STRONG CONVERGENCE OF THE GRADIENT-PROJECTION ALGORITHM IN HILBERT SPACES

HUANHUAN CUI AND FENGHUI WANG

Abstract

In this paper we study a modified Gradient-Projection Algorithm recently introduced by Xu (Averaged mappings and the Gradient-Projection Algorithm, J. Optim. Theory Appl., 150 (2011), 360-378). The strong convergence of the algorithm is obtained under some weak conditions.

1. Introduction

Let \mathcal{H} be a real Hilbert space, C a nonempty closed convex subset, and $f: \mathcal{H} \rightarrow \mathbb{R}$ a convex and differentiable function. Consider a convexly constrained minimization problem: Find $x^{*} \in C$ so that

$$
\begin{equation*}
f\left(x^{*}\right)=\min _{x \in C} f(x) . \tag{1.1}
\end{equation*}
$$

A classical way to solve such problem is the gradient projection algorithm(GPA): For any initial guess x_{0}, the GPA generates a sequence as

$$
x_{n+1}=P_{C}\left(x_{n}-r \nabla f\left(x_{n}\right)\right),
$$

where ∇f denotes the differential of f and $r>0$ is known as the step of the algorithm. If we set $T=P_{C}(I-r \nabla f)$, then problem (1.1) is transformed into the fixed point problem:

$$
\text { Find } x^{*} \in C \text { so that } T x^{*}=x^{*} ;
$$

accordingly the GPA has the form:

$$
x_{n+1}=T x_{n} .
$$

If further ∇f is L-Lipschitz continuous, namely

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|, \forall x, y \in \mathcal{H}
$$

and the step is chosen so that $0<r<(2 / L)$, then T is an averaged mapping. By the well-known Mann's theorem, the GPA converges weakly to a fixed point of T, i.e., a minimizer of prblem (1.1), whenever such an element exists.

However, Hundal's counterexample [6] reveals that the GPA can not converge strongly in general. To get the strongly convergent algorithm, Xu [10] recently introduced the following modified scheme: For any initial guess $x_{0} \in C$, define

$$
\begin{equation*}
x_{n+1}=\theta_{n} h\left(x_{n}\right)+\left(1-\theta_{n}\right) P_{C}\left(x_{n}-r_{n} \nabla f\left(x_{n}\right)\right), \tag{1.2}
\end{equation*}
$$

[^0]where $\left(\theta_{n}\right) \subseteq[0,1], h: C \rightarrow C$ is a contractive mapping. Then algorithm (1.2) can be strongly convergent to a solution of problem (1.1) provided that
(i) $0<\liminf _{n} r_{n} \leq \limsup \sup _{n} r_{n}<(2 / L)$,
(ii) $\lim _{n} \theta_{n}=0, \sum \theta_{n}=\infty$,
(iii) $\sum\left|\theta_{n}-\theta_{n+1}\right|<\infty, \sum\left|r_{n}-r_{n+1}\right|<\infty$.

In what follows we shall prove that condition (i)-(ii) is sufficient to guarantee the strong convergence of the above algorithm.

2. Preliminary

Assume that C is a nonempty convex closed subset in $\mathcal{H} . \operatorname{Fix}(T)$ will denote the fixed point set of $T, \omega_{w}\left(x_{n}\right)$ the weak cluster points set of the sequence $\left(x_{n}\right), \rightarrow$ strong convergence, \rightharpoonup weak convergence, and Ω the solution set of problem (1.1).

Definition 2.1. Let $T: C \rightarrow \mathcal{H}$ be a nonlinear mapping. Then
(1) T is said to be a ρ-contraction, if there exists $\rho \in(0,1)$ so that for $x, y \in C$,

$$
\|T x-T y\| \leq \rho\|x-y\| .
$$

(2) T is said to be a nonexpansive mapping, if for $x, y \in C$,

$$
\|T x-T y\| \leq\|x-y\|
$$

(3) T is said to be an α-averaged mapping, if there is $\alpha \in(0,1)$ and a nonexpansive mapping S so that $T=(1-\alpha) I+\alpha S$.
(4) T is said to be a κ-inverse strongly monotone mapping, if there is $\kappa>0$ so that

$$
\langle T x-T y, x-y\rangle \geq \kappa\|T x-T y\|^{2}
$$

Lemma 2.2 (Demiclosedness Principle [5]). Let C be a nonempty closed convex subset of \mathcal{H} and $T: C \rightarrow \mathcal{H}$ a nonexpansive mapping with $\operatorname{Fix}(T) \neq \emptyset$. If $\left(x_{n}\right)$ is a sequence in C such that $x_{n} \rightharpoonup x$ and $(I-T) x_{n} \rightarrow 0$, then $(I-T) x=0$, i.e., $x \in \operatorname{Fix}(T)$.

