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STRONG CONVERGENCE OF THE METHOD OF
ALTERNATING RESOLVENTS

OGANEDITSE A. BOIKANYO AND GHEORGHE MOROSANU

ABSTRACT. In this paper, we present a generalization of the method of alter-
nating resolvents introduced in the previous authors’ paper [On the method of
alternating resolvents, Nonlinear Anal. 74 (2011), 5147-5160]. It is shown that
the sequence generated by this method converges strongly under weaker condi-
tions on the control parameters. Concerning the error sequences, many more
conditions are used here as compared to the above quoted paper.

1. INTRODUCTION

Let K; and K35 be nonempty, closed and convex sets in a real Hilbert space H
with nonempty intersection, and consider the convex feasibility problem:

(1.1) find an z € K1 N K.

One of the interesting topics in convex optimization and nonlinear analysis is to
solve problem (1.1) iteratively. In 1933, von Neumann showed that when K; and
K, are vector subspaces of H, the sequence of alternating projections

HS.Q?Q'-)%’l:PKI.CI}(]D—>$2:PK2.CI}1i—>£C3:PK1.CI}2i—>ZC4:PK2.CI}3i—>--',

converges strongly to the point in K; N K9 which is the nearest to the starting
point . For proofs of this result, see, e.g., [9, 10] and the references therein. In
the case when K7 and K, are arbitrary, closed and convex sets with nonempty
intersection, Bregman [5] proved that the sequence (x,) generated by the method
of alternating projections converges weakly to a point in Kj N Ks. Recently, Hundal
[8] constructed an example in ¢? showing that there is a hyperplane K and a cone
Ky with K1 N Ky = {0} such that given any starting zo € €2\ {0}, the sequence
of alternating projections (z,) converges weakly to zero, but not strongly; see also
Matouskové and Reich [12].

A generalization of the method of alternating projections is the so called method of
alternating resolvents

H9m0|—>x1:J§\4xol—>x2:J){3x1|—>x3:J3\4x2»—>x4:fo3%-~,

for A > 0, where J{! := (I+\A)~! is the resolvent of a maximal monotone A (which
is the projection operator Py, if A is the normal cone to K1), while JP := (I+AB)~!
for another maximal monotone operator B. Bauschke et al. [1] showed that the
sequence generated from this method converges weakly to a point of Fix .J ;\4 J /{3 - the
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fixed point set of the composition J;\“J/{B - provided that this set is not empty. A
weak convergence result associated with the inexact method of alternating resolvents

Toptl = Jéi(:cgn—l—en) forn=0,1,...,
Top = Jz(xgn,lqte’n) form=1,2,...,

was proved in [4], where xy € H is a given starting point, (3,) and (uy,) are sequences
of positive real numbers, while (e,,) and (e},) are sequences of computational errors.
As pointed out before, the sequence (z,,) generated by this method is not strongly
convergent for general maximal monotone operators A and B. However, there
are additional sufficient conditions that guarantee strong convergence. A general
condition in this respect is the so-called convergence condition, introduced by A.
Pazy in 1978 in the Hilbert space setting, which works for first order difference
schemes associated with a single m-accretive operator in a Banach space (cf. [13]).
If one of the operators A and B satisfies the convergence condition, then a strong
convergence result holds for the method of alternating resolvents associated with A
and B, similar to Theorem 2 in [13].

In this paper we follow a different idea which allows us to achieve strong con-
vergence for general maximal monotone operators A and B. More precisely, we
consider a modified version of the method of alernating resolvents. Several mod-
ifications (following the ideas involved in the case of a single maximal monotone
operator, cf., [15, 16, 11, 2, 3]) were introduced in [4]. One such modification was
defined as follows

(1.2) Topt1l = Jﬁb(anu + (1 —ap)ze, +€,) forn=0,1,...,
(1.3) Top, = Ji(anu + (1 —ap)ron—1 +e),) forn=12 ...,

for any given xg,u € H. The purpose of this paper is to study the convergence of
a sequence (x,) generated by

(1.4) Topt1 = Jél(anu + (1 —ap)zoy +e,) forn=0,1,...,
(1.5) Ton = JU (Au+ (1= A)zon—1+e,) forn=12,. ..,
where ap, A, € (0,1), under weaker conditions than those used in [4]. Note that

algorithm (1.4), (1.5) contains algorithm (1.2), (1.3) as a special case, hence the
results of this paper generalize and refine the main results of [4].

