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CHARACTERIZING CONVEX FUNCTIONS
BY VARIATIONAL PROPERTIES

JEAN SAINT RAYM

OND

ABSTRACT. Let X be a reflexive Banach space and f : X — RU{+o0} be weakly
l.s.c. We prove that if for every ¢ in a convex dense subset Y of the dual space
X the set of points where the function f — ¢ attains its minimum is convex then

f is convex.

It is a common observation that if f is a non-convex continuous real function on

f@)
|z

h < f such that the function f — h vanishes
non-convex set.

the real line R which satisfies lim ;|

So it is a natural question to know whether
this fact could characterize convex functions on
an infinite-dimensional Banach space X.

It is shown in [5] that if f: X — RU {+o0}
is a weakly l.s.c. function and if f — ¢ attains
its minimum on a convex non-empty subset of
X for all ¢ in the dual space X* then f is con-
vex. It is worth noting that the hypothesis that
f — ¢ attains its minimum for every ¢ in X*
guarantees that the sublevels of f are all weakly
compact in X.

Another result in the same direction, with a
weaker assumption on the set of those ¢ in X*
for which f — ¢ attains its minimum, can be
found in [4] : if X is a reflexive Banach space and
f X — R a coercive continuous and weakly
l.s.c. function such that f is bounded on every
bounded subset of X and that f—¢ has a unique
global minimum for all ¢ in a convex dense sub-
set Y of X*, then f is convex.

= +oo then there is an affine function

at several points, and even on a

In this paper we mix these two kinds of hypotheses : as in [5] we assume that
f is weakly l.s.c. and that f — ¢ attains its minimum for every ¢ € X™* in order

to ensure the weak compactness of all sublevels

of f (one can notice that if X is

reflexive this condition is automatically satisfied for every coercive f) ; and as in
[4] we shall assume something on the shape of the set M, where f — ¢ attains its
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minimum (except that it is non-empty) only for ¢ in a convex dense subset Y of
X*.

Recall that if X is a Banach space a function f : X — R U {+oo} is said to be
o fla)
coercive if lim 00 w = +00.
Definition 1. Let X be a Banach space. A function f : X — R U {400} will
be said to be quasi-coercive if for every continuous linear functional ¢ on X the
function f — ¢ is bounded from below.

It is clear that a coercive function is quasi-coercive and well-known that the
converse is false in every infinite-dimensional Banach space. A proof of the following
lemma can be found in [5].

Lemma 2. Let X be a Banach space and f : X — R U {400} be bounded from
below. Then the following three are equivalent
- f is quasi-coercive.

f(x) —o(x)

- VQO € X* lim inf||xH—>oo > 0.

]

The following result generalizes Theorem 4 in [4].

Theorem 3. Let X be a reflexive space and f : X — R be quasi-coercive and weakly
l.s.c. If 'Y is a convex dense subset of X* and if f — ¢ attains its minimum at a
unique point for every ¢ € Y, then f is convex.

For the proof of this theorem we need several lemmas.

Lemma 4. If Y is a convexr dense subset of the Banach space E, ¢ >0, R >0 and
(a1,a2,...,a,) a finite family of points in E, then there exist a point w in E and a
finite-dimensional linear subspace V' of E such that |w| <e, VNB(0,R) CY —w,
d(aj,V) <e forj=1,2,...,n and d(z,Vp) < e for all x € V N B(0, R), where V}
denotes the linear span of (a1, as,...,a,).

Proof. Denote by m the dimension of Vj, and choose m + 1 points (b1, ba, ..., bpt1)

affinely independent in Vj such that 0 be an interior point of the convex hull of
(b1,b2,...,b;mt+1). We can for example take for (by,be,...,by) a basis of Vj and

bmt1 = — »_1" bj. Increasing R if necessary we can assume that sup; [|a;|| < R. and
let ag = 0.
Then there exists n > 0 such that Vy N B(0,n) C conv(by,ba,...,byt1), and we
R
define b, = ibj. It is clear that VoN B(0, R+¢) C conv (b}, b, ..., by, ). Since
Y is dense, we can find b7 € Y such that ||b; —b]|| <e/2.

