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minimum (except that it is non-empty) only for φ in a convex dense subset Y of
X∗.

Recall that if X is a Banach space a function f : X → R ∪ {+∞} is said to be

coercive if lim∥x∥→∞
f(x)

∥x∥
= +∞.

Definition 1. Let X be a Banach space. A function f : X → R ∪ {+∞} will
be said to be quasi-coercive if for every continuous linear functional φ on X the
function f − φ is bounded from below.

It is clear that a coercive function is quasi-coercive and well-known that the
converse is false in every infinite-dimensional Banach space. A proof of the following
lemma can be found in [5].

Lemma 2. Let X be a Banach space and f : X → R ∪ {+∞} be bounded from
below. Then the following three are equivalent

- f is quasi-coercive.

- ∀φ ∈ X∗ lim inf∥x∥→∞
f(x)− φ(x)

∥x∥
> 0.

- ∀φ ∈ X∗ lim∥x∥→∞ f(x)− φ(x) = +∞.

The following result generalizes Theorem 4 in [4].

Theorem 3. Let X be a reflexive space and f : X → R be quasi-coercive and weakly
l.s.c. If Y is a convex dense subset of X∗ and if f − φ attains its minimum at a
unique point for every φ ∈ Y , then f is convex.

For the proof of this theorem we need several lemmas.

Lemma 4. If Y is a convex dense subset of the Banach space E, ε > 0, R ≥ 0 and
(a1, a2, . . . , an) a finite family of points in E, then there exist a point ω in E and a
finite-dimensional linear subspace V of E such that ∥ω∥ < ε, V ∩B(0, R) ⊂ Y −ω,
d(aj , V ) < ε for j = 1, 2, . . . , n and d(x, V0) < ε for all x ∈ V ∩ B(0, R), where V0
denotes the linear span of (a1, a2, . . . , an).

Proof. Denote by m the dimension of V0, and choose m+1 points (b1, b2, . . . , bm+1)
affinely independent in V0 such that 0 be an interior point of the convex hull of
(b1, b2, . . . , bm+1). We can for example take for (b1, b2, . . . , bm) a basis of V0 and
bm+1 = −

∑m
1 bj . Increasing R if necessary we can assume that supj ∥aj∥ ≤ R. and

let a0 = 0.
Then there exists η > 0 such that V0 ∩ B(0, η) ⊂ conv(b1, b2, . . . , bm+1), and we

define b′j =
R+ ε

η
bj . It is clear that V0∩B(0, R+ ε) ⊂ conv(b′1, b

′
2, . . . , b

′
m+1). Since

Y is dense, we can find b′′j ∈ Y such that
∥∥∥b′j − b′′j

∥∥∥ < ε/2.

If 0 ≤ i ≤ n, the point ai belongs to conv(b′1, b
′
2, . . . , b

′
m+1), and there are

λj ≥ 0 with sum 1 such that ai =
∑

j λjb
′
j . Then a′′i =

∑
j λjb

′′
j belongs to

conv(b′′1, b
′′
2, . . . , b

′′
m+1) ⊂ Y , and

∥∥∥a′′j − aj

∥∥∥ ≤
∑

j λj

∥∥∥b′′j − b′j

∥∥∥ ≤ ε/2. Define ω =



CONVEX FUNCTIONS 255

a′′0, then V as the linear span of the (b′′j − ω)j≤m+1. We have ∥ω∥ < ε/2 and

d(aj , ω + V ) ≤ ε/2, hence d(aj , V ) < ε.
The faces of the simplex S′ of vertices (b′1, b

′
2, . . . , b

′
m+1) are in the boundary

of this simplex, hence disjoint from the open ball B(0, R + ε). In particular, if
a ∈ conv(b′′1, b

′′
2, . . . , b

′′
m), we have a =

∑
j≤m µjb

′′
j with µj ≥ 0 and

∑
j µj = 1, thus

d(a,
∑

j≤m µjb
′
j) < ε/2 and since

∑
j≤m µjb

′
j /∈ B(0, R + ε), we have ∥a− ω∥ > R.

More generally, if a − ω belongs to some face of the simplex S′′ of vertices b′′j − ω,

we have ∥a∥ > R; it follows that V ∩ B(0, R) is a convex subset of V , hence is
connected, contains 0 and is disjoint from the boundary of the simplex S′′, thus
that

V ∩B(0, R) ⊂ S′′ = conv(b′′1, b
′′
2, . . . , b

′′
m+1)− ω ⊂ Y − ω .

