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STRONG CONVERGENCE THEOREMS
FOR GENERALIZED EQUILIBRIUM PROBLEMS
AND RELATIVELY NONEXPANSIVE MAPPINGS

IN BANACH SPACES

YUKINO TOMIZAWA

ABSTRACT. The purpose of this paper is to prove strong convergence theorems
for finding a common element of the set of solutions of a generalized equilibrium
problem and the set of common fixed points of infinite relatively nonexpansive
mappings in Banach spaces.

1. INTRODUCTION

Throughout this paper, we denote by R the set of all real numbers. Let E be a
real Banach space with a norm ||-||, E* the dual space of E, (,-) the pairing between
E and E* and C' a nonempty closed convex subset of E. Let f : C x C — R be
a bifunction and A a nonlinear operator of C into E*. The generalized equilibrium
problem is finding u € C such that

for all y € C. The set of solutions of (1.1) is denoted by EP, that is,
EP={ueC: f(u,y) + (Au,y —u) >0, Yy € C}.

If A =0, then the problem (1.1) is equivalent to that of finding a point u € C such
that

(1.2) flu,y) >0

for all y € C which is called the equilibrium problem. The set of solutions of (1.2) is
denoted by EP(f). If f =0, then the problem (1.1) is equivalent to that of finding
a point u € C such that

(1.3) (Au,y —u) >0

for all y € C which is called the variational inequality. The set of solutions of (1.3) is
denoted by VI(C, A). The problem (1.1) is very general in the sense that it includes,
as special cases, optimization problems, variational inequalities, minimax problems,
numerous problems in physics, economics and others. Some methods have been
proposed for solving the generalized equilibrium problem, the equilibrium problem
and the variational inequality in Hilbert spaces (see [14, 15]) and in Banach spaces
([11, 19)).

Let C' be a nonempty closed convex subset of a real Banach space E. A mapping
T of C into E is said to be nonezpansive if [Tz — Tyl|| < ||z — y|| for all z,y € C.
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A point p € C is called a fized point of T if Tp = p. The set of fixed points of a
mapping T is denoted by F(T'). A point p € C' is called an asymptotic fized point
of T if there exists a sequence {x,} C C such that x,, — p and ||z, — Tz,| — 0.
We denote by F (T') the set of all asymptotic fixed points of 7. A mapping 7" is said
to be relatively nonexpansive if F(T) = F(T) # 0 and ¢(u, Tz) < ¢(u,z) for all
u € F(T) and z € C. Let a > 0. A operator A of C into E* is said to be a-inverse
strongly monotone if

(x —y, Ax — Ay) > of Az — Ay|®

for all z,y € C. It is known that if A is an a-inverse strongly monotone operator,
then A is 1/a-Lipschitzian.

Example ([3]). Let E be a Banach space, f a continuously Fréchet differentiable,
convex functional on E and V f the gradient of f. If V f is 1/a-Lipschitz continuous,
then V f is a-inverse strongly monotone.

In 2008, Takahashi and Takahashi [15] proved a strong convergense theorem for
finding an element of F(S) N EP in a Hilbert space H, where S is a nonexpan-
sive mapping of a nonempty closed convex subset C' C H into itself and A is an
inverse strongly monotone operator of C' into H. Recently, Chang, Lee and Chan
[4] considered iterative methods for finding an element of F/(S) N F(T) N EP in a
certain Banach space E, where S and T are two relatively nonexpansive mappings
of a nonempty closed convex subset C' C E into itself and A is an inverse strongly
monotone operator of C' into E*. On the other hand, Matsushita, Nakajo and Taka-
hashi [10] introduced iterative methods for finding an element of ;2 F'(S;), where
S; is a relatively nonexpansive mapping of C' into itself for all ¢ > 0.

In this paper, motivated by Chang et al. [4] and Matsushita et al. [10], we in-
troduce new iterative methods for finding an element of ();2, F(S;) N EP, where
S; is a relatively nonexpansive mapping of C' into itself for all ¢ > 0 and A is an
inverse-strongly monotone operator of C' into E*. In the next section, we recall some
basic notions and give the definition of W-mappings and convex combinations of
mappings. We present and prove our main results which are strong convergence
theorems of W-mappings and convex combinations in Section 3 and Section 4, re-
spectively.

2. PRELIMINARIES

Throughout this paper, we assume that F is a real Banach space with a norm
I|I|l, E* is the dual space of E and (-, -) is the pairing between E and E*. We denote
strong convergence of a sequence {z,} to x by x, — x and weak convergence by
Ty — T

Let U = {z € E : ||z|| = 1}. A Banach space FE is said to be reflexive if the
natural mapping E — E** is surjective and we write £ = E**. A Banach space E
is said to be strictly convex if ||x + y||/2 < 1 for all z,y € U with = # y. A Banach
space E is said to be uniformly convez if for each e € (0, 2], there exists 6 > 0 such
that, for any x,y € U,

r —y| > e implies Tty <1-9.
Y 2
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It is well known that a uniformly convex Banach space is reflexive and strictly
convex.

A Banach space is said to have the Kadec-Klee property if, for every sequence
{zn} C E, v, = z and |z,|| — |z| together imply ||z, —z| — 0. It is known
that a uniformly convex Banach space has the Kadec-Klee property. Let G = {g :
[0,00) — [0,00) : g(0) = 0, g is continuous, strictly increasing and convex}. We
have the following theorem for a uniformly convex Banach space.

