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where (θn) ⊆ [0, 1], h : C → C is a contractive mapping. Then algorithm (1.2) can
be strongly convergent to a solution of problem (1.1) provided that

(i) 0 < lim infn rn ≤ lim supn rn < (2/L),
(ii) limn θn = 0,

∑
θn = ∞,

(iii)
∑

|θn − θn+1| < ∞,
∑

|rn − rn+1| < ∞.

In what follows we shall prove that condition (i)-(ii) is sufficient to guarantee the
strong convergence of the above algorithm.

2. Preliminary

Assume that C is a nonempty convex closed subset in H. Fix(T ) will denote the
fixed point set of T , ωw(xn) the weak cluster points set of the sequence (xn), →
strong convergence, ⇀ weak convergence, and Ω the solution set of problem (1.1).

Definition 2.1. Let T : C → H be a nonlinear mapping. Then
(1) T is said to be a ρ-contraction, if there exists ρ ∈ (0, 1) so that for x, y ∈ C,

∥Tx− Ty∥ ≤ ρ∥x− y∥.
(2) T is said to be a nonexpansive mapping, if for x, y ∈ C,

∥Tx− Ty∥ ≤ ∥x− y∥.
(3) T is said to be an α-averaged mapping, if there is α ∈ (0, 1) and a nonexpansive

mapping S so that T = (1− α)I + αS.
(4) T is said to be a κ-inverse strongly monotone mapping, if there is κ > 0 so

that

⟨Tx− Ty, x− y⟩ ≥ κ∥Tx− Ty∥2.

Lemma 2.2 (Demiclosedness Principle [5]). Let C be a nonempty closed convex
subset of H and T : C → H a nonexpansive mapping with Fix(T ) ̸= ∅. If (xn) is
a sequence in C such that xn ⇀ x and (I − T )xn → 0, then (I − T )x = 0, i.e.,
x ∈ Fix(T ).

Averaged mappings have the following properties.

Lemma 2.3 (see [3, 10]). (1) If T : C → H is α-averaged, then for any z ∈ Fix(T )
and for all x ∈ C,

∥Tx− z∥2 ≤ ∥x− z∥2 − 1− α

α
∥Tx− x∥2.

(2) Let T1 : H → H and T2 : C → H be α1 and α2-averaged, respectively. Then
T1T2 is (α1 + α2 − α1α2)-averaged.

For x ∈ H, its projection PCx is defined as is the unique point in C with the
property:

∥x− PCx∥ = min
y∈C

∥x− y∥.

Lemma 2.4. Let PC be the projection mapping. Then

(i) PC is (1/2)-averaged and 1-inverse strongly monotone;
(ii) y = PCx if and only if PCx ∈ C, ⟨x− y, z − y⟩ ≤ 0, ∀z ∈ C.
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Lemma 2.5. Let f : H → R be a convex differentiable function with L-Lipschitz
continuous differential ∇f . Let 0 < r < (2/L), Tr = PC(I − r∇f). Then (1)
Fix(Tr) = Ω; (2) Tr is (2 + rL)/4-averaged.

Proof. (1) According to [4, Lemma 5.13], x∗ solves problem (1.1) if and only if

⟨∇f(x∗), x∗ − z⟩ ≤ 0, ∀z ∈ C,

which is equivalent to

⟨x∗ − (x∗ − r∇f(x∗)), x∗ − z⟩ ≤ 0.

It then follows from Lemma 2.4 that x∗ = PC(I − r∇f)x∗.
(2) We note that

∥(I − (2/L)∇f)x− (I − (2/L)∇f)y∥2 = ∥(x− y)− (2/L)(∇f(x)−∇f(y))∥2

= ∥x− y∥2 + 4/L2∥∇f(x)−∇f(y)∥2 − 4/L⟨x− y,∇f(x)−∇f(y)⟩.
According to [1, Corollary 10], ∇f is 1/L-inverse strongly monotone, if it is L-
Lipschitz continuous, and thus I − (2/L)∇f is nonexpansive. Note that

I − r∇f =

(
1− r

(2/L)

)
I +

r

(2/L)
(I − (2/L)∇f).

