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STRONG CONVERGENCE OF THE GRADIENT-PROJECTION
ALGORITHM IN HILBERT SPACES

HUANHUAN CUI AND FENGHUI WANG

ABSTRACT. In this paper we study a modified Gradient-Projection Algorithm
recently introduced by Xu (Averaged mappings and the Gradient-Projection Al-
gorithm, J. Optim. Theory Appl., 150 (2011), 360-378). The strong convergence
of the algorithm is obtained under some weak conditions.

1. INTRODUCTION

Let H be a real Hilbert space, C' a nonempty closed convex subset, and f : H — R
a convex and differentiable function. Consider a convexly constrained minimization
problem: Find x* € C' so that
(1.1) f(z*) = min f(x).

zeC

A classical way to solve such problem is the gradient projection algorithm(GPA):
For any initial guess z, the GPA generates a sequence as

Tny1 = Po(x, —rV f(z,)),

where V f denotes the differential of f and r > 0 is known as the step of the
algorithm. If we set T'= Po(I — rV f), then problem (1.1) is transformed into the
fixed point problem:

Find 2* € C so that Tz* = x™;

accordingly the GPA has the form:
Tpt1 = Txy.
If further V f is L-Lipschitz continuous, namely
IVf(x) =Vl < Lllz —yll,Vz,y € H,

and the step is chosen so that 0 < r < (2/L), then T is an averaged mapping. By
the well-known Mann’s theorem, the GPA converges weakly to a fixed point of T,
i.e., a minimizer of prblem (1.1), whenever such an element exists.

However, Hundal’s counterexample [6] reveals that the GPA can not converge
strongly in general. To get the strongly convergent algorithm, Xu [10] recently
introduced the following modified scheme: For any initial guess zg € C, define

(1.2) Tpt1 = Oph(x,) + (1 — 0,)Po(xn — rnV f(2)),
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where (0,,) € [0,1],h : C — C is a contractive mapping. Then algorithm (1.2) can
be strongly convergent to a solution of problem (1.1) provided that
(i) 0 < liminf,, r, <limsup,, r, < (2/L),
(ii) lim, 6, = 0,>_ 6, = oo,
(ill) D 10n — Onti1| < 00,2 [rn — Tnt1| < 00
In what follows we shall prove that condition (i)-(ii) is sufficient to guarantee the
strong convergence of the above algorithm.

2. PRELIMINARY

Assume that C' is a nonempty convex closed subset in . Fix(T") will denote the
fixed point set of T', wy,(x,) the weak cluster points set of the sequence (x,), —
strong convergence, — weak convergence, and 2 the solution set of problem (1.1).

Definition 2.1. Let T : C' = H be a nonlinear mapping. Then
(1) T is said to be a p-contraction, if there exists p € (0,1) so that for z,y € C,

[Tz — Tyl < pllz —yl.
(2) T is said to be a nonexpansive mapping, if for x,y € C,
[Tz =Tyl < [l —yll
(3) T is said to be an a-averaged mapping, if there is & € (0, 1) and a nonexpansive
mapping S so that T'= (1 — o) + &S.
(4) T is said to be a k-inverse strongly monotone mapping, if there is £ > 0 so

that
(Tz — Ty, —y) > xl| Tz — Ty|*.

Lemma 2.2 (Demiclosedness Principle [5]). Let C' be a nonempty closed convex
subset of H and T : C — H a nonexpansive mapping with Fix(T) # 0. If (z,) is
a sequence in C' such that x, — x and (I — T)x, — 0, then (I — T)x = 0, i.e.,
x € Fix(T).

Averaged mappings have the following properties.

Lemma 2.3 (see [3, 10]). (1) If T : C — H is a-averaged, then for any z € Fix(T)
and for all z € C,

l—«o

1Tz = 2|f* < llz — 2[* - 1Tz — .

