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2. Preliminaries and notations

Throughout this paper, we denote by N and R the set of all positive integers and
the set of all real numbers, respectively. We also denote by Z+ and R+ the set of
all nonnegative integers and the set of all nonnegative real numbers, respectively.
Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. We know the
following basic equality from [14]. For x, y ∈ H and λ ∈ R, we have

(2.1) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.
Furthermore, we obtain that for all x, y, w ∈ H,

(2.2) ⟨(x− y) + (x− w), y − w⟩ = ∥x− w∥2 − ∥x− y∥2.
In fact, we have that

⟨(x− y) + (x− w), y − w⟩
= ⟨(x− y) + (x− w), (y − x) + (x− w)⟩
= ∥x− w∥2 − ∥x− y∥2 + ⟨x− y, x− w⟩+ ⟨x− w, y − x⟩
= ∥x− w∥2 − ∥x− y∥2.

Let C be a closed and convex subset of H. For every point x ∈ H, there exists a
unique nearest point in C, denoted by PCx, such that

∥x− PCx∥ ≤ ∥x− y∥
for all y ∈ C. The mapping PC is called the metric projection of H onto C. It is
characterized by

⟨PCx− y, x− PCx⟩ ≥ 0

for all y ∈ C. See [14] for more details. The following result is well-known; see [14].

Lemma 2.1. Let C be a nonempty, bounded, closed and convex subset of a Hilbert
space H and let T be a nonexpansive mapping of C into itself. Then, F (T ) ̸= ∅.

We write xn → x (or lim
n→∞

xn = x) to indicate that the sequence {xn} of vectors

in H converges strongly to x. We also write xn ⇀ x (or w- lim
n→∞

xn = x) to indicate

that the sequence {xn} of vectors in H converges weakly to x. In a Hilbert space,
it is well known that xn ⇀ x and ∥xn∥ → ∥x∥ imply xn → x. We say that a
Banach space E satisfies Opial’s condition [9] if for each sequence {xn} in E which
converges weakly to x,

(2.3) lim
n→∞

∥xn − x∥ < lim
n→∞

∥xn − y∥

for each y ∈ E with y ̸= x. In a reflexive Banach space, this condition is equivalent
to the analogous condition for a bounded net which has been introduced in [7]. It is
also known that this condition is equivalent to the analogous condition of lim (see
[2]). It is known that Hilbert spaces satisfy Opial’s condition (see [9, 14]).

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a ∈ S the mappings s 7→ a · s and s 7→ s · a from S to
S are continuous. In the case when S is commutative, we denote st by s + t. A
commutative semigroup S is a directed system when the binary relation is defined
by s ≤ t if and only if {s} ∪ (S + s) ⊃ {t} ∪ (S + t).
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Let C be a nonempty subset of a Hilbert space H. A family S = {T (t) : t ∈ S} of
mappings of C into itself is said to be a nonexpansive semigroup on C if it satisfies
the following conditions:

(i) For each t ∈ S, T (t) is nonexpansive;
(ii) T (ts) = T (t)T (s) for each t, s ∈ S;
(iii) for each x ∈ C, t 7→ T (t)x is continuous.

We denote by F (S) the set of all common fixed points of a nonexpansive semigroup
S, i.e.,

F (S) =
∩
t∈S

F (T (t)).

Motivated by Takahashi and Takeuchi [15], we introduce the set A(S) of all common
attractive points of the family S = {T (t) : t ∈ S} of mappings on C, i.e.,

A(S) = {x ∈ H : ∥T (t)y − x∥ ≤ ∥y − x∥, ∀y ∈ C, t ∈ S}.

