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QUASI INTERIOR-TYPE OPTIMALITY CONDITIONS IN
SET-VALUED DUALITY

ANCA GRAD

ABSTRACT. This article addresses a new approach to duality in set-valued op-
timization, by means of solutions defined with the help of the nonempty quasi
interior of a convex cone, employing a set-type criterion. We define and char-
acterize a qgi-conjugate function associated with a set-valued function, and a qi-
subdifferential, in analogy to the conjugate function and subdifferential from
scalar optimization. Weak duality theorems and theorems containing optimality
conditions are proved for general unconstrained set-valued optimization prob-
lems, in connection to a newly proposed dual problem. In the particular case
when the perturbation function extends the Lagrange perturbation from scalar
optimization we prove a strong duality theorem for constrained set-valued op-
timization problems. An application of our strong set-valued Lagrange duality
theorem by means of gi-efficiency, stated in £2(R), ends the article.

1. INTRODUCTION

Let X be a nonempty set, let Y be a topological vector space partially ordered
by a pointed, convex cone K C Y, and let F': X — P(Y) be a set-valued function.
Recall that P(Y) := {A : A C Y}. Generally speaking, given the set-valued
optimization problem
(F") min F (),
the so-far published results concerning (FP§¥) can be split into two categories: an
approach using the so-called vector criterion, and another one using the so-called
set criterion.

Several authors tackled the set-valued optimization theory from perspectives in-
volving the extension of results concerning vector-valued functions. The vector cri-
terion employs the determination of vector-like efficient points ((Pareto)-efficient,
weakly-efficient, strongly-efficient, etc.) within the entire set FI(X) = Uyex F(z).
This means that T € X is an efficient solution to (P§") if there exists an y € F(T)
such that 7 is an efficient element to the set F(X). Such an approach can be
found in H. W. CorrEY [11], D. T. Luc[26], T. TanINo [31], T. TANINO and
Y. SAWARAGI [32], W. SonG [28], [29], [30]. In Chapter 7 of R. I. BoT, S. M.
GRAD and G. WANKA [9] is presented a survey on set-valued duality using different
vector-type extended notions.
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The set criterion involves a direct comparison of the sets F'(z), for all z € X,
and it is based on an ordering relation on P(Y') rather than on an order on Y, case
encountered when working with a vector criterion. This is the reason why, at times,
the set criterion is also called the natural criterion in set-valued optimization.
Connected to it, T. KUROIWA published a series of articles [18], [19], [20], [21],
[22], [23]. We also mention KuroiwA D., TANAKA T. and TrRUONG X. D. H.
[24]. KUROIWA’s approach was expanded in several recent papers written by E.
HERNANDEZ and L. RODRIGUEZ-MARIN [15], [16], [17], and M. ALONSO and L.
RODRIGUEZ-MARIN [1].

In this article we propose a new duality perspective for set-valued optimization
problems, by employing efficient solutions defined with the help of the quasi interior
of a convex cone.

Section 2, entitled Preliminaries, familiarizes the reader with the notions and
results taken from the specialized literature. We present definitions and character-
ization properties for the quasi relative interior and quasi interior of a set. As well,
we mention some separation theorems that use these notions.

Section 3 is centered on two new set-relations defined with the help of the quasi
interior. We prove some of their properties, and emphasize the connection to other
set relations previously introduced in the literature. Moreover, we present four new
set-efficiency notions.

Section 4 contains the definition and some characterization properties for a qi-
conjugate function associated with a set-valued function, and a qi-subdifferential,
in analogy to the conjugate functions and subdifferential from scalar optimization.

Using a general perturbation approach, we construct in Section 5 a new set-valued
duality theory, employing qgi-efficient solutions. For the particular case when the
perturbation function extends the Lagrange perturbation from scalar optimization,
we prove a strong duality theorem. Our results are more general than those estab-
lished by E. HERNANDEZ and L. RODRIGUEZ-MARIN [16] for weak efficieny, since
the quasi interior of a set is a more general notion than the interior. It is important
to notice that in the particular case of a scalar optimization problem with vector
constraints, our set-valued gi-efficiency conditions collapse into the classical ones,
for example those in R. I. BoT, E. R. CSETNEK and A. MOLDOVAN [7].

The article ends with a section devoted to an application of our set-valued La-
grange duality theorem by means of qgi-efficiency, application stated in £2(R).

