Journal of Nonlinear and Convex Analysis Volume 14, Number 2, 2013, 209–219



# NONLINEAR ERGODIC THEOREMS WITHOUT CONVEXITY FOR NONEXPANSIVE SEMIGROUPS IN HILBERT SPACES

### SACHIKO ATSUSHIBA AND WATARU TAKAHASHI

ABSTRACT. In this paper, we introduce the concept of common attractive points of a nonexpansive semigroup in a Hilbert space and study fundamental properties for the points. We also prove a nonlinear mean convergence theorem of Baillon's type [3] without convexity for nonexpansive semigroups. Using this result, we obtain new and well-known nonlinear mean convergence theorems in a Hilbert space.

### 1. INTRODUCTION

Let *H* be a real Hilbert space with inner product  $\langle \cdot, \cdot \rangle$  and norm  $\|\cdot\|$  and let *C* be a nonempty subset of *H*. For a mapping  $T: C \to C$ , we denote by F(T) the set of fixed points of *T* and by A(T) the set of attractive points [15] of *T*, i.e.,

(i)  $F(T) = \{z \in C : Tz = z\};$ 

(ii)  $A(T) = \{z \in H : ||Tx - z|| \le ||x - z||, \forall x \in C\}.$ 

A mapping  $T : C \to C$  is called *nonexpansive* if  $||Tx - Ty|| \leq ||x - y||$  for all  $x, y \in C$ . In 1975, Baillon [3] proved the following first nonlinear ergodic theorem in a Hilbert space: Let C be a nonempty bounded closed convex subset of a Hilbert space H and let T be a nonexpansive mapping of C into itself. Then, for any  $x \in C$ ,  $S_n x = \frac{1}{n} \sum_{i=0}^{n-1} T^i x$  converges weakly to a fixed point of T (see also [14]).

Recently, Kocourek, Takahashi and Yao [5] introduced a broad class of nonlinear mappings called *generalized hybrid* which containing nonexpansive mappings, non-spreading mappings, and hybrid mappings in a Hilbert space. They proved a mean convergence theorem for generalized hybrid mappings which generalizes Baillon's nonlinear ergodic theorem. Motivated by Baillon [3], and Kocourek, Takahashi and Yao [5], Takahashi and Takeuchi [15] introduced the concept of attractive points of a nonlinear mapping in a Hilbert space and they proved a mean convergence theorem of Baillon's type without convexity for generalized hybrid mappings.

In this paper, we introduce the concept of common attractive points of a nonexpansive semigroup in a Hilbert space and study fundamental properties for the points. We also prove a nonlinear mean convergence theorem of Baillon's type without convexity for nonexpansive semigroups. Using this result, we obtain new and well-known nonlinear mean convergence theorems in a Hilbert space.

<sup>2010</sup> Mathematics Subject Classification. Primary 47H09, 47H10.

Key words and phrases. Fixed point, iteration, nonexpansive mapping, nonexpansive semigroup, strong convergence.

The authors are supported by Grant-in-Aid for Scientific Research No. 22540120 and No. 23540188 from Japan Society for the Promotion of Science.

#### S. ATSUSHIBA AND W. TAKAHASHI

#### 2. Preliminaries and notations

Throughout this paper, we denote by  $\mathbb{N}$  and  $\mathbb{R}$  the set of all positive integers and the set of all real numbers, respectively. We also denote by  $\mathbb{Z}^+$  and  $\mathbb{R}^+$  the set of all nonnegative integers and the set of all nonnegative real numbers, respectively. Let H be a real Hilbert space with inner product  $\langle \cdot, \cdot \rangle$  and norm  $\|\cdot\|$ . We know the following basic equality from [14]. For  $x, y \in H$  and  $\lambda \in \mathbb{R}$ , we have

(2.1) 
$$\|\lambda x + (1-\lambda)y\|^2 = \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)\|x-y\|^2.$$

Furthermore, we obtain that for all  $x, y, w \in H$ ,

(2.2) 
$$\langle (x-y) + (x-w), y-w \rangle = ||x-w||^2 - ||x-y||^2.$$

In fact, we have that

$$\langle (x - y) + (x - w), y - w \rangle = \langle (x - y) + (x - w), (y - x) + (x - w) \rangle = ||x - w||^2 - ||x - y||^2 + \langle x - y, x - w \rangle + \langle x - w, y - x \rangle = ||x - w||^2 - ||x - y||^2.$$

Let C be a closed and convex subset of H. For every point  $x \in H$ , there exists a unique nearest point in C, denoted by  $P_C x$ , such that

$$\|x - P_C x\| \le \|x - y\|$$

for all  $y \in C$ . The mapping  $P_C$  is called the *metric projection* of H onto C. It is characterized by

$$\langle P_C x - y, x - P_C x \rangle \ge 0$$

for all  $y \in C$ . See [14] for more details. The following result is well-known; see [14].