Let S be a commutative semigroup and let B(S) be the Banach space of all bounded
real-valued functions defined on S with supremum norm. Let C(S) be the Banach
space of all continuous bounded real-valued functions defined on S with supremum
norm. For each s ∈ S and g ∈ B(S), we can define an element ℓsg ∈ B(S) by
(ℓsg)(t) = g(s + t) for all t ∈ S. Let X be a subspace of B(S) containing 1 and
let X∗ be its topological dual. A linear functional µ on X is called a mean on X if
∥µ∥ = µ(1) = 1. We often write µt(g(t)) or

∫
g(t)dµ(t) instead of µ(g) for µ ∈ X∗

and g ∈ X. Furthermore, assume that X is invariant under every ℓs, s ∈ S, i.e.,
ℓsX ⊂ X for each s ∈ S. Then, a mean µ onX is called invariant if µ(ℓsg) = µ(g) for
all s ∈ S and g ∈ X. For s ∈ S, we can define a point evaluation δs by δs(g) = g(s) for
every g ∈ B(S). A convex combination of point evaluations is called a finite mean
on S. A finite mean µ on S is also a mean on any subspace X of B(S) containing
constants. A net {µα} of means on X is said to be strongly asymptotically invariant
if for each s ∈ S,

∥ℓ∗sµα − µα∥ → 0,

where ℓ∗s is the adjoint operator of ℓs. The following definition which was introduced
by Takahashi [11] is crucial in the fixed point theory for abstract semigroups (see
also [4]). Let h be a bounded function of S into H. Let X be a subspace of B(S)
containing constants and invariant under every ℓs, s ∈ S. Assume that for each
z ∈ H, the function t 7→ ⟨h(t), z⟩ is an element of X. Then, for any µ ∈ X∗ there
exists a unique element hµ ∈ H such that

⟨hµ, z⟩ = (µ)t⟨h(t), z⟩ =
∫

⟨h(t), z⟩ dµ(t), ∀z ∈ H.

If µ is a mean onX, then hµ is contained in co{h(t) : t ∈ S}, where coA is the closure
of convex hull of A (for example, see [11, 14]). Sometimes, hµ will be denoted by∫
h(t)dµ(t). Let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C. Assume

that for each x ∈ C and z ∈ H, {T (t)x : t ∈ S} is bounded. Let µ be a mean on
C(S). Following [10], we also write Tµx instead of

∫
T (t)x dµ(t). We remark that
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Tµ is nonexpansive on C and Tµx = x for each x ∈ F (S). If µ is a finite mean, i.e.,

µ =

n∑
i=1

aiδti (ti ∈ S, ai ≥ 0,

n∑
i=1

ai = 1),

then we have

Tµx =

n∑
i=1

aiT (ti)x, ∀x ∈ C.

This fact is important in Section 5 of this paper.

3. Lemmas

In this section, we prove some lemmas which are used in the proof of our main
theorem. They are basic properties of common attractive points of nonexpansive
semigroups in a Hilbert space.

Lemma 3.1. Let H be a Hilbert space, let C be a nonempty, closed and convex
subset of H, and let S be a commutative semigroup. Let S = {T (t) : t ∈ S} be a
nonexpansive semigroup on C. If A(S) ̸= ∅, then F (S) ̸= ∅.

Proof. Let u ∈ A(S) and y = PCu ∈ C. Then, we have T (t)y ∈ C from T (t)C ⊂ C.
Furthermore, we have

∥T (t)y − u∥ 5 ∥y − u∥ = ∥PCu− u∥.

By the properties of PC , we have T (t)y = PCu = y. Therefore y ∈ F (S). �

Lemma 3.2. Let H be a Hilbert space, let C be a nonempty subset of H, and let S
be a commutative semigroup. Let S = {T (t) : t ∈ S} be a nonexpansive semigroup
on C. Then, A(S) is a closed and convex subset of H.

Proof. We show that A(S) is closed. Let {zn} ⊂ A(S) be a sequence which converges
strongly to z ∈ H. Take x ∈ C and t ∈ S. From zn ∈ A(S), we have

∥z − T (t)x∥ 5 ∥z − zn∥+ ∥zn − T (t)x∥
5 ∥z − zn∥+ ∥zn − x∥.