This implies that I− r∇f is rL/2-averaged. Since the projection mapping is (1/2)-
averaged, Lemma 2.3 is therefore applicable. �
Lemma 2.6 (see [8]). Let f : H → R be a convex differentiable function with L-
Lipschitz continuous differential ∇f . Let 0 < r ≤ r′ ≤ (2/L), Tr = PC(I − r∇f).
Then

∥Trx− x∥ ≤ ∥Tr′x− x∥, x ∈ C.

Lemma 2.7 (see [9]). Let (an) be a nonnegative real sequence satisfying

an+1 ≤ (1− αn)an + αnbn,

where (αn) ⊂ (0, 1) and (bn) are real sequences. Then an → 0 provided that

(i)
∑

αn = ∞, limn αn = 0;
(ii) limn bn ≤ 0 or

∑
αn|bn| < ∞.

3. Main result

We now prove our main theorem.

Theorem 3.1. Let f : H → R be a convex differentiable function with L-Lipschitz
continuous differential ∇f , h : C → C a ρ-contractive mapping. Assume that
(θn) ⊆ [0, 1] and (rn) satisfy

0 < lim inf rn ≤ lim sup rn < (2/L),(3.1)

lim
n→∞

θn = 0,
∑

θn = ∞.(3.2)

Then the sequence generated by (1.2) converges strongly to a minimizer x∗ of problem
(1.1), which also solves

⟨(I − h)x∗, y − x∗⟩ ≥ 0,∀y ∈ Ω.(3.3)
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Proof. By Lemma 2.4, x∗ solves (3.3) if and only if x∗ = PΩh(x
∗). It is easy to

check the boundedness of the iterative algorithm. Now set

Tn := PC(I − rn∇fn).

By Lemma 2.3, Fix(Tn) = S, Tn is an averaged mapping, and

∥Tnxn − x∗∥2 ≤ ∥xn − x∗∥2 − (2/L)− rn
(2/L) + rn

∥xn − Tnxn∥2.(3.4)

On the other hand, by the subdifferential inequality

∥a+ b∥2 ≤ ∥a∥2 + 2⟨b, a+ b⟩, ∀a, b ∈ H,

we have the following estimation:

∥xn+1 − x∗∥2 = ∥θn(h(xn)− x∗) + (1− θn)(Tnxn − x∗)∥2

= ∥θn(h(xn)− h(x∗)) + θn(h(x
∗)− x∗)

+ (1− θn)(Tnxn − x∗)∥2

≤ ∥θn(h(xn)− h(x∗)) + (1− θn)(Tnxn − x∗)∥2

+ 2θn⟨h(x∗)− x∗, xn+1 − x∗⟩
≤ θn∥h(xn)− h(x∗)∥+ (1− θn)∥Tnxn − x∗∥2

+ 2θn⟨h(x∗)− x∗, xn+1 − x∗⟩
≤ θnρ∥xn − x∗∥2 + (1− θn)∥Tnxn − x∗∥2

+ 2θn⟨h(x∗)− x∗, xn+1 − x∗⟩.

Substituting (3.4) into the above,

∥xn+1 − x∗∥2 ≤ θnρ∥xn − x∗∥2 + (1− θn)∥xn − x∗∥2

− (1− θn)
(2/L)− rn
(2/L) + rn

∥xn − Tnxn∥2 + 2θn⟨h(x∗)− x∗, xn+1 − x∗⟩

≤ [1− (1− ρ)θn]∥xn − x∗∥2

− (1− θn)
(2/L)− rn
(2/L) + rn

∥xn − Tnxn∥2 + 2θn⟨h(x∗)− x∗, xn+1 − x∗⟩.

Since θn → 0, it is readily seen that

lim inf
n→∞

(1− θn)
(2/L)− rn
(2/L) + rn

> 0.

Without loss of generality we may assume that there is σ > 0 so that for all n ≥ 0

(1− θn)((2/L)− rn)/((2/L) + rn) ≥ σ.