**Lemma 2.1.** Let C be a nonempty, bounded, closed and convex subset of a Hilbert space H and let T be a nonexpansive mapping of C into itself. Then,  $F(T) \neq \emptyset$ .

We write  $x_n \to x$  (or  $\lim_{n \to \infty} x_n = x$ ) to indicate that the sequence  $\{x_n\}$  of vectors in H converges strongly to x. We also write  $x_n \to x$  (or w- $\lim_{n \to \infty} x_n = x$ ) to indicate that the sequence  $\{x_n\}$  of vectors in H converges weakly to x. In a Hilbert space, it is well known that  $x_n \to x$  and  $||x_n|| \to ||x||$  imply  $x_n \to x$ . We say that a Banach space E satisfies *Opial's condition* [9] if for each sequence  $\{x_n\}$  in E which converges weakly to x,

(2.3) 
$$\lim_{n \to \infty} \|x_n - x\| < \lim_{n \to \infty} \|x_n - y\|$$

for each  $y \in E$  with  $y \neq x$ . In a reflexive Banach space, this condition is equivalent to the analogous condition for a bounded net which has been introduced in [7]. It is also known that this condition is equivalent to the analogous condition of  $\overline{\lim}$  (see [2]). It is known that Hilbert spaces satisfy Opial's condition (see [9, 14]).

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff topology such that for each  $a \in S$  the mappings  $s \mapsto a \cdot s$  and  $s \mapsto s \cdot a$  from S to S are continuous. In the case when S is commutative, we denote st by s + t. A commutative semigroup S is a directed system when the binary relation is defined by  $s \leq t$  if and only if  $\{s\} \cup (S+s) \supset \{t\} \cup (S+t)$ .

Let C be a nonempty subset of a Hilbert space H. A family  $S = \{T(t) : t \in S\}$  of mappings of C into itself is said to be a *nonexpansive semigroup* on C if it satisfies the following conditions:

- (i) For each  $t \in S$ , T(t) is nonexpansive;
- (ii) T(ts) = T(t)T(s) for each  $t, s \in S$ ;
- (iii) for each  $x \in C$ ,  $t \mapsto T(t)x$  is continuous.

We denote by F(S) the set of all common fixed points of a nonexpansive semigroup S, i.e.,

$$F(\mathcal{S}) = \bigcap_{t \in S} F(T(t)).$$

Motivated by Takahashi and Takeuchi [15], we introduce the set A(S) of all common attractive points of the family  $S = \{T(t) : t \in S\}$  of mappings on C, i.e.,

$$A(\mathcal{S}) = \{ x \in H : ||T(t)y - x|| \le ||y - x||, \ \forall y \in C, \ t \in S \}.$$

Let S be a commutative semigroup and let B(S) be the Banach space of all bounded real-valued functions defined on S with supremum norm. Let C(S) be the Banach space of all continuous bounded real-valued functions defined on S with supremum norm. For each  $s \in S$  and  $g \in B(S)$ , we can define an element  $\ell_s g \in B(S)$  by  $(\ell_s g)(t) = g(s + t)$  for all  $t \in S$ . Let X be a subspace of B(S) containing 1 and let  $X^*$  be its topological dual. A linear functional  $\mu$  on X is called a mean on X if  $\|\mu\| = \mu(1) = 1$ . We often write  $\mu_t(g(t))$  or  $\int g(t)d\mu(t)$  instead of  $\mu(g)$  for  $\mu \in X^*$ and  $g \in X$ . Furthermore, assume that X is invariant under every  $\ell_s, s \in S$ , i.e.,  $\ell_s X \subset X$  for each  $s \in S$ . Then, a mean  $\mu$  on X is called *invariant* if  $\mu(\ell_s g) = \mu(g)$  for all  $s \in S$  and  $g \in X$ . For  $s \in S$ , we can define a *point evaluation*  $\delta_s$  by  $\delta_s(g) = g(s)$  for every  $g \in B(S)$ . A convex combination of point evaluations is called a *finite mean* on S. A finite mean  $\mu$  on S is also a mean on any subspace X of B(S) containing constants. A net  $\{\mu_\alpha\}$  of means on X is said to be strongly asymptotically invariant if for each  $s \in S$ ,