(2) Let Ty : H — H and To : C — H be a1 and az-averaged, respectively. Then
T\ Ty is (a1 + g — ayae)-averaged.
For = € H, its projection Pox is defined as is the unique point in C' with the

property:
— P = mi — .
lz = Pox|| = min |z — y|

Lemma 2.4. Let Po be the projection mapping. Then

(i) Po is (1/2)-averaged and 1-inverse strongly monotone;
(ii) y = Pox if and only if Pox € C,{x —y,z —y) <0, Vz € C.
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Lemma 2.5. Let f : H — R be a convex differentiable function with L-Lipschitz
continuous differential Vf. Let 0 < r < (2/L),T, = Poc(I —rVf). Then (1)
Fix(T,) = Q; (2) T, is (2 + rL)/4-averaged.
Proof. (1) According to [4, Lemma 5.13], «* solves problem (1.1) if and only if
(Vf(x"),z* —2) <0,VzeC,
which is equivalent to
(x* — (2" = rVf(z¥)),z* — z) <0.

It then follows from Lemma 2.4 that «* = Po(I — rV f)z*.
(2) We note that

I = (2/L)V )z = (I = 2/L)V)yl?* = |z —y) — 2/L)(V f(z) = V()|
= llz —yl* + 4/L2|Vf(z) = VFW)I* = 4/L{x —y, Vf(z) = Vf(y)).

According to [1, Corollary 10], Vf is 1/L-inverse strongly monotone, if it is L-
Lipschitz continuous, and thus I — (2/L)V f is nonexpansive. Note that

r r
I—-rVf= (1 - ) I+——(—(2/L)V).
(2/L) (2/L)
This implies that I —rV f is rL/2-averaged. Since the projection mapping is (1/2)-
averaged, Lemma 2.3 is therefore applicable. O

Lemma 2.6 (sce [8]). Let f : H — R be a conver differentiable function with L-
Lipschitz continuous differential Vf. Let 0 < r <1’ < (2/L),T, = Po(I —rVf).
Then

I Tox — || < || Tz —z|, v €C.
Lemma 2.7 (see [9]). Let (a,) be a nonnegative real sequence satisfying
An+41 < (1 - an)an + anbn7
where (a,) C (0,1) and (by,) are real sequences. Then a, — 0 provided that
(i) ;an = oo, lim,, a;,, = 0;
(ii) limy, by, <0 or Y. apnlby| < co.
3. MAIN RESULT

We now prove our main theorem:.

Theorem 3.1. Let f: H — R be a convex differentiable function with L-Lipschitz
continuous differential Vf, h : C — C a p-contractive mapping. Assume that
(0) € [0,1] and (ry) satisfy

(3.1) 0 < liminfr, <limsupr, < (2/L),
(3.2) lim 6, =0, > 0, = oo,

Then the sequence generated by (1.2) converges strongly to a minimizer x* of problem
(1.1), which also solves

(3.3) (I —h)x*,y—2a*) >0,Vy € Q.
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Proof. By Lemma 2.4, z* solves (3.3) if and only if z* = Poh(z*). It is easy to
check the boundedness of the iterative algorithm. Now set

T, := Pc(I — r,Vf,).
By Lemma 2.3, Fix(7},,) = S, T, is an averaged mapping, and

On the other hand, by the subdifferential inequality
la+b]|? < ||al|? + 2(b,a 4 b), Va,b € H,

(3-4) Tz — *|* < flwn — 27| -

we have the following estimation:
zn41 = 2[1* = [ (Alzn) — 2) + (1 = ) (Tnzn — 27)?
= [[0n(h(zn) — h(z%)) + On(h(z7) — 27)
+ (1= 0) (Than — 27|
<l (h(zn) = h(z*)) + (1 = ) (Tozn — 2*) |
+ 20, (h(z") — %, 1 — ™)
< O h(zn) — h(x*)|| + (1 = 0n)|| T, — ||
+ 20, (h(z") — ¥, zpi1 — )
< Onplln — ¥ + (1 = 0) | Ty — 2|2
+ 20, (h(z*) — 2, xpt1 — xF).
Substituting (3.4) into the above,

|+t — 2% < Onpllzn — 272 + (1 = 0n)|Jan — 2*||?

(2/L) — o ]
- (1-06, )(2/L) n n||mn — Than||? + 20, (h(z*) — 2%, 2py1 — %)
<[ = (1= p)Onlllan — 2"
- (1- 9")(2/L) +rn||xn — Than||? + 20, (h(z*) — 2%, 2ppy — ).