2. PRELIMINARIES

Suppose that X is a topological vector space, and let X* be the topological dual
space of X. Given a linear continuous functional z* € X* and a point =z € X, we
denote by (z*,z) the value of z* at x.

The normal cone associated with a set M C X is defined by

J{rreX*:(a¥y—a)<Oforallye M} ifxeM
N (@) := { 0 otherwise.

Given a nonempty cone C' C X (all cones considered in this article are assumed
to contain 0), its dual cone is the set

CT:={2"e€ X*: (2",2) >0 forall z € C}.
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Consider now a separated topological vector space X, and let M C X be a set.
The quasi-relative interior of M is

qriM = {x € M : clcone(M — z) is a linear subspace of X}

(see J. M. BORWEIN and A. S. LEWIS [3]).
The quasi interior of a set M C X is tightly connected to the quasi-relative
interior and appeared in the literature prior to it. It is defined by

qiM = {z € M :clcone(M —z) = X }.

When M is a convex set, then qiM C qriM and qri{z} = {z} for allz € X.
Moreover, whenever qi M # (), then qi M = qri M.

When X is a separated locally convex space, and M C X is a convex set, then
the following chain of inclusions hold:

(2.1) int M CcoreM CqiM CqriM C M.

When int M # (), then all the generalized interior notions in (2.1) collapse in equality
to int M, i.e. the topological interior of M.

Let us consider the case when X = R", with n € N, and let M C R"™ be a convex
set. Then the following chain of equalities is valid:

(2.2) core M = qi M = int M

(according to M.A. LIMBER and R.K. GOODRICH [25], R. T. ROCKAFELLAR [27]).
For further details and connections among generalized interiors we refer the reader
to J. M. BORWEIN and R. GOEBEL [2], J. M. BORWEIN and A. S. LEwis [3], R.
I. Bot, E. R. CseTNEK and G. WANKA [8], R. I. Bot [5], E. R. CSETNEK [12],
and R. I. BoT and E. R. CSETNEK [6].
We continue by presenting some characterizations of the quasi interior and quasi-
relative interior of convex sets in separated locally convex spaces.

Theorem 2.1 (J. M. BORWEIN, A. S. LEwis[3]). Let M be a convex subset of a
separated locally convex space X, and let x € M. Then x € qriM if and only if
Ny(z) is a linear subspace of X*.

The following characterization of the quasi interior of a convex set can be found
in P. DANIELE, S. GIUFFRE, G. IDONE and A. MAUGERI [13], where it was stated
in reflexive Banach spaces. Nevertheless, it can be extended to separated locally
convex spaces, as mentioned and proved by R. I. BoT, E. R. CSETNEK and G.
WANKA [8].

Theorem 2.2. Let M be a convex subset of a separated locally convex space X, and
let x € M. Then x € qi M if and only if Np(x) = {0}.

Let X be a separated locally convex space, and let C' C X be a convex cone.
Then the equality

(2.3) qiC+C=dqiC

holds. This is due to E. R. CSETNEK [12, Proposition 2.3 (v)], and F. CAMMAROTO
and B. D1 BELLA [10, Proposition 1.12].
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Proposition 2.3. Let C' be a nonempty convexr cone of a separated locally convex
space X. Then, for all x* € CT\{0} and for all x € qiC, the following inequality
holds:

(2.4) (x*, ) > 0.
Proof. The proof can approached similarly to R. I. BoT, S. M. GRAD and G
WANKA. [9, Proposition 2.1.1]. O

What follows is a separation theorem.

Theorem 2.4 (R. I. BoT, E. R. CSETNEK, G. WANKA [8] ). Let M be a nonempty
convex subset of a separated locally convexr space X, and let T € M. If T & qri M,
then there exists an x* € X*\{0} such that

(2.5) (x*,7) < (z*,z) for all x € M.

Viceversa, if 0 € qi(M — M) and there exists an x* € X*\{0} satisfying (2.5), then
T ¢ qri M.

3. TWO NEW SET RELATIONS DEFINED BY MEANS OF THE QUASI INTERIOR

We consider the following framework throughout the current section:

(3.1) Y is a separated locally convex space;
) K CY is a pointed, convex cone with qi K # ().

Let us recall that
Po(Y):={A: ACY and A # (}.