Since zn → z, we have

∥z − T (t)x∥ 5 ∥z − x∥.
This implies that z ∈ A(S). So, A(S) is closed. We prove that A(S) is convex. Let
z1, z2 ∈ A(S), α ∈ [0, 1] and z = αz1 + (1− α)z2. We prove from (2.1) that for any
x ∈ C,

∥z−T (t)x∥2 = ∥αz1 + (1− α)z2 − T (t)x∥2

= α∥z1 − T (t)x∥2 + (1− α)∥z2 − T (t)x∥2 − α(1− α)∥z1 − z2∥2

5 α∥z1 − x∥2 + (1− α)∥z2 − x∥2 − α(1− α)∥z1 − z2∥2

= ∥α(z1 − x) + (1− α)(z2 − x)∥2 = ∥z − x∥2.

This implies that z ∈ A(S). So, A(S) is convex. �
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Lemma 3.3. Let H be a Hilbert space, let C be a nonempty subset of H, and let S
be a commutative semigroup. Let S = {T (t) : t ∈ S} be a nonexpansive semigroup
on C. Let {uα} be a net in H such that

lim
α

⟨(uα − y) + (uα − T (t)y), y − T (t)y⟩ 5 0

for all t ∈ S and y ∈ C. If a subnet {uαβ
} of {uα} converges weakly to u ∈ H, then

u ∈ A(S).

Proof. Since {uαβ
} converses weakly to u ∈ H, we have that for any t ∈ S and

y ∈ C,

⟨(u− y) + (u− T (t)y), y − T (t)y⟩
= lim

β
⟨(uαβ

− y) + (uαβ
− T (t)y), y − T (t)y⟩

≤ lim
α

⟨(uα − y) + (uα − T (t)y), y − T (t)y⟩

≤ 0.

On the other hand, we know from (2.2) that

⟨(u− y) + (u− T (t)y), y − T (t)y⟩ = ∥u− T (t)y∥2 − ∥u− y∥2.
Thus we have

∥u− T (t)y∥ ≤ ∥u− y∥.
for all t ∈ S and y ∈ C. This implies u ∈ A(S). �

The following was proved by Lau and Takahashi [8] (see also [16]).

Lemma 3.4. Let H be a Hilbert space, let C be a nonempty subset of H and let D
be a nonempty, closed and convex subset of H. Let P be the metric projection from
H onto D. Let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C and x ∈ C. If
∥T (t+ s)x− v∥ 5 ∥T (t)x− v∥ for any v ∈ D and s, t ∈ S, then {PT (t)x} converges
strongly to v0 ∈ D.

4. Nonlinear ergodic theorem

In this section, we prove a nonlinear mean ergodic theorem without convexity for
finding a common attractive point of a semigroup of nonexpansive mappings in a
Hilbert space by using the ideas of [3, 15] (see also [14]).

Theorem 4.1. Let H be a Hilbert space, let C be a nonempty subset of H. Let S be
a commutative semigroup and let S = {T (t) : t ∈ S} be a nonexpansive semigroup
on C such that {T (t)x : t ∈ S} is bounded for some x ∈ C. Let {µα} be a strongly
asymptotically invariant net of means on C(S), i.e., a net of means on C(S) such
that

lim
α
∥µα − ℓ∗sµα∥ = 0.

Then, the following hold:

(1) A(S) is non-empty, closed and convex;
(2) for any u ∈ C, {Tµαu} converges weakly to u0 ∈ A(S),

where u0 = limt PA(S)T (t)u.
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Proof. Since {T (t)x : t ∈ S} is bounded for some x ∈ C, we can define a net {Tµαx}
of elements of H such that

⟨Tµαx, y⟩ = (µα)t⟨T (t)x, y⟩

for all y ∈ H. Since S = {T (t) : t ∈ S} is a nonexpansive semigroup on C, we have
that

