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involving variable exponents growth condition. Quasilinear equations of this type
of non-standard growth conditions have been a very interesting topic of research in
the recent years. Let us just quote [14-17, 22]. This great interest could be mainly
motivated by their physical applications. In fact, such kind of problems can describe
various phenomena which arise from studying elastic mechanics, electrorheological
fluids (sometimes referred as “smart” fluids), image restoration (see [5, 7, 34, 40]).
Another important phenomenon which could also be modelled by an equation in-
volving variable exponents is the motion of a compressible or incompressible fluid in
a nonhomogeneous and anisotropic medium, that is a medium whose characteristics
may vary in dependence on directions and points. In fact, the continuity equation
in this case (we have supposed that the Darcy law holds) has the following form

div
(
η0(x, p) |∇p|λ(x)−2∇p

)
= η1(x, p,∇p),

where p denotes the pressure of the fluid. For more details concerning this phenom-
enon, see [5].

On the other hand, the study of Kirchhoff type problems has been receiving
considerable attention in recent years; see for instance [3, 4, 8, 9, 21]. This interest
for the study of such problems with various proposed coefficients could be explained
by their contributions to the modelling of many physical and biological phenomena.

Let us first mention here that quasilinear equations of the model

−M
(∫

Ω
|∇u|p dx

)(
div
(
|∇u|p−2∇u

))
= f(x, u) in Ω,

where Ω is a domain of RN is essentially related to the stationary analog of the
Kirchhoff equation

utt −M

(∫
Ω
|∇u|2 dx

)
∆u = f(x, t),

where M(s) = a s + b, a, b > 0. This last equation was proposed by Kirchhoff
[18] as an extension of the classical D’Alembert wave equation for free vibrations of
elastic strings. The Kirchhoff model takes into account the length changes of the
string produced by transverse vibrations. On the other hand, equation of the model

−M
(∫

Ω
|u|p dx

)(
div
(
|∇u|p−2∇u

))
= f(x, u) in Ω

arises in numerous physical phenomena such as systems of particles in thermody-
namical equilibrium via gravitational potential, thermal runaway in Ohmic Heat-
ing, shear bands in metal deformed under high strain rates (see [38] and references
therein). We have also to cite here two others phenomena which could be mod-
elized by quasilinear equations containing nonlocal terms and which could be found
in the very interesting thesis of B. Lovat untitled “ Etudes de quelques problèmes
paraboliques non locaux” (see [20]). The first one concerns the heat propagation in
a domain Ω whose precised description leads us to study an equation of the type

∂u

∂t
− a

(∫
Ω
u

)
∆u = f(x, u) in Ω× (0, T ).
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The second phenomenon arises in the biological studies. In fact the evolution of the
density of a population living in a domain Ω could be described by equation of the
model {

∂u
∂t − p(t)∆u = f(x, u) in Ω× (0, T )

u(x, 0) = u0(x).

Here we are mainly concerned with finding an equilibred solution u(x, t); that is its

distribution u(x,t)∫
Ω u(x,t)dx

is independent of the time. As it was proved in [20, Theorem

0.1], a necessary condition to find such a solution is to assume that p(t) = C∫
Ω u(x,t)dx

where C is some constant. Consequently, we are again led to solve a problem of the
model

∂u

∂t
− a

(∫
Ω
u

)
∆ = f in Ω× (0, T ).

It is important to mention that, to our knowledge, there is not a great number of
papers which have dealt with nonlocal p(x)-Laplacian equations. We can cite [6, 10-
12, 14, 37]. In our present work, we discuss nonlocal problems for a more large class
of nonhomogeneous divergence operators. We emphasize also on the fact that we
deal with equations on the whole space RN and many of embeddings compactness
arguments used in the case of bounded domains do not hold any more.

Returning to our functions φ and Φ in the model (M), we notice that Φ verifies
that: for all x ∈ RN we have

• Φ(x, t) = 0 if and only if t = 0,
• Φ(x, ·) is convex,

• lim
t→+∞

Φ(x, t)

t
= +∞ and lim

t→0

Φ(x, t)

t
= 0.

Thus, Φ is a generalized N-function (see [13]). Denote now by L0(RN ) the space of
all R−valued measurable functions on RN . We define the mapping ρΦ : L0(RN ) →
[0,+∞] by

ρΦ(u) =

∫
RN

Φ(x, |u(x)|) dx, u ∈ L0(RN ).

Obviously the mapping ρΦ is a modular (see [13]). Thus, we can introduce its
corresponding modular space, that is

LΦ(RN ) =

{
u ∈ L0(RN , lim

λ→0+
ρΦ(λu) = 0

}
=
{
u ∈ L0(RN ), ρΦ(λu) < +∞ for some λ > 0

}
.

This space becomes a Banach space if we equip it with the Luxemburg norm

|u|Φ = Inf

{
λ > 0,

∫
RN

Φ

(
x,

|u(x)|
λ

)
≤ 1

}
or the equivalent Orlicz norm

|u|(Φ) = Sup

{∣∣∣∣∫
RN

uvdx

∣∣∣∣ ; u ∈ LΦ∗
(RN ),

∫
RN

Φ∗(x, |v(x)|)dx ≤ 1

}
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where Φ∗ denotes the conjugate Young function of Φ, that is

Φ∗(x, s) =

∫ s

0
(φ(x, ·))−1 (t)dt; (x, s) ∈ RN × R

or

Φ∗(x, s) = sup
t≥0

{ts− Φ(x, t)} , ∀ x ∈ RN and ∀ t ≥ 0.

