Journal of Nonlinear and Convex Analysis Volume 14, Number 2, 2013, 245–251

STRONG CONVERGENCE OF THE GRADIENT-PROJECTION ALGORITHM IN HILBERT SPACES

HUANHUAN CUI AND FENGHUI WANG

ABSTRACT. In this paper we study a modified Gradient-Projection Algorithm recently introduced by Xu (Averaged mappings and the Gradient-Projection Algorithm, J. Optim. Theory Appl., 150 (2011), 360–378). The strong convergence of the algorithm is obtained under some weak conditions.

1. INTRODUCTION

Let \mathcal{H} be a real Hilbert space, C a nonempty closed convex subset, and $f : \mathcal{H} \to \mathbb{R}$ a convex and differentiable function. Consider a convexly constrained minimization problem: Find $x^* \in C$ so that

(1.1)
$$f(x^*) = \min_{x \in C} f(x).$$

A classical way to solve such problem is the gradient projection algorithm(GPA): For any initial guess x_0 , the GPA generates a sequence as

$$x_{n+1} = P_C(x_n - r\nabla f(x_n)),$$

where ∇f denotes the differential of f and r > 0 is known as the step of the algorithm. If we set $T = P_C(I - r\nabla f)$, then problem (1.1) is transformed into the fixed point problem:

Find
$$x^* \in C$$
 so that $Tx^* = x^*$;

accordingly the GPA has the form:

$$x_{n+1} = Tx_n.$$

If further ∇f is *L*-Lipschitz continuous, namely

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|, \forall x, y \in \mathcal{H},$$

and the step is chosen so that 0 < r < (2/L), then T is an averaged mapping. By the well-known Mann's theorem, the GPA converges weakly to a fixed point of T, i.e., a minimizer of prblem (1.1), whenever such an element exists.

However, Hundal's counterexample [6] reveals that the GPA can not converge strongly in general. To get the strongly convergent algorithm, Xu [10] recently introduced the following modified scheme: For any initial guess $x_0 \in C$, define

(1.2)
$$x_{n+1} = \theta_n h(x_n) + (1 - \theta_n) P_C(x_n - r_n \nabla f(x_n)),$$

²⁰¹⁰ Mathematics Subject Classification. 47H09, 47H10.

Key words and phrases. Gradient projection algorithm, inverse-strongly monotone operator, averaged mappings.

This work is supported by Science Foundation of Department of Education, Henan (2011B110023, 12A110016) and Peiyu Foundation of Luoyang Normal University (2011-PYJJ-002).

where $(\theta_n) \subseteq [0,1], h: C \to C$ is a contractive mapping. Then algorithm (1.2) can be strongly convergent to a solution of problem (1.1) provided that

- (i) $0 < \liminf_n r_n \le \limsup_n r_n < (2/L),$
- (ii) $\lim_{n \to \infty} \theta_n = 0, \sum_{n \to \infty} \overline{\theta_n} = \infty,$
- (iii) $\sum |\theta_n \theta_{n+1}| < \infty, \sum |r_n r_{n+1}| < \infty.$

In what follows we shall prove that condition (i)-(ii) is sufficient to guarantee the strong convergence of the above algorithm.

2. Preliminary

Assume that C is a nonempty convex closed subset in \mathcal{H} . Fix(T) will denote the fixed point set of T, $\omega_w(x_n)$ the weak cluster points set of the sequence (x_n) , \rightarrow strong convergence, \rightarrow weak convergence, and Ω the solution set of problem (1.1).

Definition 2.1. Let $T: C \to \mathcal{H}$ be a nonlinear mapping. Then

(1) T is said to be a ρ -contraction, if there exists $\rho \in (0, 1)$ so that for $x, y \in C$,

$$||Tx - Ty|| \le \rho ||x - y||.$$

(2) T is said to be a nonexpansive mapping, if for $x, y \in C$,

$$||Tx - Ty|| \le ||x - y||.$$

(3) T is said to be an α -averaged mapping, if there is $\alpha \in (0, 1)$ and a nonexpansive mapping S so that $T = (1 - \alpha)I + \alpha S$.