2. PRELIMINARY RESULTS

In the sequel, H will be a real Hilbert space with inner product (-, -) and induced
norm ||-||. Recall that a map T': H — H is called nonexpansive if for every z,y € H
we have ||Txz — Ty < ||z — y||. In the case when ||Tx — Ty||* < (Tz — Ty,z — y)
holds for any x,y € H, then T is said to be firmly nonexpansive. Obviously, firmly
nonexpansive mappings are nonexpansive. An operator A : D(A) ¢ H — 27 is
said to be monotone if

(x—ay—y') >0, V(x,y),(,y)ecGA).

In other words, its graph G(A) = {(z,y) € H x H : © € D(A),y € Az} is a
monotone subset of the product space H x H. An operator A is called maximal
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monotone if in addition to being monotone, its graph is not properly contained in
the graph of any other monotone operator. For a maximal monotone operator A,
the resolvent of A, defined by J 5‘ := (I + BA)7!, is well defined on the whole space

H and is single-valued for every § > 0. In addition, JBA is firmly nonexpansive.
Firmly nonexpansive operators are characterized by the following

Lemma 2.1 (Goebel and Reich [7], p. 42 or Goebel and Kirk [6]). A map T :
H — H is firmly nonexpansive if and only if 2T — I (where I is the identity map)
1S MONETPansive.

Below we give a list of lemmas which will be useful in proving our main result.

Lemma 2.2 (Suzuki [14]). Let (z,,) and (y,) be bounded sequences in a real
Banach space and let (p,) be a sequence in (0,1), with 0 < liminf, o pn <
limsup,,_, pn < 1. Suppose that xp+1 = pryn + (1 — pp)x, for all integers n > 0
and limsup,,_, oo (1Yn+1 — Ynll — |Tns1 — znl|) < 0. Then limy, o0 ||yn — x| = 0.

The next lemma can be proved easily.

Lemma 2.3 (Resolvent Identity). For any 5,1 > 0, and x € H, the identity

Jg‘x = Jf <%l’ + <1 — %) Jﬁ:c)

holds true, where A : D(A) C H — 21 is a mazimal monotone operator.

Using similar arguments to those used in proving Lemma 2.5 [15], we can prove the
following lemma which will also be useful in proving our main result.

Lemma 2.4. Let (s,) be a sequence of non-negative real numbers satisfying
(2.1) Spt1 < (1 —ap)(1 — A\p)sn + anby + Apen +dyn, n >0,

where (a), (An), (bn), (cn) and (dy,) satisfy the conditions: (i) an, A € [0, 1], with
[ o(1—ay) =0, (i) limsup,,_,., by, <0, (iii) limsup,,_,,, ¢n <0, and (iv) dp > 0
for all n >0 with >~>° d,, < co. Then lim, o Sy = 0.

Proof. For any € > 0, let N be an integer big enough so that

Zd

% and cn<§ YV n>N.
Then by 1nduct10n we have for n > N

C»DI(T)

n

Sng1 < [H(l—ak)(l—kk) 8N+ - 11 l—ak]
k=N k=
% ~TMa-2w]+ 3 a
k=N k=N

It then follows that lim sup,,_,., s, < €. Since € > 0 is arbitrary, this completes the
proof. O

Remark 2.5. If limy, o0 oy, = 0, then [[7 (1 —ay,) = 0if and only if Y ; ay, = o0.

Remark 2.6. When A, = 0 for all n > 0, we reobtain Lemma 2.5 [15]. Lemma 2.4
is thus a generalization of Lemma 2.5 [15].
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3. MAIN RESULTS

We begin by proving a strong convergence result associated with the exact iterative
process

(3.1) Vopil = Jﬁ‘i(anu + (1 —ap)ve,) forn=0,1,...,

(3.2) Vo, = an()\nu + (1= Xp)vop—1) forn=1,2,...,

where ay,, A, € (0,1) and vg,u € H are given.

