]dz.

Now we recall some basic definitions on multi-valued maps (see [10],[14]).

For a nonempty subset C' of a Banach space X := (X, ||.||), let P(C)={Y C C:
Y # 0}, Py(C)={Y € P(C) : Y is closed}, B,(C) ={Y € P(C) :Y is bounded},
P,a(C) = {Y € P(C) : Y is bounded and closed}, P.4(C) = {Y € P(C) :
Yis closed and convex}, Py (C) ={Y € P(C) :Y is bounded, closed and convex},
Pp(C) ={Y € P(C) : Y is compact}, and P.p(C) = {Y € P(C) : Y is compact
and convex}. A multi-valued map F : C' — P(X) is convex (resp. closed) valued
if F(z) is convex (resp. closed) for all z € C. The map F' is bounded on bounded
sets if FI(B) = UzepF'(x) is bounded in X for all B € B, (C) (i.e. sup,ep{sup{||yl| :
y € F(z)}} < 00). The map F is called upper semi-continuous (u.s.c.) if {z € C:
Fz C V}isopen in C whenever V C X is open. F is called lower semi-continuous
(Ls.c.) if the set {y € C' : F(y) NV # (0} is open for any open set V C X. F is
called continuous if it is both l.s.c. and u.s.c. F' is said to be completely continu-
ous if F(B) is relatively compact for every B € P,(C). A mapping f: C — X is
called a selection of F' : C' — X if f(x) € F(x) for every z € C. We say that the
mapping F has a fixed point if there is € X such that = € F(x). The fixed points
set of the multivalued operator F' will be denoted by Fixz(F). A multivalued map
F :]0,T] = Py(R™) is said to be measurable if for every y € R™, the function

t— d(y, F(t)) =inf{|ly — z|| : 2 € F(t)}
is measurable.

Definition 2.1. Let (X,d) be a metric space. Consider H : P(X) x P(X) —
R U {00} given by

H(A, B) = max{supd(a, B),supd(b, A)},
acA beB

where d(a, B) = infyepd(a,b). H is the (generalized) Pompeiu-Hausdorff func-
tional. It is known that (P (X), H) is a metric space and (Py(X), H) is a gener-
alized metric space (see [7, 14]).

Definition 2.2. A multivalued operator F': X — P.(X) is called (a) k—Lipschitz
if there exists £ > 0 such that

H(F(z),F(y)) < kd(x,y) for each z,y € X;
(b) a k—contraction if there exists 0 < £ < 1 such that

H(F(x),F(y)) < kd(x,y) for each z,y € X.
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It is known that ' : X — P,,(X) is continuous on X if and only if F' is continuous
on X with respect to Hausdorff metric. Also, if F': X — Py 4(X) is k-Lipschitz,
then F' is continuous with respect to Hausdorff metric.

Lemma 2.3 ([8]). Let (X,d) be a complete metric space. If F': X — Py(X) is a
k-contraction, then Fix(F) # ().

Definition 2.4 ([17]). Let X be a normed space and C' a nonempty subset of X.
The closure, the convex hull and the closed convex hull of C' in X are denoted by
C, coC and oC. Let ¥ be a collection of subsets of oC' with the property that for
any M € VU, the sets M, coM, M U {u} (u € C) and every subset of M belong to
v,
Let A be a partially ordered set with the partial ordering <, and ¢ : A — A a
function. A function v : ¥ — A is said to be a @-measure of noncompactness on C'
if the following conditions are satisfied for any M € W:
(i) v(M) =~(M);

(ii) if u € C, then v(M U{u}) = v(M);

(iii) if N € M, then v(N) < ~(M);

(iv) 7v(coM) < p(v(M)).
v is called a measure of noncompactness if instead of (iv), we have the
following

(v)* A(coM) < (M),

Let v be a ¢-measure of noncompactness on C. A map F : C — P.q(X) is
said to be (7, ¢)-condensing if for every S C C, the inequality v(S) < ¢(v(F(S5)))
implies that F'(S) is relatively compact. In particular, if ¢ is the identity map, then
F is called 7-condensing. For details, we refer the reader to [12, 13, 17].