⟨(T (s)x−y) + (T (s)x− T (t)y), y − T (t)y⟩
= ∥T (s)x− T (t)y∥2 − ∥T (s)x− y∥2

≤ ∥T (s)x− T (t)y∥2 − ∥T (s+ t)x− T (t)y∥2

for all t, s ∈ S and y ∈ C. Applying µα to both sides of the inequality, we have that

⟨(Tµαx− y) + (Tµαx− T (t)y), y − T (t)y⟩
= (µα)s⟨(T (s)x− y) + (T (s)x− T (t)y), y − T (t)y⟩
≤ (µα)s(∥T (s)x− T (t)y∥2 − ∥T (s+ t)x− T (t)y∥2)
= (µα)s∥T (s)x− T (t)y∥2 − (µα)s∥T (s+ t)x− T (t)y∥2

= (µα − ℓ∗tµα)s∥T (s)x− T (t)y∥2

≤ ∥µα − ℓ∗tµα∥ sup
s∈S

∥T (s)x− T (t)y∥2

for all t ∈ S and y ∈ C. Since lim
α
∥µα − ℓ∗tµα∥ = 0 for each t ∈ S, we have that

lim
α

⟨(Tµαx− y) + (Tµαx− T (t)y) , y − T (t)y⟩ 5 0.

Since{T (t)x} is bounded, so is {Tµαx}. There exists a subnet {Tµαβ
x} of {Tµαx}

which converges weakly to a point b ∈ H. By Lemma 3.3, we have that b ∈ A(S).
Hence, we have that A(S) is non-empty. By Lemma 3.2, we have that A(S) is closed
and convex.

Let us prove (2). Let u ∈ C. Since A(S) is non-empty, we have that

∥T (t)u− v∥ ≤ ∥u− v∥

for all t ∈ S and v ∈ A(S). Then {T (t)u} is bounded. Furthermore, we have that

∥T (t+ s)u− v∥ = ∥T (s)T (t)u− v∥ 5 ∥T (t)u− v∥

for each t, s ∈ S and v ∈ A(S). By Lemma 3.4, there exists v0 ∈ A(S) such that
limt PA(S)T (t)u = v0 ∈ A(S). Since PA(S) is the metric projection of H onto A(S),
we have that

∥PA(S)T (t+ s)u− T (t+ s)u∥ 5 ∥PA(S)T (t)u− T (t+ s)u∥
= ∥PA(S)T (t)u− T (s)T (t)u∥
≤ ∥PA(S)T (t)u− T (t)u∥.

Thus, {∥T (t)u− PA(S)T (t)u∥} is non-increasing. Let {Tµαβ
u} be a weakly conver-

gent subnet of {Tµαu} and let {Tµαβ
u} converge weakly to a point in b ∈ H. As in
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the proof of (1), we have b ∈ A(S). To complete the proof of (2), it is sufficient to
show b = v0. We have from the property of PA(S) that

(4.1) ⟨T (t)u− PA(S)T (t)u, PA(S)T (t)u− v⟩ = 0

for all t ∈ S and v ∈ A(S). Since {T (t)u} is bounded, so is {PA(S)T (t)u}. So, there
exists M > 0 such that ∥T (t)u∥ 5 M and ∥PA(S)T (t)u∥ 5 M for every t ∈ S. We
have that for any v ∈ A(S) and t ∈ S,

⟨v−v0, T (t)u− PA(S)T (t)u⟩
5

⟨
PA(S)T (t)u− v0, T (t)u− PA(S)T (t)u

⟩
5 ∥PA(S)T (t)u− v0∥ · ∥T (t)u− PA(S)T (t)u∥
5 2M · ∥PA(S)T (t)u− v0∥.

Then, we have that

(4.2) (µα)t⟨v − v0, T (t)u− PA(S)T (t)u⟩ 5 2M · (µα)t∥PA(S)T (t)u− v0∥.