Proposition 2.1 ([20]). A Banach space E is uniformly convez if and only if, for
every bounded subset B of E, there exists gg € G such that

Az + (1= Nyll* < Allz|* + (1 = Mllyl* = A1 = Ngn(llz - yl)
forallz,ye B and 0 < A < 1.
A Banach space F is said to be smooth if there exists

eyl o]
t—0 t
for all z,y € U. In this case, the norm of FE is said to be Gdteaux differentiable. A
Banach space FE is said to be uniformly Gateaux differentiable if for each y € U,
the limit defined by (2.1) exists uniformly for z € U. It is also said to be uniformly
smooth if the limit is attained uniformly for all x,y € U. It is well known that
every uniformly smooth Banach space is reflexive and with uniformly Gateaux dif-
ferentiable norm. It is also known that E* is uniformly convex if E is uniformly
smooth.

The mapping J of E into 2" defined by

J(x) = {z" € B": (z,a") = ||z|* = [|2*|*}

for x € E is called the normalized duality mapping. By the Hahn-Banach theorem,
J(x) # 0 for each € E. The normalized duality mapping J has the following
properties:
(i) if E is smooth, then J is single-valued;

(ii) if E is strictly convex, then J is one-to-one and (x — y, z* — y*) > 0 holds

for all (z,2*), (y,y*) € J with x # y;
(iii) if E is reflexive, then J is surjective;
(iv) if E is uniformly smooth, then J is uniformly norm-to-norm continuous

on each bounded subset of F.

Let E be a smooth, strictly convex and reflexive Banach space and C' a nonempty

closed convex subset of E. Throughout this paper, the Lyapunov functional ¢ :
E x E — R is defined by

o(z,y) = al* = 2(z, Jy) + |ylI*
for all z,y € E; see [1, 7, 12]. Tt is obvious that
(i) ¢(x,y) = 0 if and only if x = y;
(@) (lz = llyl)? < é(z,y) < (l=] + llyl))? for all 2,y € E.
Proposition 2.2 ([7]). Let E be a smooth and uniformly convex Banach space and

{zn}, {yn} C E two sequences. If ¢(xn,yn) — 0 and either {x,,} or {yn} is bounded,
then ||y — yn|| — 0.

(2.1)
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Let {x,} and {y,} be two bounded sequences in a smooth Banach space. It is
obvious from the definition of ¢ that ¢(zy,y,) — 0 whenever ||z, — y,|| — 0. By
this fact and Proposition 2.2, if {x,} and {y,} are two bounded sequences in a
uniformly smooth and uniformly convex Banach space, then

|z — ynll = 0= ||Jzn — Jynl| = 0 < d(xn,yn) — 0.

Proposition 2.3 ([7]). Let E be a smooth, strictly convex and reflexive Banach
space, C' a nonempty closed convex subset of £ and x € E. Then there exists a
unique element xo € C such that ¢(xo, x) = mingec ¢(y, x).

Let E be a smooth, strictly convex and reflexive Banach space and C' a nonempty
closed convex subset of E. Following Alber [1], the generalized projection ¢ of E
onto C' is defined by

[Iox = arg min ¢(y, x)
yeC

for all x € E. We have the following results for generalized projections.

Proposition 2.4 ([1, 7]). Let E be a smooth Banach space, C' a nonempty convex
subset of E, v € E and x¢ € C. Then xg = oz if and only if (y—xo, Jxg—Jx) > 0
for ally € C.

Proposition 2.5 ([1, 7]). Let E be a smooth, strictly convex and reflexive Banach
space, C' a nonempty closed convex subset of E and y € E. Then

o(z, Iley) + ooy, y) < ¢(x,y)
forall x € C.

We denoted by F(T') the set of all fixed points of a mapping 7.

Proposition 2.6 ([11]). Let E be a smooth and strictly convex Banach space, C a
nonempty closed convez subset of E and T a relatively nonexpansive mapping of C
into itself. Then F(T) is closed and convez.

Let E be a smooth, strictly convex and reflexive Banach space, C a nonempty
closed convex subset of E, {S;}7°, a family of mappings of C' into inself and {5, :
0 <7< n}s, Cl0,1] asequence of real numbers. For any n > 0, let us define a
mapping W, of C into itself as follows:

Un,n+1 = I,
Un,n — HCJ_I (/Bn,nJ(SnUn,nJrl) + (1 - /Bn,n)J)v
Un,nfl = HCJ_I (ﬁn,nflj(snflUn,n) + (1 - /Bn,nfl)J)a

(2.2) Un,i = HCJ_I(ﬁn,iJ(SiUn,i+l) + (1 - Bn,i)‘])7

Upi = (Brid (S1Unz2) + (1= Bpn)J),
Wn = Un0 = J_l(ﬁn,OJ(SOUn,l) + (1 - Bn,O)J)a
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where [ is the identity mapping on C. Such a mapping W, is called the W -
mapping generated by {S;}" , and {5,,:}7_,. We have the following result for the
W-mappings; see [9, 10, 16, 18].

Proposition 2.7 ([10]). Let E be a uniformly smooth and strictly convex Banach
space, C' a nonempty closed convex subset of E and {S;}7_, a family of relatively
nonexpansive mappings of C into itself such that (\_o F(S;) # 0. Let {Bni}i— be
a sequence of real numbers such that 0 < B9 < 1 and 0 < B,; < 1 for every
1<i<n. Let {Un,i}?:()l be a sequence defined by (2.2) and W, the W -mapping
generated by {S;}1, and {Bn,i}i—y. Then the following hold:

(i) P(Wa) = g F(S:);

(ii) for every0 <i<mn,z € C and z € F(W,), ¢(z,Up i) < ¢(z,2)

and ¢(z, SiUp iy17) < ¢(2, ).

Let E be a smooth and uniformly convex, C' a nonempty closed convex subset
of E, {S;}5°, a family of relatively nonexpansive mappings of C into itself and
{Ani 10 <i<n}o, C[0,1] a sequence of real numbers. For any n > 0, let V,, be
a mapping of C' into itself defined by

n
(2.3) Vo=J")  AniJSi

i=0
We have the following result for convex combinations of relatively nonexpansive
mappings.