$$\|\ell_s^*\mu_\alpha - \mu_\alpha\| \to 0,$$

where  $\ell_s^*$  is the adjoint operator of  $\ell_s$ . The following definition which was introduced by Takahashi [11] is crucial in the fixed point theory for abstract semigroups (see also [4]). Let *h* be a bounded function of *S* into *H*. Let *X* be a subspace of *B*(*S*) containing constants and invariant under every  $\ell_s$ ,  $s \in S$ . Assume that for each  $z \in H$ , the function  $t \mapsto \langle h(t), z \rangle$  is an element of *X*. Then, for any  $\mu \in X^*$  there exists a unique element  $h_{\mu} \in H$  such that

$$\langle h_{\mu}, z \rangle = (\mu)_t \langle h(t), z \rangle = \int \langle h(t), z \rangle \, d\mu(t), \quad \forall z \in H.$$

If  $\mu$  is a mean on X, then  $h_{\mu}$  is contained in  $\overline{co}\{h(t) : t \in S\}$ , where  $\overline{co}A$  is the closure of convex hull of A (for example, see [11, 14]). Sometimes,  $h_{\mu}$  will be denoted by  $\int h(t)d\mu(t)$ . Let  $S = \{T(t) : t \in S\}$  be a nonexpansive semigroup on C. Assume that for each  $x \in C$  and  $z \in H$ ,  $\{T(t)x : t \in S\}$  is bounded. Let  $\mu$  be a mean on C(S). Following [10], we also write  $T_{\mu}x$  instead of  $\int T(t)x d\mu(t)$ . We remark that  $T_{\mu}$  is nonexpansive on C and  $T_{\mu}x = x$  for each  $x \in F(\mathcal{S})$ . If  $\mu$  is a finite mean, i.e.,

$$\mu = \sum_{i=1}^{n} a_i \delta_{t_i} \ (t_i \in S, a_i \ge 0, \ \sum_{i=1}^{n} a_i = 1),$$

then we have

$$T_{\mu}x = \sum_{i=1}^{n} a_i T(t_i)x, \quad \forall x \in C.$$

This fact is important in Section 5 of this paper.

## 3. Lemmas

In this section, we prove some lemmas which are used in the proof of our main theorem. They are basic properties of common attractive points of nonexpansive semigroups in a Hilbert space.

**Lemma 3.1.** Let H be a Hilbert space, let C be a nonempty, closed and convex subset of H, and let S be a commutative semigroup. Let  $S = \{T(t) : t \in S\}$  be a nonexpansive semigroup on C. If  $A(S) \neq \emptyset$ , then  $F(S) \neq \emptyset$ .

*Proof.* Let  $u \in A(S)$  and  $y = P_C u \in C$ . Then, we have  $T(t)y \in C$  from  $T(t)C \subset C$ . Furthermore, we have

$$||T(t)y - u|| \le ||y - u|| = ||P_C u - u||.$$

By the properties of  $P_C$ , we have  $T(t)y = P_C u = y$ . Therefore  $y \in F(\mathcal{S})$ .

**Lemma 3.2.** Let H be a Hilbert space, let C be a nonempty subset of H, and let S be a commutative semigroup. Let  $S = \{T(t) : t \in S\}$  be a nonexpansive semigroup on C. Then, A(S) is a closed and convex subset of H.

*Proof.* We show that A(S) is closed. Let  $\{z_n\} \subset A(S)$  be a sequence which converges strongly to  $z \in H$ . Take  $x \in C$  and  $t \in S$ . From  $z_n \in A(S)$ , we have

$$||z - T(t)x|| \leq ||z - z_n|| + ||z_n - T(t)x||$$
  
$$\leq ||z - z_n|| + ||z_n - x||.$$

Since  $z_n \to z$ , we have

$$\|z - T(t)x\| \le \|z - x\|$$

This implies that  $z \in A(\mathcal{S})$ . So,  $A(\mathcal{S})$  is closed. We prove that  $A(\mathcal{S})$  is convex. Let  $z_1, z_2 \in A(\mathcal{S}), \alpha \in [0, 1]$  and  $z = \alpha z_1 + (1 - \alpha) z_2$ . We prove from (2.1) that for any  $x \in C$ ,

$$||z - T(t)x||^{2} = ||\alpha z_{1} + (1 - \alpha)z_{2} - T(t)x||^{2}$$
  
=  $\alpha ||z_{1} - T(t)x||^{2} + (1 - \alpha)||z_{2} - T(t)x||^{2} - \alpha(1 - \alpha)||z_{1} - z_{2}||^{2}$   
 $\leq \alpha ||z_{1} - x||^{2} + (1 - \alpha)||z_{2} - x||^{2} - \alpha(1 - \alpha)||z_{1} - z_{2}||^{2}$   
=  $||\alpha(z_{1} - x) + (1 - \alpha)(z_{2} - x)||^{2} = ||z - x||^{2}.$ 

This implies that  $z \in A(\mathcal{S})$ . So,  $A(\mathcal{S})$  is convex.