Finally, if x ∈ V ∩ B(0, R), we have x + ω ∈ conv(b′′1, b
′′
2, . . . , b

′′
m+1), and there are

non-negative real numbers µj with sum 1 such that x + ω =
∑

j µjb
′′
j ; we then

have
∥∥∥x+ ω −

∑
j µjb

′
j

∥∥∥ ≤
∑

j µj

∥∥∥b′′j − b′j

∥∥∥ ≤ ε/2, whence d(x + ω, V0) ≤ ε/2 and

d(x, V0) < ε since all b′j ’s belong to the space V0. �

Recall that a multivalued mapping G defined on a topological space T with (non-
empty) values in a locally convex linear space E is said to be usco if it is upper
semi-continuous and takes compact values. It is said to be cusco if moreover its
values are convex. It is an easy and well-known result that G is usco if its graph
{(x, y) ∈ T × E : y ∈ G(x)} is compact in T × E.

The following avatar of Brouwers’s theorem is well-known : its proof can be found
in [1] (Théorème 1, p. 523).

Lemma 5. Let E be a finite-dimensional normed space and G a cusco mapping
defined on the ball B(0, R) of E to the dual space E∗. If ⟨ξ, x⟩ > 0 for each x in
the sphere S(0, R) and all ξ ∈ G(x), then there is a point x̂ ∈ B(0, R) such that
0 ∈ G(x̂).

Lemma 6. Let X be a Banach space, f : X → R ∪ {+∞} be a quasi-coercive
function and K a norm-compact subset of X∗. Assume f(0) < +∞. Then there
exist δ > 0 and M ∈ R+ such that ∥c∥ ≤ M holds for every φ ∈ X∗ satisfying
d(φ,K) < δ and every c such that f(c) ≤ φ(c) + f(0).

Proof. It follows from lemma 2 that, for all ξ ∈ K, there are εξ > 0 and rξ ≥ 0
such that, for all x ∈ X, f(x) − ⟨ξ, x⟩ ≥ f(0) + εξ. ∥x∥ − rξ holds. Then the
open balls B(ξ, εξ/3) cover K and there exists a finite subset J of K such that
K ⊂

∪
ξ∈J B(ξ, εξ/3).

Then put δ = minξ∈J
εξ
3

and M = maxξ∈J
3rξ
εξ

. If d(φ,K) < δ there exists

ξ0 ∈ K such that ∥φ− ξ0∥ < δ and ξ ∈ J such that ∥ξ0 − ξ∥ <
εξ
3
. Thus we have

∥φ− ξ∥ ≤ δ +
εξ
3
<

2εξ
3

. If moreover f(c) ≤ φ(c) + f(0),

2εξ
3

∥c∥ ≥ ∥φ− ξ∥ . ∥c∥ ≥ ⟨φ, c⟩ − ⟨ξ, c⟩ ≥ f(c)− f(0)− ⟨ξ, c⟩ ≥ εξ ∥c∥ − rξ
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what shows that
εξ
3
∥c∥ ≤ rξ, hence that ∥c∥ ≤

3rξ
εξ

≤M . �

Corollary 7. Let X be a Banach space, f : X → R ∪ {+∞} be a proper quasi-
coercive function and K a norm-compact subset of X∗. Then there exist δ > 0 and
M ∈ R+ such that ∥c∥ ≤ M holds for every φ ∈ X∗ satisfying d(φ,K) < δ and
every c where f − φ attains its global minimum on X.

Proof. Since f is proper there exists some a ∈ X such that f(a) < +∞. Applying
Lemma 6 to the function f1 : x 7→ f(x+ a) we get M1 and δ. If d(φ,K) < δ and if
f −φ attains its minimum at c the function f1−φ : x 7→ f(x+a)−φ(x+a)+φ(a)
attaints its minimum at c−a. So we have f1(c−a)−φ(c−a) ≤ f1(0)−φ(0) = f1(0).
Thus it follows that ∥c− a∥ ≤M1 hence that ∥c∥ ≤M =M1 + ∥a∥. �

Lemma 8. Let X be a Banach space and f : X → R ∪ {+∞} be a quasi-coercive
weakly l.s.c. function. Assume that the proper domain of f is dense in X and
contains 0. Then, for every finite-dimensional linear subspace V of X∗ and every
β > 0, there exist R > 0 and δ > 0 such that f∗(φ) ≥ β.R for all φ ∈ X∗ satisfying
both d(φ, V ) < δ and R− δ ≤ ∥φ∥ ≤ R+ δ.