We start by presenting some set relations defined with the help of a convex cone,
introduced by D. Kuroiwa [18].

Definition 3.1 (D. KUROIWA [18]). Let A and B belong to Po(Y'). Then we write:
(a) A<!Bif BC A+ K;
(b) A<*BifAC B - K;
(c) A~ Bif A<!' B and B <! A.
D. KUROIWA [18] proved that ~ is an equivalence relation on Py(Y). O

Definition 3.2. Let A and B belong to Po(Y'). Then we write:
(a) A<l x Bif BCA+dqiK;
(b) A<k BifACB—qiK.
The definitions above justify the choice made in (3.1) for K # Y. If K =Y the
new two set relations gléi i and ﬁgi x would be useless.
The relations S‘éi x and Slgi K are transitive.

Proposition 3.3. Let A and B belong to Po(Y). Then the following statements
are true:
(a) A~ B if and only if A+ K =B+ K.
(b) IfA~!' B, then A+qiK =B+ qiK.
(c) If A ﬁlqu B and B ﬁfqu A, then A ~' B.
(d) If A ﬁéiK B and B <! A, then B ﬂéiK A.
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(f) If A<k Bandy €Y, then A+y < B+y.
g) If A~ B andy €Y, then A+y ~' B+y.
Proof. (a) See Lemma 2.1 (i) in [16].

(b) We make use of (a). Thus, on one hand A ~! B implies that A+ K = B+ K,
hence A+ K +qi K = B+ K 4+ qi K. On the other hand, we know from (2.3) that
g K + K = qi K, therefore A+ qiK = B+ qi K.

(c) From A ﬂgiK B it follows that BC A+qiK C A+ K, i.e A <! B. Similarly,
from B ﬁfﬂK A we obtain that A C B+ qiK C B+ K, i.e. B <! A. Consequently,
we have A ~! B.

(d) From Aﬁf]iKB we have B C A+qi K, and from B <! A, we have A C B+ K.
Then, considering (2.3) we deduce the following chain of inclusions:

ACB+KCA+qdK+K=A4+qKCB+K+qK=B+dqiK.
This means that B ﬁgiK A.
(e) Obviously we have
BCA+4+qiK ifandonlyif — BC —-A—qiK.

This means that A ﬁgiK B is equivalent to —B SlgiK —A.
(f) and (g) have straightforward proofs starting from the definitions of the rela-
tions ﬁaiK and ~!. O

(e) A glf]iK B if and only if —B 9§, x —A.
(

Remark 3.4. From the statements (b) and (c) in Proposition 3.3 we obtain
A<lixBand B<jjx A= A~'B= A+qiK =B+diK.

This chain of implications cannot be reversed, as it is explained in the following.
(a) The converse of statement (b) in Proposition 3.3 does not hold, i.e.

(3.2) A4+ qiK=B+qK # A~'B.

Take for instance Y := R, K := R4, A := {—1} and B := (—1,1). As well, one
reaches the same conclusion, by taking A := K and B := qi K, if it is considered a
cone K such that qi K # K.

(b) The converse of statement (c) in Proposition 3.3 does not hold, i.e.

(3.3) A~ B#= A<l i Band B <l A

Choose for instance Y := R, K := Ry, A :={—1} and B := [-1,0). As well, one
reaches the same conclusion, by taking A := K and B := {0}, if it is considered a
cone K such that qi K # K. O

With the help of the relations introduced in Definition 3.2 we define four new
efficiency notions for sets.

Definition 3.5. Let us consider a set S C Py(Y). A set A € S is said to be:
(a) an 1-Ming-efficient set of S, if for each set B € S satisfying

B ﬁfﬁK A, the relation A SléiK B holds.
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(b) an l-Maxg-efficient set of S, if for each set B € S satisfying
A Slfqu B, the relation B ﬁgiK A holds.

(c) an u-Ming-efficient set of S, if for each set B € S satisfying
B Qi A, the relation A g i B holds.

(d) an u-Maxg-efficient set of S, if for each set B € S satisfying
A <4k B, the relation B < ¢ A holds.

The sets of all I-Ming;-efficient, 1-Maxg;-efficient, u-Ming;-efficient and u-Maxg;-
efficient sets of S are denoted by

I-Ming; §,1-Maxg; S, u-Ming S and u-Maxg; S,
respectively.