212

**Lemma 3.3.** Let H be a Hilbert space, let C be a nonempty subset of H, and let S be a commutative semigroup. Let  $S = \{T(t) : t \in S\}$  be a nonexpansive semigroup on C. Let  $\{u_{\alpha}\}$  be a net in H such that

$$\lim_{\alpha} \langle (u_{\alpha} - y) + (u_{\alpha} - T(t)y), y - T(t)y \rangle \leq 0$$

for all  $t \in S$  and  $y \in C$ . If a subnet  $\{u_{\alpha_{\beta}}\}$  of  $\{u_{\alpha}\}$  converges weakly to  $u \in H$ , then  $u \in A(S)$ .

*Proof.* Since  $\{u_{\alpha_{\beta}}\}$  converses weakly to  $u \in H$ , we have that for any  $t \in S$  and  $y \in C$ ,

$$\langle (u-y) + (u-T(t)y), y - T(t)y \rangle$$
  
=  $\lim_{\beta} \langle (u_{\alpha_{\beta}} - y) + (u_{\alpha_{\beta}} - T(t)y), y - T(t)y \rangle$   
 $\leq \overline{\lim_{\alpha}} \langle (u_{\alpha} - y) + (u_{\alpha} - T(t)y), y - T(t)y \rangle$   
 $\leq 0.$ 

On the other hand, we know from (2.2) that

$$\langle (u-y) + (u-T(t)y), y - T(t)y \rangle = ||u - T(t)y||^2 - ||u - y||^2.$$

Thus we have

$$||u - T(t)y|| \le ||u - y||.$$
  
for all  $t \in S$  and  $y \in C$ . This implies  $u \in A(S)$ .

The following was proved by Lau and Takahashi [8] (see also [16]).

**Lemma 3.4.** Let H be a Hilbert space, let C be a nonempty subset of H and let D be a nonempty, closed and convex subset of H. Let P be the metric projection from H onto D. Let  $S = \{T(t) : t \in S\}$  be a nonexpansive semigroup on C and  $x \in C$ . If  $\|T(t+s)x-v\| \leq \|T(t)x-v\|$  for any  $v \in D$  and  $s, t \in S$ , then  $\{PT(t)x\}$  converges strongly to  $v_0 \in D$ .

### 4. Nonlinear ergodic theorem

In this section, we prove a nonlinear mean ergodic theorem without convexity for finding a common attractive point of a semigroup of nonexpansive mappings in a Hilbert space by using the ideas of [3, 15] (see also [14]).

**Theorem 4.1.** Let H be a Hilbert space, let C be a nonempty subset of H. Let S be a commutative semigroup and let  $S = \{T(t) : t \in S\}$  be a nonexpansive semigroup on C such that  $\{T(t)x : t \in S\}$  is bounded for some  $x \in C$ . Let  $\{\mu_{\alpha}\}$  be a strongly asymptotically invariant net of means on C(S), i.e., a net of means on C(S) such that

$$\lim_{\alpha} \|\mu_{\alpha} - \ell_s^* \mu_{\alpha}\| = 0.$$

Then, the following hold:

- (1) A(S) is non-empty, closed and convex;
- (2) for any  $u \in C$ ,  $\{T_{\mu_{\alpha}}u\}$  converges weakly to  $u_0 \in A(\mathcal{S})$ , where  $u_0 = \lim_{t \to A(\mathcal{S})} T(t)u$ .

*Proof.* Since  $\{T(t)x : t \in S\}$  is bounded for some  $x \in C$ , we can define a net  $\{T_{\mu_{\alpha}}x\}$  of elements of H such that

$$\langle T_{\mu_{\alpha}}x, y \rangle = (\mu_{\alpha})_t \langle T(t)x, y \rangle$$

for all  $y \in H$ . Since  $S = \{T(t) : t \in S\}$  is a nonexpansive semigroup on C, we have that

$$\langle (T(s)x-y) + (T(s)x - T(t)y), y - T(t)y \rangle = \|T(s)x - T(t)y\|^2 - \|T(s)x - y\|^2 \leq \|T(s)x - T(t)y\|^2 - \|T(s+t)x - T(t)y\|^2$$

for all  $t, s \in S$  and  $y \in C$ . Applying  $\mu_{\alpha}$  to both sides of the inequality, we have that

$$\langle (T_{\mu_{\alpha}}x - y) + (T_{\mu_{\alpha}}x - T(t)y), y - T(t)y \rangle$$