Observe here that Φ∗(·, ·) is also a generalized N-function and the following Hölder’s
inequality holds true

(1.1)

∣∣∣∣∫
RN

uvdx

∣∣∣∣ ≤ 2 |u|Φ |v|Φ∗ ∀ u ∈ LΦ(RN ), v ∈ LΦ∗
(RN )

(see [13, Lemma 2.6.5]). Throughout this paper, we assume that

(H1) 1 < φ0 ≤ tφ(x,t)
Φ(x,t) ≤ φ0 < +∞ ∀ x ∈ RN and ∀ t ≥ 0 where φ0 and φ0 are

positive constants.

With assumption (H1), we are assured that the function Φ satisfies the global
∆2−condition (see [24, Proposition 2.3]), that is

Φ(x, 2t) ≤ KΦ(x, t), ∀ x ∈ RN , ∀ t ≥ 0,

where K is a positive constant. This ∆2-condition implies that

LΦ(RN ) =

{
u ∈ L0(RN ),

∫
RN

Φ(x, |u(x)|)dx < +∞
}
.

By (H1), we can easily establish that

(1.2) σφ0Φ(x, t) ≤ Φ(x, σt) ≤ σφ
0
Φ(x, t) ∀ x ∈ RN , ∀ t ≥ 0, ∀ σ > 1,

(1.3) σφ
0
Φ(x, t) ≤ Φ(x, σt) ≤ σφ0Φ(x, t) ∀ x ∈ RN , ∀ t ≥ 0, ∀ 0 < σ < 1.

We introduce now the Orlicz-Sobolev space

W 1,Φ(RN ) =

{
u ∈ LΦ(RN ),

∂u

∂xi
∈ LΦ(RN ), i = 1, · · · , N

}
.

This space equipped with the following norm

∥u∥ = Inf

{
λ > 0,

∫
RN

(
Φ

(
x,

|∇u(x)|
λ

)
+Φ

(
x,

|u(x)|
λ

))
dx ≤ 1

}
is a Banach space. Furthermore, in the present work we shall assume that Φ satisfies
the following condition

(H2) for each x ∈ RN , the function defined on [0,+∞[ by t 7−→ Φ(x,
√
t) is con-

vex.

Conditions (H1) and (H2) assure that the spaces LΦ(RN ) and W 1,Φ(RN ) are uni-
formly convex and by consequence a reflexive spaces (see [24, Proposition 2.2]).
Taking into account inequalities (1.2) and (1.3) we have (see [24, Proposition 2.5])

(1.4) ∥u∥φ0 ≤ ρΦ (|∇u|) + ρΦ (|u|) ≤ ∥u∥φ
0

, ∀ u ∈W 1,Φ(RN ) with ∥u∥ > 1
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(1.5) ∥u∥φ
0

≤ ρΦ (|∇u|) + ρΦ (|u|) ≤ ∥u∥φ0 , ∀ u ∈W 1,Φ(RN ) with ∥u∥ < 1.

Moreover, for (un), u ∈W 1,Φ(RN ) we have

∥un − u∥ → 0 ⇔ ρΦ (|∇un −∇u|) + ρΦ (|un − u|) → 0,(1.6)

∥un∥ → +∞ ⇔ ρΦ (|∇un|) + ρΦ (|un|) → +∞.(1.7)

For more details concerning Orlicz-Sobolev spaces and its properties, we refer to [1,
2, 13, 19, 29, 30, 31].

Denote now by C+(RN ) the set

C+(RN ) =

{
v ∈ C(RN ) ∩ L∞(RN ), inf

x∈RN
v(x) > 1

}
.

For each p ∈ C+(RN ), we define p+ = sup
x∈RN

p(x) and p− = inf
x∈RN

p(x) and we intro-

duce the variable exponent Lebesgue space

Lp(·)(RN ) =

{
u ∈ L0(RN ),

∫
RN

|u(x)|p(x) dx < +∞
}
.

Obviously, Lp(·)(RN ) is a particular case of the generalized Orlicz space. In fact,

it sufficies to take Φ(x, t) = |t|p(x) . Thus, this space becomes a Banach space with
respect of the Luxemburg norm, that is

|u|Lp(·)(RN ) = Inf

{
λ > 0,

∫
RN

∣∣∣∣u(x)λ
∣∣∣∣p(x) dx ≤ 1

}
and reflexive provided that 1 < p− < p+ < +∞. By the virtue of inequality (1.1),
we easily see that

(1.8)

∣∣∣∣∫
RN

uvdx

∣∣∣∣ ≤ 2 |u|L·)(RN ) |v|Lp′(·)(RN )

for any u ∈ Lp(·)(RN ) and v ∈ Lp′(·)(RN ) where p′(·) ∈ C+(RN ) is such that
1

p′(x) +
1

p(x) = 1 ∀ x ∈ RN . Similarly, if 1
p1(x)

+ 1
p2(x)

+ 1
p3(x)

= 1 ∀ x ∈ RN , then

for any u ∈ Lp1(·)(RN ), v ∈ Lp2(·)(RN ) and w ∈ Lp3(·)(RN ),

(1.9)

∣∣∣∣∫
RN

uvwdx

∣∣∣∣ ≤ 3 |u|Lp1(·)(RN ) |v|Lp2(·)(RN ) |w|Lp3(·)(RN ) .

Next, for p ∈ C+(RN ), we define the variable exponent Sobolev space W 1,p(·)(RN )
as the set

W 1,p(·)(RN ) =

{
u ∈ Lp(·)(RN ),

∂u

∂xi
∈ Lp(·)(RN ), i = 1, · · · , N

}
.

