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A point p ∈ C is called a fixed point of T if Tp = p. The set of fixed points of a
mapping T is denoted by F (T ). A point p ∈ C is called an asymptotic fixed point
of T if there exists a sequence {xn} ⊂ C such that xn ⇀ p and ∥xn − Txn∥ → 0.

We denote by F̂ (T ) the set of all asymptotic fixed points of T. A mapping T is said

to be relatively nonexpansive if F̂ (T ) = F (T ) ̸= ∅ and ϕ(u, Tx) ≤ ϕ(u, x) for all
u ∈ F (T ) and x ∈ C. Let α > 0. A operator A of C into E∗ is said to be α-inverse
strongly monotone if

⟨x− y,Ax−Ay⟩ ≥ α∥Ax−Ay∥2

for all x, y ∈ C. It is known that if A is an α-inverse strongly monotone operator,
then A is 1/α-Lipschitzian.

Example ([3]). Let E be a Banach space, f a continuously Fréchet differentiable,
convex functional on E and ∇f the gradient of f. If ∇f is 1/α-Lipschitz continuous,
then ∇f is α-inverse strongly monotone.

In 2008, Takahashi and Takahashi [15] proved a strong convergense theorem for
finding an element of F (S) ∩ EP in a Hilbert space H, where S is a nonexpan-
sive mapping of a nonempty closed convex subset C ⊂ H into itself and A is an
inverse strongly monotone operator of C into H. Recently, Chang, Lee and Chan
[4] considered iterative methods for finding an element of F (S) ∩ F (T ) ∩ EP in a
certain Banach space E, where S and T are two relatively nonexpansive mappings
of a nonempty closed convex subset C ⊂ E into itself and A is an inverse strongly
monotone operator of C into E∗. On the other hand, Matsushita, Nakajo and Taka-
hashi [10] introduced iterative methods for finding an element of

∩∞
i=0 F (Si), where

Si is a relatively nonexpansive mapping of C into itself for all i ≥ 0.
In this paper, motivated by Chang et al. [4] and Matsushita et al. [10], we in-

troduce new iterative methods for finding an element of
∩∞

i=0 F (Si) ∩ EP, where
Si is a relatively nonexpansive mapping of C into itself for all i ≥ 0 and A is an
inverse-strongly monotone operator of C into E∗. In the next section, we recall some
basic notions and give the definition of W -mappings and convex combinations of
mappings. We present and prove our main results which are strong convergence
theorems of W -mappings and convex combinations in Section 3 and Section 4, re-
spectively.

2. Preliminaries

Throughout this paper, we assume that E is a real Banach space with a norm
∥·∥, E∗ is the dual space of E and ⟨·, ·⟩ is the pairing between E and E∗. We denote
strong convergence of a sequence {xn} to x by xn → x and weak convergence by
xn ⇀ x.

Let U = {x ∈ E : ∥x∥ = 1}. A Banach space E is said to be reflexive if the
natural mapping E → E∗∗ is surjective and we write E = E∗∗. A Banach space E
is said to be strictly convex if ∥x+ y∥/2 < 1 for all x, y ∈ U with x ̸= y. A Banach
space E is said to be uniformly convex if for each ϵ ∈ (0, 2], there exists δ > 0 such
that, for any x, y ∈ U,

∥x− y∥ ≥ ϵ implies

∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.
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It is well known that a uniformly convex Banach space is reflexive and strictly
convex.

A Banach space is said to have the Kadec-Klee property if, for every sequence
{xn} ⊂ E, xn ⇀ x and ∥xn∥ → ∥x∥ together imply ∥xn − x∥ → 0. It is known
that a uniformly convex Banach space has the Kadec-Klee property. Let G = {g :
[0,∞) → [0,∞) : g(0) = 0, g is continuous, strictly increasing and convex}. We
have the following theorem for a uniformly convex Banach space.

Proposition 2.1 ([20]). A Banach space E is uniformly convex if and only if, for
every bounded subset B of E, there exists gB ∈ G such that

∥λx+ (1− λ)y∥2 ≤ λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)gB(∥x− y∥)
for all x, y ∈ B and 0 ≤ λ ≤ 1.

A Banach space E is said to be smooth if there exists

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

for all x, y ∈ U. In this case, the norm of E is said to be Gâteaux differentiable. A
Banach space E is said to be uniformly Gâteaux differentiable if for each y ∈ U,
the limit defined by (2.1) exists uniformly for x ∈ U. It is also said to be uniformly
smooth if the limit is attained uniformly for all x, y ∈ U. It is well known that
every uniformly smooth Banach space is reflexive and with uniformly Gâteaux dif-
ferentiable norm. It is also known that E∗ is uniformly convex if E is uniformly
smooth.

The mapping J of E into 2E
∗
defined by

J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}
for x ∈ E is called the normalized duality mapping. By the Hahn-Banach theorem,
J(x) ̸= ∅ for each x ∈ E. The normalized duality mapping J has the following
properties:
(i) if E is smooth, then J is single-valued;
(ii) if E is strictly convex, then J is one-to-one and ⟨x− y, x∗ − y∗⟩ > 0 holds

for all (x, x∗), (y, y∗) ∈ J with x ̸= y;
(iii) if E is reflexive, then J is surjective;
(iv) if E is uniformly smooth, then J is uniformly norm-to-norm continuous

on each bounded subset of E.
Let E be a smooth, strictly convex and reflexive Banach space and C a nonempty

closed convex subset of E. Throughout this paper, the Lyapunov functional ϕ :
E × E → �+ is defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for all x, y ∈ E; see [1, 7, 12]. It is obvious that
(i) ϕ(x, y) = 0 if and only if x = y;
(ii) (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2 for all x, y ∈ E.

Proposition 2.2 ([7]). Let E be a smooth and uniformly convex Banach space and
{xn}, {yn} ⊂ E two sequences. If ϕ(xn, yn) → 0 and either {xn} or {yn} is bounded,
then ∥xn − yn∥ → 0.
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Let {xn} and {yn} be two bounded sequences in a smooth Banach space. It is
obvious from the definition of ϕ that ϕ(xn, yn) → 0 whenever ∥xn − yn∥ → 0. By
this fact and Proposition 2.2, if {xn} and {yn} are two bounded sequences in a
uniformly smooth and uniformly convex Banach space, then

∥xn − yn∥ → 0 ⇔ ∥Jxn − Jyn∥ → 0 ⇔ ϕ(xn, yn) → 0.