$$= (\mu_{\alpha})_{s} \langle (T(s)x - y) + (T(s)x - T(t)y), y - T(t)y \rangle$$

$$\leq (\mu_{\alpha})_{s} (\|T(s)x - T(t)y\|^{2} - \|T(s + t)x - T(t)y\|^{2})$$

$$= (\mu_{\alpha})_{s} \|T(s)x - T(t)y\|^{2} - (\mu_{\alpha})_{s} \|T(s + t)x - T(t)y\|^{2}$$

$$= (\mu_{\alpha} - \ell_{t}^{*}\mu_{\alpha})_{s} \|T(s)x - T(t)y\|^{2}$$

$$\leq \|\mu_{\alpha} - \ell_{t}^{*}\mu_{\alpha}\| \sup_{s \in S} \|T(s)x - T(t)y\|^{2}$$

for all  $t \in S$  and  $y \in C$ . Since  $\lim_{\alpha} ||\mu_{\alpha} - \ell_t^* \mu_{\alpha}|| = 0$  for each  $t \in S$ , we have that

$$\lim_{\alpha} \left\langle \left(T_{\mu_{\alpha}} x - y\right) + \left(T_{\mu_{\alpha}} x - T(t)y\right), y - T(t)y \right\rangle \leq 0$$

Since  $\{T(t)x\}$  is bounded, so is  $\{T_{\mu_{\alpha}}x\}$ . There exists a subnet  $\{T_{\mu_{\alpha\beta}}x\}$  of  $\{T_{\mu_{\alpha}}x\}$  which converges weakly to a point  $b \in H$ . By Lemma 3.3, we have that  $b \in A(\mathcal{S})$ . Hence, we have that  $A(\mathcal{S})$  is non-empty. By Lemma 3.2, we have that  $A(\mathcal{S})$  is closed and convex.

Let us prove (2). Let  $u \in C$ . Since  $A(\mathcal{S})$  is non-empty, we have that

$$||T(t)u - v|| \le ||u - v||$$

for all  $t \in S$  and  $v \in A(S)$ . Then  $\{T(t)u\}$  is bounded. Furthermore, we have that

$$||T(t+s)u - v|| = ||T(s)T(t)u - v|| \le ||T(t)u - v||$$

for each  $t, s \in S$  and  $v \in A(S)$ . By Lemma 3.4, there exists  $v_0 \in A(S)$  such that  $\lim_t P_{A(S)}T(t)u = v_0 \in A(S)$ . Since  $P_{A(S)}$  is the metric projection of H onto A(S), we have that

$$\begin{aligned} \|P_{A(S)}T(t+s)u - T(t+s)u\| &\leq \|P_{A(S)}T(t)u - T(t+s)u\| \\ &= \|P_{A(S)}T(t)u - T(s)T(t)u\| \\ &\leq \|P_{A(S)}T(t)u - T(t)u\|. \end{aligned}$$

Thus,  $\{\|T(t)u - P_{A(S)}T(t)u\|\}$  is non-increasing. Let  $\{T_{\mu_{\alpha_{\beta}}}u\}$  be a weakly convergent subnet of  $\{T_{\mu_{\alpha}u}\}$  and let  $\{T_{\mu_{\alpha_{\beta}}}u\}$  converge weakly to a point in  $b \in H$ . As in

the proof of (1), we have  $b \in A(S)$ . To complete the proof of (2), it is sufficient to show  $b = v_0$ . We have from the property of  $P_{A(S)}$  that

(4.1) 
$$\langle T(t)u - P_{A(\mathcal{S})}T(t)u, P_{A(\mathcal{S})}T(t)u - v \rangle \ge 0$$

for all  $t \in S$  and  $v \in A(S)$ . Since  $\{T(t)u\}$  is bounded, so is  $\{P_{A(S)}T(t)u\}$ . So, there exists M > 0 such that  $||T(t)u|| \leq M$  and  $||P_{A(S)}T(t)u|| \leq M$  for every  $t \in S$ . We have that for any  $v \in A(S)$  and  $t \in S$ ,

$$\begin{aligned} \langle v - v_0, T(t)u - P_{A(\mathcal{S})}T(t)u \rangle \\ &\leq \langle P_{A(\mathcal{S})}T(t)u - v_0, T(t)u - P_{A(\mathcal{S})}T(t)u \rangle \\ &\leq \|P_{A(\mathcal{S})}T(t)u - v_0\| \cdot \|T(t)u - P_{A(\mathcal{S})}T(t)u\| \\ &\leq 2M \cdot \|P_{A(\mathcal{S})}T(t)u - v_0\|. \end{aligned}$$

