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[12] and Iemoto and Takahashi [8]. Moreover, they proved the following nonlinear
ergodic theorem.

Theorem 1.1 ([11]). Let H be a real Hilbert space, let C be a non-empty closed
convex subset of H, let T be a generalized hybrid mapping from C into itself which
has a fixed point, and let P be the metric projection of H onto the set of fixed points
of T . Then for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

is weakly convergent to a fixed point p of T , where p = limn→∞ PTnx.

Furthermore, they defined a more broad class of nonlinear mappings than the
class of generalized hybrid mappings. A mapping T : C → H is called super
generalized hybrid if there exist real numbers α, β and γ such that

α∥Tx− Ty∥2 + (1− α+ γ)∥x− Ty∥2

≤ (β + (β − α)γ)∥Tx− y∥2 + (1− β − (β − α− 1)γ)∥x− y∥2

+(α− β)γ∥x− Tx∥2 + γ∥y − Ty∥2

for any x, y ∈ C. A generalized hybrid mapping with a fixed point is quasi-
nonexpansive. However, a super hybrid mapping is not quasi-nonexpansive gen-
erally even if it has a fixed point. Very recently, the authors [10] also defined a class
of nonlinear mappings in a Hilbert space which covers the class of contractive map-
pings and the class of generalized hybrid mappings defined by Kocourek, Takahashi
and Yao [11]. A mapping T from C into H is said to be widely generalized hybrid
if there exist real numbers α, β, γ, δ, ε, ζ such that

α∥Tx− Ty∥2 + β∥x−Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2

+max{ε∥x− Tx∥2, ζ∥y − Ty∥2} ≤ 0

for any x, y ∈ C.
In this paper, motivated by these classes of nonlinear mappings, we introduce a

broad class of nonlinear mappings in a Hilbert space which covers the class of super
generalized hybrid mappings and the class of widely generalized hybrid mappings.
Then we prove fixed point theorems for such new mappings in a Hilbert space.
Furthermore, we prove nonlinear ergodic theorems of Baillon’s type in a Hilbert
space. It seems that the results are new and useful. For example, using our fixed
point theorems, we can directly prove Browder and Petryshyn’s fixed point theorem
[5] for strict pseudo-contractive mappings and Kocourek, Takahashi and Yao’s fixed
point theorem [11] for super generalized hybrid mappings.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product ⟨·, ·⟩ and
norm ∥ · ∥. We denote the strong convergence and the weak convergence of {xn} to
x ∈ H by xn → x and xn ⇀ x, respectively. Let A be a nonempty subset of H. We
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denote by coA the closure of the convex hull of A. In a Hilbert space, it is known
that

(2.1) ∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2

for any x, y ∈ H and for any α ∈ R; see [16]. Furthermore, we have that

(2.2) 2⟨x− y, z − w⟩ = ∥x− w∥2 + ∥y − z∥2 − ∥x− z∥2 − ∥y − w∥2

for any x, y, z, w ∈ H. Let C be a nonempty subset of H and let T be a mapping
from C into H. We denote by F (T ) the set of fixed points of T . A mapping T from
C into H with F (T ) ̸= ∅ is called quasi-nonexpansive if ∥x − Ty∥ ≤ ∥x − y∥ for
any x ∈ F (T ) and for any y ∈ C. It is well-known that if C is closed and convex
and T : C → C is quasi-nonexpansive, then F (T ) is closed and convex; see Ito and
Takahashi [9]. It is not difficult to prove such a result in a Hilbert space. In fact,
for proving that F (T ) is closed, take a sequence {zn} ⊂ F (T ) with zn → z. Since
C is weakly closed, we have z ∈ C. Furthermore, from

∥z − Tz∥ ≤ ∥z − zn∥+ ∥zn − Tz∥ ≤ 2∥z − zn∥ → 0,

z is a fixed point of T and so F (T ) is closed. Let us show that F (T ) is convex. For
x, y ∈ F (T ) and α ∈ [0, 1], put z = αx+ (1− α)y. Then we have from (2.1) that