Proposition 2.3 ([7]). Let E be a smooth, strictly convex and reflexive Banach
space, C a nonempty closed convex subset of E and x ∈ E. Then there exists a
unique element x0 ∈ C such that ϕ(x0, x) = miny∈C ϕ(y, x).

Let E be a smooth, strictly convex and reflexive Banach space and C a nonempty
closed convex subset of E. Following Alber [1], the generalized projection ΠC of E
onto C is defined by

ΠCx = arg min
y∈C

ϕ(y, x)

for all x ∈ E. We have the following results for generalized projections.

Proposition 2.4 ([1, 7]). Let E be a smooth Banach space, C a nonempty convex
subset of E, x ∈ E and x0 ∈ C. Then x0 = ΠCx if and only if ⟨y−x0, Jx0−Jx⟩ ≥ 0
for all y ∈ C.

Proposition 2.5 ([1, 7]). Let E be a smooth, strictly convex and reflexive Banach
space, C a nonempty closed convex subset of E and y ∈ E. Then

ϕ(x,ΠCy) + ϕ(ΠCy, y) ≤ ϕ(x, y)

for all x ∈ C.

We denoted by F (T ) the set of all fixed points of a mapping T.

Proposition 2.6 ([11]). Let E be a smooth and strictly convex Banach space, C a
nonempty closed convex subset of E and T a relatively nonexpansive mapping of C
into itself. Then F (T ) is closed and convex.

Let E be a smooth, strictly convex and reflexive Banach space, C a nonempty
closed convex subset of E, {Si}∞i=0 a family of mappings of C into inself and {βn,i :
0 ≤ i ≤ n}∞n=0 ⊂ [0, 1] a sequence of real numbers. For any n ≥ 0, let us define a
mapping Wn of C into itself as follows:

Un,n+1 = I,

Un,n = ΠCJ
−1
(
βn,nJ(SnUn,n+1) + (1− βn,n)J

)
,

Un,n−1 = ΠCJ
−1
(
βn,n−1J(Sn−1Un,n) + (1− βn,n−1)J

)
,

...

Un,i = ΠCJ
−1
(
βn,iJ(SiUn,i+1) + (1− βn,i)J

)
,(2.2)

...

Un,1 = ΠCJ
−1
(
βn,1J(S1Un,2) + (1− βn,1)J

)
,

Wn = Un,0 = J−1
(
βn,0J(S0Un,1) + (1− βn,0)J

)
,
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where I is the identity mapping on C. Such a mapping Wn is called the W -
mapping generated by {Si}ni=0 and {βn,i}ni=0. We have the following result for the
W -mappings; see [9, 10, 16, 18].

Proposition 2.7 ([10]). Let E be a uniformly smooth and strictly convex Banach
space, C a nonempty closed convex subset of E and {Si}ni=0 a family of relatively
nonexpansive mappings of C into itself such that

∩n
i=0 F (Si) ̸= ∅. Let {βn,i}ni=0 be

a sequence of real numbers such that 0 < βn,0 ≤ 1 and 0 < βn,i < 1 for every

1 ≤ i ≤ n. Let {Un,i}n+1
i=0 be a sequence defined by (2.2) and Wn the W -mapping

generated by {Si}ni=0 and {βn,i}ni=0. Then the following hold:
(i) F (Wn) =

∩n
i=0 F (Si);

(ii) for every 0 ≤ i ≤ n, x ∈ C and z ∈ F (Wn), ϕ(z, Un,ix) ≤ ϕ(z, x)
and ϕ(z, SiUn,i+1x) ≤ ϕ(z, x).

Let E be a smooth and uniformly convex, C a nonempty closed convex subset
of E, {Si}∞i=0 a family of relatively nonexpansive mappings of C into itself and
{λn,i : 0 ≤ i ≤ n}∞n=0 ⊂ [0, 1] a sequence of real numbers. For any n ≥ 0, let Vn be
a mapping of C into itself defined by

(2.3) Vn = J−1
n∑

i=0

λn,iJSi.

We have the following result for convex combinations of relatively nonexpansive
mappings.

Proposition 2.8 ([10]). Let E be a smooth and uniformly convex Banach space, C a
nonempty closed convex subset of E and {Si}∞i=0 a family of relatively nonexpansive
mappings of C into itself such that

∩∞
i=0 F (Si) ̸= ∅. Let {λn,i}ni=0 ⊂ [0, 1] such that∑n

i=0 λn,i = 1 for all n ≥ 0 and limn→∞ λn,i > 0 for each i ≥ 0. Let Vn be a mapping
of C into itself defined by (2.3). Then the following hold:
(i)
∩∞

n=0 F (Vn) =
∩∞

i=0 F (Si);
(ii) for every n ≥ 0, x ∈ C and z ∈

∩∞
i=0 F (Si), ϕ(z, Vnx) ≤ ϕ(z, x).

We denoted by F̂ (T ) the set of all asymptotic fixed points of a mapping T. For
solving the equilibrium problem, let us assume that a bifunction f : C × C → �

satisfies the following conditions:
(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) f is upper-hemicontinuous, that is, lim supt↓0 f(x+ t(z − x), y) ≤ f(x, y)

for all x, y, z ∈ C;
(A4) the function y 7→ f(x, y) is convex and lower semicontinuous.

Proposition 2.9 ([19]). Let E be a uniformly smooth and strictly convex Banach
space, C a nonempty closed convex subset of E and f : C × C → � a bifunction
satisfying (A1)–(A4). For r > 0 and x ∈ E, define a mapping Tr of E into C as
follows:

(2.4) Tr(x) = {u ∈ C : f(u, y) +
1

r
⟨y − u, Ju− Jx⟩ ≥ 0, ∀y ∈ C}
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for all x ∈ E. Then the following hold:
(i) Tr is single-valued;
(ii) Tr is a firmly nonexpansive-type mapping, that is,

⟨Trx− Try, JTrx− JTry⟩ ≤ ⟨Trx− Try, Jx− Jy⟩

for all x, y ∈ E;
(iii) F (Tr) = F̂ (Tr) = EP (f);
(iv) EP (f) is a closed convex set of C.