If 0 < i < n, the point a; belongs to conv(by,by,...,b,, ), and there are
Aj > 0 with sum 1 such that a; = >, A\;0;. Then a = > . ;b7 belongs to
o —ajl| < 5,0 o)~ ¥|| < /2. Define w =

/! /! /!
conv (by,by,...,b 1) C Y, and ‘
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ag, then V' as the linear span of the (0] — w)j<m+1. We have [w| < ¢/2 and
d(aj,w+V) <¢e/2, hence d(a;,V) < e.

The faces of the simplex S’ of vertices (b),b5,...,b), ) are in the boundary
of this simplex, hence disjoint from the open ball B(0,R + ¢). In particular, if
a € conv(by, by, ..., by,), we have a = 37, p;b7 with p; > 0 and >°; p; = 1, thus
d(a, < p;b;) < €/2 and since > ., p;b; ¢ B(0, R+ ¢), we have [la —wl|| > R.
More generally, if @ — w belongs to some face of the simplex S” of vertices b — w,
we have |la|| > R; it follows that V N B(0, R) is a convex subset of V', hence is
connected, contains 0 and is disjoint from the boundary of the simplex S”, thus
that

VN B(0,R) C 8" =conv(b],by,...,00, 1) —~wCY —w.

Finally, if € V N B(0, R), we have & + w € conv(bf,b5,...,b ), and there are
non-negative real numbers p; with sum 1 such that x +w = Zj ujb;’ ; we then

have Hm Fw =D gl < 305y {0 — || < e/2, whence d(z + w,Vp) < £/2 and
d(z, Vo) < e since all b}’s belong to the space Vp. O

Recall that a multivalued mapping G defined on a topological space T with (non-
empty) values in a locally convex linear space F is said to be usco if it is upper
semi-continuous and takes compact values. It is said to be cusco if moreover its
values are convex. It is an easy and well-known result that G is usco if its graph
{(z,y) e T x E:y e G(x)} is compact in T x E.

The following avatar of Brouwers’s theorem is well-known : its proof can be found
in [1] (Théoreme 1, p. 523).

Lemma 5. Let E be a finite-dimensional normed space and G a cusco mapping
defined on the ball B(0,R) of E to the dual space E*. If ({,x) > 0 for each x in
the sphere S(0,R) and all £ € G(x), then there is a point & € B(0,R) such that
0e€ G().

Lemma 6. Let X be a Banach space, f : X — R U {+o0} be a quasi-coercive
function and K a norm-compact subset of X*. Assume f(0) < 4+o00. Then there
exist § > 0 and M € RT such that ||c|| < M holds for every ¢ € X* satisfying
d(p, K) < § and every c such that f(c) < p(c) + f(0).

Proof. 1t follows from lemma 2 that, for all £ € K, there are ¢ > 0 and r¢ > 0
such that, for all x € X, f(x) — ({,2) > f(0) + e¢.||z]| — r¢ holds. Then the
open balls B(&,e¢/3) cover K and there exists a finite subset J of K such that

K € Ueey B(E 2¢/3).
3
Then put § = mingcy %5 and M = maxec e d(p, K) < ¢ there exists
€¢

& € K such that ||¢ — &|| < 0 and £ € J such that || — & < %ﬁ Thus we have

2
lp—€|| <0+ %ﬁ < % If moreover f(c) < ¢(c) + f(0),

2
% lell = Nl =&l llell = (s e) = (€, ¢) = f(e) = f(0) = (&, ¢) = egle]l —re
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€ 3
what shows that gﬁ |||l < re, hence that ||c]| < e < M. O
&¢

Corollary 7. Let X be a Banach space, f : X — RU {400} be a proper quasi-
coercive function and K a norm-compact subset of X*. Then there exist § > 0 and
M € RY such that ||c|| < M holds for every ¢ € X* satisfying d(p, K) < § and
every ¢ where f — ¢ attains its global minimum on X.