Proof. The convex l.s.c. function f∗ : φ 7→ supx∈X⟨φ, x⟩ − f(x) is finite at every
point of X∗, hence norm-continuous on X∗ and a fortiori on V . Let β′ = β+1. The
set C = {φ ∈ V : f∗(φ) ≤ f∗(0) + 1 + β′ ∥φ∥} is a closed neighborhood of 0 in V .
If C is unbounded in V , there exist for all integer k a φk ∈ V such that ∥φk∥ = 1
and a λk ≥ k such that λk.φk ∈ C. Passing to a subsequence one can assume that
(φk) converges to some φ ∈ V . Then ∥φ∥ = 1. Moreover, the function τk defined
on R+ by τk(t) = f∗(tφk)− f∗(0)−1−β′t is convex, negative at 0 and at λk, hence
at ℓ ≤ λk. In particular if ℓ is any integer, we have ℓ.φk ∈ C for all k ≥ ℓ. Thus
ℓ.φ ∈ C for all ℓ ∈ N. Then for all ℓ ≥ k we have f∗(ℓφk) ≤ 1 + f∗(0) + β′ℓ, hence
f∗(ℓφ) ≤ 1 + f∗(0) + β′ℓ. For every x ∈ Df and every ℓ ∈ N :

ℓφ(x)− f(x) ≤ f∗(ℓφ) ≤ 1 + f∗(0) + β′.ℓ

whence φ(x) ≤ β′ +
1 + f∗(0) + f(x)

ℓ
, and finally φ(x) ≤ β′. And this contradicts

the hypothesis that the non-empty open set {x : ⟨φ, x⟩ > β′} meets Df .
It follows that C is compact, and there exists R1 such that C ⊂ V ∩ B(0, R1).

Then, if ∥φ∥ > R1, we have φ /∈ C and

1 + f∗(0) + β′R1 < f∗(
R1

∥φ∥
φ) = f∗(

R1

∥φ∥
φ+ (1− R1

∥φ∥
).0)

≤ R1

∥φ∥
f∗(φ) + (1− R1

∥φ∥
)f∗(0) ≤ R1

∥φ∥
f∗(φ) + f∗(0)

hence f∗(φ) ≥ 1 + β′R1

R1
. ∥φ∥ ≥ β′ ∥φ∥ whenever φ ∈ V .

Applying lemma 6 to the compact set K = V ∩ B(0, R1 + 1), we find M and δ′

such that if d(φ,K) < δ′ and if c ∈ X is a point such that f(c) ≤ f(0) + φ(c) , we

have ∥c∥ ≤M . Put δ = min(
1

4
, δ′,

1

M + β′
) and R = R1 + 2δ.
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Then if ψ ∈ X∗ with R − δ ≤ ∥ψ∥ ≤ R + δ and d(ψ, V ) < δ, there exists φ ∈ V
such that ∥φ− ψ∥ < δ ; we have ∥φ∥ > R1 and ∥φ∥ ≤ R+ 2δ ≤ R1 + 4δ ≤ R1 + 1,
hence f∗(φ) ≥ β′R1 and φ ∈ K.

Moreover there exists a sequence (cn) in X such that c0 = 0 and f(cn) − φ(cn)
decreases to infx f(x) − φ(x). Thus f∗(φ) = supn

(
φ(cn) − f(cn)

)
and we have

f(cn)− φ(cn) ≤ f(c0)− φ(c0) = f(0) hence ∥cn∥ ≤M . Then

f∗(ψ) ≥ lim inf
n

(
ψ(cn)− f(cn)

)
≥ lim inf

n

(
φ(cn)− f(cn)

)
− sup

n
∥cn∥ . ∥φ− ψ∥

≥ f∗(φ)−Mε ≥ β′R1 −Mε ≥ β′R− (M + β′)ε ≥ (β′ − 1)R = βR ,

and that completes the proof of the lemma. �

Proof of Theorem 3.
In fact we will deduce theorem 3 from the more general following statement.