Remark 3.6. E. HERNANDEZ and L. RODRIGUEZ-MARIN [15], [16] considered
some weak set-efficiency notions defined with <! when dealing with convex cones
with nonempty topological interior. Our notions are more general and can be used
even in the case when the topological interior of the cones is empty. O

Proposition 3.7. Let us consider a set S C Py(Y). Then the following equality
holds:

(3.4) 1-Mingi(—S) = —u-Maxq S,
where =S = {—A: A e S}.

The proof is straightforward.

4. qi-CONJUGATE FUNCTIONS AND (i-SUBGRADIENTS
We consider the following hypotheses as valid throughout this section:

X is a topological vector space;

Y is a separated locally convex space;

K CY is a pointed, convex cone with qi K # (J;
F:X — P(Y) is a proper set-valued function.

(4.1)

Let us recall that under the hypotheses (4.1) the domain of the set-valued function
F' is the set

dom F :={x € X : F(x) # 0}.
The function F is said to be proper if dom F' # ().
4.1. qi-Conjugate Set-Valued Functions.

Definition 4.1. The gi-conjugate function of F' is the set-valued function Fj; p
L(X,Y) = P(P(Y)) defined by

Gk (T) :=uw-Maxgi{Tr — F(z):x € X} for all T € L(X,Y).
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Taking into consideration Definition 3.5 (d) and the hypotheses (4.1), it results
that the following equality holds:

vk (T) = w-Maxq{Tx — F(z) : « € dom F}.

We emphasize at this point that for each set A € Fj; ;- (T) there exists x4 € dom F
such that A =Tz 4 — F(z4).

In the following we prove a result which may be regarded as an extension of
the Fenchel-Young inequality to this set-valued setting.

Theorem 4.2. Let xg,x; € dom F, and let T € L(X,Y) be such that
(4.2) F(z1) —Ta € —F5, (T).

Then the following statements hold:
(a) If F(xg) — TmoﬁfﬁKF(xl) — Ty, then F(z1) — Txy S]élix F(xo) — Txo.
(b) If F(xo) — T:J:oﬁléliKF(xl) — Ty, then F(xy) — Txy ~' F(xg) — Txo.

Proof. (a) Assume that
(4.3) F(z0) — Two < i F(z1) — Ty
By applying Proposition 3.7 we have —Fy; (T) = I-Ming{F(z) — Tz : z € X}.
Then from (4.2) and (4.3) we get that
(4.4) F(xy) = Txy < F(x0) — Tao.

(b) From (4.3) and (4.4) we obtain, applying Proposition 3.3 (c), that F(xg) —
Ty~ F(zy) — Ty, O

4.2. gi-Subgradients of Set-Valued Functions. With the help of the gi-conjugate
function we extend the notions of the subgradient and subdifferential to set-valued
functions.

Definition 4.3. Let € dom F'.

(a) An operator T € L(X,Y) is said to be a qi-subgradient of the set-valued
function F at T if

TT - F(T) € Fj, (7).

(b) The set of all qi-subgradients of the set-valued function F at T is called the
qi-subdifferential of F' at T and is denoted by O, F(T).

By convention, if T ¢ dom F, then we consider that Oqi x F(T) = 0.

In light of Definition 4.3, the condition (4.2) in Theorem 4.2 can be equivalently
rewritten as T € Oy x F'(x1).
Similar to the scalar and vector case, we prove the following property.

Proposition 4.4. Let T € dom F'. Then
F(z) € I-Mingi{F(x) : x € X} if and only if 0 € Oy, F'(T).
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Proof. By making use of Proposition 3.7 we obtain
F(Z) € -Mingi{F(z) : v € X} <= 0T — F(T) € u-Maxi{0z — F(z) : z € X}
07 - F(7) € Fy;, (0)
< 0¢€ 0y, F ().
O

5. A QUASI INTERIOR PERTURBATION APPROACH IN SET-VALUED OPTIMIZATION

5.1. Unconstrained Set-Valued Optimization. In this subsection we consider
the unconstrained set-valued optimization problem

(Pg) I-Ming; F(z),
zeX

which will be studied under the hypotheses (4.1) and the additional assumption
that