(4) T is said to be a κ -inverse strongly monotone mapping, if there is $\kappa > 0$ so that

$$\langle Tx - Ty, x - y \rangle \ge \kappa ||Tx - Ty||^2$$

Lemma 2.2 (Demiclosedness Principle [5]). Let C be a nonempty closed convex subset of \mathcal{H} and $T: C \to \mathcal{H}$ a nonexpansive mapping with $\operatorname{Fix}(T) \neq \emptyset$. If (x_n) is a sequence in C such that $x_n \to x$ and $(I - T)x_n \to 0$, then (I - T)x = 0, i.e., $x \in \operatorname{Fix}(T)$.

Averaged mappings have the following properties.

Lemma 2.3 (see [3, 10]). (1) If $T : C \to \mathcal{H}$ is α -averaged, then for any $z \in Fix(T)$ and for all $x \in C$,

$$||Tx - z||^2 \le ||x - z||^2 - \frac{1 - \alpha}{\alpha} ||Tx - x||^2.$$

(2) Let $T_1 : \mathcal{H} \to \mathcal{H}$ and $T_2 : C \to \mathcal{H}$ be α_1 and α_2 -averaged, respectively. Then T_1T_2 is $(\alpha_1 + \alpha_2 - \alpha_1\alpha_2)$ -averaged.

For $x \in \mathcal{H}$, its projection $P_C x$ is defined as is the unique point in C with the property:

$$|x - P_C x|| = \min_{y \in C} ||x - y||.$$

Lemma 2.4. Let P_C be the projection mapping. Then

- (i) P_C is (1/2)-averaged and 1-inverse strongly monotone;
- (ii) $y = P_C x$ if and only if $P_C x \in C$, $\langle x y, z y \rangle \leq 0$, $\forall z \in C$.

246

Lemma 2.5. Let $f : \mathcal{H} \to \mathbb{R}$ be a convex differentiable function with L-Lipschitz continuous differential ∇f . Let $0 < r < (2/L), T_r = P_C(I - r\nabla f)$. Then (1) $\operatorname{Fix}(T_r) = \Omega$; (2) T_r is (2 + rL)/4-averaged.

Proof. (1) According to [4, Lemma 5.13], x^* solves problem (1.1) if and only if

$$\langle \nabla f(x^*), x^* - z \rangle \le 0, \forall z \in C,$$

which is equivalent to

$$\langle x^* - (x^* - r\nabla f(x^*)), x^* - z \rangle \le 0.$$

It then follows from Lemma 2.4 that $x^* = P_C(I - r\nabla f)x^*$.

(2) We note that

$$\|(I - (2/L)\nabla f)x - (I - (2/L)\nabla f)y\|^2 = \|(x - y) - (2/L)(\nabla f(x) - \nabla f(y))\|^2$$

= $\|x - y\|^2 + 4/L^2 \|\nabla f(x) - \nabla f(y)\|^2 - 4/L \langle x - y, \nabla f(x) - \nabla f(y) \rangle.$

According to [1, Corollary 10], ∇f is 1/L-inverse strongly monotone, if it is L-Lipschitz continuous, and thus $I - (2/L)\nabla f$ is nonexpansive. Note that

$$I - r\nabla f = \left(1 - \frac{r}{(2/L)}\right)I + \frac{r}{(2/L)}(I - (2/L)\nabla f).$$

This implies that $I - r\nabla f$ is rL/2-averaged. Since the projection mapping is (1/2)-averaged, Lemma 2.3 is therefore applicable.