Averaged mappings have the following properties.
Lemma 2.3 (see [3, 10]). (1) If $T: C \rightarrow \mathcal{H}$ is α-averaged, then for any $z \in \operatorname{Fix}(T)$ and for all $x \in C$,

$$
\|T x-z\|^{2} \leq\|x-z\|^{2}-\frac{1-\alpha}{\alpha}\|T x-x\|^{2}
$$

(2) Let $T_{1}: \mathcal{H} \rightarrow \mathcal{H}$ and $T_{2}: C \rightarrow \mathcal{H}$ be α_{1} and α_{2}-averaged, respectively. Then $T_{1} T_{2}$ is $\left(\alpha_{1}+\alpha_{2}-\alpha_{1} \alpha_{2}\right)$-averaged.

For $x \in \mathcal{H}$, its projection $P_{C} x$ is defined as is the unique point in C with the property:

$$
\left\|x-P_{C} x\right\|=\min _{y \in C}\|x-y\|
$$

Lemma 2.4. Let P_{C} be the projection mapping. Then
(i) P_{C} is $(1 / 2)$-averaged and 1 -inverse strongly monotone;
(ii) $y=P_{C} x$ if and only if $P_{C} x \in C,\langle x-y, z-y\rangle \leq 0, \forall z \in C$.

Lemma 2.5. Let $f: \mathcal{H} \rightarrow \mathbb{R}$ be a convex differentiable function with L-Lipschitz continuous differential ∇f. Let $0<r<(2 / L), T_{r}=P_{C}(I-r \nabla f)$. Then (1) $\operatorname{Fix}\left(T_{r}\right)=\Omega$; (2) T_{r} is $(2+r L) / 4$-averaged.
Proof. (1) According to [4, Lemma 5.13], x^{*} solves problem (1.1) if and only if

$$
\left\langle\nabla f\left(x^{*}\right), x^{*}-z\right\rangle \leq 0, \forall z \in C
$$

which is equivalent to

$$
\left\langle x^{*}-\left(x^{*}-r \nabla f\left(x^{*}\right)\right), x^{*}-z\right\rangle \leq 0 .
$$

It then follows from Lemma 2.4 that $x^{*}=P_{C}(I-r \nabla f) x^{*}$.
(2) We note that

$$
\begin{aligned}
& \|(I-(2 / L) \nabla f) x-(I-(2 / L) \nabla f) y\|^{2}=\|(x-y)-(2 / L)(\nabla f(x)-\nabla f(y))\|^{2} \\
& \quad=\|x-y\|^{2}+4 / L^{2}\|\nabla f(x)-\nabla f(y)\|^{2}-4 / L\langle x-y, \nabla f(x)-\nabla f(y)\rangle
\end{aligned}
$$

According to [1, Corollary 10], ∇f is $1 / L$-inverse strongly monotone, if it is L Lipschitz continuous, and thus $I-(2 / L) \nabla f$ is nonexpansive. Note that

$$
I-r \nabla f=\left(1-\frac{r}{(2 / L)}\right) I+\frac{r}{(2 / L)}(I-(2 / L) \nabla f)
$$

This implies that $I-r \nabla f$ is $r L / 2$-averaged. Since the projection mapping is (1/2)averaged, Lemma 2.3 is therefore applicable.

Lemma 2.6 (see [8]). Let $f: \mathcal{H} \rightarrow \mathbb{R}$ be a convex differentiable function with L Lipschitz continuous differential ∇f. Let $0<r \leq r^{\prime} \leq(2 / L), T_{r}=P_{C}(I-r \nabla f)$. Then

$$
\left\|T_{r} x-x\right\| \leq\left\|T_{r^{\prime}} x-x\right\|, x \in C
$$

Lemma 2.7 (see [9]). Let $\left(a_{n}\right)$ be a nonnegative real sequence satisfying

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} b_{n}
$$

where $\left(\alpha_{n}\right) \subset(0,1)$ and $\left(b_{n}\right)$ are real sequences. Then $a_{n} \rightarrow 0$ provided that
(i) $\sum \alpha_{n}=\infty, \lim _{n} \alpha_{n}=0$;
(ii) $\varlimsup_{n} b_{n} \leq 0$ or $\sum \alpha_{n}\left|b_{n}\right|<\infty$.