Theorem 3.1. Let A : D(A) C¢ H — 2 and B : D(B) ¢ H — 2 be mazimal
monotone operators with A~1(0)N B~1(0) =: F # 0. For arbitrary but fived vectors
vo,u € H, let (vy,) be the sequence generated by (3.1), (3.2), where an, A, € (0,1)
and Bp, pin, € (0,00). Assume that (1) limy, o0 @ = 0 and lim, 00 A, = 0, (ii)
either Y 2 0y = 00 or Y2 A = 00, and (iil) both (B8,) and (u,) are bounded
from below away from zero, with

lim (1—5"“):0 and lim (1—M):o.

n—00 Bn n—00 hn

Then (vy,) converges strongly to the point of F' nearest to u.

Proof. We begin by showing that (v;,) is bounded. Denote M := max{||u — p||, ||[vo—
p||}, where p € F. We show by induction that

(3.3) |lon —p|| < M forall n>0.
If (3.3) holds for n := 2k for some integer k, then using the fact that the resolvent

operator is nonexpansive, we see from (3.1) that
Jostr =2l < Aellu—pll+ (1= A) sk —
< MM 4 (1= M) M,
showing that (3.3) also holds for n + 1. If (3.3) holds for n := 2k + 1, then starting

with (3.2), we can show in a similar way that (3.3) also holds for n + 1.

Note that using the resolvent identity (see Lemma 2.3), we can write (3.2) as
B[ €
V2n = Jg _()\nu + (1 - >\n)7)2n—1) +(1—— v |,
Hn n

where € > 0 is the greatest lower bound of (u,,). Then by the nonexpansivity of the
resolvent operator JEB, we have

<5)\n+1 _ &
Hn+1 Hn

3

|vant2 — van || < (1 — At1) (v2n41 — v2n-1)

> (u—vap—1) ++
Hn+1

€ € €
+ (1 - ) (Von+2 — v2n) + ( - —> (V2n-1 — v2n)
Hn+1 Hn+1 Hn

€
(1= Ant1) V2041 — v2n—1]| + <1 -

<
Hn+1

6>\n+1 6)\n

Hn+1 Hn

g
||U2n+2 - U2n”
n+1

9 9

Hn+1 Hn

K+ L,
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which implies that

(3.4) [vant2 —vanl| < (1= Anga) [[v2n41 — van—1|

Anbni1

n

K+‘1—M
fin

Since Jéi is firmly nonexpansive for each n € N, we know from Lemma 2.1 that

there is a nonexpansive map T} such that T4 = 2.J ,5’1 — I. Therefore, we have from
(1.4) that

Zn + T;:‘zn
2 9y
where z, := a,u + (1 — ay)vey,. Using the resolvent identity, we see that

A A Br+1 Brni1\ ;a4
‘]ﬂn+1zn B ‘]ﬂnﬂ <WZ" + (1 B Bn ) Jﬁnzn> H

o ﬁn—i—l
‘1 5

Moreover, using the definition of z, and the nonexpansivity of Tfﬂ, we derive

Van+1 =

HJaﬂzn — Jﬁlzn

IN

20 = Tzl

HT71L4+1’ZTL+1 - Trflan < HT1’LA+IZ71+1 - Tf+12n” + HTf_HZn - Tf?ZnH

IN

|znt1 — znl| + 2 J‘i \Zn — J‘tzn
B+ B

< (ang1 +an)Cr + ([ T2n402 — 220 ||

1— 6n+1

+2 20 = T5 2l

for some positive constant C. Similarly, we write (1.5) as
Wn, + Ffwn
2 )
where wy, := Ayu + (1 — A\p)w2,_1 and FP = 2an — I. In addition,

V2n =

HFfﬂwnH — FfwnH < wpgr — wy|| +2 Hanﬂwn — anwn
< (A1 + A)01 + |l T20401 — D201

41— Hntd

lwn = 750 wal|

Now, an elementary computation shows that

1
Vopt1 = 17)271—1 + Zyn,
where
1 B B A
Yn = §(/\”<1 — an)(u—vop—1) + @n(2u — vap_1 — Fwy) + (EJw, + 2T 2))

Note that (y,) is bounded, since (x;,) is so. Therefore, for some positive constants
Ca, C5, C3 and (4, we have