Lemma 2.6 (see [8]). Let $f : \mathcal{H} \to \mathbb{R}$ be a convex differentiable function with L-Lipschitz continuous differential ∇f . Let $0 < r \leq r' \leq (2/L), T_r = P_C(I - r\nabla f)$. Then

$$||T_r x - x|| \le ||T_{r'} x - x||, \ x \in C.$$

Lemma 2.7 (see [9]). Let (a_n) be a nonnegative real sequence satisfying

$$a_{n+1} \le (1 - \alpha_n)a_n + \alpha_n b_n,$$

where $(\alpha_n) \subset (0,1)$ and (b_n) are real sequences. Then $a_n \to 0$ provided that

(i)
$$\sum \alpha_n = \infty$$
, $\lim_n \alpha_n = 0$;

(ii) $\overline{\lim}_n b_n \leq 0 \text{ or } \sum \alpha_n |b_n| < \infty.$

3. Main result

We now prove our main theorem.

Theorem 3.1. Let $f : \mathcal{H} \to \mathbb{R}$ be a convex differentiable function with L-Lipschitz continuous differential ∇f , $h : C \to C$ a ρ -contractive mapping. Assume that $(\theta_n) \subseteq [0,1]$ and (r_n) satisfy

$$(3.1) 0 < \liminf r_n \le \limsup r_n < (2/L),$$

(3.2)
$$\lim_{n \to \infty} \theta_n = 0, \sum \theta_n = \infty.$$

Then the sequence generated by (1.2) converges strongly to a minimizer x^* of problem (1.1), which also solves

(3.3)
$$\langle (I-h)x^*, y-x^* \rangle \ge 0, \forall y \in \Omega.$$

Proof. By Lemma 2.4, x^* solves (3.3) if and only if $x^* = P_{\Omega}h(x^*)$. It is easy to check the boundedness of the iterative algorithm. Now set

$$T_n := P_C(I - r_n \nabla f_n).$$

By Lemma 2.3, $Fix(T_n) = S, T_n$ is an averaged mapping, and

(3.4)
$$||T_n x_n - x^*||^2 \le ||x_n - x^*||^2 - \frac{(2/L) - r_n}{(2/L) + r_n} ||x_n - T_n x_n||^2.$$

On the other hand, by the subdifferential inequality

$$||a+b||^2 \le ||a||^2 + 2\langle b, a+b \rangle, \forall a, b \in \mathcal{H},$$

we have the following estimation:

$$\begin{aligned} \|x_{n+1} - x^*\|^2 &= \|\theta_n(h(x_n) - x^*) + (1 - \theta_n)(T_n x_n - x^*)\|^2 \\ &= \|\theta_n(h(x_n) - h(x^*)) + \theta_n(h(x^*) - x^*) \\ &+ (1 - \theta_n)(T_n x_n - x^*)\|^2 \\ &\leq \|\theta_n(h(x_n) - h(x^*)) + (1 - \theta_n)(T_n x_n - x^*)\|^2 \\ &+ 2\theta_n \langle h(x^*) - x^*, x_{n+1} - x^* \rangle \\ &\leq \theta_n \|h(x_n) - h(x^*)\| + (1 - \theta_n)\|T_n x_n - x^*\|^2 \\ &+ 2\theta_n \langle h(x^*) - x^*, x_{n+1} - x^* \rangle \\ &\leq \theta_n \rho \|x_n - x^*\|^2 + (1 - \theta_n)\|T_n x_n - x^*\|^2 \\ &+ 2\theta_n \langle h(x^*) - x^*, x_{n+1} - x^* \rangle. \end{aligned}$$

Substituting (3.4) into the above,

$$\begin{aligned} \|x_{n+1} - x^*\|^2 &\leq \theta_n \rho \|x_n - x^*\|^2 + (1 - \theta_n) \|x_n - x^*\|^2 \\ &- (1 - \theta_n) \frac{(2/L) - r_n}{(2/L) + r_n} \|x_n - T_n x_n\|^2 + 2\theta_n \langle h(x^*) - x^*, x_{n+1} - x^* \rangle \\ &\leq [1 - (1 - \rho)\theta_n] \|x_n - x^*\|^2 \\ &- (1 - \theta_n) \frac{(2/L) - r_n}{(2/L) + r_n} \|x_n - T_n x_n\|^2 + 2\theta_n \langle h(x^*) - x^*, x_{n+1} - x^* \rangle. \end{aligned}$$