Remark. It follows from Proposition 2.9 that the mapping Tr defined by (2.4) is
relatively nonexpansive. Indeed, by Proposition 2.9 (ii), we have

⟨Trx− Try, JTrx− JTry⟩ ≤ ⟨Trx− Try, Jx− Jy⟩

for all x, y ∈ C. Moreover, we obtain

ϕ(Trx, Try) + ϕ(Try, Trx)

= 2∥Trx∥2 − 2⟨Trx, JTry⟩ − 2⟨Try, JTrx⟩+ 2∥Try∥2

= 2⟨Trx, JTrx− JTry⟩+ 2⟨Try, JTry − JTrx⟩
= 2⟨Trx− Try, JTrx− JTry⟩

and

ϕ(Trx, y) + ϕ(Try, x)− ϕ(Trx, x)− ϕ(Try, y)

= ∥Trx∥2 − 2⟨Trx, Jy⟩+ ∥y∥2 + ∥Try∥2 − 2⟨Try, Jx⟩+ ∥x∥2

− ∥Trx∥2 + 2⟨Trx, Jx⟩ − ∥x∥2 − ∥Try∥2 + 2⟨Try, Jy⟩ − ∥y∥2

= 2⟨Trx, Jx− Jy⟩ − 2⟨Try, Jx− Jy⟩
= 2⟨Trx− Try, Jx− Jy⟩.

Hence

ϕ(Trx, Try) + ϕ(Try, Trx) ≤ ϕ(Trx, y) + ϕ(Try, x)− ϕ(Trx, x)− ϕ(Try, y)

≤ ϕ(Trx, y) + ϕ(Try, x)

for all x, y ∈ C. Taking y = p ∈ F (Tr), we obtain

ϕ(p, Trx) ≤ ϕ(p, x).

Thus, by Proposition 2.9 (iii), this implies that Tr is relatively nonexpansive.

Proposition 2.10 ([19]). Let E be a smooth, strictly convex and reflexive Banach
space, C a nonempty closed convex subset of E, f : C × C → � a bifunction
satisfying (A1)–(A4) and r > 0. Let Tr be the mapping defined by (2.4). Then

ϕ(p, Trx) + ϕ(Trx, x) ≤ ϕ(p, x)

for all p ∈ F (Tr) and x ∈ E.

For solving the generalized equilibrium problem, let us assume that a nonlinear
operator A of C into E∗ is an α-inverse strongly monotone and a bifunction f :
C × C → � satisfies the conditions (A1)–(A4).
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Proposition 2.11 ([4]). Let E be a smooth, strictly convex and reflexive Banach
space, C a nonempty closed convex subset of E and A an α-inverse strongly mono-
tone operator of C into E∗. Let f : C×C → � be a bifunction satisfying (A1)–(A4)
and g : C × C → � a bifunction defined by

g(x, y) = f(x, y) + ⟨Ax, y − x⟩

for all x, y ∈ C. Let r > 0 and x ∈ E. Then g satisfies (A1)–(A4) and there exists
u ∈ C such that

g(u, y) +
1

r
⟨y − u, Ju− Jx⟩ ≥ 0

for all y ∈ C.

Propositions 2.9 and 2.10 can obtain the following proposition.

Proposition 2.12 ([4]). Let E be a uniformly smooth and strictly convex Banach
space, C a nonempty closed convex subset of E, A an α-inverse strongly monotone
operator of C into E∗ and f : C × C → � a bifunction satisfying (A1)–(A4). For
any r > 0 and x ∈ E, define a mapping Kr of E into C as follows:

Kr(x) = {u ∈ C : f(u, y) + ⟨Au, y − u⟩+ 1

r
⟨y − u, Ju− Jx⟩ ≥ 0, ∀y ∈ C}

for all x ∈ E. Then the following hold:
(i) Kr is single-valued;
(ii) Kr is a firmly nonexpansive-type mapping, that is,

⟨Krx−Kry, JKrx− JKry⟩ ≤ ⟨Krx−Kry, Jx− Jy⟩

for all x, y ∈ E;
(iii) F (Kr) = F̂ (Kr) = EP ;
(iv) EP is a closed convex set of C;
(v) ϕ(p,Krx) + ϕ(Krx, x) ≤ ϕ(p, x) for all p ∈ F (Kr).
Moreover, the mapping Kr is relatively nonexpansive.

3. Strong convergence theorems of W -mappings

In this section, we prove a strong convergence theorem of W -mappings for finding
a common element of the set of solutions for a generalized equilibrium problem and
the set of common fixed points of infinite relatively nonexpansive mappings in a
Banach space.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space,
C a nonempty closed convex subset of E. Let f : C×C → � a bifunction satisfying
(A1)–(A4) and {Si}∞i=0 an infinite family of relatively nonexpansive mappings of
C into itself such that F :=

∩∞
i=0 F (Si) ∩ EP (f) ̸= ∅. Let {βn,i}ni=0 ⊂ (0, 1) be a

sequence real numbers such that lim infn→∞ βn,i(1− βn,i) > 0, Wn the W -mapping
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generated by {Si}ni=0 and {βn,i}ni=0. Let {xn} be the sequence generated by

x0 ∈ C,

yn = Wnxn,

un ∈ Tγnyn, that is, f(un, y) +
1
γn
⟨y − un, Jun − Jyn⟩ ≥ 0 for all y ∈ C,

Cn = {z ∈ C : ϕ(z, un) ≤ ϕ(z, xn)};
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0};
xn+1 = ΠCn∩Qnx0

(3.1)

for n ≥ 0, where ΠCn∩Qn is the generalized projection of E onto Cn ∩ Qn and
{γn} ⊂ [r,∞) for some r > 0. Then {xn} converges strongly to ΠFx0, where ΠF is
the generalized projection of E onto F .

Proof. First we prove that Cn ∩ Qn ⊂ C is closed convex subset for all n ≥ 0. In
fact, it is obvious that Cn is closed, and Qn is closed and convex for all n ≥ 0. It
follows that Cn is convex for all n ≥ 0 because ϕ(z, un) ≤ ϕ(z, xn) is equivalent to

2⟨z, Jxn − Jun⟩ ≤ ∥xn∥2 − ∥un∥2.