3 Hyn—l-l - ynH S ()\n—‘,-l + An)cvl + (an+1 + an)02 + HFnB+1wn+1 - FannH
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+2 || T 201 — Ttz
< 2C1(Ang1 + An) + C5(apg1 + o) + 3 ||van41 — van—1||

A
+‘1 ~ Bana Oyt '1 i oo [a ., - Antnt ]
ﬂn Hn n
which implies that
lim sup{||yn+1 — Ynll — |v2n+1 — v2n—1]|} < 0.
n—oo
It then follows from Lemma 2.2 that
lim ||y, — van—1| = 0.
n—oo
Consequently,
nlggo |van4+1 — van—1|| = 0.
Passing to the limit in (3.4), we also see that
lim H’U2n+2 — ’Uan =0.
n—oo

Now multiplying the inclusion relation

V2n41 — V2n+2 + BpAv2nt1 D an(u — v2p) + Von — Vant2
scalarly by vo,+1 — p (where p € F) and using the monotonicity of A, we get
(3.5) (Vant1 — van42, Vont1 — P) < oK'+ L [[vznia — vanl
for some positive constants K’ and L’. Similarly, multiplying the inclusion

Van42 = Vant1 + Un1BUanga 3 An1(u — vang1)

scalarly by va,4+2 — p and using the monotonicity of B, we arrive at
(3.6) (Vont2 — Van+t1, V2nt2 — P) < App1 L7,
for some positive constant L*. Combining (3.5) and (3.6), we arrive at
(3.7) nh_}rgo lvn+1 — vn]| = 0.
Therefore passing to the limit in

n(u - 'U2n) + V2p, — V2p41

Bn ’
and noting that (3,) is bounded below away from zero, we see that wy((van+1)) C
A71(0). Similarly, we derive wy((v2,)) € B71(0). It then follows from these two
inclusions and equation (3.7) that wy((v,)) C F = A~1(0) N B~1(0). We can now
extract a weakly convergent subsequence (vy, ) of (vy), such that

«
Avgpg1 D

limsup (u — Pru,v, — Pru) = lim (u— Ppu,v,, — Pru)
n—oo k—o00

= (u— Pru,z— Ppu) <0,

where z € F' is a weak limit of (vy, ), and ¢ = Ppu denotes the projection of u on
F. We remark that the set F' is closed and convex - being the intersection of two
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closed and convex sets - therefore, the projection operator Pr is well defined. We
shall show that v,, — ¢. For this purpose, we multiply

Vont1 — ¢+ BrnAvani1 D an(u—q) + (1 — ap)(van — q)
scalarly by vo,11 — ¢ and use the monotonicity of A to derive
2 ||v2nt1 — qH2 < 2(1 = an)(van — ¢, v2nt1 — @) + 200, (U — ¢, V21 — Q)
(1= an)(lv2n = all* + llv2n41 — all*) + 200w = ¢, v2041 — q),

IN

which implies that
(3.8) [vza1 —al* < (1= an)llvze — all® + 20 (u — g, v2041 — ) -
Similarly, starting with (3.2), we arrive at
llvan — qH2 < (1= A)|lvan—1 — QH2 + 22X, (U — q,v20 — q) ,
which together with (3.8) gives
< (1= an)(1 = A)l[vzn-1 — gl + 205 (u — ¢, v2041 — q)
+ 2(1 — ap) n{u — q,v2, — q).

Therefore by Lemma 2.4, we derive vop+1 — ¢ = Pru. Since vy — v, — 0, we
deduce strong convergence of (vy,) to Ppu. O

[vzns1 — q|?

The inexact iterative scheme of (3.1), (3.2), namely, the iterative process defined
by (1.4), (1.5) is constructed in such a way that strong convergence (to the point
Pru) of the sequence generated by it is obtained under the weaker condition that
the sequences of error terms converges to zero strongly. When this condition on
the error sequences is satisfied, and in addition, the series on ||e,| and ||e],|| are
divergent, then one chooses appropriate parameters «, and A\, such that any of
the conditions (f)-(1) of Theorem 3.2 below is satisfied. Note that if any of the
series involving |le, || and ||e},|| is convergent, then we are able to choose one of the
parameters independent of the error sequences.