Since $\theta_n \to 0$, it is readily seen that

$$\liminf_{n \to \infty} (1 - \theta_n) \frac{(2/L) - r_n}{(2/L) + r_n} > 0.$$

Without loss of generality we may assume that there is $\sigma>0$ so that for all $n\geq 0$

$$(1 - \theta_n)((2/L) - r_n)/((2/L) + r_n) \ge \sigma.$$

Let $s_n = ||x_n - x^*||^2$, $\alpha_n = (1 - \rho)\theta_n$. Hence

(3.5)
$$s_{n+1} - s_n + \alpha_n s_n + \sigma ||x_n - T_n x_n||^2 \le \frac{2\alpha_n}{1 - \rho} \langle h(x^*) - x^*, x_{n+1} - x^* \rangle.$$

Finally we prove $s_n \to 0$ by considering two possible cases.

248

Case 1. (s_n) is eventually decreasing (i.e., there exists $N \ge 0$ such that (s_n) is decreasing for $n \ge N$). In this case, (s_n) must be convergent. According to (3.5),

(3.6)
$$\sigma \|x_n - T_n x_n\|^2 \le M \alpha_n + (s_n - s_{n+1}).$$

where M > 0 is so large that

$$\frac{2}{1-\rho} \|h(x^*) - x^*\| \|x_{n+1} - x^*\| \le M$$

for all $n \in \mathbb{N}$. Taking $n \to \infty$ in (3.6) yields $||x_n - T_n x_n|| \to 0$. Since $\liminf r_n > 0$, we assume without loss of generality that there is r > 0 so that $r_n \ge r$ for all $n \in \mathbb{N}$. Set $T_r = P_C(I - rA)$. By Lemma 2.6,

$$||x_n - T_r x_n|| \le ||x_n - T_n x_n|| \to 0.$$

Using Demicolsedness Principle, $\omega_w(x_n) \subset \operatorname{Fix}(T_r) = \Omega$, and by Lemma 2.4,

$$\limsup_{n \to \infty} \langle h(x^*) - x^*, x_n - x^* \rangle = \max_{w \in \omega_w(x_n)} \langle h(x^*) - P_\Omega h(x^*), w - P_\Omega h(x^*) \rangle \le 0.$$

Note that inequality (3.5) implies

$$s_{n+1} \le (1 - \alpha_n)s_n + \frac{2\alpha_n}{1 - \rho} \langle h(x^*) - x^*, x_{n+1} - x^* \rangle$$

We thus apply Lemma 2.7 to conclude $s_n \to 0$.

Case 2. (s_n) is not eventually decreasing. Hence, we can find a subsequence (s_{n_k}) so that $s_{n_k} \leq s_{n_k+1}$ for all $k \geq 0$. Now let us define

$$J_n := \{ n_0 \le k \le n : s_k \le s_{k+1} \}, \forall n > n_0.$$

Obviously J_n is nonempty and $J_n \subseteq J_{n+1}$. Let $\tau(n) := \max J_n, n > n_0$. Then $\tau(n) \to \infty$; otherwise (s_n) is nonincreasing. It is readily seen that $s_{\tau(n)} \leq s_{\tau(n)+1}$ for all $n > n_0$. Hence

$$(3.7) s_n \le s_{\tau(n)+1}, \ \forall n > n_0$$

In fact, if $\tau(n) = n$, then (3.7) is trivial; otherwise, by the definition of $\tau(n)$

$$s_{\tau(n)+1} > s_{\tau(n)+2} > \cdots > s_n$$

Hence (3.7) holds true. Since $s_{\tau(n)} \leq s_{\tau(n)+1}$ for $n > n_0$, we deduce from (3.5) that

$$||x_{\tau(n)} - T_{\tau(n)}x_{\tau(n)}||^2 \le M\alpha_{\tau(n)} \to 0$$

Similarly, we have $\omega_w(x_{\tau(n)}) \subset \Omega$. On the other hand, we have

$$||x_{\tau(n)} - x_{\tau(n)+1}|| \le \theta_{\tau(n)} ||h(x_{\tau(n)}) - x_{\tau(n)}|| + ||T_{\tau(n)}x_{\tau(n)} - x_{\tau(n)}||$$