Let sn = ∥xn − x∗∥2, αn = (1− ρ)θn. Hence

sn+1 − sn + αnsn + σ∥xn − Tnxn∥2 ≤
2αn

1− ρ
⟨h(x∗)− x∗, xn+1 − x∗⟩.(3.5)

Finally we prove sn → 0 by considering two possible cases.
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Case 1. (sn) is eventually decreasing (i.e., there exists N ≥ 0 such that (sn) is
decreasing for n ≥ N). In this case, (sn) must be convergent. According to (3.5),

σ∥xn − Tnxn∥2 ≤ Mαn + (sn − sn+1),(3.6)

where M > 0 is so large that

2

1− ρ
∥h(x∗)− x∗∥∥xn+1 − x∗∥ ≤ M

for all n ∈ N. Taking n → ∞ in (3.6) yields ∥xn − Tnxn∥ → 0. Since lim inf rn > 0,
we assume without loss of generality that there is r > 0 so that rn ≥ r for all n ∈ N.
Set Tr = PC(I − rA). By Lemma 2.6,

∥xn − Trxn∥ ≤ ∥xn − Tnxn∥ → 0.

Using Demicolsedness Principle, ωw(xn) ⊂ Fix(Tr) = Ω, and by Lemma 2.4,

lim sup
n→∞

⟨h(x∗)− x∗, xn − x∗⟩ = max
w∈ωw(xn)

⟨h(x∗)− PΩh(x
∗), w − PΩh(x

∗)⟩ ≤ 0.

Note that inequality (3.5) implies

sn+1 ≤ (1− αn)sn +
2αn

1− ρ
⟨h(x∗)− x∗, xn+1 − x∗⟩.

We thus apply Lemma 2.7 to conclude sn → 0.
Case 2. (sn) is not eventually decreasing. Hence, we can find a subsequence

(snk
) so that snk

≤ snk+1 for all k ≥ 0. Now let us define

Jn := {n0 ≤ k ≤ n : sk ≤ sk+1}, ∀n > n0.

Obviously Jn is nonempty and Jn ⊆ Jn+1. Let τ(n) := max Jn, n > n0. Then
τ(n) → ∞; otherwise (sn) is nonincreasing. It is readily seen that sτ(n) ≤ sτ(n)+1

for all n > n0. Hence

sn ≤ sτ(n)+1, ∀n > n0.(3.7)

In fact, if τ(n) = n, then (3.7) is trivial; otherwise, by the definition of τ(n)

sτ(n)+1 > sτ(n)+2 > · · · > sn.

Hence (3.7) holds true. Since sτ(n) ≤ sτ(n)+1 for n > n0, we deduce from (3.5) that

∥xτ(n) − Tτ(n)xτ(n)∥2 ≤ Mατ(n) → 0.

Similarly, we have ωw(xτ(n)) ⊂ Ω. On the other hand, we have

∥xτ(n) − xτ(n)+1∥ ≤ θτ(n)∥h(xτ(n))− xτ(n)∥+ ∥Tτ(n)xτ(n) − xτ(n)∥.
Since ∥h(xτ(n)) − xτ(n)∥ is bounded, letting n → ∞ yields ∥xτ(n) − xτ(n)+1∥ → 0.
Hence

lim sup
n→∞

⟨h(x∗)− x∗, xτ(n)+1 − x∗⟩ = lim sup
n→∞

⟨h(x∗)− x∗, xτ(n) − x∗⟩

= max
w∈ωw(xτ(n))

⟨h(x∗)− PΩh(x
∗), w − PΩh(x

∗)⟩ ≤ 0.(3.8)

Since sτ(n) ≤ sτ(n)+1, we deduce from (3.5) that

sτ(n) ≤
2

1− ρ
⟨h(x∗)− x∗, xτ(n)+1 − x∗⟩, n > n0.(3.9)
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Combining (3.8) and (3.9), we have

lim sup
n

sτ(n) ≤ 0 ⇒ sτ(n) → 0.

Consequently √
sτ(n)+1 ≤ ∥(xτ(n) − x∗) + (xτ(n)+1 − xτ(n))∥

≤ √
sτ(n) + ∥xτ(n)+1 − xτ(n)∥ → 0.

In view of (3.7), sn → 0, that is, xn → x∗. �

Remark 3.2. The construction of (τ(n)) is motivated by an idea invented by
Maingé [7].

We apply the above result to get the following.

Corollary 3.3. Let condition (3.1)-(3.2) be satisfied. Given u ∈ C and an initial
guess x0 ∈ C, let (xn) be a sequence generated by

xn+1 = θnu+ (1− θn)PC(xn − rn∇f(xn)).

Then (xn) converges strongly to x∗ = PΩu, a minimizer of problem (1.1).
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