Proof. Since f is proper there exists some a € X such that f(a) < +00. Applying
Lemma 6 to the function fi : x — f(x 4 a) we get My and ¢. If d(p, K) < § and if
f — ¢ attains its minimum at ¢ the function f1 — ¢ : z — f(z+a) — p(z+a)+ ¢(a)
attaints its minimum at c—a. So we have fi(c—a)—¢(c—a) < f1(0)—p(0) = f1(0).
Thus it follows that ||c — a|| < M; hence that ||c|| < M = M; + ||a]. O

Lemma 8. Let X be a Banach space and f: X — RU {400} be a quasi-coercive
weakly l.s.c. function. Assume that the proper domain of f is dense in X and
contains 0. Then, for every finite-dimensional linear subspace V of X* and every
B > 0, there exist R > 0 and § > 0 such that f*(¢) > B.R for all ¢ € X* satisfying
both d(p,V) <6 and R— 6 < [|¢| < R+9.

Proof. The convex ls.c. function f* : ¢ — sup,cx(p,z) — f(x) is finite at every
point of X*, hence norm-continuous on X* and a fortiori on V. Let 5’ = 3+1. The
set C={peV:[f*p) < f0)+1+p"|¢l} is a closed neighborhood of 0 in V.
If C is unbounded in V, there exist for all integer k a ¢ € V such that ||¢x| =1
and a A\p > k such that ;.o € C. Passing to a subsequence one can assume that
(¢r) converges to some ¢ € V. Then ||¢|| = 1. Moreover, the function 7 defined
on Rt by 7(t) = f*(ter) — f*(0) — 1 — Bt is convex, negative at 0 and at A, hence
at £ < A\g. In particular if ¢ is any integer, we have f.p; € C for all £ > ¢. Thus
L.p € C for all £ € N. Then for all £ > k we have f*(lpr) < 1+ f*(0) + 8¢, hence
[*(lp) <1+ f*(0) + B'L. For every x € Dy and every £ € N :

lo(z) — f(x) < f (o) <1+ f7(0) + B0

1 *(0
whence p(z) < '+ +/ (g) * f(x)’ and finally ¢(x) < #’. And this contradicts

the hypothesis that the non-empty open set {x : (p,z) > '} meets Dy.
It follows that C' is compact, and there exists R; such that C C V' N B(0, Ry).
Then, if ||¢|| > R1, we have ¢ ¢ C and

Ry R, Ry
1+ f*(0)+F'R (=) = [ I—7—)0
IO+ F R <) = PG 0 pp©
L 1— )5 0) < — 0
< @)+ (L= () € T () + £70)
hence f*(¢) > ”RBR loll > 8 llo|l whenever ¢ € V.

Applying lemma 6 to the compact set K =V N B(0, Ry + 1), we find M and ¢’
such that if d(p, K) < ¢ and if ¢ € X is a point such that f(c) < f(0) + ¢(c) , we

1
have ||| < M. Put ¢ = min(z,(S’ ) and R = Ry + 24.

1
7M+B/
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Then if ¥ € X* with R — 6 < ||¢|| < R+ ¢ and d(¢, V') < 6, there exists ¢ € V
such that ||¢ — 9| < 0 ; we have ||¢|| > Ry and ||¢]| < R+20 < Ry +45 < R; + 1,
hence f*(¢) > 'Ry and ¢ € K.