(5.1) W is a topological vector space.
Definition 5.1. An element T € dom F is a gi-efficient solution to (P’) if
F(z) € I-Mingi{F(z) : z € X} = -Mingi{F(z) : « € dom F'}.
We develop a general duality theory based on a quasi interior perturbation ap-
proach. A set-valued function ® : X x W — P(Y), which satisfies the equality
®(z,0) = F(z) for all x € X,

is called a perturbation function associated with F'.
Consider an arbitrary perturbation function ® : X x W — P(Y) associated with
F. The gi-conjugate function of ® is the set-valued function ®; —: L(X,Y) x

LW,Y) = P(P(Y)) defined by
ai (H,T) == u-Maxqi{Hz + Tw — ®(z,w) : (v,w) € X x W}
for all (H,T) € L(X,Y) x L(W,Y).
We introduce the following new set-valued dual problem associated with (Pg):

(Dg7) -Maxq; [—®F; x(0,7)] .
TeL(W)Y)

For the sake of simplicity we consider the notation
Apgr : = {(T,J:,w) eLWY) xdom® : —Tw + &(z,w) € —q)fliK(O,T)}
={(T,z,w) € LW,Y) x X x W : (0,T) € 9g;,, ®(z,w)} .

Definition 5.2. An operator T € L(W,Y) is said to be a qi-efficient solution to
the dual problem (D7) if there exists an (z,w) € dom ® such that

(5'2) (’f, T, ﬂj) S ADS}I
and

(5.3) ~T@ + ®(F, @) € FMaxq{—Tw + ®(z,w) : (T,z,w) € Apsy}.
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With the help of the following set-valued weak duality theorem we certify
that (Dg) is actually a dual problem to (Pg).
Theorem 5.3. Let 29 € dom F, and let (T,x,w) € ADZiv. Then the following
statements are true:
(a) If F(xo) <L.  —Tw + ®(z,w), then —Tw + ®(z,w) <. F(xg).

—qig —qig

(b) If F(xo) ﬁaiK —Tw + ®(z,w), then —Tw + ®(z,w) ~ F(x).

Proof. The proof relies on Theorem 4.2 considered for the function ® and the linear
continuous operator (0,7) € L(X,Y) x LW, Y). O

The forthcoming result contains some optimality conditions for the primal-
dual pair (P;, Dg}') of set-valued optimization problems.
Theorem 5.4. Let T € dom F, and let (T, %, W) € Apgy be such that

(5.4) F@) < T + (T, D).
Then the following statements are true:

(a) 7 is a qi-efficient solution to (Pg).

(b) T is a qi-efficient solution to (D}).

Proof. (a) Let z € X be such that F(z) Slili x F (7). Taking into account that the
relation ﬁéiK is t~ransitive, we get F(x) ﬁf]iK —~Tw+®(z,w). From Theorem 5.3 (a)
it follows that —Tw+®(z, w) ﬁf]i i F(z). Using again the transitivity of the relation
SléiK and (5.4) we get that F(T) ﬂéiK F(x), which means that T is a qi-efficient
solution to (Pg).

(b) Let us consider (T, z,w) € Apgv such that

~T@ + ®(F, @) < ¢ —Tw + (z, w).

Using the transitivity of the relation Sléi x and (5.4), we get that F'(T) Sléi x—Tw+
®(x,w), which, from Theorem 5.3 (a) implies —Tw + ®(z, w) ﬂéiK F(z). Applying
again (5.4), we reach the conclusion

~Tw + ®(z,w) < o —T@ + (T, D),

which means that (T, %, @) € I-Maxgi{—Tw+®(z,w) : (T,z,w) € ADS?}' Thus the
conditions (5.3) holds. Moreover, from the hypotheses we know that (5.2) is also
satisfied, implying that T is a gi-efficient solution to the dual problem (Dé’l”) O

The next theorem contains further optimality conditions for the dual problem
(D)

Theorem 5.5. Let T € dom F. If there exists an operator T € L(W,Y) such that
(T,z,0) € Apsv, then T is a di-efficient solution to (Dgf)-
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Proof. Let us start by noticing that, by assuming that (T,%,0) € AD;;J, the condi-
tion (5.2) in Definition 5.2 is satisfied. Let now (T, z,w) € Apsv be such that

(5.5) ~T0+ ®(x,0) < r —Tw + Bz, w).
By Theorem 5.3 (a) we get that
—Tw+ ®(z,w) < F(T) = —T0+ ®(,0).
Therefore it holds —7T0 + ®(7,0) € -Maxgi{—Tw + ®(z,w) : (T, x,w) € Apsv}, ie.
the condition (5.3) is satisfied. Thus 7" is a gi-efficient solution to (Dg7). O

5.2. A Set-Valued Lagrange Multipliers Rule. In this subsection we associate
with a general constrained set-valued optimization problem with cone constraints
a dual problem, obtained by particularizing the perturbation function in a manner
similar to the classical Lagrange approach from the scalar case. For the new prima-
dual pair of set-valued optimization problems we are able to provide a Lagrange
multipliers rule.