It is clear that W 1,p(·)(RN ) is a particular case of the generalized Orlicz-Sobolev

space. Provided that 1 < p− ≤ p+ < +∞, W 1,p(·)(RN ) equipped with the norm

∥u∥W 1,p(·)(RN ) = Inf

{
λ > 0,

∫
RN

(
|∇u|p(x) + |u|p(x)

λp(x)

)
dx ≤ 1

}
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is a Banach reflexive and separable space. For more properties of variable exponent
Lebesgue and Sobolev space, we refer to [13, 17, 29].

We have to precise here that we shall study nonlocal quasilinear problems of
model (M) when the function Φ satisfies the following additional condition

(H3) there exist p(·) ∈ C+(RN ) and c0 > 0 such that 1 < p− ≤ p+ < N and

Φ(x, t) ≥ c0 t
p(x) ∀ x ∈ RN and ∀ t ≥ 0.

According to [2, Pragraph 8.4], condition (H3) means that for all x ∈ RN , Φ(x, ·)
dominates globally the function t 7−→ tp(x) which implies (see [2, Theorem 8.12])
that the following continuous embedding holds true

(1.10) W 1,Φ(RN ) ↪→W 1,p(·)(RN ).

We finish this paragraph by giving some examples of functions φ(·, ·) such that
the corresponding Φ(·, ·) satisfies conditions (H1−3).

Example 1. φ(x, t) =
(
1 + Log

(
1 + |t|α(x)

))
|t|p(x)−2 t, t ∈ R where p(·) ∈ C+(RN ),

p(x) > 2 ∀ x ∈ RN and α(·) ∈ C(RN ) ∩ L∞(RN ), α(x) > 0 ∀ x ∈ RN .

Example 2. φ(x, t) = (π +Arctg (|t|)) |t|p(x)−2 t, t ∈ R where p(·) ∈ C+(RN , p(x) >
2 ∀ x ∈ RN .

Example 3. φ(x, t) =
√
t2 + 1 |t|p(x)−2 t, t ∈ R where p(·) ∈ C+(RN ), p(x) >

2 ∀ x ∈ RN .

2. Existence result

In this first part, we investigate existence result for the following nonlocal quasi-
linear problem

(I) −A (∥u∥) (div (a(x, |∇u|)∇u− a (x, |u|)u) = B (∥u∥) f(x, u)+h in RN , N ≥ 3.

Here A : [0,+∞[→ [0,+∞[ and B : [0,+∞[→ R are two continuous functions.
Problem (I) should be taken under the following hypotheses:

(K1) f : RN × R → R is a Carathéodory function satisfying that

|f(x, s)| ≤ g(x) |s|β(x) a.e x ∈ RN and ∀ s ∈ R,

with β(·) ∈ C+(RN ), β(x) < p∗(x) = Np(x)
N−p(x) ∀ x ∈ RN (p(·) is defined by

(H3)), g(·) ∈ Lr(·)(RN ) ∩ L∞(RN ) where r(·) ∈ C+(RN ) and there exists η(·) ∈
C+(RN ) such that

η(x) > β(x), p(x) ≤ η(x) ≤ p∗(x),
1

p(x)
+
β(x)

η(x)
= 1 ∀ x ∈ RN .

We also assume that f(x, s) = 0 a.e x ∈ RN and ∀ s ≤ 0.

(K2) Assume that
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• there exist λ0, λ1 ∈ R, a0 > 0, b0 > 0 and M > 0 such that

A(s) ≥ a0 s
λ0 and |B(s)| ≤ b0 s

λ1 ∀ s > M,

with λ0 + φ0 > sup (λ1 + β+, 1) ,
• if A(s) = 0, then B(s) = 0,
• if s ̸= 0, then A(s) ̸= 0.

(K ′
2) Assume that

• there exist λ0, λ1 ∈ R, a0 > 0, b0 > 0 and M > 0 such that

A(s) ≥ a0 s
λ0 and |B(s)| ≤ b0 s

λ1 ∀ 0 < s < M,

• if A(s) = 0, then B(s) = 0,
• if s ̸= 0, then A(s) ̸= 0.

(K3) h ∈
(
W 1,Φ(RN )

)′
( dual space of W 1,Φ(RN )), h ̸= 0. Moreover, we assume

that

⟨h, v⟩ ≥ 0 for all v ∈W 1,Φ(RN ) with v ≥ 0.

Here ⟨·, ·⟩ denotes the duality pairing between W 1,Φ(RN ) and its dual space(
W 1,Φ(RN )

)′
.

Definition 2.1. A function u ∈ W 1,Φ(RN ) is said to be a weak solution of the
problem (I), if it satisfies

A (∥u∥)
(∫

RN

a (x, |∇u|)∇u · ∇vdx+

∫
RN

a (x, |u|)u · vdx
)

= B (∥u∥)
∫
RN

f(x, u)vdx+ ⟨h, v⟩ ∀ v ∈W 1,Φ(RN ).

We state here our main result in this section.

Theorem 2.2. (i) Assume that (H1−3) hold true. If hypotheses (K1) and (K2)

hold true, then for all h ∈
(
W 1,Φ(RN )

)′
satisfying (K3), the problem (I) has at least

one nonnegative and nontrivial solution.