Theorem 9. Let X be a Banach space and f : X → R∪ {+∞} be a quasi-coercive
weakly l.s.c. function. Assume that the proper domain of f is dense in X and that
f −φ attains its minimum for all φ ∈ X∗. If Y is a convex dense subset of X∗ and
if the set Mφ = {x ∈ X : f − φ attains its minimum at x} is convex for all φ ∈ Y ,
then f is convex.

Proof. Since f − φ attains its minimum for all φ ∈ X∗ it follows from [5] that the
sublevels Sf (α) = {x ∈ X : f(x) ≤ α} of f are weakly compact in X.

Assume that the function f is weakly l.s.c. and quasi-coercive but not convex.
There exist points a, b1, b2 in X and λ ∈]0, 1[ such that a = λb1 + (1 − λ)b2 and
λf(b1) + (1− λ)f(b2) < f(a).

By hypothesis the function f attains its minimum µ at some point b.
We replace f by f1 : x 7→ f(x + b) − µ, a, b1 and b2 by a − b, b1 − b and

b2 − b, and Y by Y1 = Y − ψ, which is convex and dense in X∗. And the proper
domain of f1, Df1 = Df − b, is dense in X : the function f now satisfies the
hypotheses of the theorem with infx f(x) = f(0) = 0, λb1 + (1 − λ)b2 = a and
γ = f(a)− λf(b1)− (1− λ)f(b2) > 0.

Since f is weakly l.s.c., there exists a weak neighborhood W of a such that

f(x) > f(a)− γ

3
on W . Thus one can find ξ1, ξ2, . . . ξn in X∗ and ε > 0 such that

sup
i≤n

⟨ξi, x− a⟩ < ε =⇒ x ∈W

Denote then by V0 the linear subspace of X∗ spanned by (ξ1, ξ2, . . . , ξn). Using
lemma 8 we choose R ≥ 1 and δ′ ≤ ε such that f∗(φ) > R.(∥a∥+ ε) for all φ such
that R− δ′ ≤ ∥φ∥ ≤ R+ δ′ and d(φ, V0) < δ′.

Since f is quasi-coercive, the sublevel S = Sf (f(a)) is bounded in X and we

denote by D the diameter of S. Then if ∥ξ′i − ξi∥ <
ε

2D
, if f(x) ≤ f(a) and if

⟨ξi, x − a⟩ ≥ ε, we get ∥x− a∥ ≤ D, hence ⟨ξ′i, x − a⟩ ≥ ε

2
. It follows that if

supi≤n⟨ξ′i, x− a⟩ < ε

2
, we have

- either ∥x− a∥ ≤ D and x ∈W hence f(x) > f(a)− γ

3
,
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- or ∥x− a∥ > D and x /∈ S hence f(x) > f(a),

thus f(x) > f(a)− γ

3
in both cases.

Fix K0 = V0 ∩B(0, R + ε), δ < δ′ ≤ ε and M ≥ 1 such that ∥c′∥ ≤M whenever
f − φ attains its minimum at c′ and d(φ,K0) < δ.

Applying lemma 4 one finds ω ∈ X∗ and a finite-dimensional subspace V of

X∗ such that ∥ω∥ < ε′

M1
, ∥ω∥ < γ

3D
, V ∩ B(0, R) ⊂ Y − ω and d(φ,K0) < δ if

φ ∈ V ∩ B(0, R), and also points ξ′i ∈ V such that ∥ξi − ξ′i∥ <
ε

2D
. The points ξ′i

span V . Denote by π the restriction to X of the canonical projection of X∗∗ onto
V ∗ : for x ∈ X and φ ∈ V , ⟨π(x), φ⟩ = φ(x). Then, since ξ′i ∈ V , we see that
if x ∈ X and if π(x) = π(a), we have ⟨ξ′i, x − a⟩ = 0 for all i, and in particular

f(x) > f(a)− γ

3
. Moreover if φ ∈ V and x ∈ X, we have ⟨π(x), φ⟩ = φ(x). Observe

that if φ ∈ V and ∥φ∥ ≤ R then ω + φ ∈ Y .
If φ ∈ V , ∥φ∥ = R and f − (ω + φ) attains its minimum at c, we then have

(ω + φ)(c) = f(c) + f∗(ω + φ) > f(c) +R.(∥a∥+ ε) ≥ R(∥a∥+ ε) = ∥φ∥ . ∥a∥+ ε

since ∥ω∥ < ε′, hence φ(c)− φ(a) > ∥φ∥ . ∥a∥+ ε− φ(a)−M. ∥ω∥ ≥ 0.