Thus Cn ∩Qn is closed and convex for all n ≥ 0.
Next we prove that F ⊂ Cn ∩ Qn for all n ≥ 0. Let un = Tγnyn for all n ≥ 0

and u ∈ F. It follows from Proposition 2.7 (i) that u ∈ F (Wn) for all n ≥ 0. We
obtain Tγn is relatively nonexpansive by Proposition 2.9. Since Si is also relatively
nonexpansive for all n ≥ 0, by Proposition 2.7 (ii), we have

ϕ(u, un) = ϕ(u, Tγnyn) ≤ ϕ(u, yn) = ϕ(u,Wnxn)

= ϕ
(
u, J−1

(
βn,0J(S0Un,1xn) + (1− βn,0)Jxn

))
= ∥u∥2 − 2⟨u, βn,0J(S0Un,1xn) + (1− βn,0)Jxn⟩

+ ∥βn,0J(S0Un,1xn) + (1− βn,0)Jxn∥2

≤ ∥u∥2 − 2βn,0⟨u, J(S0Un,1xn)⟩ − 2(1− βn,0)⟨u, Jxn⟩

+ βn,0∥S0Un,1xn∥2 + (1− βn,0)∥xn∥2

= βn,0ϕ(u, S0Un,1xn) + (1− βn,0)ϕ(u, xn)

≤ βn,0ϕ(u, xn) + (1− βn,0)ϕ(u, xn) = ϕ(u, xn).(3.2)

This implies that u ∈ Cn and so F ⊂ Cn for all n ≥ 0. By induction, now we prove
that F ⊂ Cn ∩ Qn for all n ≥ 0. In fact, since Q0 = C, we have F ⊂ C0 ∩ Q0.
Suppose that F ⊂ Ck ∩Qk for some k ≥ 0. Then there exists xk+1 ∈ Ck ∩Qk such
that xk+1 = ΠCk∩Qk

x0. By the definition of xk+1, we have

(3.3) ⟨xk+1 − z, Jx0 − Jxk+1⟩ ≥ 0

for all z ∈ Ck ∩ Qk. Since F ⊂ Ck ∩ Qk, we obtain (3.3) for all z ∈ F. This shows
that z ∈ Qk+1, and so F ⊂ Qk+1. Therefore F ⊂ Cn ∩Qn for all n ≥ 0.

We prove that {xn} is bounded. By the definition of Qn and Proposition 2.4, we
have xn = ΠQnx0 for all n ≥ 0. Hence, by Proposition 2.5,

ϕ(xn, x0) = ϕ(ΠQnx0, x0) ≤ ϕ(u, x0)− ϕ(u,ΠQnx0) ≤ ϕ(u, x0)
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for all u ∈ F ⊂ Qn and n ≥ 0. This implies that {ϕ(xn, x0)} is bounded, and so
{xn} and {un} are bounded in C.

Next we prove that ∥xn − un∥ → 0 and ∥Jxn − Jun∥ → 0. Since xn = ΠQnx0
and xn+1 = ΠCn∩Qnx0, we have ϕ(xn, x0) ≤ ϕ(xn+1, x0) for all n ≥ 0. This implies
that {ϕ(xn, x0)} is nondecreasing, and so there exists the limit limn→∞ ϕ(xn, x0).
By Proposition 2.5, we have

ϕ(xn+1, xn) = ϕ(xn+1,ΠQnx0)

≤ ϕ(xn+1, x0)− ϕ(ΠQnx0, x0)

= ϕ(xn+1, x0)− ϕ(xn, x0)

for all n ≥ 0. This implies that

(3.4) lim
n→∞

ϕ(xn+1, xn) = 0.

Since xn+1 = ΠCn∩Qnx0 ∈ Cn, by the definition of Cn, we obtain

(3.5) ϕ(xn+1, un) ≤ ϕ(xn+1, xn).

Since E is smooth and uniformly convex, from (3.4), (3.5) and Proposition 2.2 we
have

lim
n→∞

∥xn+1 − un∥ = lim
n→∞

∥xn+1 − xn∥ = 0

and

(3.6) lim
n→∞

∥xn − un∥ = 0.

Since J is uniformly continuous on any bounded subset of E, we obtain

(3.7) lim
n→∞

∥Jxn − Jun∥ = 0.

Next we prove that ω({xn}) ⊂ F, where ω({xn}) is the set consisting all of the
weak limits points of {xn}. In fact, for any p ∈ ω({xn}), there exists a subsequence
{xnk

} ⊂ {xn} such that xnk
⇀ p. We shall prove that p ∈

∩∞
i=0 F (Si). We have

ϕ(u, xn)− ϕ(u, un) = ∥xn∥2 − ∥un∥2 + 2⟨u, Jun − Jxn⟩
≤
∣∣∥xn∥ − ∥un∥

∣∣(∥xn∥+ ∥un∥) + 2∥u∥∥Jun − Jxn∥
≤ ∥xn − un∥(∥xn∥+ ∥un∥) + 2∥u∥∥Jun − Jxn∥(3.8)

for all n ≥ 0. From (3.6) and (3.7) we obtain

(3.9) lim
n→∞

(
ϕ(u, xn)− ϕ(u, un)

)
= 0.

By Proposition 2.7 (ii), we have

ϕ(u,Un,ixn) ≤ ϕ(u, xn) and ϕ(u, SiUn,i+1xn) ≤ ϕ(u,Un,i+1xn) ≤ ϕ(u, xn)

for each 0 ≤ i ≤ n. Thus {SiUn,i+1xn}n≥i and {Un,ixn}n≥i are bounded sequences
in C for all i ≥ 0. By Propositions 2.1, 2.5 and 2.7 (ii), we have

ϕ(u,Un,ixn) ≤ ϕ
(
u, J−1

(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

))
− ϕ

(
Un,ixn, J

−1
(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

))
= ∥u∥2 − 2⟨u, βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn⟩
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+ ∥βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn∥2

− ϕ
(
Un,ixn, J

−1
(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

))
= ∥u∥2 − 2⟨u, βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn⟩

+ βn,i∥SiUn,i+1xn∥2 + (1− βn,i)∥xn∥2

− βn,i(1− βn,i)g(∥J(SiUn,i+1xn)− Jxn∥)

− ϕ
(
Un,ixn, J

−1
(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

))
= βn,iϕ(u, SiUn,i+1xn) + (1− βn,i)ϕ(u, xn)

− βn,i(1− βn,i)g(∥J(SiUn,i+1xn)− Jxn∥)

− ϕ
(
Un,ixn, J

−1
(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

))
≤ βn,iϕ(u, Un,i+1xn) + (1− βn,i)ϕ(u, xn)