Proposition 2.8 ([10]). Let E be a smooth and uniformly convexr Banach space, C a
nonempty closed convex subset of E and {S;}5°, a family of relatively nonexpansive
mappings of C' into itself such that (2 F(S;) # 0. Let {\i}7 C [0,1] such that
Z?:o Ang =1 foralln > 0 and lim,,—so A s > 0 for each i > 0. Let V,, be a mapping
of C into itself defined by (2.3). Then the following hold:

(1) Nazo F(Va) = NZo F(Si);

(ii) for everyn >0, z € C and z € (2, F(Si), (2, Vox) < é(2, ).

We denoted by F (T') the set of all asymptotic fixed points of a mapping 7. For
solving the equilibrium problem, let us assume that a bifunction f : C x C' — R
satisfies the following conditions:

(A1) f(z,z) =0 for all z € C,

(A2) f is monotone, that is, f(z,y) + f(y,x) <0 for all z,y € C;

(A3) f is upper-hemicontinuous, that is, limsup; o f(z +t(z — 2),y) < f(z,y)
for all x,y,z € C,

(Ay) the function y — f(z,y) is convex and lower semicontinuous.

Proposition 2.9 ([19]). Let E be a uniformly smooth and strictly convex Banach
space, C' a nonempty closed convex subset of E and f : C x C — R a bifunction
satisfying (A1)—(A4). For v > 0 and © € E, define a mapping T, of E into C as
follows:

(2.4) T(z)={ueC: f(u,y)+ %(y —u,Ju—Jzx) >0, Vy e C}
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for all x € E. Then the following hold:
(i) T is single-valued;
(ii) T, is a firmly nonexpansive-type mapping, that is,
(Trx — Ty, JTyx — JTy) < (Tyx — Ty, Jo — Jy)
for all r,y € E;
(it}) P(T,) = F(T,) = EP(f);
(iv) EP(f) is a closed convex set of C.

Remark. It follows from Proposition 2.9 that the mapping 7, defined by (2.4) is
relatively nonexpansive. Indeed, by Proposition 2.9 (ii), we have

(Trx — Try, JTox — JTry) < (Trx — Ty, Jo — Jy)
for all z,y € C. Moreover, we obtain
o(Trx, Try) + ¢(Try, Trx)
=2|Tya|® - 2Ty, JTry) — 2Try, JTox) + 2| Ty
=2(Tx,JTrx — JTy) + 2(T,y, JT,y — JT,x)
=2(T,x — Ty, JT,x — JT,y)

and
¢(TT1U7 y) + ¢(TTya ‘T) - d)(TTxa :C) - ¢(Try7 y)
= |Toa|)® — 2Ty, Jy) + lyl* + | Toyll” — 2(Thy, Jz) + [l
— Tz + 2(Toz, Jz) — |l = 1 Toyl® + 2(Toy, Jy) — |yl
- 2<Tr.’L‘,J£L'— Jy) _2<Try;<]$ - Jy>
=2(Tyx — Ty, Jx — Jy).
Hence
¢(Tr$a Try) + d)(Trya Trx) < (b(TTJ}, y) + ¢(Trya 37) - ¢(T7‘337 l‘) - ¢(Trya y)
< ¢(Trz,y) + ¢(Try, x)

for all x,y € C. Taking y = p € F(T,), we obtain
o(p, Trx) < ¢(p, ).

Thus, by Proposition 2.9 (iii), this implies that 7 is relatively nonexpansive.

Proposition 2.10 ([19]). Let E be a smooth, strictly convex and reflexive Banach
space, C a nonempty closed conver subset of E, f : C x C — R a bifunction
satisfying (A1)—(A4) and r > 0. Let T, be the mapping defined by (2.4). Then

¢(p7TTx) + (ﬁ(TﬂE, .’E) S ¢(p,$)
forallp € F(T,) and x € E.

For solving the generalized equilibrium problem, let us assume that a nonlinear
operator A of C into E* is an a-inverse strongly monotone and a bifunction f :
C x C — R satisfies the conditions (A1)—(A4).
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Proposition 2.11 ([4]). Let E be a smooth, strictly conver and reflexive Banach
space, C' a nonempty closed convex subset of E and A an a-inverse strongly mono-
tone operator of C' into E*. Let f : C x C — R be a bifunction satisfying (A1)—(Ay4)
and g : C' x C — R a bifunction defined by

g(fE,y) = f(x,y) + <Al’,y - ‘T>

for all x,y € C. Let r > 0 and x € E. Then g satisfies (A1)—(A4) and there exists
u € C such that

1
g(u,y) + *<y—U,JU - Jl‘) >0
r
forally e C.
Propositions 2.9 and 2.10 can obtain the following proposition.

Proposition 2.12 ([4]). Let E be a uniformly smooth and strictly convex Banach
space, C' a nonempty closed convexr subset of E, A an a-inverse strongly monotone
operator of C' into E* and f : C x C — R a bifunction satisfying (A1)—(A4). For
any r >0 and x € E, define a mapping K, of E into C' as follows:

Ko(w) = {u € C: fluy) + (Auy —w) + - {y —u, Ju— Jz) >0, ¥y € C}

for all x € E. Then the following hold:
(i) K, is single-valued;
(ii) K, is a firmly nonexpansive-type mapping, that is,

(Kyx — Ky, JKyx — JK,y) < (K,x — Ky, Jx — Jy)

for all x Yy € E;
(iii) F(K,) = F(K,) = EP;
(iv) EP is a closed convex set of C;
(v) o(p, Kypz) + ¢( Kz, 2) < ¢d(p,x) for all p € F(K,).

Moreover, the mapping K, is relatively nonexpansive.