Since 6,, — 0, it is readily seen that
e (2/L) —ry
1 f(1-6,)——~—— )
e Y E

Without loss of generality we may assume that there is o > 0 so that for all n > 0

(1= 0.)(2/) ~ r) (/L) +7a) > 0.

Let s, = ||zn, — 2*[|?, an = (1 — p)B,. Hence
204n
-p

Finally we prove s,, — 0 by considering two possible cases.

(3.5) St — Sn + Qnsn + 0|z, — Tha,|* < (h(z*) — ", xpe1 — x").
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Case 1. (sy) is eventually decreasing (i.e., there exists N > 0 such that (s,) is
decreasing for n > N). In this case, (s,) must be convergent. According to (3.5),
(3.6) ol|lzn — Thanl|? < May + (Sn — Sni1),
where M > 0 is so large that

2
ﬂ\!h(w*) =z — 2" < M

for all n € N. Taking n — oo in (3.6) yields ||z, — T,y || — 0. Since liminfr, > 0,
we assume without loss of generality that there is r > 0 so that r,, > r for all n € N.
Set T, = Pc(I —rA). By Lemma 2.6,
|lxn — Trxn|| < ||xn — Than| — 0.
Using Demicolsedness Principle, w,,(z,) C Fix(7,) = Q, and by Lemma 2.4,
limsup(h(z*) — 2", 2, —2*) = max (h(z") — Poh(z"),w — Poh(x™)) < 0.

n—00 wEww (Tn)

Note that inequality (3.5) implies

20 * * *
snt1 < (1 —an)sn + 1 _np<h(x ) — 2%, g1 — 7).

We thus apply Lemma 2.7 to conclude s,, — 0.
Case 2. (s,) is not eventually decreasing. Hence, we can find a subsequence
(Sn,,) so that s,, < sy, 41 for all k> 0. Now let us define

I i={no <k <n:sp<sgt1},Vn > ng.

Obviously J,, is nonempty and J, C Jy+1. Let 7(n) := maxJ,,n > ng. Then
7(n) — oo; otherwise (sy,) is nonincreasing. It is readily seen that s,(,) < 87(n)41
for all n > ng. Hence

(3.7) Sn < Sr(n)41, VN > ng.
In fact, if 7(n) = n, then (3.7) is trivial; otherwise, by the definition of 7(n)
Sr(n)+1 = Sr(n)+2 > " > Sn-
Hence (3.7) holds true. Since s;(,) < s7(ny41 for n > ng, we deduce from (3.5) that
er(n) - T‘r(n)xr(n) H2 < MaT(n) — 0.
Similarly, we have wy, (7-(,)) C 2. On the other hand, we have
||$T(n) - :BT(’VL)JFIH < 07’(71)||h(’1"7'(n)) — Lr(n) ” + ||TT(’VZ)’1"T(TL) - xT(n)”

Since ||h(zr(n)) — T7(n)l| is bounded, letting n — oo yields [|2+(,) — Z7m)41ll — 0.
Hence

limsup(h(z*) — 2%, 2,(n)41 — =¥) = limsup(h(z*) — 2%, 21 () — 27)
n—oo n—oo

(3.8) = max (h(z¥) — Poh(z™),w — Poh(z™)) < 0.

WEWy (IT(n) )

Since $7(n) < 87(n)+1, We deduce from (3.5) that

(39) Sr(n) < 7<h(1’*) - x*vx’r(n)-‘rl - .%'*>, n > ng.
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Combining (3.8) and (3.9), we have

limsup s-() <0 = s73,,) = 0.
n

Consequently
v/ Sr(n)+1 < H(xﬂ'(n) - IIZ*) + (mT(n)-i-l — ;(;T(ﬂ))”
< \/ Sr(n) + Hx‘r(n)-i-l - x‘r(n)” — 0.
In view of (3.7), s, — 0, that is, x,, — z*. O

Remark 3.2. The construction of (7(n)) is motivated by an idea invented by
Maingé [7].

We apply the above result to get the following.

Corollary 3.3. Let condition (3.1)-(3.2) be satisfied. Given u € C and an initial
guess xg € C, let (x,,) be a sequence generated by

Tnt1 = Opu+ (1 — 6,)Po(xy — )V f(20)).

Then (x,,) converges strongly to x* = Pqu, a minimizer of problem (1.1).
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