(ii) Assume that (H1−3) hold true. If (K1) and (K ′
2) hold true, then we have

• if λ0+φ
0 < inf (1, λ1 + β−) , then, for all h ∈

(
W 1,Φ(RN )

)′
satisfying (K3),

the problem (I) has at least one nonnegative and nontrivial weak solution,
• if 1 < λ0 + φ0 < λ1 + β−, then there exists a positive constant M0 with the

following property: for all h ∈
(
W 1,Φ(RN )

)′
satisfying (K3) and such that

∥h∥(W 1,Φ(RN ))′ = sup
∥v∥≤1

|⟨h, v⟩| ≤M0

the problem (I) has at least one nonnegative and nontrivial weak solution.

Proof. The proof relies essentially on the topological degree theory for (S+) type

mappings(see [36, 39]). Define the following operator L :W 1,Φ(RN ) →
(
W 1,Φ(RN )

)′
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by

⟨L(u), v⟩ = A (∥u∥)
(∫

RN

a (x, |∇u|)∇u · ∇vdx+

∫
RN

a (x, |u|)uvdx
)

−B (∥u∥)
∫
RN

f(x, u)vdx− ⟨h, v⟩ ; u, v ∈W 1,Φ(RN ).

It is clear that L is a bounded operator. On the other hand, L is demicontin-
uous, that is: for all sequence (un) ⊂ W 1,Φ(RN ) such that un → u strongly in

W 1,Φ(RN ), L(un)⇀ L(u) weakly in
(
W 1,Φ(RN )

)′
. Now, we show that L is of (S+)

type. Let (un) ⊂W 1,Φ(RN ) and lim sup
n→+∞

⟨L(un), un − u⟩ ≤ 0, we claim that un → u

strongly in W 1,Φ(RN ). Let E be a measurable subset of RN , by (K1) and (1.9), we
have

(2.1)

∫
E
|f(x, un)| |un − u| dx ≤ 3 |g|Lr(·)(E)

∣∣∣|un|β(·)−1
∣∣∣
L

η(·)
β(·)−1 (E)

|un − u|Lη(·)(E) .

Since g ∈ Lr(·)(RN ) and (un) is bounded in W 1,Φ(RN ) (and then in W 1,p(·)(RN ) by

the virtue of (1.10)), by (2.1) the integral

∫
E
|f(x, un)| |un − u| dx is small uniformly

in n when the measure of E is small. Let now R > 0 and BR =
{
x ∈ RN , |x| < R

}
;

we have

(2.2)

∫
RN\BR

|f(x, un)| |un − u| dx

≤ 3 |g|Lr(·)(RN\BR)

∣∣∣|un|β(·)−1
∣∣∣
L

η(·)
β(·)−1 (RN )

|un − u|Lη(·)(RN ) .

Taking again into account that g ∈ Lr(·)(RN ), then by (2.2), for all ϵ > 0 there
exists Rϵ > 0 large enough such that |g|Lr(·)(RN\BRϵ )

< ϵ. Hence, we get the equi-

integrability of the sequence (f(·, un)(un − u)) . By the virtue of Vitali’s theorem,
we deduce that

(2.3) lim
n→+∞

∫
RN

f(x, un)(un − u)dx = 0.

Define now the operator Λ :W 1,Φ(RN ) →
(
W 1,Φ(RN )

)′
by

⟨Λ(u), v⟩ =
∫
RN

a (x, |∇u|)∇u · ∇vdx+

∫
RN

a (x, |u|)uvdx; u, v ∈W 1,Φ(RN ).

According to [24, Proposition 4.5], the operator Λ is of (S+) type. Using (2.3)
together with the fact that lim sup

n→+∞
⟨L(un), un − u⟩ ≤ 0, it yields

(2.4) lim sup
n→+∞

A (∥un∥) ⟨Λ(un), un − u⟩ ≤ 0.

If ∥un∥ → 0, then un → 0 strongly in W 1,Φ(RN ) and there is nothing to prove.
Otherwise, i.e. if ∥un∥ → t ̸= 0, then A (∥un∥) → A(t) ̸= 0. In this case, (2.4)
implies that lim sup

n→+∞
⟨Λ(un), un − u⟩ ≤ 0 and since Λ is of (S+) type, it follows that

un → u strongly in W 1,Φ(RN ).
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(i) Assume that (K2) holds true. For ∥u∥ > sup(1,M), by (H1) and (1.4), we have

(2.5)

⟨L(u), u⟩ = A (∥u∥)
(∫

RN

φ (x, |∇u|) |∇u| dx+

∫
RN

φ (x, |u|) |u| dx
)

−B (∥u∥)
∫
RN

f(x, u)udx− ⟨h, u⟩

≥ φ0A (∥u∥) (ρΦ (|∇u|) + ρΦ (|u|))

− c1 |B (∥u∥)| ∥u∥β
+

− ∥h∥(W 1,Φ(RN ))′ ∥u∥

≥ c2 ∥u∥λ0+φ0 − c3 ∥u∥λ1+β+

− ∥h∥(W 1,Φ(RN ))′ ∥u∥ .

Since λ0 + φ0 > sup (λ1 + β+, 1) , then from (2.5) we deduce that there exists
R > 0 large enough such that ⟨L(u), u⟩ > 0 for ∥u∥ = R. Therefore, by the
topological degree theory for (S+) type mappings (see again [36, 39]), we have
deg (L,B(0, R), 0) = 1 and consequently there exits u ∈ B(0, R) such that L(u) = 0

in
(
W 1,Φ(RN )

)′
, that is, the problem (I) has a solution u ∈ W 1,Φ(RN ) with

∥u∥ < R. Define now u− = min(u, 0); since f(x, u−) = 0 a.e. x in RN , ⟨h, u−⟩ ≤ 0
and ⟨L(u), u−⟩ = 0, it immediately follows that u− = 0 and u ≥ 0. Moreover, since
h ̸= 0, then u ̸= 0.