We consider the general set-valued optimization problem with cone constraints
(CPy) I-Ming F(z)

G(z)N—C#0

stated under the following hypotheses:

X and W are topological vector spaces;

Y and Z are separated locally convex spaces;

K CY is a pointed, convex cone with qi K # ;

C' C Z is a nonempty, pointed and convex cone;

F:X —>P()and G: X — P(Z) are proper set-valued functions;
{z € (dom F) N (dom G) : G(z) N (—=C) £ 0} # 0.

We associate with problem (CP(;”) the Lagrange-type perturbation function ®7" :
X xZ — P(Y), defined by

Psv | F(z) ifzeX and (G(zx) —2z)N(=C) #0
Lz 2) = 0 otherwise.

Let us notice that

(5.6)

B3z, 2) = F(z) ifx € (domF)N(domG) and z € G(x) +C
LBEI=00 otherwise.

Given an operator T' € L(Z,Y), the set-valued qi-conjugate function associated
with the Lagrange-type perturbation function ®7" at (0,7") is
(27)gir (0,T) = u-Maxq {Tz — F(z) : 2 € X,2 € G(x) + C} .
We attach to (CP(;” ) the following set-valued Lagrange-type dual problem:
(LOD) Mg [ (@5)5 5 (0,7)]
TeL(Z,Y)
In the following we use the notation

{ (T,x,z): TeL(ZY),zeX,z€Gx)+C, }

—Tz+ F(z) € — (%)’ . (0,T)

Arcpsy =
q K
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(T,z,2): TeL(ZY),zeX, zeGx)+C,
{ (0, T) € 997, (T, 2) }

Definition 5.6. An operator T e L(Z,Y) is said to be a qi-efficient solution
to the dual problem (LCDy) if there exists an (,%) € dom ®7" such that

(5.7) (T,%,7) € Arcpsy
and
(5.8) ~T% + F(7) € - Max {—Tz Y F(2): (T,2,2) € ALCD;?} .

The results from Subsection 5.1 are applicable to the primal-dual pair (CP(;” , LC’DSU)
of optimization problems. Particularizing the weak duality theorem, as well as the
theorems which state optimality conditions in Subsection 5.1, one obtains similar
results in this constrained set-valued setting.

We next present a strong duality theorem.

Theorem 5.7. Let (F,G) be a K x C-convez function, and let T € Acpse be such
that there exists § € F(T) with the property

(5.9) (7,0) € qri ((F,G)(X)+ K xC).
Moreover, assume that
(5.10) 0 € qi(G(X) + O).

Then there exists an operator T € L(Z,Y) such that T is a qi-efficient solution to
the dual problem (LCDg).

Proof. Since T € Acpsy, there exists at least one 7 € G(z) N (=C). As (F,G) is a

proper K x C-convex functlon it follows that the set (F, G)(X )+ K x C is nonempty
and convex. Moreover, since § € F(T), we have (7,0) € (F,G)(X) + K x C. Using
(5.9), we may apply Theorem 2.4 from which we get that there exists an

(5.11) (y*,2%) e Y* x Z*\{(0,0)}

such that

(5.12) (", y) <(y",y) + (2%, 2) for all (y,z) € (F,G)(X)+ K x C.
We proceed by proving that

(5.13) y*e KT.