Moreover there exists a sequence (¢p,) in X such that ¢g = 0 and f(c,,) — p(cn)
decreases to inf, f(z) — ¢(x). Thus f*(¢) = sup,(¢(cn) — f(cn)) and we have
flen) = plen) < fleo) = @(co) = £(0) hence [[cp|| < M. Then

f* () = liminf ((cn) = f(en)) = liminf(p(cn) = f(en)) = suplleall- o = oI
> f*(¢) ~ Me = f'Ri — Me = f'R— (M + §)e > (8 ~ )R =R,
and that completes the proof of the lemma. O

Proof of Theorem 3.
In fact we will deduce theorem 3 from the more general following statement.

Theorem 9. Let X be a Banach space and f: X — RU{+o0} be a quasi-coercive
weakly l.s.c. function. Assume that the proper domain of f is dense in X and that
f — attains its minimum for all o € X*. If Y is a conver dense subset of X* and
if the set My, = {x € X : f — ¢ attains its minimum at x} is convex for all ¢ € Y,
then f is conver.

Proof. Since f — ¢ attains its minimum for all ¢ € X* it follows from [5] that the
sublevels S¢(a) = {z € X : f(x) < a} of f are weakly compact in X.

Assume that the function f is weakly L.s.c. and quasi-coercive but not convex.
There exist points a, b1, b2 in X and A\ €]0, 1] such that a = Ab; + (1 — \)b2 and
AF(b1) + (1= A)f(b2) < f(a).

By hypothesis the function f attains its minimum g at some point b.

We replace f by f1 : ¢ — f(x +b) —p, a, by and by by a — b, by — b and
bo —b, and Y by Y; =Y — 4, which is convex and dense in X*. And the proper
domain of f1, Dy = Dy — b, is dense in X : the function f now satisfies the
hypotheses of the theorem with inf, f(z) = f(0) = 0, Aoy + (1 — A\)b2 = a and
v = fla) = Af(b1) = (1 = A)f(b2) > 0.

Since f is weakly l.s.c., there exists a weak neighborhood W of a such that
f(x) > f(a) — % on W. Thus one can find &1,&s,...&, in X* and € > 0 such that

sup(j,x —a) <e =z €W

i<n

Denote then by V the linear subspace of X* spanned by (&1,&2,...,&,). Using
lemma 8 we choose R > 1 and §' < € such that f*(¢) > R.(||la]| + ¢) for all ¢ such
that R — ¢ < [j¢]| < R+ 0" and d(¢, Vp) < ¢'.

Since f is quasi-coercive, the sublevel S = Sf(f(a)) is bounded in X and we

denote by D the diameter of S. Then if || — & < %, if f(x) < f(a) and if

(&i,x —a) > e, we get ||z —al < D, hence (&,z —a) > % It follows that if
, £

sup; <, (§5, * — a) < o0 e have

- either ||z —a|| < D and x € W hence f(z) > f(a) — %7
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-or ||z —al] > D and x ¢ S hence f(z) > f(a),
thus f(x) > f(a) — 1 in both cases.
Fix Ko =VyN B(O,R+5), d < ¢ <eand M > 1 such that ||| < M whenever

f — ¢ attains its minimum at ¢ and d(p, Koy) < 0.
Applying lemma 4 one finds w € X* and a finite-dimensional subspace V of

/
X* such that |w]| < —, |lw|| < 7 ,VNB(O,R) CY —w and d(p, Ko) < 6 if

5
M
¢ € VN B(0,R), and also points fg € V such that ||§ — &|| < E The points !

span V. Denote by 7 the restriction to X of the canonical projection of X** onto
V*: forz € X and ¢ € V, (m(z),¢) = ¢(x). Then, since { € V, we see that
if z € X and if n(z) = 7(a), we have ({/,x —a) = 0 for all ¢, and in particular
f(z) > f(a)— % Moreover if ¢ € V and z € X, we have (w(x), ¢) = ¢(x). Observe
that if p € V and ||¢|| < Rthenw+ ¢ €Y.