(ii) Assume now that (K ′
2) holds true. For ∥u∥ < inf(1,M), by (H1) and (1.5) we

have:

• if λ0 + φ0 < inf (1, λ1 + β−) , then
(2.6)

⟨L(u), u⟩ ≥ φ0A (∥u∥) (ρΦ (|∇u|) + ρΦ (|u|))− c4 ∥u∥β
−+λ1 − ∥h∥(W 1,Φ(RN ))′ ∥u∥

≥ ∥u∥λ0+φ0
(
c5 − c4 ∥u∥λ1+β−−λ0−φ0

− ∥h∥(W 1,Φ(RN ))′ ∥u∥
1−λ0−φ0

)
.

Since
(
λ1 + β− − λ0 − φ0

)
> 0 and

(
1− λ0 − φ0

)
> 0, then from (2.6) we

deduce that there exits 0 < R1 < 1 small enough such that ⟨L(u), u⟩ > 0
for ∥u∥ = R1. Hence deg (L,B (0, R1) , 0) = 1 and the existence of a weak
solution for the problem (I) then follows.

• If 1 < λ0 + φ0 < λ1 + β−, then

(2.7)
⟨L(u), u⟩ ≥ c5 ∥u∥λ0+φ0

− c4 ∥u∥λ1+β−
− ∥h∥(W 1,Φ(RN ))′ ∥u∥

≥ ∥u∥
(
c5 ∥u∥λ0+φ0−1 − c4 ∥u∥λ1+β−−1 − ∥h∥(W 1,Φ(RN ))′

)
.

Since 0 < λ0 + φ0 − 1 < λ1 + β− − 1, then we deduce from (2.7) that there
exists 0 < R2 < 1 small enough such that

⟨L(u), u⟩ ≥ R2

(
c6 R

λ0+φ0−1
2 − ∥h∥(W 1,Φ(RN ))′

)
.

Hence, for ∥h∥(W 1,Φ(RN ))′ small enough, it yields ⟨L(u), u⟩ > 0 for ∥u∥ =

R2. Therefore, deg (L,B (0, R2) , 0) = 1 and consequently the problem (I)
admits a weak solution u ∈ W 1,Φ(RN ) with ∥u∥ < R2. This ends the proof
of Theorem 2.2.

�
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3. Multiplicity results

Using technical arguments based on two versions of three-critical-points theorem
of B. Ricceri (see [32, 33]), we prove in this section two theorems establishing the
existence of at least three solutions for the following nonlocal quasilinear problem:

(II)

−A′ (ρΦ (|∇u|) + ρΦ (|u|)) (div (a (x, |∇u|)∇u)− a (x, |u|)u)

= λB′
(∫

RN

F (x, u)dx

)
f(x, u) + µ h in RN

where F (x, s) =
∫ s
0 f(x, t)dt, A

′(·) and B′(·) denote the derivatives of two C1-
functions A(·) and B(·) and λ, µ are two real numbers.

First, we shall consider the problem (II) under the following hypotheses:

(J1) A : [0,+∞[→ R is a C1-function satisfying that A(0) = 0 and

• there exist a0 > 0, C0 > 0 and M0 > 0 such that A(s) ≥ C0 s
a0 ∀ s > M0,

• there exist a1 > 0 and C1 > 0 such that A(s) ≥ C1 s
a1 ∀ 0 ≤ s ≤ 1,

• A is increasing strictly convex and bounded on each bounded subset of
[0,+∞[,

• if s > 0, then A′(s) > 0,

• lim inf
s→+∞

(
A′(s) s

1− 1
φ0

)
= +∞.

(J2) B : R → R is a C1-function satisfying that

• there exist C2 > 0 and γ0 > 0 such that |B(s)| ≤ C2 (1 + |s|γ0) ∀ s ∈ R,
• there exist C3 > 0 and γ1 > 0 such that |B(s)| ≤ C3 |s|γ1 ∀ 0 ≤ s ≤ 1.

(J3) There exist R0 > 0 and t0 > 0 such that

•
∫
{|x|<R0}

F (x, t0)dx > 0,

• F (x, t) ≥ 0 a.e R0 ≤ |x| ≤ R0 + 1 and ∀ 0 ≤ t ≤ t0.

Definition 3.1. A function u ∈ W 1,Φ(RN ) is said to be a weak solution of the
problem (II) if it satisfies

A′ (ρΦ (|∇u|) + ρΦ (|u|))
(∫

RN

a (x, |∇u|)∇u · ∇vdx+

∫
RN

a (x, |u|)uvdx
)

= λB′
(∫

RN

F (x, u)dx

)∫
RN

f(x, u)vdx+ µ ⟨h, v⟩ , ∀ v ∈W 1,Φ(RN ).

Theorem 3.2. Assume that (H1−3), (J1−3), (K1) and (K3) hold true. Assume

also that Inf
(
β−γ1
a1φ0 ,

a0φ0

γ0β+

)
> 1, then there exist a nonempty set E ⊂ [0,+∞[ and

a positive number r with the following property: for each λ ∈ E, there exists
δ = δ(λ, h) ≥ 0 such that, for each µ ∈ [0, δ] the problem (II) has at least three
nonnegative solutions whose norms in W 1,Φ(RN ) are less than r.