Then, we have that

(4.2) 
$$(\mu_{\alpha})_t \langle v - v_0, T(t)u - P_{A(\mathcal{S})}T(t)u \rangle \leq 2M \cdot (\mu_{\alpha})_t \|P_{A(\mathcal{S})}T(t)u - v_0\|.$$

Since  $\{\mu_{\alpha}\}$  is a net of means on C(S) such that

$$\lim_{\alpha} \|\mu_{\alpha} - \ell_s^* \mu_{\alpha}\| = 0$$

for each  $s \in S$ , a cluster point  $\mu$  of  $\{\mu_{\alpha}\}$  in the weak<sup>\*</sup> topology is an invariant mean on C(S); see the proof of [14, Theorem 3.4.4]. Without loss of generality, we may assume that  $\mu_{\alpha_{\beta}} \rightharpoonup \mu$  in the weak<sup>\*</sup> topology. Replacing  $\alpha$  by  $\alpha_{\beta}$  in (4.2), we have that

(4.3) 
$$(\mu_{\alpha_{\beta}})_t \langle v - v_0, T(t)u - P_{A(\mathcal{S})}T(t)u \rangle \leq 2M \cdot (\mu_{\alpha_{\beta}})_t \|P_{A(\mathcal{S})}T(t)u - v_0\|$$

and hence

(4.4) 
$$(\mu)_t \langle v - v_0, T(t)u - P_{A(S)}T(t)u \rangle \leq 2M \cdot (\mu)_t \|P_{A(S)}T(t)u - v_0\|.$$

Since  $\mu$  is an invariant mean on C(S), we have from

$$\lim_{t \in S} \|P_{A(S)}T(t)u - v_0\| = 0$$

and  $T_{\mu_{\alpha_{\beta}}}u \rightharpoonup b \in H$ ,

$$\langle v - v_0, b - v_0 \rangle \le 0$$

for any  $v \in A(\mathcal{S})$ . Setting v = b, we have  $||b - v_0|| \leq 0$  and hence  $b = v_0$ . Thus  $\{T_{\mu_{\alpha}}u\}$  converges weakly to  $v_0 \in A(\mathcal{S})$ . This completes the proof of (2).  $\Box$ 

### 5. Applications

Throughout this section, let C be a nonempty subset of a Hilbert space H. Using Theorems 4.1, we can prove some nonliear mean ergodic theorems as in [4] and [14].

**Theorem 5.1.** Let T be a nonexpansive mapping of C into itself such that  $\{T^nx\}$  is bounded for some  $x \in C$ . Then, the following hold:

- (1) A(T) is non-empty, closed and convex:
- (2) for any  $u \in C$ ,  $\{\frac{1}{n} \sum_{i=0}^{n-1} T^i u\}$  converges weakly to  $u_0 \in A(T)$ , where  $u_0 = \lim_{n \to \infty} P_{A(T)} T^n u$ .

*Proof.* Put  $S = \mathbb{Z}^+$  in Theorem 4.1 and define

$$\mu_n(f) = \frac{1}{n} \sum_{i=0}^{n-1} f(i)$$

for all  $n \in \mathbb{N}$  and  $f \in B(S)$ . We have that  $\{\mu_n : n \in \mathbb{N}\}$  is a strongly asymptotically invariant sequence of means on B(S). Furthermore, we have that for any  $u \in C$ and  $n \in \mathbb{N}$ ,

$$T_{\mu_n} u = \frac{1}{n} \sum_{i=0}^{n-1} T^i u.$$

Therefore, we obtain Theorem 5.1 by using Theorem 4.1.

**Theorem 5.2.** Let T be a nonexpansive mapping of C into itself such that  $\{T^nx\}$  is bounded for some  $x \in C$ . Let  $\{q_{n,m} : n, m \in \mathbb{Z}^+\}$  be a sequence of real numbers such that  $q_{n,m} \ge 0$ ,  $\sum_{m=0}^{\infty} q_{n,m} = 1$  for each  $n \in \mathbb{Z}^+$  and  $\lim_{n \to \infty} \sum_{m=0}^{\infty} |q_{n,m+1} - q_{n,m}| = 0$ 0. Then, the following hold:

- (1) A(T) is non-empty, closed and convex:
- (2) for any  $u \in C$ ,  $\{\sum_{m=0}^{\infty} q_{n,m}T^m u\}$  converges weakly to  $u_0 \in A(T)$ , where  $u_0 = \lim_{n \to \infty} P_{A(T)}T^n u$ .