IfpeV,|¢|ll=Rand f — (w+ @) attains its minimum at ¢, we then have
(WHe)(e) = fle)+ [ (w+e)> fle)+ Rlall +¢) = R(l|all + &) = [l¢] - lall + &
since | < £/, hence (c) — ¢(a) > @] lall += — (a) — M. e > 0.

Consider the multivalued function G : VN B(0, R) =% X defined by

e G(p) =Myrp, — [wt+e)=(wt+e)(x)—flz)

If x € G(¢) we have ||z|| < M hence f(z) — (w+¢)(z) < f(0) — (w+¢)(0) = 0 and

f(@) < (w+ @) (@) <[lw+ el =l < a:= (el + [lwl)-M

So the values of G are contained in the weakly compact subset Sy(a) of X. And
the graph I' of G is compact in (V N B(0,R)) x X, if Y C X* is equipped with the
norm topology and X with the weak topology ; indeed I' C (V N B(0, R)) x Sf(«)
and

(pe) €T &= ceGlp) <= Ve e X ¢(c) - f(c) 2 ¢(x) - f(z)

thus G is usco from Y equipped with the norm topology into X with the weak
topology. And since G takes convex values by hypothesis this shows that it is a
cusco mapping.

If p € VN B(0,R) and ¢ € G(p) we necessarily have

1) = (w+9)(e) < min(f(br) = @+ @)(b1), F(ba) = (w+2) (b))
<Af(B) + (L= N f(b2) = (w+ @) (Aby + (1= A)b)
< (fl@) =) = @+ ¢)@) = fla) - (w+¢)(a) — 7
but if 7(z) = w(a) we have p(x) = ¢(a) hence

F@) = (@ +9)(@) = £(@) - p(a) —w(z) > f(a) = 3 = (w+o)(@) = ] |z~ a]
>ﬂ@—w+wmw—g—0wwmerww+wwwn§

and that shows that m(c) # 7(a).
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The multivalued function Gy : ¢ — 7o G(¢) — 7(a) takes convex compact values
in V* and is upper semi-continuous from V N B(0,R) to V*, since 7 is weakly
continuous from X to V* and it follows from what precedes that G1(¢) cannot
contain 0 for any p € Y NV.

By the choice of R, we have (z,¢) = ¢(c) — p(a) > 0, for all ¢ € V such that
ol = R and all z = 7(c) — w(a) € Gi(p). We deduce then from lemma 5 that the
cusco mapping G should contain 0 at some point of V' N B(0, R), in contradiction
with what precedes. And this shows that f must be convex. O

Observe that most of the arguments of the above proof do not require any hy-
pothesis of weak compactness. The only point where such an hypothesis is used
(by the weak compactness of the sublevels of f) is the proof that G is cusco (and
that so is Gp). If we attempt to replace each G1(¢) by its closure G} (¢) = G1(p)
in V*, we get a multivalued mapping with convex compact values but we cannot
ensure that this new multivalued mapping is upper semi-continuous. And if we try
to replace the graph I'y = {(¢, z) : z € G1(¢)} by its closure in B(0, R) x V*, we get
the graph of a new u.s.c. multivalued mapping G with compact values avoiding 0
but could loose the convexity of its values GY(p).

Theorem 10. Let X be a Banach space and f : X — RU{+o0} be a proper weakly
l.s.c. function. Assume that f — ¢ attains its minimum for all o € X* and that the

set My, = {x € X : f — ¢ attains its minimum at x} is convex for all ¢ in a convex
dense subset Y of X*. Then f is convex.

Proof. 1If the proper domain of f is dense in X, the statement follows from theorem
9. In the other case, it follows from [5] that the sublevels Sy(a) of f are all weakly
compact in X. If K, denotes the sublevel S¢(2") and if m,, = sup{||z| : v € K,},

2—”

the set K = ) T K, is weakly compact in X. It follows then from [2] that
m

there exists a subspacenZ of X containing K and a norm |||.||| on Z such that Z be

a reflexive Banach space for ||.||| and that K be bounded in Z. The unit ball of Z
is compact for the weak topology o(Z, Z*) and a fortiori for o(Z, X*).