The proof of Theorem 3.2 is essentially based on the following Theorem due to B.
Ricceri:
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Theorem 3.3 (see [32]). Let X be a reflexive real Banach space; I ⊂ R an inter-
val; ϕ : X → R a sequentially weakly lower semicontinuous C1−functional whose
derivative admits a continuous inverse on X∗; J : X → R a C1−functional with
compact derivative. In addition, ϕ is bounded on each bounded subset of X. Assume
that

(3.1) lim
∥x∥→+∞

(ϕ(x) + λJ(x)) = +∞,

for all λ ∈ I, and that there exists ρ ∈ R such that

(3.2) sup
λ∈I

inf
x∈X

(ϕ(x) + λ(J(x) + ρ)) < inf
x∈X

sup
λ∈I

(ϕ(x) + λ(J(x) + ρ)) .

Then, there exist a nonempty open set E ⊂ I and a positive real number r with
the following property: for every λ ∈ E and every C1−functional ψ : X → R with
compact derivative, there exists δ > 0 such that for each µ ∈ [0, δ], the equation

ϕ′(x) + λJ ′(x) + µψ′(x) = 0

has at least three solutions in X whose norms are less than r.

In order to prove Theorem 3.2, we have to introduce the following functionals:

χ :W 1,Φ(RN ) → R, χ(u) = ρΦ (|∇u|) + ρΦ (|u|) ,

ϕ :W 1,Φ(RN ) → R, ϕ(u) = A (χ (u)) ,

J :W 1,Φ(RN ) → R, J(u) = −B
(∫

RN

F (x, u)dx

)
.

According to [24, Lemma 4.2] and using the strict convexity of A(·), it is obvious that
ϕ ∈ C1

(
W 1,Φ(RN ), R

)
and that ϕ is strictly convex. So, ϕ is sequentially weakly

lower semi-continuous and ϕ′(·) = A′ (χ(·)) Λ(·) (where Λ(·) is defined in section

2) is a strictly monotone operator. On the other hand, since lim inf
s→+∞

A′(s)s

s
1
φ0

= +∞,

then by (1.4) we have lim
∥u∥→+∞

⟨ϕ′(u), u⟩
∥u∥

= +∞. Hence, the operator ϕ′ is coercive.

By the Minty-Browder’s Theorem [39, Theorem 26.A], we know that ϕ′ is inversible.

It remains to show that (ϕ′)−1 is continuous in
(
W 1,Φ(RN )

)′
. Observe first that the

operator ϕ′ is of (S+) type. Indeed, let (un) ⊂ W 1,Φ(RN ) be such that un ⇀ u
weakly in W 1,Φ(RN ) and lim inf

n→+∞

⟨
A′ (χ(un)) Λ(un), un − u

⟩
≤ 0. If χ(un) → 0 as

n → +∞, then un → 0 and there is nothing to prove. Otherwise, χ(un) → t > 0
and A′(t) > 0. Having in mind that Λ(·) is of (S+) type, then the result follows. Let

now wn → w strongly in
(
W 1,Φ(RN )

)′
and un = (ϕ′)−1 (wn), u = (ϕ′)−1 (w). Since

wn = ϕ′(un) and ϕ′ is coercive, then necessarily (un) is bounded. Without loss of
generality, we can assume that un ⇀ u0 weakly in W 1,Φ(RN ). Having in mind that
wn → w, then

lim
n→+∞

⟨
ϕ′(un)− ϕ′(u), un − u

⟩
= lim

n→+∞
⟨wn − w, un − u⟩ = 0.

Taking into account that ϕ′ is of (S+) type, it follows that un → u0 and u0 = u.

We conclude that (ϕ′)−1 is continuous. Furthermore, by (1.10) and [15, Lemma 3.2]
J ∈ C1

(
W 1,Φ(RN ),R

)
and J ′ is compact.
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The following lemmas are needed.

Lemma 3.4. For all λ ≥ 0, we have lim
∥u∥→+∞

(ϕ(u) + λJ(u)) = +∞.

Proof. By (1.4), we have

χ(u) =

∫
RN

Φ(x, |∇u|) dx+

∫
RN

Φ(x, |u|) dx ≥ ∥u∥φ0 for ∥u∥ > 1.

Thus, for ∥u∥ > sup

(
1,M

1
φ0
0

)
, it yields

(3.3) ϕ(u) = A (χ(u)) ≥ A (∥u∥φ0) ≥ C0 ∥u∥a0φ0 .

On the other hand, for λ ≥ 0 and ∥u∥ > 1, we have

(3.4)

λJ(u) = −λB
(∫

RN

F (x, u)dx

)
≥ −λC2

(∣∣∣∣∫
RN

F (x, u)dx

∣∣∣∣γ0 + 1

)
≥ −λC3

(
∥u∥γ0β

+

+ 1
)
.

Combining (3.3) with (3.4), we obtain that

ϕ(u) + λJ(u) ≥ C0 ∥u∥a0φ0 − λC3

(
∥u∥γ0β

+

+ 1
)

∀ ∥u∥ > sup

(
1,M

1
φ0
0

)
.

Since a0φ0 > γ0β
+, then we conclude that

lim
∥u∥→+∞

(Φ(u) + λJ(u)) = +∞ ∀ λ ≥ 0.