Since $||h(x_{\tau(n)}) - x_{\tau(n)}||$ is bounded, letting $n \to \infty$ yields $||x_{\tau(n)} - x_{\tau(n)+1}|| \to 0$. Hence

(3.8)
$$\limsup_{n \to \infty} \langle h(x^*) - x^*, x_{\tau(n)+1} - x^* \rangle = \limsup_{n \to \infty} \langle h(x^*) - x^*, x_{\tau(n)} - x^* \rangle$$
$$= \max_{w \in \omega_w(x_{\tau(n)})} \langle h(x^*) - P_\Omega h(x^*), w - P_\Omega h(x^*) \rangle \le 0.$$

Since $s_{\tau(n)} \leq s_{\tau(n)+1}$, we deduce from (3.5) that

(3.9)
$$s_{\tau(n)} \leq \frac{2}{1-\rho} \langle h(x^*) - x^*, x_{\tau(n)+1} - x^* \rangle, \quad n > n_0.$$

Combining (3.8) and (3.9), we have

$$\limsup_{n} s_{\tau(n)} \le 0 \Rightarrow s_{\tau(n)} \to 0.$$

Consequently

$$\sqrt{s_{\tau(n)+1}} \le \|(x_{\tau(n)} - x^*) + (x_{\tau(n)+1} - x_{\tau(n)})\| \\ \le \sqrt{s_{\tau(n)}} + \|x_{\tau(n)+1} - x_{\tau(n)}\| \to 0.$$

In view of (3.7), $s_n \to 0$, that is, $x_n \to x^*$.

Remark 3.2. The construction of $(\tau(n))$ is motivated by an idea invented by Maingé [7].

We apply the above result to get the following.

Corollary 3.3. Let condition (3.1)-(3.2) be satisfied. Given $u \in C$ and an initial guess $x_0 \in C$, let (x_n) be a sequence generated by

$$x_{n+1} = \theta_n u + (1 - \theta_n) P_C(x_n - r_n \nabla f(x_n)).$$

Then (x_n) converges strongly to $x^* = P_{\Omega}u$, a minimizer of problem (1.1).

Acknowledgement

The authors would like to thank the reviewer for his/her comments that help improve the manuscript.

References

- J. B Baillon and G. Haddad, Quelques proprietes des operateurs angle-bornes et ncycliquement monotones, Israel J. Math. 26 (1977), 137–150.
- [2] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejérmonotone methods in Hilbert spaces, Math. Oper. Res. (2001) 26248–264.
- P.L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization 53 (2004), 475–504.
- [4] H. W Engl, M. Hanke and A. Neubauer, *Regularization of Inverse Problems*, Kluwer Academic Publishers, Dordrecht, 1996.
- [5] K. Goebel and W. A. Kirk, *Topics on Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.
- [6] H. Hundal, An alternating projection that does not converge in norm, Nonlinear Anal. 57 (2004) 35-61.
- [7] P. Maingé, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim. 47 (2008), 1499–1515.
- [8] F. Wang and H. K. Xu, Strongly convergent iterative algorithms for solving a class of variational inequalities, J. Nonlinear Convex Anal. 11 (2010), 407–421.
- [9] H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc. 66 (2002), 240–256.
- [10] H. K. Xu, Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl. 150 (2011), 360–378.

Manuscript received September 11, 2011 revised March 14, 2012

250

Huanhuan Cui

Department of mathematics, Luoyang Normal University, Luoyang 471022 China $E\text{-}mail\ address: \texttt{hhcui@live.cn}$

Fenghui Wang

Department of mathematics, Luoyang Normal University, Luoyang 471022 China $E\text{-}mail\ address:\ wfenghui@163.com$