Since {µα} is a net of means on C(S) such that

lim
α

∥µα − ℓ∗sµα∥ = 0

for each s ∈ S, a cluster point µ of {µα} in the weak∗ topology is an invariant mean
on C(S); see the proof of [14, Theorem 3.4.4]. Without loss of generality, we may
assume that µαβ

⇀ µ in the weak∗ topology. Replacing α by αβ in (4.2), we have
that

(4.3) (µαβ
)t⟨v − v0, T (t)u− PA(S)T (t)u⟩ 5 2M · (µαβ

)t∥PA(S)T (t)u− v0∥

and hence

(4.4) (µ)t⟨v − v0, T (t)u− PA(S)T (t)u⟩ 5 2M · (µ)t∥PA(S)T (t)u− v0∥.

Since µ is an invariant mean on C(S), we have from

lim
t∈S

∥PA(S)T (t)u− v0∥ = 0

and Tµαβ
u ⇀ b ∈ H,

⟨v − v0, b− v0⟩ 5 0

for any v ∈ A(S). Setting v = b, we have ∥b − v0∥ 5 0 and hence b = v0. Thus
{Tµαu} converges weakly to v0 ∈ A(S). This completes the proof of (2). �

5. Applications

Throughout this section, let C be a nonempty subset of a Hilbert space H. Using
Theorems 4.1, we can prove some nonliear mean ergodic theorems as in [4] and [14].

Theorem 5.1. Let T be a nonexpansive mapping of C into itself such that {Tnx}
is bounded for some x ∈ C. Then, the following hold:

(1) A(T ) is non-empty, closed and convex:

(2) for any u ∈ C, { 1
n

∑n−1
i=0 T iu} converges weakly to u0 ∈ A(T ), where u0 =

limn→∞ PA(T )T
nu.
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Proof. Put S = Z+ in Theorem 4.1 and define

µn(f) =
1

n

n−1∑
i=0

f(i)

for all n ∈ N and f ∈ B(S). We have that {µn : n ∈ N} is a strongly asymptotically
invariant sequence of means on B(S). Furthermore, we have that for any u ∈ C
and n ∈ N,

Tµnu =
1

n

n−1∑
i=0

T iu.

Therefore, we obtain Theorem 5.1 by using Theorem 4.1. �
Theorem 5.2. Let T be a nonexpansive mapping of C into itself such that {Tnx} is
bounded for some x ∈ C. Let {qn,m : n,m ∈ Z+} be a sequence of real numbers such
that qn,m ≥ 0,

∑∞
m=0 qn,m = 1 for each n ∈ Z+ and limn→∞

∑∞
m=0 |qn,m+1−qn,m| =

0. Then, the following hold:

(1) A(T ) is non-empty, closed and convex:
(2) for any u ∈ C, {

∑∞
m=0 qn,mTmu} converges weakly to u0 ∈ A(T ), where

u0 = limn→∞ PA(T )T
nu.

Proof. Put S = Z+ in Theorem 4.1 and define

µn(f) =

∞∑
m=0

qn,mf(m)

for all n ∈ Z+ and f ∈ B(S). We have that {µn : n ∈ Z+} is a strongly asymp-
totically invariant sequence of means on B(S). Furthermore, we have that for any
u ∈ C and n ∈ Z+,

Tµnu =
∞∑

m=0

qn,mTmu.

Therefore, we obtain Theorem 5.2 by using Theorem 4.1. �
Theorem 5.3. Let T and U be nonexpansive mappings of C into itself such that
{T iU jx : i, j ∈ Z+} is bounded for some x ∈ C. Then, the following hold:

(1) A(T ) ∩A(U) is non-empty, closed and convex;

(2) for any u ∈ C, { 1
(n)2

∑n−1
i,j=0 T

iU ju} converges weakly to u0 ∈ A(T ) ∩A(S).

Proof. Put S = Z+ × Z+ in Theorem 4.1 and define

µn(f) =
1

n2

n−1∑
i,j=0

f(i, j)

for all n ∈ N and f ∈ B(S). We have that {µn : n ∈ N} is a strongly asymptotically
invariant sequence of means on B(S). Furthermore, we have that for any u ∈ C
and n ∈ N,

Tµnu =
1

(n)2

n−1∑
i,j=0

T iU ju.