3. STRONG CONVERGENCE THEOREMS OF W-MAPPINGS

In this section, we prove a strong convergence theorem of W-mappings for finding
a common element of the set of solutions for a generalized equilibrium problem and
the set of common fixed points of infinite relatively nonexpansive mappings in a
Banach space.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space,
C a nonempty closed convex subset of . Let f : C' x C'— R a bifunction satisfying
(A1)—(As) and {S;}2, an infinite family of relatively nonexpansive mappmgs of
C into itself such that F = (.24 F(S;) N EP(f) # 0. Let {8,:}"y C (0,1) be a
sequence real numbers such that liminf,, o B,i(1 — Bni) > 0, W), the W-mapping
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generated by {S;}7 and {Bn,i}i—o. Let {xn} be the sequence generated by

xo € C,

Yn = Wnkn,

Un € Ty, Yn, that is, f(un,y)+ ,y%(y — Up, Jup — Jyn) >0 for ally € C,
Cr={2€C:d(z,un) < d(2,20) };

Qn=1{2€C: (xy— 2z, Jxg— Jx,) > 0};

( Ln+1 = chanCL“o

(3.1)

for n > 0, where llc,ng, 15 the generalized projection of E onto Cp, N Q, and
{} C [r,00) for some r > 0. Then {x,} converges strongly to pxg, where g is
the generalized projection of E onto F'.

Proof. First we prove that C), N Q, C C is closed convex subset for all n > 0. In
fact, it is obvious that C), is closed, and @, is closed and convex for all n > 0. It
follows that C), is convex for all n > 0 because ¢(z,u,) < ¢(z,zy,) is equivalent to

2(z, Jop — Jup) < ”anQ - ||un||2

Thus C,, N Qy, is closed and convex for all n > 0.

Next we prove that F* C C, N @, for all n > 0. Let u, = Ty, for all n > 0
and u € F. It follows from Proposition 2.7 (i) that v € F(W,,) for all n > 0. We
obtain T, is relatively nonexpansive by Proposition 2.9. Since S; is also relatively
nonexpansive for all n > 0, by Proposition 2.7 (ii), we have

(u,un) = ¢(u, Ty, yn) < ¢(u, yn) = d(u, Wyan)

_ ¢<u, T (B0 (SoUn1zn) + (1 — /;’n,o)an)>

= [lull* = 2(u, B0 (SoUnan) + (1 = Buo)Jn)
+ 180 (SoUn122n) + (1 — Bro)

< ull? = 2Bn.0(u, J(SoUn12n)) — 2(1 = Bro)(u, Jz,)
+ B0l SoUn, 12”4+ (1 = Bro) |2l

= Bn,00(u, SoUn,170) + (1 — Bno)d(u, xn)

(3.2) < Brod(u, xn) + (1= Bno)d(u, zn) = ¢(u, ).

This implies that u € C,, and so F' C C, for all n > 0. By induction, now we prove
that FF C C, N Q, for all n > 0. In fact, since Qg = C, we have F' C Cy N Qo.
Suppose that F' C C, N Qg for some k > 0. Then there exists zp1 € C; N @y such
that zr11 = Ilg,n,To- By the definition of 341, we have

(3.3) <.1‘k+1 -z, J:EO — J:L'k+1> > 0

for all z € Cy N Q. Since F' C C; N Qg, we obtain (3.3) for all z € F. This shows
that z € Qg41, and so F' C Qg41. Therefore F' C C, N Qy, for all n > 0.

We prove that {z,} is bounded. By the definition of @,, and Proposition 2.4, we
have x,, = Ilg,xo for all n > 0. Hence, by Proposition 2.5,

¢(xn> ':UO) = (Z)(HanOy :UO) < ¢(u7 xO) - ¢(U, HQn:UO) < ¢(U, xO)
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for all wu € F C @, and n > 0. This implies that {¢(x,,xq)} is bounded, and so
{z,} and {u,} are bounded in C.

Next we prove that ||z, —u,| — 0 and ||Jz, — Juy| — 0. Since z,, = Ilg,zo
and z,41 = ¢, nQ, xo, we have ¢(zy, x0) < ¢(xn41,x0) for all n > 0. This implies
that {¢(xn,x0)} is nondecreasing, and so there exists the limit lim,, o ¢(2y, o).
By Proposition 2.5, we have

O(Tng1,Tn) = ¢($n+1,Hano)
< ¢(Tn+1, o) — ¢(g,x0, 2o)
= ¢(Tn+1,70) — A(Tn, o)
for all n > 0. This implies that

(3'4) lim ¢(wn+17$n> =0.

n—oo
Since x,41 = I, nQ, %0 € Cp, by the definition of C,,, we obtain
(35) ¢(xn+la un) < ¢(xn+la xn)

Since F is smooth and uniformly convex, from (3.4), (3.5) and Proposition 2.2 we
have

nlggo [Znt1 — unl = 7}1_?010 [Zn+1 — znl| =0
and
(3.6) nh—>néo |z, — un|| = 0.

Since J is uniformly continuous on any bounded subset of E, we obtain
(3.7) |Jxy — Juy| = 0.

lim
n—oo

Next we prove that w({z,}) C F, where w({zy}) is the set consisting all of the
weak limits points of {z,}. In fact, for any p € w({z,}), there exists a subsequence

{zn,} C {xn} such that z,, — p. We shall prove that p € (;2, F(S;). We have
P(u, Tn) — G(u, un) = ||37nH2 - HunH2 + 2(u, Jup — Jxn)

< Ml = lunll|(lznll + lunl) + 2l Jun — Jaa||
(3-8) < lzn = unl[(znll + lunll) + 2llul[llJun — Jzn|]
for all n > 0. From (3.6) and (3.7) we obtain
(3.9) nl;rgo(¢(u,xn) — ¢(u,up)) =0.