− βn,i(1− βn,i)g(∥J(SiUn,i+1xn)− Jxn∥)

− ϕ
(
Un,ixn, J

−1
(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

))
for some g ∈ G and for all 1 ≤ i ≤ n. This implies that

ϕ(u, un) ≤ ϕ(u, yn) = ϕ(u,Wnxn) = ϕ(u,Un,0xn)

= ∥u∥2 − 2βn,0⟨u, J(S0Un,1xn)⟩ − 2(1− βn,0)⟨u, Jxn⟩

+ ∥βn,0J(S0Un,1xn) + (1− βn,0)Jxn∥2

≤ βn,0ϕ(u,Un,1xn) + (1− βn,0)ϕ(u, xn)

− βn,0(1− βn,0)g(∥J(S0Un,1xn)− Jxn∥)

≤ βn,0

{
βn,1ϕ(u, Un,2xn) + (1− βn,1)ϕ(u, xn)

− βn,1(1− βn,1)g(∥J(S1Un,2xn)− Jxn∥)

− ϕ
(
Un,1xn, J

−1
(
βn,1J(S1Un,2xn) + (1− βn,1)Jxn

))}
+ (1− βn,0)ϕ(u, xn)− βn,0(1− βn,0)g(∥J(S0Un,1xn)− Jxn∥)

≤ · · ·
≤ ϕ(u, xn)− βn,0(1− βn,0)g(∥J(S0Un,1xn)− Jxn∥)
− βn,0βn,1(1− βn,1)g(∥J(S1Un,2xn)− Jxn∥)− · · ·
− βn,0βn,1 · · ·βn,n(1− βn,n)g(∥J(SnUn,n+1xn)− Jxn∥)

− βn,0ϕ
(
Un,1xn, J

−1
(
βn,1J(S1Un,2xn) +

(
1− βn,1)Jxn

))
− · · ·

− βn,0βn,1 · · ·βn,n−1

× ϕ
(
Un,nxn, J

−1
(
βn,nJ(SnUn,n+1xn) +

(
1− βn,n)Jxn

))
(3.10)

for all n ≥ 0. From (3.9), (3.10) and lim infn→∞ βn,i(1− βn,i) > 0 we obtain

lim
n→∞

g(∥J(SiUn,i+1xn)− Jxn∥) = 0,
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lim
n→∞

ϕ
(
Un,i+1xn, J

−1
(
βn,i+1J(Si+1Un,i+2xn) + (1− βn,i+1)Jxn

))
= 0

for all i ≥ 0. By the definition of g and Proposition 2.2, we have

lim
n→∞

∥J(SiUn,i+1xn)− Jxn∥ = 0,(3.11)

lim
n→∞

∥∥Un,i+1xn − J−1
(
βn,i+1J(Si+1Un,i+2xn) + (1− βn,i+1)Jxn

)∥∥ = 0.(3.12)

From (3.11) we obtain

lim
n→∞

∥βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn − Jxn∥

= lim
n→∞

βn,i∥J(SiUn,i+1xn)− Jxn∥ = 0.(3.13)

Since J−1 is also norm-to-norm continuous on bounded sets, from (3.11) and (3.13)
we have

lim
n→∞

∥SiUn,i+1xn − xn∥ = 0,(3.14)

lim
n→∞

∥∥J−1
(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

)
− xn

∥∥ = 0(3.15)

for all i ≥ 0. From (3.12) and (3.15) we obtain

(3.16) lim
n→∞

∥Un,i+1xn − xn∥ = 0

for all i ≥ 0. Since xnk
⇀ p, we have Unk,i+1xnk

⇀ p for all i ≥ 0. From (3.14) and
(3.16) we obtain

lim
n→∞

∥SiUn,i+1xn − Un,i+1xn∥ = 0

for each i ≥ 0. Since Unk,i+1xnk
⇀ p and Si is relatively nonexpansive, we have

p ∈ F̂ (Si) = F (Si) for all i ≥ 0. Hence p ∈
∩∞

i=0 F (Si). Now we shall prove that
p ∈ EP (f). From (3.2), (3.9) and Proposition 2.10 we have

ϕ(un, yn) = ϕ(Tγnyn, yn) ≤ ϕ(u, yn)− ϕ(u, Tγnyn)

≤ ϕ(u, xn)− ϕ(u, un) → 0.

It follows from Proposition 2.2 that

(3.17) lim
n→∞

∥un − yn∥ = 0.

Since xnk
⇀ p, it follows from (3.6) and (3.17) that unk

⇀ p and ynk
⇀ p.

Since J is uniformly continuous on any bounded set of E, from (3.17) we obtain
∥Jun − Jyn∥ → 0. By the assumption that γn ≥ r, we have

(3.18) lim
n→∞

1

γn
∥Jun − Jyn∥ = 0.

Since un = Tγnyn, we obtain

(3.19) f(un, y) +
1

γn
⟨y − un, Jun − Jyn⟩ ≥ 0

for all y ∈ C. Replacing n by nk in (3.19), from (A2) we deduce

(3.20)
1

γnk

⟨y − unk
, Junk

− Jynk
⟩ ≥ −f(unk

, y) ≥ f(y, unk
)
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for all y ∈ C. Since y 7→ f(x, y) is convex and lower semicontinuous, it is also
weakly lower semicontinuous. Letting nk → ∞ in (3.20), from (3.18) and (A4) we
have f(y, p) ≤ 0 for all y ∈ C. For t ∈ (0, 1] and y ∈ C, letting yt = ty + (1 − t)p,
then yt ∈ C and f(yt, p) ≤ 0. From (A1) and (A4) we obtain

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, p) ≤ tf(yt, y).

Dividing by t, we have f(yt, y) ≥ 0 for all y ∈ C. Letting t ↓ 0, from (A3) we obtain
f(p, y) ≥ 0. Therefore p ∈ EP (f), and so p ∈ F. This shows that ω({xn}) ⊂ F.