3. Main Result

We now prove our main theorem.
Theorem 3.1. Let $f: \mathcal{H} \rightarrow \mathbb{R}$ be a convex differentiable function with L-Lipschitz continuous differential $\nabla f, h: C \rightarrow C$ a ρ-contractive mapping. Assume that $\left(\theta_{n}\right) \subseteq[0,1]$ and $\left(r_{n}\right)$ satisfy

$$
\begin{gather*}
0<\liminf r_{n} \leq \lim \sup r_{n}<(2 / L) \tag{3.1}\\
\lim _{n \rightarrow \infty} \theta_{n}=0, \sum \theta_{n}=\infty \tag{3.2}
\end{gather*}
$$

Then the sequence generated by (1.2) converges strongly to a minimizer x^{*} of problem (1.1), which also solves

$$
\begin{equation*}
\left\langle(I-h) x^{*}, y-x^{*}\right\rangle \geq 0, \forall y \in \Omega \tag{3.3}
\end{equation*}
$$

Proof. By Lemma 2.4, x^{*} solves (3.3) if and only if $x^{*}=P_{\Omega} h\left(x^{*}\right)$. It is easy to check the boundedness of the iterative algorithm. Now set

$$
T_{n}:=P_{C}\left(I-r_{n} \nabla f_{n}\right)
$$

By Lemma 2.3, $\operatorname{Fix}\left(T_{n}\right)=S, T_{n}$ is an averaged mapping, and

$$
\begin{equation*}
\left\|T_{n} x_{n}-x^{*}\right\|^{2} \leq\left\|x_{n}-x^{*}\right\|^{2}-\frac{(2 / L)-r_{n}}{(2 / L)+r_{n}}\left\|x_{n}-T_{n} x_{n}\right\|^{2} \tag{3.4}
\end{equation*}
$$

On the other hand, by the subdifferential inequality

$$
\|a+b\|^{2} \leq\|a\|^{2}+2\langle b, a+b\rangle, \forall a, b \in \mathcal{H}
$$

we have the following estimation:

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2}= & \left\|\theta_{n}\left(h\left(x_{n}\right)-x^{*}\right)+\left(1-\theta_{n}\right)\left(T_{n} x_{n}-x^{*}\right)\right\|^{2} \\
= & \| \theta_{n}\left(h\left(x_{n}\right)-h\left(x^{*}\right)\right)+\theta_{n}\left(h\left(x^{*}\right)-x^{*}\right) \\
& +\left(1-\theta_{n}\right)\left(T_{n} x_{n}-x^{*}\right) \|^{2} \\
\leq & \left\|\theta_{n}\left(h\left(x_{n}\right)-h\left(x^{*}\right)\right)+\left(1-\theta_{n}\right)\left(T_{n} x_{n}-x^{*}\right)\right\|^{2} \\
& +2 \theta_{n}\left\langle h\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
\leq & \theta_{n}\left\|h\left(x_{n}\right)-h\left(x^{*}\right)\right\|+\left(1-\theta_{n}\right)\left\|T_{n} x_{n}-x^{*}\right\|^{2} \\
& +2 \theta_{n}\left\langle h\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
\leq & \theta_{n} \rho\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\theta_{n}\right)\left\|T_{n} x_{n}-x^{*}\right\|^{2} \\
& +2 \theta_{n}\left\langle h\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle .
\end{aligned}
$$

Substituting (3.4) into the above,

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \theta_{n} \rho\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\theta_{n}\right)\left\|x_{n}-x^{*}\right\|^{2} \\
& -\left(1-\theta_{n}\right) \frac{(2 / L)-r_{n}}{(2 / L)+r_{n}}\left\|x_{n}-T_{n} x_{n}\right\|^{2}+2 \theta_{n}\left\langle h\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
\leq & {\left[1-(1-\rho) \theta_{n}\right]\left\|x_{n}-x^{*}\right\|^{2} } \\
& -\left(1-\theta_{n}\right) \frac{(2 / L)-r_{n}}{(2 / L)+r_{n}}\left\|x_{n}-T_{n} x_{n}\right\|^{2}+2 \theta_{n}\left\langle h\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle .
\end{aligned}
$$

Since $\theta_{n} \rightarrow 0$, it is readily seen that

$$
\liminf _{n \rightarrow \infty}\left(1-\theta_{n}\right) \frac{(2 / L)-r_{n}}{(2 / L)+r_{n}}>0
$$

Without loss of generality we may assume that there is $\sigma>0$ so that for all $n \geq 0$

$$
\left(1-\theta_{n}\right)\left((2 / L)-r_{n}\right) /\left((2 / L)+r_{n}\right) \geq \sigma
$$

Let $s_{n}=\left\|x_{n}-x^{*}\right\|^{2}, \alpha_{n}=(1-\rho) \theta_{n}$. Hence

$$
\begin{equation*}
s_{n+1}-s_{n}+\alpha_{n} s_{n}+\sigma\left\|x_{n}-T_{n} x_{n}\right\|^{2} \leq \frac{2 \alpha_{n}}{1-\rho}\left\langle h\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \tag{3.5}
\end{equation*}
$$

Finally we prove $s_{n} \rightarrow 0$ by considering two possible cases.