By Proposition 2.7 (ii), we have
(u, Upiwn) < d(u,x) and  (u, SiUnit120) < d(u, Univ12n) < d(u, 25)

for each 0 < i < n. Thus {S;Uy i+12n }n>i and {Uy iz, }n>; are bounded sequences
in C for all i > 0. By Propositions 2.1, 2.5 and 2.7 (ii), we have

¢(u7 Un,zxn) < ¢(u7 Jil (ﬁn,zJ(SzUn,H-lxn) + (1 - 671,1)an)>
- ¢(Un,z'il?n, I (B, (SiUnis1n) + (1 — 5n,i)<]£€n))
= [lul|® = 2(u, B i T (SiUnit10) + (1 = i) J )
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+ 1Bnid (SiUnit12n) + (1 = Bui) Tzl
— 0(Unittn, T (B (SiUnisrn) + (1 = Boi)Jan) )
= J|ul|® = 2(u, Bri T (SiUnit12n) + (1 = Bri)Jx)
+ Bl SiUnyis1zal” + (1 = Bpa) |zl
= Bn,i(L = Bra)g(IJ (SiUnit12n) — Jan|)
_ ¢(Um-:vn, T (BT (SilUn i 12n) + (1 — ﬂn,i)Jmn))
= Bn,i®(t; SiUn,i+12n) + (1 — Bni)d(u, zn)
— Bn,i(1 = Bri)g([J(SiUnit12n) — J2n|)
- ¢(Un,ixn, TN (Buid (SiUni12m) + (1 — 5n,z-)an))
< Bnid(w, Unjit12n) + (1 = Bni)d(u, Tn)
= Bn,i(L = Bna)g(IJ (SiUnit12n) — Jan|)
= &(Uniwn, T (Buid (S:Unisrzn) + (1= Bui) Jwn) )
for some g € G and for all 1 < i <n. This implies that
P(u,un) < ¢(u,yn) = ¢(u, Wnan) = ¢(u, Upoan)
= [|ull* = 2Bn.0(u, J(SoUn,12n)) — 2(1 — Bu,o)(u, J)
+ 1180 (SoUn1n) + (1 = Bro)Jan
< Brod(u, Upazn) + (1 — Bno)d(u, zn)
= Bn,o(1 = Bn,0)g(|[J (SoUn,17s) — Jxyl])
< 5n,0{5n,1¢(ua Un2tn) + (1 = Bn1)d(u, )
= B (L= Bn,1)g(|J(S1Un2n) — Janl|)
- ¢(Un,1$n, I (B (S1Unomn) + (1 — 5n,1)J~’Un)>}
+ (1 = Bno)o(u, zn) — Bno(l = Bno)g(|J(SoUn,1zn) — J24l|)

¢(u, mn) - /Bn,O(l - Bn,O)g(”J(SOUn,lmn) - Jmn”)
- Bn,Oﬁn,l(l - /Bn,l)g(HJ(SlUn,an) - an”) —
- Bn,Oﬁn,l Tt /Bn,n(l - Bn,n)g(HJ(SnUn,n-i-lxn) - an”)

_ /Bn,o¢(Un71:Jcn, T (B J(S$1Un22) + (1 — 57171)an)> .
— Bn0Bn1 - Pon—1
(3.10) x qb(Un,nxn, T (Band (SuUn i) + (1 - @Ln)m))
for all n > 0. From (3.9), (3.10) and liminf,,_ o 8,,i(1 — Bni) > 0 we obtain
Jim g([|J(SiUnit120) = Jaal)) = 0,

<
<
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lim ¢<Un,i+1$m J_l(5n,i+1J(Si+1Un,i+2$n) + (1 - ﬁn,iﬂ)Jﬂﬂn)) =0

n—oo

for all 2 > 0. By the definition of g and Proposition 2.2, we have
(311)  lim [(SUni120) = Jaa]| =0,
(312)  lim |Unis12n — I (Bnjis1d (Sis1Univon) + (1 = Bpjit1)Jzn) || = 0.
From (3.11) we obtain
nlgl;o |Bn,i ] (SiUnit12n) + (1 = Bni) Sz — Jau|
(3.13) = nh—>I§o Bn,ill J (SiUnit12n) — Jau|| = 0.

Since J~! is also norm-to-norm continuous on bounded sets, from (3.11) and (3.13)
we have

(3.14) li_>m HSiUn,i+1$n — mn|| = O,
(3.15) T ([T (B (SiUnian) + (1= Bug) Jan) = 2a]] =0

for all 4 > 0. From (3.12) and (3.15) we obtain
(3.16) lim ||Upiy12n — x| =0
n—oo
for all ¢ > 0. Since z,,, — p, we have Uy, j+12,, — p for all ¢ > 0. From (3.14) and

(3.16) we obtain
lim ||S;Un i+17n — Unjiv12n|| =0
n—0o0

for each ¢ > 0. Since U,, i+12,, — p and S; is relatively nonexpansive, we have
p € F(S;) = F(S;) for all ¢ > 0. Hence p € (2, F(S;). Now we shall prove that
p € EP(f). From (3.2), (3.9) and Proposition 2.10 we have
¢ (Un, Yn) = ¢(T'ynyna Yn) < ¢(u, yn) — ¢(U>T'ynyn)
< ¢(u,xn) - ¢(u,un) — 0.