Since Z € G(T) N (—C), it is clear that 0 € G(Z) + C. Putting  :=7 and z := 0 in
(5.12), we obtain

(y*,9) < (y",y) for all y € F(T) + K.
Moreover, since § € F(T), hence we can further particularize the inequality above
to

(", 7) < (y*,7) + (y*, k) for all k € K,
which means that 0 < (y*, k) for all k € K, ie. y* € K.
Next we prove that

(5.14) e ot
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Put x :=7 and y =7 in (5.12). Then we get
(5.15) 0 < (2", 2) for all z € G(T) + C.
Let us consider an arbitrary ¢ € C. From z € G(T) N (—C) it follows that
c=c+z-z€C+GT) - (-C)=G@+C+CCG@+C.
This means that from (5.15) we obtain
0 < (z%¢c) forall ce C,

whence z* € Ct.
We now prove that y* # 0. Assume that y* = 0. Then (5.12) turns into

0 < (2% 2z) forall z€ G(X) + C.
Hence, —2* € Ng(x)+c(0). According to Theorem 2.2, (5.10) implies
Nex)+c(0) = {0},

therefore —z* = 0. But in this case we have (y*,z*) = (0,0), which contradicts
(5.11). Thus y* # 0, and from (5.13) we obtain
(5.16) y* € KT\{0}.

This means that we can choose k € K such that (y*,k) = 1. We define now the
operator T': Z — Y by

T(z) == (z*,2)(—k) for all z € Z
and we prove that
(5.17) (T,z,0) € ALCD;§~
Let us proceed by contradiction. Assume that there exist
z € (dom F)N (domG) and z € G(z) + C
such that
~Tz+ F(z) <l —T0 + F ().

This means that F(Z) C F(x) —Tz+qi K. Thus, for § € F(T) there exist y € F(x)
and k € qi K such that B

y=y—Tz+key.
Since y* is a linear operator and (y*, k) = 1, we get

"0 =Wy = (252 (k) + (U k)
=" y) + (" k) + (Y k)
=y y) + (27 2) + (" k).
Using now the facts that y* € K*t\{0}, k € qi K, and applying Proposition 2.3, it
follows that (y*, k) > 0. Therefore we come to the conclusion that
(5.18) W) > ")+ (" 2).
Considering the facts that x € (dom F) N (domG), y € F(z) C F(z) + K and

z € G(x) + C, it follows that (5.18) is in contradiction to (5.12). This leads to
(T,7,0) € Arcpse-
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Applying a result similar to Theorem 5.5, this time for the primal-dual pair
(CPJY, LODg), we get from (5.17) that T is a gi-efficient solution to (LODY). O
Remark 5.8. E. HERNANDEZ and L. RODRIGUEZ-MARIN approached in [16] a
Lagrange dual problem in set-valued optimization using the set criterion. We un-
derline at this point the differences between their approach, and the one suggested
in the present paper. First of all, our approach is more general, since it uses the
quasi-interior, a generalization of the classical topological interior. Then, when
looking for dual solutions, we seek linear continuous operators, whilst in [16] the
operators considered are the sum of continuous linear affine map, and an element in
—C. In case int K # (), then int K = qi K and the solutions for the primal problems
coincide for both [16] and the present paper, however, this does not change the dif-
ferences between the dual problems. The strong duality theorem, i.e. Theorem 4.1
in [16], has many assumption in contrast to our strong duality result, i.e Theorem
5.7. More precisely, in [16] the authors need except for a generalized Slater condi-
tion, an optimal solution xzg € X of the primal problem, satisfying properties which
involve the existence of weak efficient points for the set F'(zp) along with condition
iii), which guarantees a separation, in order to get an optimal solution for the dual.

Remark 5.9. Theorem 5.5 extends results from scalar optimization, such as The-
orem 4.1 in [7] or Theorem 14 in [14].

6. AN APPLICATION TO A SET-VALUED OPTIMIZATION PROBLEM IN /2(R)

In this section we present an example of a set-valued optimization problem for
which we can apply the strong-duality statements of Theorem 5.7. Our application
was inspired by Example 2.10 in E. R. CSETNEK [12], and is formulated under the
following particular instance of the framework (5.6):

X :=0FR),Y =R, Z:=1R),K =Ry, C:=2(R);

: 2
F: 2(R) = P(R) is defined by F(u) = é”“”ﬁ@@} if 1 € £5.(R)

(6.1) otherwise

. 2
G : 2(R) — P(£2(R)) is defined by G(u) := { é—ﬂ} gt}lfefvfi:éR)

We notice that (dom F) N (domG) = ¢ (R) and qi K = qiRy. As R is a finite
dimensional space, we have qiR; = int R, = (0, +00).
Let us recall some important properties concerning the set