*Proof.* Put  $S = \mathbb{Z}^+$  in Theorem 4.1 and define

$$\mu_n(f) = \sum_{m=0}^{\infty} q_{n,m} f(m)$$

for all  $n \in \mathbb{Z}^+$  and  $f \in B(S)$ . We have that  $\{\mu_n : n \in \mathbb{Z}^+\}$  is a strongly asymptotically invariant sequence of means on B(S). Furthermore, we have that for any  $u \in C$  and  $n \in \mathbb{Z}^+$ ,

$$T_{\mu_n}u = \sum_{m=0}^{\infty} q_{n,m}T^m u.$$

Therefore, we obtain Theorem 5.2 by using Theorem 4.1.

**Theorem 5.3.** Let T and U be nonexpansive mappings of C into itself such that  $\{T^i U^j x : i, j \in \mathbb{Z}^+\}$  is bounded for some  $x \in C$ . Then, the following hold:

- (1)  $A(T) \cap A(U)$  is non-empty, closed and convex;
- (2) for any  $u \in C$ ,  $\{\frac{1}{(n)^2} \sum_{i,j=0}^{n-1} T^i U^j u\}$  converges weakly to  $u_0 \in A(T) \cap A(S)$ .

*Proof.* Put  $S = \mathbb{Z}^+ \times \mathbb{Z}^+$  in Theorem 4.1 and define

$$\mu_n(f) = \frac{1}{n^2} \sum_{i,j=0}^{n-1} f(i,j)$$

for all  $n \in \mathbb{N}$  and  $f \in B(S)$ . We have that  $\{\mu_n : n \in \mathbb{N}\}$  is a strongly asymptotically invariant sequence of means on B(S). Furthermore, we have that for any  $u \in C$ and  $n \in \mathbb{N}$ ,

$$T_{\mu_n} u = \frac{1}{(n)^2} \sum_{i,j=0}^{n-1} T^i U^j u.$$

Therefore, we obtain Theorem 5.3 by using Theorem 4.1.

216

Let C be a nonempty subset of a Hilbert space H. A family  $S = \{T(t) : t \in \mathbb{R}^+\}$  of mappings of C into itself satisfying the following conditions is said to be a oneparameter nonexpansive semigroup on C:

- (i) For each  $t \in \mathbb{R}^+$ , T(t) is nonexpansive;
- (ii) T(0) = I;
- (iii) T(t+s) = T(t)T(s) for every  $t, s \in \mathbb{R}^+$ ;
- (iv) for each  $x \in C$ ,  $t \mapsto T(t)x$  is continuous.

**Theorem 5.4.** Let  $S = \{T(t) : t \in \mathbb{R}^+\}$  be a one-parameter nonexpansive semigroup on C such that  $\{T(t)x : t \in \mathbb{R}^+\}$  is bounded for some  $x \in C$ . Then, the following hold:

- (1) A(S) is non-empty, closed and convex:
- (2) for any  $u \in C$ ,  $\{\frac{1}{\lambda} \int_0^{\lambda} T(s) u \, ds\}$  converges weakly to  $u_0 \in A(\mathcal{S})$ , as  $\lambda \to \infty$ , where  $u_0 = \lim_{t \to \infty} P_{A(\mathcal{S})} T(t) u$ .

*Proof.* Put  $S = \mathbb{R}^+$  in Theorem 4.1. Define

$$\mu_{\lambda}(f) = \frac{1}{\lambda} \int_{0}^{\lambda} f(t) dt$$

for all  $\lambda > 0$  and  $f \in C(S)$ . We have that  $\{\mu_{\lambda} : 0 < \lambda < \infty\}$  is a strongly asymptotically invariant net of means on X. Furthermore, we have that for any  $u \in C$  and  $\lambda > 0$ ,

$$T_{\mu_{\lambda}}u = \frac{1}{\lambda} \int_{0}^{\lambda} T(s)u \, ds$$

Therefore, we obtain Theorem 5.4 by using Theorem 4.1.

**Theorem 5.5.** Let  $S = \{T(t) : t \in \mathbb{R}^+\}$  be a one-parameter nonexpansive semigroup on C such that  $\{T(t)x : t \in \mathbb{R}^+\}$  is bounded for some  $x \in C$ . Then, the following hold:

- (1) A(S) is non-empty, closed and convex:
- (2) for any  $u \in C$ ,  $\{r \int_0^\infty e^{-rt} T(t) u \, dt\}$  converges weakly to  $u_0 \in A(\mathcal{S})$ , as  $r \to 0$ . where  $u_0 = \lim_{t \to \infty} P_{A(\mathcal{S})} T(t) u$ .