It follows from Proposition 2.2 that
(3.17) lim [Jun — ynll = 0.

n—oo

Since x,, — p, it follows from (3.6) and (3.17) that u,, — p and y,, — p.
Since J is uniformly continuous on any bounded set of E, from (3.17) we obtain
|| Jun, — Jyn|| — 0. By the assumption that -y, > r, we have

1
(3.18) lim —|Ju, — Jyn| = 0.
n—o0 "}/n
Since u, = 1%, yn, we obtain
1

n

for all y € C. Replacing n by nj in (3.19), from (Az) we deduce

1
(3.20) T@/ = Unys JUn,, — Jynk> > _f(unk’y) > f(yaunk)
N



292 YUKINO TOMIZAWA

for all y € C. Since y — f(z,y) is convex and lower semicontinuous, it is also
weakly lower semicontinuous. Letting ny — oo in (3.20), from (3.18) and (A4) we
have f(y,p) <0 for all y € C. For t € (0,1] and y € C, letting y; = ty + (1 — t)p,
then y € C and f(yt,p) < 0. From (A;) and (A4) we obtain

0= f(yt,yt) <tf(ye,y) + (1 =) f(ye,p) < tf(yt,y)-

Dividing by t, we have f(y;,y) > 0 for all y € C. Letting ¢ | 0, from (A3) we obtain
f(p,y) > 0. Therefore p € EP(f), and so p € F. This shows that w({z,}) C F.

Finally, we have prove that w({x,}) is a singleton and z,, — IIpx. Let w = IIpxy.
Since w € F' C C,, N Q,, and z,, 41 = l¢,ng, o, We have

A(Tpy1,70) < O(w, z0)

for all n > 0. Since the norm is weakly lower semicontinuous, this implies that

¢(p,x0) = |lp|* — 2(p, Jzo) + |0
< tim inf (| [|* = 2, Tao) + o)
= liminf ¢(zy, , z0)

(3.21) < limsup ¢(zp,, o) < ¢p(w, zo).

k—o0

It follows from the definition of w and (3.21) that p = w. This implies that w({zy})
is a singleton and ¢(x, ,zo) = ¢(w,xo). Therefore

0= klggo (¢($nk7x0) — ¢(w, 1’0))
= tim ([ ? = 0] = 2(a, — v, Ja0))

. 2 2
= tim [fa, | — [,
that is,

(3.22) lim ||z, [|* = ||
k—o00

Since F is uniformly convex, it has the Kadec-Klee property. It follows from (3.22)
and x,, — w that z,, - w = IIpxg. Since w({xy}) is a singleton, we have z,, —
11 FX(. O

The following theorems can be obtained by Theorem 3.1.

Theorem 3.2 ([19]). Let E be a uniformly smooth and uniformly convexr Banach
space, C' a nonempty closed convexr subset of E. Let f : C' x C' = R a bifunction
satisfying (A1)—(A4) and S a relatively nonexpansive mapping from C into itself
such that F := F(S)NEP(f) # 0. Let {a,} C [0,1] be a sequence real numbers
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such that lim, oo (1 — ay) > 0. Let {z,,} be the sequence generated by

xg € C,

Yn = J HanJSzn + (1 — ap)Jzy),

(3.23) un € C such that f(un,y) + %(y — Up, Jup — Jyn) >0 for ally € C,
Co = {2 € C g(2,un) < $(z,70)

Qn=12€C:{(ryn—2Jrog— Ja,) >0}

Tn+1 = HCannfUO

for n. > 0, where Ilg,ng, s the generalized projection of E onto Cp, N @y and
{"} C [r,00) for some r > 0. Then {x,} converges strongly to llpxy, where I is
the generalized projection of E onto F'.

Proof. Let S,, = S, fBno = apn and {B,;}1; = {0} for all n > 0 in Theorem 3.1.
This shows that (3.1) is equivalent to (3.23). Therefore, the conclusion of Theorem
3.2 can be deduced from Theorem 3.1. [l

Theorem 3.3. Let E be a uniformly smooth and uniformly conver Banach space,
C a nonempty closed conver subset of E. Let A be an a-inverse strongly monotone
operator of C' into E*, f : C x C — R a bifunction satisfying (A1)—(A4) and
{Si}52, an infinite family of relatively nonexpansive mappings of C' into itself such
that F := (2o F(S;) N EP # 0. Let {8}l be a sequence real numbers such
that iminf,, o0 Bni(1 — Bns) > 0, Wy, the W-mapping generated by {S;}7_, and
{Bn.iti—o- Let {x,} be the sequence generated by

xo € C,
Yn = Wpp,
up € Ky, yn, that s,
(3.24) fun,y) + (Aup, y — up) + %(y — Up, Jup, — Jyn) >0 for ally € C,

Cﬂ - {z € C : ¢(z,un) S (b(z,xn)},
Qn={2€C: (xy— 2 Jog— Jx,) > 0};
Tn+1 = HCannl”O

for n. > 0, where Ilg,ng, s the generalized projection of E onto Cp, N @y and
{1} C [r,00) for some r > 0. Then {x,} converges strongly to llpxzg, where Il is
the generalized projection of E onto F'.

Proof. Let g(un,y) = f(un,y)+ (Auy, y —uy). By Propositions 2.11 and 2.12, (3.24)
is equivalent to (3.1) in Theorem 3.1. Therefore, the conclusion of Theorem 3.3 can
be deduced from Theorem 3.1. U

4. STRONG CONVERGENCE THEOREMS OF CONVEX COMBINATIONS

In this section, we prove strong convergence theorems of convex combinations
for finding a common element of the set of solutions for a generalized equilibrium
problem and the set of common fixed points of infinite relatively nonexpansive
mappings in a Banach space.



294 YUKINO TOMIZAWA

Theorem 4.1. Let E be a uniformly smooth and uniformly convexr Banach space, C
a nonempty closed convex subset of E. Let f : C x C'— R be a bifunction satisfying
(A1)—(Aq) and {S;}2, an infinite family of relatively nonexpansive mappings of
C into itself such that F := ;2 F(S;) N EP(f) # 0. Let {\ni}?y C [0,1) be a
sequence real numbers such that Z?:O Mg =1 foralln >0 and lim,, o0 Ay s > 0 for
each i > 0, and V,, the mapping defined by (2.3). Let {x,} be the sequence generated

by

xo € C,

Yn = Vain,

Un € Ty, Yn, that is, f(un,y)+ %l(y — Up, Jup — Jyn) >0 for ally € C,
Cr={2€C:d(z,un) < d(2,20) };

Qn=1{2€C: (xy— 2z, Jxg— Jx,) > 0};

Tn+1 = chan$0

(4.1)

for n > 0, where Ilg,ng, s the generalized projection of E onto Cp, N @y and
{m} C [r,00) for some r > 0. Then {x,} converges strongly to Ilpxg, where g is
the generalized projection of E onto F'.