Let us recall some definitions on fractional calculus [16, 22, 28].
Definition 2.5. For a n—times continuously differentiable function w : [0, c0) — R,
the Caputo derivative of fractional order ¢ is defined as
1 t
‘Diw(t :/ t—s)" T w(s)ds, n—1<qg<nn=[g+1, ¢>0,
(t) F(n—q)o( ) (s) [q]

where [g] denotes the integer part of the real number ¢ and I' denotes the gamma
function.

Definition 2.6. The Riemann-Liouville fractional integral of order ¢ for a contin-
uous function w is defined as

1 Ew(s
ITw(t) = ) /0 0 _i))l_qu, q >0,

provided the right hand side is pointwise defined on (0, 00).

Definition 2.7. The Riemann-Liouville fractional derivative of order ¢ for a con-
tinuous function w is defined by

a B 1 dy\n [ w(s) B
D w(t)—m(£> /0 mdsv n_[q]+17 Q>0a

provided the right hand side is pointwise defined on (0, c0).
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Let g : €([0,T],R") — R" satisfy [|g(z) — g(y)|| < rallz — ylloo for all 2,y €
¢([0,T],R™) and some Ky > 0. To define the solution of (1.1), we consider the
following lemma.

Lemma 2.8. For a given o € €([0,T],R™), the unique solution of the problem

Dix(t)=o0(t), 0<t<T, qe€(0,1),
{ o0) 4 90) o0 22
s given by ( -
bt —s)1™
x(t) = zg — g(x) +/0 Wa(s)ds. (2.3)

Definition 2.9. A function z € €([0,7],R") is a solution of the problem (1.1) if
there exists a function f € L1([0,T],R") such that f(t) € F(t,z(t)) a.e. on [0,T]
and

t(t—s)at

o) = a0 —g(o) + [ L2

Let Sy, ([0, a]) denote the set of all solutions of (1.1) on the interval [0, a], where
O<a<T.

f(s)ds.

3. FIXED POINT THEOREMS
We need the following result in the sequel.

Lemma 3.1 ([17]). Let C be a nonempty closed convex subset of a Banach space
X. Suppose that v is a p-measure of noncompactness on C and F' : C — P, 4(C)
is an upper semicontinuous (7, p)-condensing map. Then Fiz(F') is nonempty.

The following is the well-known Schauder fixed point theorem [11].

Theorem 3.2 (Schauder’s theorem). Let C' be a nonempty closed convex subset of
a Banach space X. Suppose that f be a continuous mapping of C into a compact
subset of C. Then Fix(f) is nonempty.

Theorem 3.3. Let C' be a nonempty closed convex subset of a Banach space X.
Suppose that v is a p-measure of noncompactness on C and F' : C — P, 4(C) is
an upper semicontinuous (7, ¢)-condensing map. If f : C — C is a continuous
selection of F, then Fix(f) is nonempty.

Proof. By Lemma 3.1, Fiz(F) is nonempty. Let w € C and ¥ = {S C C : S =
coS,u € S, F(S) C S}. Then clearly ¥ is nonempty. Let W = NgexS. Then W € ¥
and so V := co(F(W) U {u}) C W. Since F(V) Cc F(W) c W, it follows that
VeXandso W C V. As a result, we have W = ¢o(F (W) U {u}). Now since v is
a p-measure of noncompactness on C,

TW) <e(y(F(W) U{u})) = o(v(F(W))).

This implies that F'(W) is relatively compact. But f(W) C F(W), thus f(W) is
relatively compact. Now Schauder’s theorem (Theorem 3.2) guarantees that Fiz(f)
is nonempty. H



DIMENSION OF THE SOLUTION SET FOR FRACTIONAL DIFFERENTIAL INCLUSIONS 323

It is well-known that if X is a Banach space, C' C X is closed and F': C' — P, (C)
is a k-contraction, then F' is condensing with respect to the Hausdorff measure of

noncompactness (see [5]). Recall that the Hausdorff measure of noncompactness x
of a bounded set A is defined by

X(A) =inf{d > 0: A can be covered by finitely many balls of radii < d}.

Lemma 3.4 ([14], pp.101). Let C be a metric space. Suppose that F : C' — Pp,(R™)
is a Lipschitz map. Then F admits a Lipschitz selection.

Corollary 3.5. Suppose that F' : R" — P.,(R") is a k-contraction. Then there
exists a Lipschitz selection f of F with Fix(f) is nonempty.