Finally, we have prove that ω({xn}) is a singleton and xn → ΠFx0. Let w = ΠFx0.
Since w ∈ F ⊂ Cn ∩Qn and xn+1 = ΠCn∩Qnx0, we have

ϕ(xn+1, x0) ≤ ϕ(w, x0)

for all n ≥ 0. Since the norm is weakly lower semicontinuous, this implies that

ϕ(p, x0) = ∥p∥2 − 2⟨p, Jx0⟩+ ∥x0∥2

≤ lim inf
k→∞

(∥xnk
∥2 − 2⟨xnk

, Jx0⟩+ ∥x0∥2)

= lim inf
k→∞

ϕ(xnk
, x0)

≤ lim sup
k→∞

ϕ(xnk
, x0) ≤ ϕ(w, x0).(3.21)

It follows from the definition of w and (3.21) that p = w. This implies that ω({xn})
is a singleton and ϕ(xnk

, x0) → ϕ(w, x0). Therefore

0 = lim
k→∞

(
ϕ(xnk

, x0)− ϕ(w, x0)
)

= lim
k→∞

(∥xnk
∥2 − ∥w∥2 − 2⟨xnk

− w, Jx0⟩)

= lim
k→∞

∥xnk
∥2 − ∥w∥2,

that is,

(3.22) lim
k→∞

∥xnk
∥2 = ∥w∥2.

Since E is uniformly convex, it has the Kadec-Klee property. It follows from (3.22)
and xnk

⇀ w that xnk
→ w = ΠFx0. Since ω({xn}) is a singleton, we have xn →

ΠFx0. �

The following theorems can be obtained by Theorem 3.1.

Theorem 3.2 ([19]). Let E be a uniformly smooth and uniformly convex Banach
space, C a nonempty closed convex subset of E. Let f : C × C → � a bifunction
satisfying (A1)–(A4) and S a relatively nonexpansive mapping from C into itself
such that F := F (S) ∩ EP (f) ̸= ∅. Let {αn} ⊂ [0, 1] be a sequence real numbers
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such that limn→∞ αn(1− αn) > 0. Let {xn} be the sequence generated by

x0 ∈ C,

yn = J−1(αnJSxn + (1− αn)Jxn),

un ∈ C such that f(un, y) +
1
γn
⟨y − un, Jun − Jyn⟩ ≥ 0 for all y ∈ C,

Cn = {z ∈ C : ϕ(z, un) ≤ ϕ(z, xn)};
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0};
xn+1 = ΠCn∩Qnx0

(3.23)

for n ≥ 0, where ΠCn∩Qn is the generalized projection of E onto Cn ∩ Qn and
{γn} ⊂ [r,∞) for some r > 0. Then {xn} converges strongly to ΠFx0, where ΠF is
the generalized projection of E onto F .

Proof. Let Sn = S, βn,0 = αn and {βn,i}ni=1 = {0} for all n ≥ 0 in Theorem 3.1.
This shows that (3.1) is equivalent to (3.23). Therefore, the conclusion of Theorem
3.2 can be deduced from Theorem 3.1. �

Theorem 3.3. Let E be a uniformly smooth and uniformly convex Banach space,
C a nonempty closed convex subset of E. Let A be an α-inverse strongly monotone
operator of C into E∗, f : C × C → � a bifunction satisfying (A1)–(A4) and
{Si}∞i=0 an infinite family of relatively nonexpansive mappings of C into itself such
that F :=

∩∞
i=0 F (Si) ∩ EP ̸= ∅. Let {βn,i}ni=0 be a sequence real numbers such

that lim infn→∞ βn,i(1 − βn,i) > 0, Wn the W -mapping generated by {Si}ni=0 and
{βn,i}ni=0. Let {xn} be the sequence generated by

x0 ∈ C,

yn = Wnxn,

un ∈ Kγnyn, that is,

f(un, y) + ⟨Aun, y − un⟩+ 1
γn
⟨y − un, Jun − Jyn⟩ ≥ 0 for all y ∈ C,

Cn = {z ∈ C : ϕ(z, un) ≤ ϕ(z, xn)};
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0};
xn+1 = ΠCn∩Qnx0

(3.24)

for n ≥ 0, where ΠCn∩Qn is the generalized projection of E onto Cn ∩ Qn and
{γn} ⊂ [r,∞) for some r > 0. Then {xn} converges strongly to ΠFx0, where ΠF is
the generalized projection of E onto F .

Proof. Let g(un, y) = f(un, y)+⟨Aun, y−un⟩. By Propositions 2.11 and 2.12, (3.24)
is equivalent to (3.1) in Theorem 3.1. Therefore, the conclusion of Theorem 3.3 can
be deduced from Theorem 3.1. �

4. Strong convergence theorems of convex combinations

In this section, we prove strong convergence theorems of convex combinations
for finding a common element of the set of solutions for a generalized equilibrium
problem and the set of common fixed points of infinite relatively nonexpansive
mappings in a Banach space.
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Theorem 4.1. Let E be a uniformly smooth and uniformly convex Banach space, C
a nonempty closed convex subset of E. Let f : C×C → � be a bifunction satisfying
(A1)–(A4) and {Si}∞i=0 an infinite family of relatively nonexpansive mappings of
C into itself such that F :=

∩∞
i=0 F (Si) ∩ EP (f) ̸= ∅. Let {λn,i}ni=0 ⊂ [0, 1) be a

sequence real numbers such that
∑n

i=0 λn,i = 1 for all n ≥ 0 and limn→∞ λn,i > 0 for
each i ≥ 0, and Vn the mapping defined by (2.3). Let {xn} be the sequence generated
by 

x0 ∈ C,

yn = Vnxn,

un ∈ Tγnyn, that is, f(un, y) +
1
γn
⟨y − un, Jun − Jyn⟩ ≥ 0 for all y ∈ C,

Cn = {z ∈ C : ϕ(z, un) ≤ ϕ(z, xn)};
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0};
xn+1 = ΠCn∩Qnx0

(4.1)

for n ≥ 0, where ΠCn∩Qn is the generalized projection of E onto Cn ∩ Qn and
{γn} ⊂ [r,∞) for some r > 0. Then {xn} converges strongly to ΠFx0, where ΠF is
the generalized projection of E onto F .

Proof. First we prove that Cn ∩ Qn ⊂ C is closed convex subset for all n ≥ 0. In
fact, it is obvious that Cn is closed, and Qn is closed and convex for all n ≥ 0. It
follows that Cn is convex for all n ≥ 0 because ϕ(z, un) ≤ ϕ(z, xn) is equivalent to

2⟨z, Jxn − Jun⟩ ≤ ∥xn∥2 − ∥un∥2.