Proof. First we prove that C), N Q, C C is closed convex subset for all n > 0. In
fact, it is obvious that C), is closed, and @, is closed and convex for all n > 0. It
follows that C), is convex for all n > 0 because ¢(z,u,) < ¢(z,zy,) is equivalent to

2(2, Jop — Jup) < HanQ - HUNHQ

Thus C,, N Q,, is closed and convex for all n > 0.

Next we prove that ' C C, N Q, for all n > 0. Let u, = T, y, for all n > 0
and v € F. It follows from Proposition 2.8 (i) and Proposition 2.9 (iii) that u €
Moo (Vi) N F(T,,). We have T, is relatively nonexpansive by Proposition 2.9.
By Proposition 2.8 (ii), we have

(4.2) P(u, un) = ¢(u, Ty, yn) < O(u,yn) = ¢(u, Van) < ¢(u, zn).
This implies that u € C,, and so F' C C), for all n > 0. By induction, now we prove
that FF € C, N Q, for all n > 0. In fact, since Qg = C, we have F' C Cy N Q.

Suppose that F' C Cy N Q, for some k£ > 0. Then there exists zi41 € Cx N Qp such
that zi+1 = Ilg, g, 0. By the definition of x4, we have

(4.3) <.Tk+1 -z, J:E() - J:Uk+1> > 0

for all z € Cp N Q. Since F C Ci N Qy, we have (4.3) for all z € F. This shows that
z € Qgy1, and so F' C Qgy1. Therefore F C C,, N Q,, for all n > 0.

Next we prove that {z,} is bounded. By the definition of @,,, we have z, =
I, xo for all n > 0. Hence, by Proposition 2.5,

(2, x0) = ¢(Ilg, 20, 20) < O(u, 20) — ¢(u, g, z0) < P(u, z0)

for all w € F C @y and n > 0. This implies that {¢(zn,x0)} is bounded, and so
{zy,} and {u,} are bounded in C. Since z,4+1 = Il¢,ng,xo and z, = g, xo, we
have

¢(2n, x0) < ¢(Tn41,20)
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for all n > 0. This implies that {¢(x,, zo)} is nondecreasing, and so there exists the
limit limy, 00 @(2y, o). By Proposition 2.5, we deduce
(i1, 2n) = O(ant1,11g,z0) < d(ant1, z0) — d(llg,z0, Z0)
= ¢(xn+17 .T()) - ¢(x7l7 ‘T:O)

for all n > 0. This implies that
(4.4) lim ¢(zpy1,2,) =0.

n—o0

Since z,41 = le,ng, 2o € Cy, by the definition of Cj,, we have
(4.5) A(Tnt1,un) < O(Tnt1, Tn)-

Since E is smooth and uniformly convex, from (4.4), (4.5) and Proposition 2.2 we
obtain

nlggo [Zn41 — unll = 7}1_?010 [#n41 — @all =0
and
(4.6) nh_}ngo |z, — un|| = 0.

Since J is uniformly norm-to-norm continuous on bounded subsets, we have
(4.7) lim ||Jz, — Ju,| = 0.
n—oo

Next we prove that ||Sjz,, — || — 0 for all [ > 0. By the definition of A, ;, we
have 1-\,,; = Zi:O,l,...,n,i;ﬁl An,i- For large enough n > 0 and 0 < [ < n, Proposition
2.1 implies that

(u, un) < d(u, yn) = ¢(u, Vozn)

n 2

T Anid (Siwn)
=0

= lull® = 23" Anilu, J(Sizn)) +
1=0

= [lull® = 2> Aniu, J(Sizn))

=0

2
Dm0, it i (Sitn)

1— Ay

+ /\n,lJ(Slxn) + (1 — )\n,l)

Slwﬂ”2

< ul? =23 Anifu, J(Sizn)) + Ang
=0

+ (1= )

‘ 2oi0,1,....m i1 i (9i%n)

2
v

ZizO,l,...,n,i;&l )\n,zJ(Sll‘n)
- )‘n,l

- /\n,l(l - AnJ)Q(HJ(SWn) -

)

= [[ull® =2 A, J(Sizn)) + > Anill Sizal|?
=0 =0
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Zz‘zo,l,...,n,i;él An,id (Sitn)
1=

— (1= )\n,l)g<H=](5l$n) -

)

D i=0,1,...myil Anid (SiTn)
= ¢(U7 S'Liﬂn) - An,l(l - )\n,l)g (H‘](Slx”) o = ’1 7—#& l
D 2i=0,1,.. il Anji (SiTn)
< ¢(U7 $n) - An,l(l - )\n,l)g (HJ(SZZETL) B = ’1 7—#& l

for some g € G. Thus

Doic01,.. mirtl njid (Sizn)
1- A'rL,l

J(Sla;n) —

)\n,l(l - )‘n,l)g<

< ¢(u, zn) — AU, up)
= [|zall” = llunll* + 2(u, Jun — Jn)
< 2llull - | Jun = Jznll + (lznll + lual)lzn = unll-
This implies that, together with (4.6) and (4.7),
Zi:(],l,...,n,i;él An,i (Sitn)
1— Ay
for all I > 0. From (4.2), (4.6), (4.7) and Proposition 2.10 we have

¢(Un7yn) = Qb(T’Ynymyn)
< o(u, yn) — Qb(uvT’Ynyn)
< ¢(u, Tp) — Hu, un)
< len = unl|(lznll + [lynll) + 2lull[| Jun = Jzn|| = 0.