Consider the multivalued function G : V ∩B(0, R) ⇒ X defined by

x ∈ G(φ) =Mω+φ ⇐⇒ f∗(ω + φ) = (ω + φ)(x)− f(x)

If x ∈ G(φ) we have ∥x∥ ≤M hence f(x)− (ω+φ)(x) ≤ f(0)− (ω+φ)(0) = 0 and

f(x) ≤ (ω + φ)(x) ≤ ∥ω + φ∥ . ∥x∥ ≤ α := (∥φ∥+ ∥ω∥).M

So the values of G are contained in the weakly compact subset Sf (α) of X. And
the graph Γ of G is compact in (V ∩B(0, R))×X, if Y ⊂ X∗ is equipped with the
norm topology and X with the weak topology ; indeed Γ ⊂ (V ∩ B(0, R))× Sf (α)
and

(φ, c) ∈ Γ ⇐⇒ c ∈ G(φ) ⇐⇒ ∀x ∈ X φ(c)− f(c) ≥ φ(x)− f(x)

thus G is usco from Y equipped with the norm topology into X with the weak
topology. And since G takes convex values by hypothesis this shows that it is a
cusco mapping.

If φ ∈ V ∩B(0, R) and c ∈ G(φ) we necessarily have

f(c)− (ω + φ)(c) ≤ min
(
f(b1)− (ω + φ)(b1) , f(b2)− (ω + φ)(b2)

)
≤ λf(b1) + (1− λ)f(b2)− (ω + φ)(λb1 + (1− λ)b2)

≤ (f(a)− γ)− (ω + φ)(a) = f(a)− (ω + φ)(a)− γ

but if π(x) = π(a) we have φ(x) = φ(a) hence

f(x)− (ω + φ)(x) = f(x)− φ(a)− ω(x) > f(a)− γ

3
− (ω + φ)(a)− ∥ω∥ . ∥x− a∥

> f(a)− (ω + φ)(a)− γ

3
−D. ∥ω∥ ≥ f(a)− (ω + φ)(a)− 2

γ

3

and that shows that π(c) ̸= π(a).
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The multivalued function G1 : φ 7→ π ◦ G(φ)−π(a) takes convex compact values
in V ∗ and is upper semi-continuous from V ∩ B(0, R) to V ∗, since π is weakly
continuous from X to V ∗ and it follows from what precedes that G1(φ) cannot
contain 0 for any φ ∈ Y ∩ V .

By the choice of R, we have ⟨z, φ⟩ = φ(c) − φ(a) > 0, for all φ ∈ V such that
∥φ∥ = R and all z = π(c)− π(a) ∈ G1(φ). We deduce then from lemma 5 that the
cusco mapping G1 should contain 0 at some point of V ∩B(0, R), in contradiction
with what precedes. And this shows that f must be convex. �

Observe that most of the arguments of the above proof do not require any hy-
pothesis of weak compactness. The only point where such an hypothesis is used
(by the weak compactness of the sublevels of f) is the proof that G is cusco (and

that so is G1). If we attempt to replace each G1(φ) by its closure G′
1(φ) = G1(φ)

in V ∗, we get a multivalued mapping with convex compact values but we cannot
ensure that this new multivalued mapping is upper semi-continuous. And if we try
to replace the graph Γ1 = {(φ, z) : z ∈ G1(φ)} by its closure in B(0, R)×V ∗, we get
the graph of a new u.s.c. multivalued mapping G′′

1 with compact values avoiding 0
but could loose the convexity of its values G′′

1(φ).

Theorem 10. Let X be a Banach space and f : X → R∪{+∞} be a proper weakly
l.s.c. function. Assume that f −φ attains its minimum for all φ ∈ X∗ and that the
set Mφ = {x ∈ X : f −φ attains its minimum at x} is convex for all φ in a convex
dense subset Y of X∗. Then f is convex.

Proof. If the proper domain of f is dense in X, the statement follows from theorem
9. In the other case, it follows from [5] that the sublevels Sf (α) of f are all weakly
compact in X. If Kn denotes the sublevel Sf (2

n) and if mn = sup{∥x∥ : x ∈ Kn},

the set K =
∑ 2−n

1 +mn
Kn is weakly compact in X. It follows then from [2] that

there exists a subspace Z of X containing K and a norm ∥|.|∥ on Z such that Z be
a reflexive Banach space for ∥|.|∥ and that K be bounded in Z. The unit ball of Z
is compact for the weak topology σ(Z,Z∗) and a fortiori for σ(Z,X∗).