�

Lemma 3.5. Assume that there are γ > 0, u0, u1 ∈W 1,Φ(RN ) such that ϕ(u0) =
J(u0) = 0, ϕ(u1) > γ, −J(u1) > 0 and

sup
u∈ϕ−1(]−∞,γ])

(−J(u)) < γ

(
−J(u1)
ϕ(u1)

)
,

then for each ρ satisfying

sup
u∈ϕ−1(]−∞,γ])

(−J(u)) < ρ < γ

(
−J(u1)
ϕ(u1)

)
one has that (3.2) holds with I = [0,+∞[.

Proof. SinceW 1,Φ(RN ) ↪→W 1,p(·)(RN ), then the proof of Lemma 3.5 is quite similar
to [35, Proposition 2.6]. �

Proof of Theorem 3.2 completed. By Lemma 3.4, condition (3.1) of Theorem 3.3
holds true with I = [0,+∞[. Observe now that ϕ(0) = J(0) = 0. On the other
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hand, define

u1(x) =


t0 if |x| < R0

t0 (R0 + 1− |x|) if R0 ≤ |x| ≤ R0 + 1

0 if |x| ≥ R0 + 1.

It is clear that u1 ∈W 1,Φ(RN ). By (J3), we have−J(u1) = B

(∫
RN

F (x, u1)dx

)
> 0

and ϕ(u1) > 0. By the virtue of Lemma 3.5 and in order to prove condition (3.2) of
Theorem 3.3, it sufficies to show that

(3.5) lim
γ→0

supu∈ϕ−1(]−∞,γ]) (|J(u)|)
γ

= 0.

Observe first that for 0 < γ < 1 small enough, we have ϕ−1 (]−∞, γ]) ⊂{
u ∈W 1,Φ(RN ), ∥u∥ < 1

}
. Next, by (J1) and for ∥u∥ < 1, it yields

(3.6) ϕ(u) ≥ A
(
∥u∥φ

0
)
≥ C1 ∥u∥a1φ

0

.

For ϕ(u) ≤ γ, by (3.6) it follows that ∥u∥ ≤
(

γ
C1

) 1
a1φ

0
. On the other hand, for 0 <

γ < 1 chosen small enough and for ∥u∥ ≤
(

γ
C1

) 1
a1φ

0
we get

∣∣∣∣∫
RN

F (x, u)dx

∣∣∣∣ ≤ C4 ∥u∥β
−
.

Hence, by (J2) we obtain

(3.7) |J(u)| ≤ C5 ∥u∥γ1β
−
≤ C5

(
γ

C1

) γ1β
−

a1φ
0

.

From (3.7), we deduce that

supu∈ϕ−1(]−∞,γ]) (|J(u)|)
γ

≤ C6
γ

γ1β
−

a1φ
0

γ
.

Taking into account that γ1β−

a1φ0 > 1, then (3.5) follows. This ends the proof of

Theorem 3.2. �
Now, changing the assumptions taken on the terms A(·), B(·) and f(·, ·) and

using a more recent version of the three-critical-points theorem of B. Ricceri (see
[33]), we shall also prove that the problem (II) has at least three weak solutions.

Equation (II) is now considered under the following hypotheses:

(J ′
1) A : [0,+∞[→ [0,+∞[ is of class C1 satisfying that A(0) = 0 and

• A is increasing strictly convex and bounded on each bounded subset of
[0,+∞[,

• lim inf
s→+∞

A′(s)s

s
1
φ0

= +∞,

• if s > 0, then A′(s) > 0,
• lim inf

s→+∞
A(s) = +∞,



276 SAMI AOUAOUI

• there exist C7 > 0 and θ0 > 0 such that A(s) ≥ C7 s
θ0 ∀ 0 ≤ s ≤ 1.

(J ′
2) B : R → R is of class C1 satisfying that B(0) = 0 and

• B is convex,
• B(s) ≤ A(s) ∀ s ≥ 0,

• there exist C8 > 0 and θ > θ0p+

(p∗)− such that B(s) ≤ C8s
θ ∀ 0 ≤ s ≤ 1.

(J ′
3) lim sup

|s|→+∞

F (x, s)

|s|p(x)
≤ 0, uniformly in x ∈ RN .

(J ′
4) lim sup

s→0

F (x, s)

|s|p(x)
≤ 0, uniformly in x ∈ RN .

(J ′
5) For all compact K ⊂ R, there exists a function ψK ∈ L1(RN ) such that

F (x, s) ≤ ψK(x) a.e. x in RN and ∀ s ∈ K.

Set ξ = sup
u∈W 1,Φ(RN )\{0}

(
(−J)(u)
ϕ(u)

)
where

(−J)(u) = B

(∫
RN

F (x, u)dx

)
and ϕ(u) = A (ρΦ (|∇u|) + ρΦ (|u|)) , u ∈W 1,Φ(RN ).

Theorem 3.6. Assume that (H1−3) ,
(
J ′
1−5

)
, (J3), (K1) and (K3) hold true.

Then, for each compact interval [a, b] ⊂
(
1
ξ ,+∞

)
there exists r > 0 with the fol-

lowing property: for every λ ∈ [a, b], there exists δ = δ(λ, h) > 0 such that for each
µ ∈ [0, δ] the equation (II) has at least three nonegative weak solutions whose norms
are less than r.