Thus Cn ∩Qn is closed and convex for all n ≥ 0.
Next we prove that F ⊂ Cn ∩ Qn for all n ≥ 0. Let un = Tγnyn for all n ≥ 0

and u ∈ F. It follows from Proposition 2.8 (i) and Proposition 2.9 (iii) that u ∈∩∞
n=0 F (Vn) ∩ F (Tγn). We have Tγn is relatively nonexpansive by Proposition 2.9.

By Proposition 2.8 (ii), we have

(4.2) ϕ(u, un) = ϕ(u, Tγnyn) ≤ ϕ(u, yn) = ϕ(u, Vnxn) ≤ ϕ(u, xn).

This implies that u ∈ Cn and so F ⊂ Cn for all n ≥ 0. By induction, now we prove
that F ⊂ Cn ∩ Qn for all n ≥ 0. In fact, since Q0 = C, we have F ⊂ C0 ∩ Q0.
Suppose that F ⊂ Ck ∩Qk for some k ≥ 0. Then there exists xk+1 ∈ Ck ∩Qk such
that xk+1 = ΠCk∩Qk

x0. By the definition of xk+1, we have

(4.3) ⟨xk+1 − z, Jx0 − Jxk+1⟩ ≥ 0

for all z ∈ Ck ∩Qk. Since F ⊂ Ck ∩Qk, we have (4.3) for all z ∈ F. This shows that
z ∈ Qk+1, and so F ⊂ Qk+1. Therefore F ⊂ Cn ∩Qn for all n ≥ 0.

Next we prove that {xn} is bounded. By the definition of Qn, we have xn =
ΠQnx0 for all n ≥ 0. Hence, by Proposition 2.5,

ϕ(xn, x0) = ϕ(ΠQnx0, x0) ≤ ϕ(u, x0)− ϕ(u,ΠQnx0) ≤ ϕ(u, x0)

for all u ∈ F ⊂ Qn and n ≥ 0. This implies that {ϕ(xn, x0)} is bounded, and so
{xn} and {un} are bounded in C. Since xn+1 = ΠCn∩Qnx0 and xn = ΠQnx0, we
have

ϕ(xn, x0) ≤ ϕ(xn+1, x0)
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for all n ≥ 0. This implies that {ϕ(xn, x0)} is nondecreasing, and so there exists the
limit limn→∞ ϕ(xn, x0). By Proposition 2.5, we deduce

ϕ(xn+1, xn) = ϕ(xn+1,ΠQnx0) ≤ ϕ(xn+1, x0)− ϕ(ΠQnx0, x0)

= ϕ(xn+1, x0)− ϕ(xn, x0)

for all n ≥ 0. This implies that

(4.4) lim
n→∞

ϕ(xn+1, xn) = 0.

Since xn+1 = ΠCn∩Qnx0 ∈ Cn, by the definition of Cn, we have

(4.5) ϕ(xn+1, un) ≤ ϕ(xn+1, xn).

Since E is smooth and uniformly convex, from (4.4), (4.5) and Proposition 2.2 we
obtain

lim
n→∞

∥xn+1 − un∥ = lim
n→∞

∥xn+1 − xn∥ = 0

and

(4.6) lim
n→∞

∥xn − un∥ = 0.

Since J is uniformly norm-to-norm continuous on bounded subsets, we have

(4.7) lim
n→∞

∥Jxn − Jun∥ = 0.

Next we prove that ∥Slxn − xn∥ → 0 for all l ≥ 0. By the definition of λn,i, we
have 1−λn,l =

∑
i=0,1,...,n,i ̸=l λn,i. For large enough n ≥ 0 and 0 ≤ l ≤ n, Proposition

2.1 implies that

ϕ(u, un) ≤ ϕ(u, yn) = ϕ(u, Vnxn)

= ∥u∥2 − 2

n∑
i=0

λn,i⟨u, J(Sixn)⟩+

∥∥∥∥∥J−1
n∑

i=0

λn,iJ(Sixn)

∥∥∥∥∥
2

= ∥u∥2 − 2

n∑
i=0

λn,i⟨u, J(Sixn)⟩

+

∥∥∥∥λn,lJ(Slxn) + (1− λn,l)

∑
i=0,1,...,n,i ̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥2
≤ ∥u∥2 − 2

n∑
i=0

λn,i⟨u, J(Sixn)⟩+ λn,l∥Slxn∥2

+ (1− λn,l)

∥∥∥∥
∑

i=0,1,...,n,i ̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥2
− λn,l(1− λn,l)g

(∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i ̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥
)

= ∥u∥2 − 2

n∑
i=0

λn,i⟨u, J(Sixn)⟩+
n∑

i=0

λn,i∥Sixn∥2
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− λn,l(1− λn,l)g

(∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i ̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥
)

= ϕ(u, Sixn)− λn,l(1− λn,l)g

(∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i ̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥
)

≤ ϕ(u, xn)− λn,l(1− λn,l)g

(∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i ̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥
)

for some g ∈ G. Thus

λn,l(1− λn,l)g

(∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i ̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥
)

≤ ϕ(u, xn)− ϕ(u, un)

= ∥xn∥2 − ∥un∥2 + 2⟨u, Jun − Jxn⟩
≤ 2∥u∥ · ∥Jun − Jxn∥+ (∥xn∥+ ∥un∥)∥xn − un∥.

This implies that, together with (4.6) and (4.7),

(4.8) lim
n→∞

∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i ̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥ = 0

for all l ≥ 0. From (4.2), (4.6), (4.7) and Proposition 2.10 we have

ϕ(un, yn) = ϕ(Tγnyn, yn)

≤ ϕ(u, yn)− ϕ(u, Tγnyn)

≤ ϕ(u, xn)− ϕ(u, un)

≤ ∥xn − un∥(∥xn∥+ ∥yn∥) + 2∥u∥∥Jun − Jxn∥ → 0.

This implies that

(4.9) lim
n→∞

∥un − yn∥ = 0.

From (4.6) and (4.9) we obtain

lim
n→∞

∥xn − yn∥ ≤ lim
n→∞

{∥xn − un∥+ ∥un − yn∥} = 0.

Since J is uniformly norm-to-norm continuous on bounded subsets, we have

(4.10) lim
n→∞

∥Jxn − Jyn∥ = 0.