Since Kn ⊂ 2n(1 +mn)K ⊂ Z, we have Df =
∪

nKn ⊂ Z. And replacing X by
the closure Z̄ of Z in X, we can also assume Z to be dense in X.

For any positive integer q, define

fq(x) = inf
y∈X

f(y) + q ∥|x− y|∥2

If a ∈ X satisfies f(a) < +∞, we have a ∈ Df ⊂ Z and

fq(x) ≤ f(a) + q ∥|x− a|∥2 < +∞
whenever x ∈ Z; this shows that the function fq is everywhere finite on Z, hence
Dfq ⊃ Z and Dfq is dense in X. In fact, if f(y) < +∞ and ∥x− y∥ < +∞, we have
y ∈ Z and x− y ∈ Z, thus x ∈ Z, whence Dfq = Z. One sees also that fq ≤ f . By
hypothesis f is bounded from below, and we define µ = infx∈X f(x).

The epigraphs Ef of f and Eq of the function nq : y 7→ q ∥|y|∥2 are both weakly
closed and the function σ :

(
(y, t), (z, s)

)
7→ (y + z, s + t) is weakly perfect from

Ef × Eq into X × R : indeed if H is weakly compact in X × R, there exists h ∈ R
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such that H ⊂ X×]−∞, h]. Then if (y, t) ∈ Ef , (z, s) ∈ Eq and (y + z, s+ t) ∈ H,

we must have µ + s ≤ s + t ≤ h, thus s ≤ h − µ and ∥|z|∥ ≤ r =
(h− µ

q

)1/2
. It

follows that (z, s) belongs to the weakly compact set L = {z : ∥|z|∥ ≤ r}× [0, h− µ]
and (y, t) belongs to the weakly compact set H − L. Finally since Ef and Eq are
weakly closed, H1 = Ef ∩ (H − L) and H2 = Eq ∩ L are weakly compact and
(Ef × Eq) ∩ σ−1(K) is closed in the compact set H1 ×H2.

Since the mapping σ|Ef×Eq
is perfect, Ef + Eq is weakly closed in X × R and

it is the epigraph of fq. If φ ∈ X∗ the minimum of fq − φ is the minimum of the
function (x, u) 7→ u − φ(x) on Ef + Eq : thus it is attained at some point (x, u) if
and only if (x, u) = (y, t) + (z, s), with t− φ(y) = inf{u− φ(w) : (w, u) ∈ Ef} and
s− φ(z) = inf{u− φ(w) : (w, u) ∈ Eq}.

Since Z is reflexive,

inf{u− φ(w) : w ∈ Eq} = inf{q. ∥|w|∥2 − φ(w) : w ∈W}

is attained at some point of Z for any φ ∈ Z∗, and a fortiori for any φ ∈ X∗ ; and
since the fonction nq is convex the set Nφ where the function nq − φ attains its
minimum is convex.

By hypothesis inf{u−φ(w) : (w, u) ∈ Ef} = infw∈X f(w)−φ(w) and the set Mφ

where this minimum is attained is convex for all φ. It follows that for all φ ∈ Y the
set where infw∈X fq(w)− φ(w) is attained is the convex set Nφ +Mφ .

One deduces from theorem 9 that fq is convex on X for all integer q. If it is
shown that f = supq fq, then the proof of the convexity of f will be complete. Let
x ∈ X and λ < f(x). Since f is weakly l.s.c., one can find some weak neighborhood
W of x such that f(y) > λ whenever y ∈W , then δ > 0 such that W ⊃ B∥|.|∥(x, δ).

Choose then q such that qδ2 > λ− µ ; we have

f(y) + q. ∥|x− y|∥2 ≥

{
λ+ q ∥|x− y|∥2 > λ if y ∈W

µ+ qδ2 > λ if y /∈W

thus fq(x) ≥ λ. This completes the proof that f = supq fq is convex. �

It is shown in [5] that f is strictly convex as soon as it satisfies the conditions
of theorem 3 with Y = X∗. Nevertheless we shall prove that on every reflexive
infinite-dimensional Banach space X, there exists a weakly l.s.c. function f , convex
but not strictly convex, and a dense linear subspace Y of X∗ such that f−φ attains
its minimum at a unique point for every φ ∈ Y .