PR):={u:R—-R: Z |u(x)]* < 400}
zeR

The function || - [[2(r) : €*(R) — R defined by

el 2 ry = <Z |u(x)|2> = ( sup > \,u(m)|2> for all ;1 € /?(R)
EF

zeR FePo(R),F finite

=
N[

is a norm on #2(R), and the vector space ¢?(R), equipped with this norm is a
Banach space. Moreover, the norm || - [2(g) is generated by the scalar product
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()2 : C2(R) x 2(R) = R defined by

(w1 Yemy = sup > p(a)(w) for all p,u’ € C(R).
FePo(R),F finite zeF

Thus, the vector space £2(R) equipped with the above defined scalar product is a
Hilbert space. The dual space (£2(R))* is identified with ¢?(R). Moreover, the set

2 (R) := {u € *(R) : p(x) >0 for all z € R}

is a pointed convex cone, and from J. M. BORWEIN, Y. LUCET and B. MOR-
DUKHOVICH [4, Remark 2.20] we know that qri(¢2 (R)) = (). Furthermore, it holds

(6.2) C(R) — & (R) = E(R).

It is easy to see that 7 := 0 € ¢?(R) is a qi-efficient solution to the set-valued
optimization problem

(P WMing (e
pel? (R)
G(p)n—L2. (R)£0

We associate with (P;;’(R)) a Lagrange-type set-valued dual problem, with the
help of the perturbation function @) : 2(R) x £2(R) — R defined by

Cpmy (i Q) = {F(p) : p€ C(R),G(p) — ¢ € ~A(R)}
= {lllle@ : pe G (R),C € —p+ AR},
for all (u, () € £2(R) x %(R).
The qgi-conjugate set-valued function associated with @2 ) is
(Pe2m))iiz, : LIE(R),R) x L(E*(R),R) = P(P(R)),
defined by
(Pe2(r))qir, (0,T) : = u-Maxqi {T¢ — ®(p1,¢) = (1, ¢) € 2(R) x 2(R)}
= uMaxgi{T¢ ~ |l : 1 € BL(R),C € —p+ £.(R))

for all T € L(¢%(R),R).
A Lagrange-type set-valued dual problem associated with (P;2”(R)) is

(LD ) I-Max [—(‘I)EZ(R))&& 0, 7).
TeL(£2(R),R)
In the following we use the notation

{ (T, 1,¢) : T € LI(R),R), p € £2(R), ¢ € £2(R), }
T¢— (1, C) € =(Pp2r))yir, (0,7) '

A L DZ&}(R) =

Let us further notice that

{ (T,1,¢) = T € LIP(R),R), p € L3(R),¢ € —p+ L3 (R) }
TC = pller € —(Per)yr, (0,T)

{ (T1,Q): T € LIBR)R), p € B(R).C € —ut 2 (R), }
(0,T) € 8qiR+ (CDP(R))(:Ua () .

A sV =
LDZ2 ®)
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As we have previously mentioned, & = 0 is a qi-efficient solution to (P;;’(R)).
We check the hypotheses of Theorem 5.7. First of all we notice that (F,G) is a
Ry x £2 (R)-convex function. Next, from (6.2) it follows that

0€qi[-(R)+ A (R)] = qi *(R) = *(R),
which implies that (5.10) is automatically satisfied. The relation (5.9) turns into

(6.3 (0.0) £ i | (F,G)E(R) + R x £ (R)
By contradiction we prove that (6.3) is satisfied. Assume that
(0.0) € i [(FG)(E(R) + Ry x A (R)

and consider an arbitrary (r, u*) € N(F,G)(ZQ(R))+R+Xzi(R){(O, 0)}. Then, for all p €
% (R), all A >0, and all y € ¢2(R) it holds

(6.4) r([[pelleemy +A) + (1", =+ X)e2m) < 0.
We notice that

(=1,0) € Nirg)(e2(r))+r, xe2 ®)1(0,0)}-
By applying Theorem 2.1 we get

(1,0) € Nreyezm)+r: <2 @) 1(0,0)}-
This means that (6.4) turns into
[l 2Ry + A < 0 for all p € €3 (R) and all A > 0,

which is obviously a contradiction. Hence (6.3) is satisfied.

Summing up the facts listed above, we conclude that the hypotheses of Theorem
5.7 are satisfied. This means that there exists an operator T € L(¢*(R),R) such
that T is a qgi-efficient solution to (LD;;’(R)).
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