Since

∥Jxn − J(Slxn)∥ ≤ ∥Jxn − J(Vnxn)∥+ ∥J(Slxn)− J(Vnxn)∥

= ∥Jxn − Jyn∥+

∥∥∥∥∥J(Slxn)−
n∑

i=0

λn,iJ(Sixn)

∥∥∥∥∥
= ∥Jxn − Jyn∥

+ (1− λn,l)

∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i ̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥
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for large enough n ≥ 0, from (4.8) and (4.10) we obtain

lim
n→∞

∥Jxn − J(Slxn)∥ = 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded subsets, we have

(4.11) lim
n→∞

∥xn − Slxn∥ = 0

for all l ≥ 0.
Next we prove that ω({xn}) ⊂ F, where ω({xn}) is the set consisting all of the

weak limits points of {xn}. In fact, for any p ∈ ω({xn}), there exists a subsequence
{xnk

} ⊂ {xn} such that xnk
⇀ p. Since Si is relatively nonexpansive, (4.11) implies

p ∈
∩∞

i=0 F̂ (Si) =
∩∞

i=0 F (Si). Now we prove that p ∈ EP (f). Since xnk
⇀ p,

it follows from (4.6) and (4.9) that unk
⇀ p and ynk

⇀ p. Since J is uniformly
continuous on any bounded set of E, from (4.9) we have ∥Jun − Jyn∥ → 0. By the
assumption that γn > r, we have

(4.12) lim
n→∞

1

γn
∥Jun − Jyn∥ = 0.

Since un = Tγnyn, we obtain

(4.13) f(un, y) +
1

γn
⟨y − un, Jun − Jyn⟩ ≥ 0

for all y ∈ C. Replacing n by nk in (4.13), from (A2) we have

(4.14)
1

γnk

⟨y − unk
, Junk

− Jynk
⟩ ≥ −f(unk

, y) ≥ f(y, unk
)

for all y ∈ C. Since y 7→ f(x, y) is convex and lower semicontinuous, it is also weakly
lower semicontinuous. Letting nk → ∞ in (4.14), from (4.12) and (A4) we obtain
f(y, p) ≤ 0 for all y ∈ C. For t ∈ (0, 1] and y ∈ C, letting yt = ty + (1 − t)p, then
yt ∈ C and f(yt, p) ≤ 0. From (A1) and (A4) we have

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, p) ≤ tf(yt, y).

Dividing by t, we obtain f(yt, y) ≥ 0 for all y ∈ C. Letting t ↓ 0, from (A3) we
have f(p, y) ≥ 0 for all y ∈ C. Therefore p ∈ EP (f), and so p ∈ F. This shows that
ω({xn}) ⊂ F.

Finally, we have prove that ω({xn}) is a singleton and xn → ΠFx0. Let w = ΠFx0.
From w ∈ F ⊂ Cn ∩Qn and xn+1 = ΠCn∩Qnx0 we have

ϕ(xn+1, x0) ≤ ϕ(w, x0)

for all n ≥ 0. Since the norm is weakly lower semicontinuous, this implies that

ϕ(p, x0) = ∥p∥2 − 2⟨p, Jx0⟩+ ∥x0∥2

≤ lim inf
k→∞

(∥xnk
∥2 − 2⟨xnk

, Jx0⟩+ ∥x0∥2)

= lim inf
k→∞

ϕ(xnk
, x0)

≤ lim sup
k→∞

ϕ(xnk
, x0) ≤ ϕ(w, x0).(4.15)
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It follows from the definition of w and (4.15) that p = w. This implies that ω({xn})
is a singleton and ϕ(xnk

, x0) → ϕ(w, x0). Therefore

0 = lim
k→∞

(
ϕ(xnk

, x0)− ϕ(w, x0)
)

= lim
k→∞

(∥xnk
∥2 − ∥w∥2 − 2⟨xnk

− w, Jx0⟩)

= lim
k→∞

∥xnk
∥2 − ∥w∥2,

that is,

(4.16) lim
k→∞

∥xnk
∥2 = ∥w∥2.

Since E is uniformly convex, it has the Kadec-Klee property. It follows from (4.16)
and xnk

⇀ w that xnk
→ w = ΠFx0. Since ω({xn}) is a singleton, we have xn →

ΠFx0. �
The following theorem can be obtained by Theorem 4.1.

Theorem 4.2. Let E be a uniformly smooth and uniformly convex Banach space,
C a nonempty closed convex subset of E. Let A be an α-inverse strongly monotone
operator of C into E∗, f : C × C → � a bifunction satisfying (A1)–(A4) and
{Si}∞i=0 an infinite family of relatively nonexpansive mappings of C into itself such
that F :=

∩∞
i=0 F (Si) ∩ EP ̸= ∅. Let {λn,i}ni=0 ⊂ [0, 1) be a sequence real numbers

such that
∑n

i=0 λn,i = 1 for all n ≥ 0 and limn→∞ λn,i > 0 for each i ≥ 0, and Vn

the mapping defined by (2.3). Let {xn} be the sequence generated by

x0 ∈ C,

yn = Vnxn,

un ∈ Kγnyn, that is,

f(un, y) + ⟨Aun, y − un⟩+ 1
γn
⟨y − un, Jun − Jyn⟩ ≥ 0 for all y ∈ C,

Cn = {z ∈ C : ϕ(z, un) ≤ ϕ(z, xn)};
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0};
xn+1 = ΠCn∩Qnx0

(4.17)

for n ≥ 0, where ΠCn∩Qn is the generalized projection of E onto Cn ∩ Qn and
{γn} ⊂ [r,∞) for some r > 0. Then {xn} converges strongly to ΠFx0, where ΠF is
the generalized projection of E onto F .

Proof. Let g(un, y) = f(un, y)+⟨Aun, y−un⟩. By Propositions 2.11 and 2.12, (4.17)
is equivalent to (4.1) in Theorem 4.1. Therefore, the conclusion of Theorem 4.2 can
be deduced from Theorem 4.1. �

References

[1] Ya. I. Alber, Metric and generalized projection operators in Banach spaces: properties and
applications, in Theory and Applications of Nonlinear Operators of Accretive and Monotone
Type, Lecture Notes Pure Appl. Math. 178 Marcel Dekker, New York, 1996, pp. 15–50.

[2] K. Aoyama, F. Kohsaka and W. Takahashi, Strongly relatively nonexpansive sequences in
Banach spaces and applications, J. Fixed Point Theory Appl. 5 (2009), 201–225.

[3] J. B. Baillon and G. Haddad, Quelques propriétés des opérateurs angle-bornés et n-
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