)

n—oo

(48) i |7(510,) -

This implies that
(4.9) nh_}rrolo llun, — ynll = 0.
From (4.6) and (4.9) we obtain

Tim [l — ol < Tim (e — a4 flun — wal}} = 0.
Since J is uniformly norm-to-norm continuous on bounded subsets, we have
(4.10) lim ||Jz, — Jyn| = 0.

n—oo

Since

[Jan = J(Sixn)|| < [[Jan = I (Vazn) || + [T (Sizn) — J (Vaan) ||

= |[Jxn — Jyull + ||J(Sizn) — Anid (Sizn)
i=0
= [| Tz — Jyal
+ (1 - )‘n,l) J(Slxn) _ ZZ—O,I,..A,]?,'L;EZA , ( )
— \nl
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for large enough n > 0, from (4.8) and (4.10) we obtain
lim || Jz, — J(Siz,)|| = 0.
n—oo

Since J~! is also uniformly norm-to-norm continuous on bounded subsets, we have
(4.11) lim ||z, — Sizn|| =0
n—oo

for all I > 0.

Next we prove that w({z,}) C F, where w({zy}) is the set consisting all of the
weak limits points of {z,}. In fact, for any p € w({z,}), there exists a subsequence
{xn,} C {zn} such that z,, — p. Since S; is relatively nonexpansive, (4.11) implies
p € N2 F(Si) = N2y F(Si). Now we prove that p € EP(f). Since x,, — p,
it follows from (4.6) and (4.9) that u,, — p and y,, — p. Since J is uniformly
continuous on any bounded set of E, from (4.9) we have || Ju, — Jy,| — 0. By the
assumption that v, > r, we have

1
(4.12) lim —|Ju, — Jyy| = 0.
n—o0 "}/n
Since u,, = T’ yn, we obtain
1
(4'13) f(unay)+7<y_um<]un_<]yn> >0

n

for all y € C. Replacing n by ny in (4.13), from (Az) we have

(4'14) L<y — Uny,, Junk - Jynk> > _f<unk7y) > f(yyunk)

Y

for all y € C. Since y — f(z,y) is convex and lower semicontinuous, it is also weakly
lower semicontinuous. Letting ny — oo in (4.14), from (4.12) and (A4) we obtain
f(y,p) <0 forall y e C. Fort e (0,1] and y € C, letting y = ty + (1 — t)p, then
y € C and f(ys,p) <0. From (A;) and (A4) we have

0= f(yt,yt) <tf(ye,y) + (1 =) f(ye, p) < tf(ye, y)-

Dividing by ¢, we obtain f(y:,y) > 0 for all y € C. Letting ¢ | 0, from (A3) we
have f(p,y) > 0 for all y € C. Therefore p € EP(f), and so p € F. This shows that
w({zn}) C F.

Finally, we have prove that w({z,}) is a singleton and z,, — I pxg. Let w = M pxy.
From w € F' C C,, N Qy and xy,41 = g, g, 7o we have

¢(Tny1,20) < P(w, z0)

for all n > 0. Since the norm is weakly lower semicontinuous, this implies that

¢(p, x0) = |IplI* = 2(p, Jwo) + [[zo]?
< lim inf ||z, |* = 2(2ny, Jz0) + [|70]|%)
k—o0

= liminf ¢(xy, , x0)
k—o0
(4.15) < limsup ¢(zp,, zo) < ¢(w, o).

k—o0
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It follows from the definition of w and (4.15) that p = w. This implies that w({x,})
is a singleton and ¢(x, ,z9) = ¢(w,xo). Therefore

0= kh—>r{>lo (¢($nk7x0) — ¢(w, ‘TO))
. 2 2
= Jim (e, 12~ 0] ~ 2z, — . Ja0))
. 2 2
= lim o, | —
that is,

(4.16) lim |z, |* = [Jw].
k—o0

Since F is uniformly convex, it has the Kadec-Klee property. It follows from (4.16)
and x,, — w that z,, - w = IIpxg. Since w({zy}) is a singleton, we have z,, —
HFZL‘(]. ]

The following theorem can be obtained by Theorem 4.1.

Theorem 4.2. Let E be a uniformly smooth and uniformly conver Banach space,
C a nonempty closed convex subset of E. Let A be an a-inverse strongly monotone
operator of C' into E*, f : C x C — R a bifunction satisfying (A1)—(A4) and
{Si}2, an infinite family of relatively nonexpansive mappings of C into itself such
that F == (2 F(Si) NEP # 0. Let {\n;}1o C [0,1) be a sequence real numbers
such that Z?:O Mg =1 for alln >0 and lim, o0 A > 0 for each i > 0, and V,
the mapping defined by (2.3). Let {x,} be the sequence generated by

xg € C,
Yn = Valp,
Up, € K5, yn, that is,
(4.17) ftn,y) + (A, y — wn) + 2y — tp, Jun — Jyp) >0 for ally € C,

Cn={2€C:¢(z,uy) < (;3(27;7;)};
Qn:{ZEC: <$n—Z,J$0—an> 20};

Tn1 = le,ng, o

for n. > 0, where Ilg,ng, s the generalized projection of E onto Cp, N @y and
{} C[r,o0) for some r > 0. Then {x,} converges strongly to Ilpxg, where g is
the generalized projection of E onto F'.

Proof. Let g(un,y) = f(un,y)+ (Aupn, y—uy,). By Propositions 2.11 and 2.12, (4.17)
is equivalent to (4.1) in Theorem 4.1. Therefore, the conclusion of Theorem 4.2 can
be deduced from Theorem 4.1. O
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