Since K, C 2"(1 4+ my)K C Z, we have Dy = J,, K, C Z. And replacing X by
the closure Z of Z in X, we can also assume Z to be dense in X.

For any positive integer ¢, define
— inf —ylI?
fq(z) yngf(y) +q|llz =yl
If a € X satisfies f(a) < 400, we have a € Dy C Z and

fo(@) < fa) + gz — al* < +o0

whenever € Z; this shows that the function f; is everywhere finite on Z, hence
Dy, D Z and Dy, is dense in X. In fact, if f(y) < +oo and ||z — y|| < +o0, we have
y € Zand v —y € Z, thus x € Z, whence Dy, = Z. One sees also that f, < f. By
hypothesis f is bounded from below, and we define p = inf,cx f(z).

The epigraphs Ef of f and E; of the function ng : y — ¢ IlyllI* are both weakly
closed and the function o : ((y,t),(z,5)) — (y + 2,5 + t) is weakly perfect from
E; x Eginto X x R : indeed if H is weakly compact in X x R, there exists h € R
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such that H C X x| — oo, h]. Then if (y,t) € Ef, (2,5) € Egand (y+ 2,5 +t) € H,

h—
we must have p+ s < s+t < h, thus s < h—p and ||z|| < r = (7/‘)1/2. It

follows that (z, s) belongs to the weakly compact set L = {z : [||z||| < r} x [0, h — y]
and (y,t) belongs to the weakly compact set H — L. Finally since E; and E, are
weakly closed, Hy = Ey N (H — L) and Hy = E; N L are weakly compact and
(Ef x Eg) No~ (K) is closed in the compact set Hy x Ha.

Since the mapping o FxE, 18 perfect, By + E, is weakly closed in X x R and
it is the epigraph of f,. If ¢ € X™* the minimum of f; — ¢ is the minimum of the
function (z,u) — u — p(x) on Ey + E; : thus it is attained at some point (x,u) if
and only if (z,u) = (y,t) + (2, 5), with t — p(y) = inf{u — p(w) : (w,u) € Ef} and
s —p(z) = inf{u — p(w) : (w,u) € E,}.

Since Z is reflexive,

inf{u — p(w) : w € E,} = inf{q. |Jw]|* — p(w) : w € W}

is attained at some point of Z for any ¢ € Z*, and a fortiori for any ¢ € X™* ; and
since the fonction n, is convex the set N, where the function n, — ¢ attains its
minimum is convex.

By hypothesis inf{u — p(w) : (w,u) € E¢} = infex f(w) — p(w) and the set M,
where this minimum is attained is convex for all . It follows that for all p € Y the
set where inf,cx fy(w) — ¢(w) is attained is the convex set N, + M, .

One deduces from theorem 9 that f, is convex on X for all integer ¢. If it is
shown that f = sup, f;, then the proof of the convexity of f will be complete. Let
x € X and A < f(z). Since f is weakly l.s.c., one can find some weak neighborhood
W of z such that f(y) > A whenever y € W, then ¢ > 0 such that W D By (=, ).

Choose then ¢ such that g6 > XA — u ; we have

Aqllz—yl? >N ifyew

M = yll? >
f) +q. ||z —yll _{MJH152>A ity & W

thus f,(x) > A. This completes the proof that f = sup, f; is convex. O

It is shown in [5] that f is strictly convex as soon as it satisfies the conditions
of theorem 3 with Y = X*. Nevertheless we shall prove that on every reflexive
infinite-dimensional Banach space X, there exists a weakly l.s.c. function f, convex
but not strictly convex, and a dense linear subspace Y of X* such that f—¢ attains
its minimum at a unique point for every ¢ € Y.