The main tool used in the proof of Theorem 3.6 is the following result due to B.
Ricceri (see [33, Theorem 2]):

Theorem 3.7. Let X be a separable and reflexive real Banach space; ϕ : X → R a
coercive, sequentially weakly lower semicontinuous C1 functional, bounded on each
bounded subset of X, whose derivative admits a continuous inverse on X∗ (the dual
of X) and blonging to WX , that is, if (un) is a sequence in X converging weakly to
u ∈ X and lim inf

n→+∞
ϕ(un) ≤ ϕ(u), then (un) has a subsequence converging strongly to

u. Let (−J) : X → R be a C1 functional with compact derivative. Assume that Φ
has a strict local minimum x0 with ϕ(x0) = (−J)(x0) = 0. Finally, setting

α = max

{
0, lim sup

∥x∥→+∞

(−J)(x)
ϕ(x)

, lim sup
x→x0

(−J)(x)
ϕ(x)

}

β = sup
x∈ϕ−1(]0,+∞[)

(−J)(x)
Φ(x)
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assume that α < β. Then, for each compact interval [a, b] ⊂
(

1
β ,

1
α

)
(with the

convention 1
0 = +∞, 1

+∞ = 0) there exists r > 0 with the following property: for

every λ ∈ [a, b] and every C1 functional Ψ : X → R with compact derivative, there
exists δ > 0 such that, for each µ ∈ [0, δ], the equation ϕ′(x) = λ(−J)′(x) + µΨ′(x)
has at least three solutions whose norms are less than r.

Remark 3.8. Theorem 3.3 gives non further information on the size and location of
the set E. So, Theorem 3.7 has brought more precision concerning these points.

Proof of Theorem 3.6. Proceeding exactly as in the proof of Theorem 3.2 and using
(J ′

1) and (K1), it is immediate that we have:

• the functional ϕ is coercive, sequentially weakly lower semicontinuous, of
class C1, bounded on each bounded subset of W 1,Φ(RN ) and whose deriva-
tive is a homeomorphism. Moreover ϕ ∈WW 1,Φ(RN ),

• the functional (−J) ∈ C1(W 1,Φ(RN ),R) with compact derivative.

Observe now that ϕ(u) > 0 for every u ∈ W 1,Φ(RN )\{0}. Then 0 is a strict local
(even global) minimum with ϕ(0) = (−J)(0) = 0. Let 0 < ϵ < 1, by (J ′

3) and (J ′
5)

we have

F (x, s) ≤ ϵ
|s|p(x)

p(x)
+ ψϵ(x) a.e. x in RN and ∀ s ∈ R

where ψϵ ∈ L1(RN ). This implies that

(3.8)

∫
RN

F (x, u)dx ≤ ϵ

∫
RN

|u|p(x)

p(x)
dx+

∫
RN

ψϵ(x)dx, u ∈W 1,Φ(RN ).

Since B(·) is convex, by (3.8), (H3) and (J ′
2) we get

(3.9)

B

(∫
RN

F (x, u)dx

)
≤ ϵB

(∫
RN

|u|p(x)

p(x)
dx

)
+ (1− ϵ)B

(
1

1− ϵ

∫
RN

ψϵ(x)dx

)

≤ ϵA

(∫
RN

|u|p(x)

p(x)
dx

)
+ (1− ϵ)B

(
1

1− ϵ

∫
RN

ψϵ(x)dx

)
≤ C9ϵϕ(u) + (1− ϵ)B

(
1

1− ϵ

∫
RN

ψϵ(x)dx

)
.

By (3.9), it yields lim sup
∥u∥→+∞

(−J)(u)
ϕ(u)

≤ C9ϵ. Since ϵ is arbitrary, the following in-

equality holds true

(3.10) lim sup
∥u∥→+∞

(−J)(u)
ϕ(u)

≤ 0.

On the other hand, by (J ′
3) and (J ′

4), for every 0 < ϵ < 1, there exists cϵ > 0 such
that

F (x, s) ≤ ϵ
|s|p(x)

p(x)
+ cϵ |s|p

∗(x) a.e. x in RN and ∀ s ∈ R.
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Then,

(3.11)

∫
RN

F (x, u)dx ≤ ϵ

∫
RN

|u|p(x)

p(x)
dx+ cϵ

∫
RN

|u|p
∗(x) dx, u ∈W 1,Φ(RN ).

Again by the convexity of B(·) and (J ′
2) , we deduce from (3.11) that for ∥u∥ < 1

small enough, we have

B

(∫
RN

F (x, u)dx

)
≤ ϵB

(∫
RN

|u|p(x)

p(x)
dx

)
+ (1− ϵ)B

(
cϵ

1− ϵ

∫
RN

|u|p
∗(x) dx

)

≤ C9ϵϕ(u) + C10(1− ϵ)

(
cϵ

1− ϵ

)θ

∥u∥θ(p
∗)− .

Hence,

(3.12)
(−J)(u)
ϕ(u)

≤ C9ϵ+ C10(1− ϵ)

(
cϵ

1− ϵ

)θ ∥u∥θ(p
∗)−

∥u∥θ0p+
.

Having in mind that θ(p∗)−

θ0p+
> 1, then by (3.12) we obtain: lim sup

s→+∞

(−J)(u)
ϕ(u)

≤ ϵ.

Since ϵ is arbitrary, we deduce that

(3.13) lim sup
∥u∥→0

(−J)(u)
ϕ(u)

≤ 0.

Taking now assumption (J3) into account, it follows from (3.10) and (3.13) that

max

{
0, lim sup

∥u∥→+∞

(−J)(u)
ϕ(u)

, lim sup
∥u∥→0

(−J)(u)
ϕ(u)

}

= 0 < sup
u∈ϕ−1(]0,+∞[)

(−J)(u)
ϕ(u)

.

Therefore, all the conditions of Theorem 3.7 are fulfilled and the conclusion of
Theorem 3.6 then follows. �
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