*Proof.* Put  $S = \mathbb{R}^+$  in Theorem 4.1. Define

$$\mu_r(f) = r \int_0^\infty e^{-rt} f(t) dt$$

for all r > 0 and  $f \in C(S)$ . We have that  $\{\mu_r : 0 < r < \infty\}$  is a strongly asymptotically invariant net of means on X. Furthermore, we have that for any  $u \in C$  and r > 0,

$$T_{\mu_r}u = r \int_0^\infty e^{-rt} T(t)u \, dt.$$

Therefore, we obtain Theorem 5.5 by using Theorem 4.1.

**Theorem 5.6.** Let  $S = \{T(t) : t \in \mathbb{R}^+\}$  be a one-parameter nonexpansive semigroup on C such that  $\{T(t)x : t \in \mathbb{R}^+\}$  is bounded for some  $x \in C$ . Let q be a continuous function from  $\mathbb{R}^+ \times \mathbb{R}^+$  into  $\mathbb{R}$  such that  $\sup_{h\geq 0} \int_0^\infty |q(h,t)| dt < \infty$ ,  $\lim_{h\to\infty} \int_0^\infty q(h,t) dt = 1$ ,  $\lim_{h\to\infty} \int_0^\infty |q(h,t+s) - q(h,t)| dt = 0$  for all  $s \in \mathbb{R}^+$ . Then, the following hold:

- (1) A(S) is non-empty, closed and convex:
- (2) for any  $u \in C$ ,  $\{\int_0^\infty q(h,t)T(t)udt\}$  converges weakly to  $u_0 \in A(\mathcal{S})$ , as  $h \to \infty$ , where  $u_0 = \lim_{t\to\infty} P_{A(\mathcal{S})}T(t)u$ .

*Proof.* Put  $S = \mathbb{R}^+$  in Theorem 4.1. Define

$$\mu_h(f) = \int_0^\infty q(h,t)f(t)dt$$

for all h > 0 and  $f \in C(S)$ . As in the proof of [4, Theorem 7], we have that  $\{\mu_h : 0 < h < \infty\}$  is a strongly asymptotically invariant net of means on C(S) (see also [1, Theorem 5.7], [14]). Furthermore, we have that for any  $u \in C$  and h > 0,

$$T_{\mu_h}u = \int_0^\infty q(h,t)T(t)udt.$$

Therefore, we obtain Theorem 5.6 by using Theorems 4.1.

### 

#### References

- S. Atsushiba, A. T. Lau and W. Takahashi, Nonlinear strong ergodic theorems for commutative nonexpansive semigroups on strictly convex Banach spaces, J. Nonlinear Convex Anal. 1 (2000), 213–231.
- [2] S. Atsushiba and W. Takahashi, Nonlinear ergodic theorems in a Banach space satisfying Opial's condition, Tokyo J. Math. 21 (1998), 61–81.
- [3] J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C. R. Acad. Sei. Paris Ser. A-B 280 (1975), 1511 - 1514.
- [4] N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Anal. 12 (1988), 1269-1281.
- [5] P. Kocourek, W. Takahashi, and J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497– 2511.
- [6] P. Kocourek, W. Takahashi, and J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Banach spaces, Adv. Math. Econ. 15 (2011), 67–88.
- [7] A. T. Lau, Semigroup of nonexpansive mappings on Hilbert space, J. Math. Anal. Appl. 105 (1985), 514-522.
- [8] A.T.Lau and W.Takahashi, Weak convergence and nonlinear ergodic theorems for reversible semigroups of nonexpansive mappings, Pacific J. Math. 126 (1987), 277–294.
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
- [10] G. Rodé, An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space, J. Math. Anal. Appl. 85 (1982), 172–178.
- [11] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253-256.
- [12] W. Takahashi, A nonlinear ergodic theorem for a reversible semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 96 (1986), 55-58.
- [13] W. Takahashi, The asymptotic behavior of nonlinear semigroups and invariant means, J. Math. Anal. Appl., 109 (1985), 130–139.
- [14] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [15] W. Takahashi and Y. Takeuchi, Nonlinear ergodic theorem without convexity for generalized hybrid mappings in a Hilbert space, J. Nonlinear Convex Anal. 12 (2011), 399–406.
- [16] W. Takahashi and M.Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417–428.

Manuscript received October 26, 2011

### S. Atsushiba

Department of Science Education, Graduate School of Education Science of Teaching and Learning, University of Yamanashi, 4-4-37, Takeda Kofu, Yamanashi 400-8510, Japan

*E-mail address*: asachiko@yamanashi.ac.jp

W. TAKAHASHI

Keio Research and Education Center for Natural Sciences, Keio University, Yokohama 223-8521, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan and Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

*E-mail address*: wataru@is.titech.ac.jp