Lemma 11. Let X be a reflexive Banach space and o € X*. There exists a coercive
convex non strictly convex weakly l.s.c. function f: X — R such that f — ¢ attains
its global minimum at a unique point for all ¢ € X* distinct from «.

Proof. Without loss of generality one can assume thanks to [3] that X is strictly
convex. Let K be a strictly convex bounded closed subset of X containing more
than one point, e.g. the unit ball. Define on X the coercive function f by :

f(z) =d(z, K)* + (a,z)



CONVEX FUNCTIONS 261

It is clear that the function

forz—=d(z, K) = supyex« o1 () — pi ()
where pix(¢) = supyex ¢(y), is convex non-negative and weakly l.s.c. Thus so is
f02, and f is convex and weakly l.s.c. The function f — « is constant on K, which
is not a singleton ; thus f is not strictly convex. It remains to show that, for all
© €Y distinct from «, the minimum of f — ¢ is attained at a unique point, it is
the minimum of fy — ¢ is attained at a unique point whenever ¢ # 0.

First remark that the function f& — ¢ : z + d(z, K)? — () attains its minimum
at x if and only if the function (z,t) — t — ¢(2) attains at (x, g(z)) its minimum
on the epigraph E of g = f2. It is easily checked that E is the sum of the closed
convex sets Ko = K x [0,400[ and Ey = {(z,t) : t > ||z||*} because the mapping
“sum” is weakly perfect from Ky x Fy to X x R.

The set where the linear functional ¥ : (z,t) — t — ¢(z) attains its minimum
on Ky + Ey is the sum of the sets where this same linear functional attains its
minimum on Ky and on Ej respectively. If ¢ attains its minimum on Ky at (¢, z),
we necessarily have ¢ = 0 and ¢(z) = sup ek ¢(y). Since K is strictly convex and
 is non-zero, this minimum is attained at a unique point z of K.

In the same way, if ¢ attains its minimum on Ej at the point (¢, z), we must have
t = ||z]|* and ¢(2) = sup{e(y) : ||ly|| < ||z||} ; thus the linear functional ¢ attains

z

its maximum on the unit ball of X at %

We also have (s%t, sz) € Ey for s > 0, hence
(51)° = s0(2) = [|s2]|* = ¢(s2) > £ = p(2)
and (s~ 1)((s + D2 ~ () 2 0, it 35 0(z) = llell. ] = 22 = 22|, so0
lloll = 2]|z||. And since X is strictly convex the point u of the unit ball of X where

1
 attains its maximum ||| is unique, and so is the pair (z,t) : indeed ||z|| = 3 llell,

1 2
2= [zl -wand £ = 2 lol”.

This completes the proof of uniqueness for the global minimum of f& —¢ as ¢ # 0,
hence the uniqueness for the global minimum of f — ¢ as ¢ # a. g

Theorem 12. Let X be a reflexive infinite-dimensional Banach space. There exists
a dense linear subspace Y of X*and a coercive weakly l.s.c. convex and non stricly
convez function f : X — R such that f — @ attains its global minimum at a unique
point for every p € Y.

Proof. Following the previous lemma, it is enough to find a dense linear subspace
Y of X* distinct from X* and to choose o € X*\ Y.

If X is separable, so is X* ; it is enough to take a dense sequence () in X* and
to define Y as the linear subspace spanned by the (y})’s.

In the general case, if (ay,) is a linearly independent sequence in X, the closed lin-
ear subspace V' spanned by the (a,,)’s is reflexive separable and infinite-dimensional,
and so is V*. The canonical projection 7 : X* — V* is onto and continuous, hence
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open. Then, if Z is a dense linear subspace of V* distinct from V*, the linear
subspace Y = 7~1(Z) is distinct from X* and dense : indeed if U is a non-empty
open set of X*, 7w(U) is a non-empty open set of V* and meets Z. Thus there exists
y € U such that n(y) € Z,itisye Y NU. O
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