Therefore, we obtain Theorem 5.3 by using Theorem 4.1. �
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Let C be a nonempty subset of a Hilbert space H. A family S = {T (t) : t ∈ R+}
of mappings of C into itself satisfying the following conditions is said to be a one-
parameter nonexpansive semigroup on C:

(i) For each t ∈ R+, T (t) is nonexpansive;
(ii) T (0) = I;
(iii) T (t+ s) = T (t)T (s) for every t, s ∈ R+;
(iv) for each x ∈ C, t 7→ T (t)x is continuous.

Theorem 5.4. Let S = {T (t) : t ∈ R+} be a one-parameter nonexpansive semi-
group on C such that {T (t)x : t ∈ R+} is bounded for some x ∈ C. Then, the
following hold:

(1) A(S) is non-empty, closed and convex:

(2) for any u ∈ C, { 1
λ

∫ λ
0 T (s)u ds} converges weakly to u0 ∈ A(S), as λ → ∞,

where u0 = limt→∞ PA(S)T (t)u.

Proof. Put S = R+ in Theorem 4.1. Define

µλ(f) =
1

λ

∫ λ

0
f(t)dt

for all λ > 0 and f ∈ C(S). We have that {µλ : 0 < λ < ∞} is a strongly
asymptotically invariant net of means on X. Furthermore, we have that for any
u ∈ C and λ > 0,

Tµλ
u =

1

λ

∫ λ

0
T (s)u ds.

Therefore, we obtain Theorem 5.4 by using Theorem 4.1. �
Theorem 5.5. Let S = {T (t) : t ∈ R+} be a one-parameter nonexpansive semi-
group on C such that {T (t)x : t ∈ R+} is bounded for some x ∈ C. Then, the
following hold:

(1) A(S) is non-empty, closed and convex:
(2) for any u ∈ C, {r

∫∞
0 e−rtT (t)u dt} converges weakly to u0 ∈ A(S),as r → 0.

where u0 = limt→∞ PA(S)T (t)u.

Proof. Put S = R+ in Theorem 4.1. Define

µr(f) = r

∫ ∞

0
e−rtf(t)dt

for all r > 0 and f ∈ C(S). We have that {µr : 0 < r < ∞} is a strongly
asymptotically invariant net of means on X. Furthermore, we have that for any
u ∈ C and r > 0,

Tµru = r

∫ ∞

0
e−rtT (t)u dt.

Therefore, we obtain Theorem 5.5 by using Theorem 4.1. �
Theorem 5.6. Let S = {T (t) : t ∈ R+} be a one-parameter nonexpansive semi-
group on C such that {T (t)x : t ∈ R+} is bounded for some x ∈ C. Let q be a
continuous function from R+ × R+ into R such that suph≥0

∫∞
0 |q(h, t)| dt < ∞,

limh→∞
∫∞
0 q(h, t) dt = 1, limh→∞

∫∞
0 |q(h, t + s) − q(h, t)| dt = 0 for all s ∈ R+.

Then, the following hold:
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(1) A(S) is non-empty, closed and convex:
(2) for any u ∈ C, {

∫∞
0 q(h, t)T (t)udt} converges weakly to u0 ∈ A(S), as

h → ∞, where u0 = limt→∞ PA(S)T (t)u.

Proof. Put S = R+ in Theorem 4.1. Define

µh(f) =

∫ ∞

0
q(h, t)f(t)dt

for all h > 0 and f ∈ C(S). As in the proof of [4, Theorem 7], we have that
{µh : 0 < h < ∞} is a strongly asymptotically invariant net of means on C(S) (see
also [1, Theorem 5.7], [14]). Furthermore, we have that for any u ∈ C and h > 0,

Tµh
u =

∫ ∞

0
q(h, t)T (t)udt.

Therefore, we obtain Theorem 5.6 by using Theorems 4.1. �
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