Theorem 3.2. Let A : D(A) ¢ H — 2 and B : D(B) ¢ H — 2% be mazimal
monotone operators with A=1(0)N B~1(0) =: F # 0. For arbitrary but fived vectors
xo,u € H, let (x,) be the sequence generated by (1.4), (1.5), where a, A, € (0,1)
and B, pin € (0,00). Assume that (i) lim, oo @, = 0 and lim, 00 Ay, = 0, (ii)
either Y 2 oy = 00 or Y 2 Ay = 00, and (iil) both (B8,) and (u,) are bounded
from below away from zero, with

lim <1—@>=o and Lim <1—M>:o.

n—00 Bn n—00 Lhn
If any of the following conditions is satisfied,
(ag 2 neo llenl| <00 and 357, [lef[| < oo;
) Do llenll < oo and ||€}[|/An — 0;
) llenll/an — 0 and 352, ]| < oo;
(€) llenll/An =0 and 3 72, [lef|| < oo;
() llenll/om — 0 and |[e,||/om — 0;
) llenll/an = 0 and |le ||/ An — 0;
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(h) llenll/An = 0 and |l€}[|/an — 0;

(i) llenll/An = 0 and ||€},[|/An — O;

() llenll/an — 0 and |l€,||/om—1 — 0;
(k) len—1ll/An — 0 and |le, || /an—1 — 0;
(1) llen-ll/An —= 0 and [lez[|/An — 0;
(m) 3724 llen]l < 00 and |l€)||/an—1 — 0;
(n) llen—1ll/An =0 and 3272, e[l < oo,

then (x,,) converges strongly to the point of F' nearest to u.

Proof. In view of Theorem 3.1, it is enough to show that ||x,, — v,|| — 0. Since the
resolvent of B is nonexpansive, we derive from (1.5) and (3.2) that

(3.9) 220 —vanl < (1= An) [[220-1 — van—1] + [|ef ]| -
Similarly, from (1.4) and (3.1), we have
(3.10) [22n41 —vonall < (1 —an) lwon — vonll + llen]| -
These two inequalities imply that
[22n41 —vanll < (1 —an)(1 = An) 2201 — von—1ll + llenll + [|en ]| -

Therefore if the error sequence satisfies any of the conditions (a)-(i), then it readily
follows from Lemma 2.4 that ||z2,4+1 — von+1|| — 0. Passing to the limit in (3.9), we
derive ||z2n, — von|| — 0 as well. If the error sequence satisfies any of the conditions
(j)-(n), then from (3.9) and (3.10), we have

@20 — vanll < (1 —an-1)(1 = An) @202 — van—2| + llen—1l| + ||€}|| -

It then follows from Lemma 2.4 that ||x2, — va2,|| — 0. Passing to the limit in
(3.10), we derive ||zap4+1 — van+1]| — 0 as well. This completes the proof of the
theorem. ]

Remark 3.3. We point out that when A\, = ay, for all n > 1, algorithm (1.4), (1.5)
reduces to algorithm (24), (25) introduced by the authors in [4]. When A, = 0
for all n > 1, algorithm (1.4), (1.5) reduces to algorithm (14), (15) which was also
introduced by the authors in [4]. By making use of the firmly nonexpansive property
of the resolvent operator, we could drop the conditions

o0
. Ap41
lim /" =1 and E lan+1 — apl < 00
n—o0 Qi

n=1
used in both [4, Theorem 2] and [4, Theorem 3]. In addition, we were able to replace
the conditions

(o) [oe)
Z|/8n+1_5n|<oo and Z‘Nn+1_lin‘<oo

used in both [4, Theorem 2] and [4, Theorem 3] with the weaker conditions
lim (1 _ 5n+1> —0 and lim (1 . Mn+1) —0.

n—oo n n—oo Mn

Therefore, Theorem 3.2 contains [4, Theorem 2] and [4, Theorem 3] as special cases.
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