Proof. Since F is Lipschitz, by Lemma 3.4 F' admits a Lipschitz selection f : R” —
R™. Since a condensing map with respect to the Hausdorff measure of noncompact-
ness is (7, ¢)-condensing, the result follows from Theorem 3.3. O

We have the following result of Dzedzej and Gelman [10] as a corollary.

Corollary 3.6. Let C' be a nonempty closed conver subset of a Banach space X.
Suppose that F' : C — P, (C) is a k-contraction. If f : C — C is a continuous
selection of F, then Fix(f) is nonempty.

Proof. Since a condensing map with respect to the Hausdorff measure of noncom-
pactness is (7, ¢)-condensing, the result follows from Theorem 3.3. O

We shall need the following result in the sequel.

Theorem 3.7 (Michael’s selection theorem). [19] Let C' be a metric space, X a
Banach space and F : C — P, (C) a lower semicontinuous map. Then there exists
a continuous selection f:C — X of F.

In the next result, we shall make use of the following lemma due to Saint Raymond
[26].

Lemma 3.8. Let K be a compact metric space with dimK < n, X a Banach
space and F : K — Py (X) a lower semicontinuous map such that 0 € F(z) and
dimF (x) > n for every x € K. Then there ezists a continuous selection f of F' such

that f(z) # 0 for each z € K.

Theorem 3.9. Let C' be a nonempty closed convex subset of a Banach space X.
Suppose that v is a @-measure of noncompactness on C and F : C — Py q(C)
is a continuous (7, p)-condensing map. If dimF(x) > n for each x € C, then
dimFiz(F) > n.

Proof. By Lemma 3.1, Fiz(F) is nonempty. Since Fiz(F) C coF(Fiz(F)) and ~
is a p-measure of noncompactness on C, we have
V(Fiz(F)) < y(coF (Fia(F))) < ¢(y(F(Fiz(F))).

This implies that F'(Fixz(F')) is relatively compact. As a result, Fiz(F') is compact.
Consider a map I — F' : Fiz(F) — Py.q(C), where I is the identity operator.
Assume that dimFiz(F') < n. Then, by Lemma 3.8, there is a continuous selection
g of I — F such that g(x) # 0 for each # € Fix(F). This implies that there
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exists a continuous selection h of F' : Fix(F) — Py .(C) without fixed points.
Michael’s selection theorem (Theorem 3.7) guarantees that h admits an extension
to continuous selection f : C' — C of F with no fixed points, which contradicts
Theorem 3.3. Il

As a corollary, we immediately obtain the following result of Dzedzej and Gelman
[10].

Corollary 3.10. Let C' be a nonempty closed convex subset of a Banach space X.
Suppose that F' : C — P p(C) is a k-contraction. If dimF(x) > n for each x € C,
then dimFiz(F) > n.

4. A CAUCHY PROBLEM FOR SOME FRACTIONAL DIFFERENTIAL INCLUSION

Lemma 4.1. Assume that

(K1) F : [0,T] x R" — P.,(R™) is such that F(.,z) : [0,T] = P.c(R™) is
measurable for each x € R™;

(K2) H(F(t,z),F(t,z)) < ri1(t)||z — Z|| for almost all t € [0,T] and z,z € R"
with k1 € LY([0,T],Ry) and ||F (¢, z)|| = sup{||v|| : v € F(t,x)} < k1(t) for
almost allt € [0,T] and z € R™;

(K3) g : €([0,T],R™) — R" is continuous and ||g(z) — g(y)|| < ka||z — y||so for
all z,y € €([0,T],R™) and some ra > 0.

Then the Cauchy problem (1.1) has at least one solution on [0, T] if/ﬁ?z—i—% k1]l <
1.