Case 1. $\left(s_{n}\right)$ is eventually decreasing (i.e., there exists $N \geq 0$ such that $\left(s_{n}\right)$ is decreasing for $n \geq N)$. In this case, $\left(s_{n}\right)$ must be convergent. According to (3.5),

$$
\begin{equation*}
\sigma\left\|x_{n}-T_{n} x_{n}\right\|^{2} \leq M \alpha_{n}+\left(s_{n}-s_{n+1}\right) \tag{3.6}
\end{equation*}
$$

where $M>0$ is so large that

$$
\frac{2}{1-\rho}\left\|h\left(x^{*}\right)-x^{*}\right\|\left\|x_{n+1}-x^{*}\right\| \leq M
$$

for all $n \in \mathbb{N}$. Taking $n \rightarrow \infty$ in (3.6) yields $\left\|x_{n}-T_{n} x_{n}\right\| \rightarrow 0$. Since $\liminf r_{n}>0$, we assume without loss of generality that there is $r>0$ so that $r_{n} \geq r$ for all $n \in \mathbb{N}$. Set $T_{r}=P_{C}(I-r A)$. By Lemma 2.6,

$$
\left\|x_{n}-T_{r} x_{n}\right\| \leq\left\|x_{n}-T_{n} x_{n}\right\| \rightarrow 0
$$

Using Demicolsedness Principle, $\omega_{w}\left(x_{n}\right) \subset \operatorname{Fix}\left(T_{r}\right)=\Omega$, and by Lemma 2.4,

$$
\limsup _{n \rightarrow \infty}\left\langle h\left(x^{*}\right)-x^{*}, x_{n}-x^{*}\right\rangle=\max _{w \in \omega_{w}\left(x_{n}\right)}\left\langle h\left(x^{*}\right)-P_{\Omega} h\left(x^{*}\right), w-P_{\Omega} h\left(x^{*}\right)\right\rangle \leq 0
$$

Note that inequality (3.5) implies

$$
s_{n+1} \leq\left(1-\alpha_{n}\right) s_{n}+\frac{2 \alpha_{n}}{1-\rho}\left\langle h\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle
$$

We thus apply Lemma 2.7 to conclude $s_{n} \rightarrow 0$.
Case 2. (s_{n}) is not eventually decreasing. Hence, we can find a subsequence $\left(s_{n_{k}}\right)$ so that $s_{n_{k}} \leq s_{n_{k}+1}$ for all $k \geq 0$. Now let us define

$$
J_{n}:=\left\{n_{0} \leq k \leq n: s_{k} \leq s_{k+1}\right\}, \forall n>n_{0}
$$

Obviously J_{n} is nonempty and $J_{n} \subseteq J_{n+1}$. Let $\tau(n):=\max J_{n}, n>n_{0}$. Then $\tau(n) \rightarrow \infty$; otherwise $\left(s_{n}\right)$ is nonincreasing. It is readily seen that $s_{\tau(n)} \leq s_{\tau(n)+1}$ for all $n>n_{0}$. Hence

$$
\begin{equation*}
s_{n} \leq s_{\tau(n)+1}, \forall n>n_{0} \tag{3.7}
\end{equation*}
$$

In fact, if $\tau(n)=n$, then (3.7) is trivial; otherwise, by the definition of $\tau(n)$

$$
s_{\tau(n)+1}>s_{\tau(n)+2}>\cdots>s_{n}
$$

Hence (3.7) holds true. Since $s_{\tau(n)} \leq s_{\tau(n)+1}$ for $n>n_{0}$, we deduce from (3.5) that

$$
\left\|x_{\tau(n)}-T_{\tau(n)} x_{\tau(n)}\right\|^{2} \leq M \alpha_{\tau(n)} \rightarrow 0
$$

Similarly, we have $\omega_{w}\left(x_{\tau(n)}\right) \subset \Omega$. On the other hand, we have

$$
\left\|x_{\tau(n)}-x_{\tau(n)+1}\right\| \leq \theta_{\tau(n)}\left\|h\left(x_{\tau(n)}\right)-x_{\tau(n)}\right\|+\left\|T_{\tau(n)} x_{\tau(n)}-x_{\tau(n)}\right\|
$$