Lemma 11. Let X be a reflexive Banach space and α ∈ X∗. There exists a coercive
convex non strictly convex weakly l.s.c. function f : X → R such that f −φ attains
its global minimum at a unique point for all φ ∈ X∗ distinct from α.

Proof. Without loss of generality one can assume thanks to [3] that X is strictly
convex. Let K be a strictly convex bounded closed subset of X containing more
than one point, e.g. the unit ball. Define on X the coercive function f by :

f(x) = d(x,K)2 + ⟨α, x⟩
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It is clear that the function

f0 : x 7→ d(x,K) = supφ∈X∗,∥φ∥=1 φ(x)− µK(φ)

where µK(φ) = supy∈K φ(y), is convex non-negative and weakly l.s.c. Thus so is

f20 , and f is convex and weakly l.s.c. The function f − α is constant on K, which
is not a singleton ; thus f is not strictly convex. It remains to show that, for all
φ ∈ Y distinct from α, the minimum of f − φ is attained at a unique point, it is
the minimum of f0 − φ is attained at a unique point whenever φ ̸= 0.

First remark that the function f20 −φ : x 7→ d(x,K)2−φ(x) attains its minimum
at x if and only if the function (z, t) 7→ t − φ(z) attains at (x, g(x)) its minimum
on the epigraph E of g = f20 . It is easily checked that E is the sum of the closed

convex sets K0 = K × [0,+∞[ and E0 = {(z, t) : t ≥ ∥z∥2} because the mapping
“sum” is weakly perfect from K0 × E0 to X × R.

The set where the linear functional ψ : (z, t) 7→ t − φ(z) attains its minimum
on K0 + E0 is the sum of the sets where this same linear functional attains its
minimum on K0 and on E0 respectively. If ψ attains its minimum on K0 at (t, z),
we necessarily have t = 0 and φ(z) = supy∈K φ(y). Since K is strictly convex and
φ is non-zero, this minimum is attained at a unique point z of K.

In the same way, if ψ attains its minimum on E0 at the point (t, z), we must have

t = ∥z∥2 and φ(z) = sup{φ(y) : ∥y∥ ≤ ∥z∥} ; thus the linear functional φ attains

its maximum on the unit ball of X at
z√
t
.

We also have (s2t, sz) ∈ E0 for s > 0, hence

(st)2 − sφ(z) = ∥sz∥2 − φ(sz) ≥ t2 − φ(z)

and (s − 1)
(
(s + 1)t2 − φ(z)

)
≥ 0, it is φ(z) = ∥φ∥ . ∥z∥ = 2t2 = 2 ∥z∥2, so

∥φ∥ = 2 ∥z∥. And since X is strictly convex the point u of the unit ball of X where

φ attains its maximum ∥φ∥ is unique, and so is the pair (z, t) : indeed ∥z∥ =
1

2
∥φ∥,

z = ∥z∥ .u and t =
1

4
∥φ∥2.

This completes the proof of uniqueness for the global minimum of f20−φ as φ ̸= 0,
hence the uniqueness for the global minimum of f − φ as φ ̸= α. �

Theorem 12. Let X be a reflexive infinite-dimensional Banach space. There exists
a dense linear subspace Y of X∗and a coercive weakly l.s.c. convex and non stricly
convex function f : X → R such that f − φ attains its global minimum at a unique
point for every φ ∈ Y .

Proof. Following the previous lemma, it is enough to find a dense linear subspace
Y of X∗ distinct from X∗ and to choose α ∈ X∗ \ Y .

If X is separable, so is X∗ ; it is enough to take a dense sequence (y∗n) in X
∗ and

to define Y as the linear subspace spanned by the (y∗n)’s.
In the general case, if (an) is a linearly independent sequence in X, the closed lin-

ear subspace V spanned by the (an)’s is reflexive separable and infinite-dimensional,
and so is V ∗. The canonical projection π : X∗ → V ∗ is onto and continuous, hence
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open. Then, if Z is a dense linear subspace of V ∗ distinct from V ∗, the linear
subspace Y = π−1(Z) is distinct from X∗ and dense : indeed if U is a non-empty
open set of X∗, π(U) is a non-empty open set of V ∗ and meets Z. Thus there exists
y ∈ U such that π(y) ∈ Z, it is y ∈ Y ∩ U . �
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