Proof. For each y € €([0,T],R"™), define the set of selections of F' by
Spy = {v e L'([0,T),R™) : v(t) € F(t,y(t)) for a.e. t € [0,T]}.
Observe that by the assumptions (K7) and (K32), F(.,z(.)) is measurable and has
a measureable selection v(.) (see Theorem IIL6 [7]). Also x1 € L'([0,T],R,) and
lv@Il < [[F(E2(@)]] < ma(h).
Thus the set Sg, is nonempty for each z € €([0,7],R"). Now we show that the
operator €) defined by

t t _ q—l
o) = {1 € €0, 7L h(0) = o —gla) + [ T, € S0}
0
satisfies the assumptions of Lemma 2.3. To show that Q(z) € Py(€([0,T],R™))
for each = € €([0,T],R"), let {up}n>0 € Q(z) be such that u, — u (n — o0) in
¢([0,T],R™). Then u € €([0,T],R™) and there exists v, € Sg, such that, for each
te[0,T7,

t(p_ g1
w(®) = a0 gla)+ [ “F(q))

As F has compact values, we pass to a subsequence to obtain that v, converges to
v in L'([0,T],R™). Thus, v € Sp, and for each t € [0, 7],

t _Sq—l
wl®) = ult) = 20— g(o)+ [ “F(q))

vn(8)ds.

v(s)ds.
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Hence u € Q(x).
Next we show that

H(Q(x), 7)) < k||l — Z||o for each z,z € €([0, T],R").

Let z,z € €([0,T],R") and hy € Q(z). Then there exists v;(t) € Sp, such that, for
each ¢ € [0, T,

hl(t):xo—g(x)+/0 (tF(

7 v1(s)ds.

By (K3), we have

So, there exists w € F(t,z(t)) such that
o1 (t) — wl| < m(B)[J(t) — z(@)]l, ¢ € [0,T].
Define V : [0,T] — P(R"™) by
V(t) ={w e R" : flur(t) — wl| < ra(®)[lz(t) —z(@)]}-

Since the nonempty closed valued operator V(t) N F(¢,Z(t)) is measurable (Propo-
sition III.4 [7]), there exists a function va(t) which is a measurable selection for
V(t) N F(t,z(t)). So va(t) € F(t,z(t)) and for each t € [0,T], we have [jv1(t) —
ws(t)] < m(®)|(t) — 3(1)].

For each t € [0,T7], let us define

ha(t) = xo — g(Z) + /Ot “_F(Sq):lw(s)ds.
Thus
a9~ pa(0)] < o) ~ 9@ + [ e 6) = aato s
Hence
171 = halles < H2\|x—9€Hoo+(%)HMHUHQ?—JU!OO
= (ot Tl o = 7l

Analogously, interchanging the roles of x and Z, we obtain
H(Q(z),z)) < k||z — || for each z,z € €([0,T],R"),
where k = (k2 + %HKJHU) < 1. Since Q is a contraction, it follows by Lemma 2.3

that €2 has a fixed point « which is a solution of (1.1). This completes the proof. [

Lemma 4.2. Let F' : [0,T] x R" — P, ,(R") satisfy (K1), (K2) and (K3) and
suppose that Q : €([0,T],R™) — P(&€([0,T],R™)) is defined by

b — g)a-1
Q(x) = {h € ([0, T],R") : ht) = z0 — g(2) +/0 <tf<q)>

Then Q(x) € P p(€([0,T],R™)) for each x € €(([0,T],R™)).

f(s)ds, f € Spa}.
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Proof. First we show that Q(z) is convex for each x € €([0,T],R"). For that, let
hi,he € Q(x). Then there exist fi, fo € Sp, such that for each t € [0,T], we have

t (t _ S)q_l

mo) = a—glo)+ |
0 I'(q)
Let 0 < A < 1. Then, for each t € [0,7T], we have

[Ah1 + (1 — N)ho](t)

t (t _ S)q_l

=x0—g(@) + | —=5—[A1(s) + (1= A)fa(s)]ds.
0 I'(q)

Since Sz is convex (F' has convex values), therefore it follows that Ahi+(1—\)hy €

Next, we show that © maps bounded sets into bounded sets in €(]0,7],R™). For

a positive number r, let B, = {z € €([0,T],R") : ||z]lcc < r} be a bounded set in

¢([0,T],R™). Then, for each h € Q(z),z € B,, there exists f € Sp, such that

t _Sqfl
b = 0—go)+ [ “F(q))

fi(s)ds, i =1,2.

f(s)ds

and in view of (Hj), we have

)| < it GTPY
R < |$o!+:élngg(x)|+/o W!\f(s)ﬂ s

q—1

T T
< |lxo|| + su T —i—/ Kk1(8)ds.
o] xegyng( il @ o 1(s)

Thus,
Ih] 2ol @)+ Tl
< Zo|| + sup ||g(®)|| + =—||K1||L1-

Now we show that € maps bounded sets into equicontinuous sets in €([0, 7], R"™).
Let ¢/,t" € [0,T] with ¢ < " and = € B,, where B, is a bounded set in €([0, 7], R™).
For each h € Q(x), we obtain

TR [ =t T e |
t’ " g)aml (¢ — g)a-l
Y e s P

(" _ gya—1
+H/t/ (tr(q;f(s)dsH.