Since $\left\|h\left(x_{\tau(n)}\right)-x_{\tau(n)}\right\|$ is bounded, letting $n \rightarrow \infty$ yields $\left\|x_{\tau(n)}-x_{\tau(n)+1}\right\| \rightarrow 0$. Hence

$$
\begin{gather*}
\limsup _{n \rightarrow \infty}\left\langle h\left(x^{*}\right)-x^{*}, x_{\tau(n)+1}-x^{*}\right\rangle=\limsup _{n \rightarrow \infty}\left\langle h\left(x^{*}\right)-x^{*}, x_{\tau(n)}-x^{*}\right\rangle \\
=\max _{w \in \omega_{w}\left(x_{\tau(n)}\right)}\left\langle h\left(x^{*}\right)-P_{\Omega} h\left(x^{*}\right), w-P_{\Omega} h\left(x^{*}\right)\right\rangle \leq 0 . \tag{3.8}
\end{gather*}
$$

Since $s_{\tau(n)} \leq s_{\tau(n)+1}$, we deduce from (3.5) that

$$
\begin{equation*}
s_{\tau(n)} \leq \frac{2}{1-\rho}\left\langle h\left(x^{*}\right)-x^{*}, x_{\tau(n)+1}-x^{*}\right\rangle, \quad n>n_{0} \tag{3.9}
\end{equation*}
$$

Combining (3.8) and (3.9), we have

$$
\limsup _{n} s_{\tau(n)} \leq 0 \Rightarrow s_{\tau(n)} \rightarrow 0 .
$$

Consequently

$$
\begin{aligned}
\sqrt{s_{\tau(n)+1}} & \leq\left\|\left(x_{\tau(n)}-x^{*}\right)+\left(x_{\tau(n)+1}-x_{\tau(n)}\right)\right\| \\
& \leq \sqrt{s_{\tau(n)}}+\left\|x_{\tau(n)+1}-x_{\tau(n)}\right\| \rightarrow 0
\end{aligned}
$$

In view of (3.7), $s_{n} \rightarrow 0$, that is, $x_{n} \rightarrow x^{*}$.
Remark 3.2. The construction of $(\tau(n))$ is motivated by an idea invented by Maingé [7].

We apply the above result to get the following.
Corollary 3.3. Let condition (3.1)-(3.2) be satisfied. Given $u \in C$ and an initial guess $x_{0} \in C$, let $\left(x_{n}\right)$ be a sequence generated by

$$
x_{n+1}=\theta_{n} u+\left(1-\theta_{n}\right) P_{C}\left(x_{n}-r_{n} \nabla f\left(x_{n}\right)\right)
$$

Then $\left(x_{n}\right)$ converges strongly to $x^{*}=P_{\Omega} u$, a minimizer of problem (1.1).

Acknowledgement

The authors would like to thank the reviewer for his/her comments that help improve the manuscript.

References

[1] J. B Baillon and G. Haddad, Quelques proprietes des operateurs angle-bornes et ncycliquement monotones, Israel J. Math. 26 (1977), 137-150.
[2] H .H Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejérmonotone methods in Hilbert spaces, Math. Oper. Res. (2001) 26248-264.
[3] P.L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization 53 (2004), 475-504.
[4] H. W Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, 1996.
[5] K. Goebel and W. A. Kirk, Topics on Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
[6] H. Hundal, An alternating projection that does not converge in norm, Nonlinear Anal. 57 (2004) 35-61.
[7] P. Maingé, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim. 47 (2008), 1499-1515.
[8] F. Wang and H. K. Xu, Strongly convergent iterative algorithms for solving a class of variational inequalities, J. Nonlinear Convex Anal. 11 (2010), 407-421.
[9] H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc. 66 (2002), 240-256.
[10] H. K. Xu, Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl. 150 (2011), 360-378.

Huanhuan Cui
Department of mathematics, Luoyang Normal University, Luoyang 471022 China E-mail address: hhcui@live.cn

Fenghui Wang
Department of mathematics, Luoyang Normal University, Luoyang 471022 China E-mail address: wfenghui@163.com

[^0]: 2010 Mathematics Subject Classification. 47H09, 47H10.
 Key words and phrases. Gradient projection algorithm, inverse-strongly monotone operator, averaged mappings.

 This work is supported by Science Foundation of Department of Education, Henan (2011B110023, 12A110016) and Peiyu Foundation of Luoyang Normal University (2011-PYJJ-002).