Obviously the right hand side of the above inequality tends to zero independently
of x € By as t” —t' — 0.. By the Arzela-Ascoli Theorem, Q : €([0,7],R") —
P(€([0,7],R™)) is completely continuous. As in Lemma 4.1, 2 is closed-valued.
Consequently, Q(x) € P, ,(€([0,T],R™)) for each x € €(([0,T],R"™)). O
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For 0 < a < T, let us consider the operator

b — g)a-1
Qx) = {h € €([0,a), ") : A(t) = x0 - g(=) +/0 @F@:)

It is well-known that Fiz(2) = S5, ([0, ]) and, in view of Lemma 4.1, it is nonempty
foreach 0 < a<T.
The following lemma due to Dzedzej and Gelman [10] is useful in the sequel.

f(s)ds, f € Sk}

Lemma 4.3. Let F' : [0,a] — P, (R"™) be a measurable map such that the Lebesgue
measure p of the set {t : dim F(t) < 1} is zero. Then there are arbitrarily many
linearly independent measurable selections x1(.),x2(.), ..., xm(.) of F.

Theorem 4.4. Let F' : [0,a] x R™ = P, .,(R") satisfy (K1), (K2) and (K3) and
suppose that the Lebesque measure p of the set{t : dim F(t,x) < 1 for some x € R"}

is zero. Then for each a, 0 < a < min{(%)ﬁ,T}, the set Sy, (]0,a]) of

k1l
solutions of (1.1) has an infinite dimension for any xg.

Proof. Define the operator 2 by

t t _ q—l
(o) = {1 € €(0,0].B") () = o~ glo) + [ LI po)ds. £ € S,
0
Then by Lemma 4.2, Q(z) € P, (€([0,],R™)) for each z € €([0,a],R") and as
in the proof of Lemma 4.1, it is a contraction if ko + %H/ﬂHU <lorac<
1
(w)ﬁ. We shall show that dimQ(z) > m for any z € €([0,a],R") and

51l 1

arbitrary m € N. Consider G(t) = F(t,z(t)). By Lemma 4.3, there exist linearly
independent measurable selections x1(.), z2(.), ..., zm(.) of G. Set y;(t) = xo—g(z)+

f[f (t—rs()qq)flxi(s)ds € Qz). Assume that ) ", a;y;(t) = 0 a.e. in [0,a]. Taking
Caputo derivatives a.e. in [0, ], we have Y ", a;z;(t) = 0 a.e. in [0, @] and hence
a; = 0 for all 5. As a result, y;(.) are linearly independent. Thus Q(x) contains an
m-dimensional simplex. So dim€(z) > m. By Theorem 3.9, Fiz(2) = Sz, ([0, a])
is infinite dimensional. O

A metric space X is an AR-space if, whenever it is nonempty closed subset of
another metric space Y, then there exists a continuous retraction r : ¥ — X,
r(z) = x for x € X. In particular, it is contractible (and hence connected).

Theorem 4.5 ([23]). Let C' be a nonempty closed convex subset of a Banach space
X and F': C — P, ,(C) a contraction. Then Fix(F) is a nonempty AR-space.

Remark 4.6. Under the assumption of Theorem 4.5, Fixz(F') is also compact.
This follows as in the proof of Theorem 3.9 since € is condensing with respect to
Hausdorff measure of noncompactness.

The following result follows from Theorem 4.4 and Theorem 4.5.

Corollary 4.7. Let F : [0,a] x R" — P, ,(R") satisfy (K1), (K2) and (K3) and
suppose that the Lebesgue measure p of the set{t : dim F(t,z) < 1 for some x € R"}

is zero. Then for each a, 0 < av < min{(w)qfll,T}, the set Sy, ([0,]) of

il
solutions of (1.1) is a compact and infinite dimensional AR-space.
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