∥z − Tz∥2 = ∥αx+ (1− α)y − Tz∥2

= α∥x− Tz∥2 + (1− α)∥y − Tz∥2 − α(1− α)∥x− y∥2

≤ α∥x− z∥2 + (1− α)∥y − z∥2 − α(1− α)∥x− y∥2

= α(1− α)2∥x− y∥2 + (1− α)α2∥x− y∥2 − α(1− α)∥x− y∥2

= α(1− α)(1− α+ α− 1)∥x− y∥2

= 0

and hence Tz = z. This implies that F (T ) is convex. Let D be a nonempty closed
convex subset of H and x ∈ H. Then we know that there exists a unique nearest
point z ∈ D such that ∥x− z∥ = infy∈D ∥x− y∥. We denote such a correspondence
by z = PDx. The mapping PD is called the metric projection of H onto D. It is
known that PD is nonexpansive and

⟨x− PDx, PDx− u⟩ ≥ 0

for any x ∈ H and for any u ∈ D; see [16] for more details. For proving a nonlinear
ergodic theorem in this paper, we also need the following lemma proved by Takahashi
and Toyoda [18].

Lemma 2.1. Let D be a non-empty closed convex subset of H. Let P be the metric
projection from H onto D. Let {un} be a sequence in H. If ∥un+1 − u∥ ≤ ∥un − u∥
for any u ∈ D and for any n ∈ N, then {Pun} converges strongly to some u0 ∈ D.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let
µ be an element of (l∞)∗ (the dual space of l∞). Then we denote by µ(f) the
value of µ at f = (x1, x2, x3, . . .) ∈ l∞. Sometimes, we denote by µn(xn) the value
µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . .). A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn).
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We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . .) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . .) ∈ l∞ and xn → a ∈ R, then we have µ(f) =
µn(xn) = a. See [15] for the proof of existence of a Banach limit and its other
elementary properties. Using means and the Riesz theorem, we can obtain the
following result; see [14] and [15].

Lemma 2.2. Let H be a real Hilbert space, let {xn} be a bounded sequence in H
and let µ be a mean on l∞. Then there exists a unique point z0 ∈ co{xn | n ∈ N}
such that

µn⟨xn, y⟩ = ⟨z0, y⟩
for any y ∈ H.

3. Fixed point theorems

Let H be a real Hilbert space and let C be a nonempty subset of H. A map-
ping T from C into H is said to be widely more generalized hybrid if there exist
α, β, γ, δ, ε, ζ, η ∈ R such that

α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2(3.1)

+ε∥x− Tx∥2 + ζ∥y − Ty∥2 + η∥(x− Tx)− (y − Ty)∥2 ≤ 0

for any x, y ∈ C. Such a mapping T is called (α, β, γ, δ, ε, ζ, η)-widely more general-
ized hybrid. An (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping is gener-
alized hybrid in the sense of Kocourek, Takahashi and Yao [11] if α+β = −γ−δ = 1
and ε = ζ = η = 0. We first prove fixed point theorems for widely more generalized
hybrid mappings in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space, let C be a non-empty closed con-
vex subset of H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid
mapping from C into itself which satisfies the following condition (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ + ε+ η > 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β + ζ + η > 0 and ε+ η ≥ 0.

Then T has a fixed point if and only if there exists z ∈ C such that {Tnz | n =
0, 1, . . .} is bounded. In particular, a fixed point of T is unique in the case of α +
β + γ + δ > 0 on the conditions (1) and (2).

Proof. Suppose that T has a fixed point z. Then {Tnz | n = 0, 1, . . .} = {z}.
Therefore {Tnz | n = 0, 1, . . .} is bounded.

Conversely suppose that there exists z ∈ C such that {Tnz | n = 0, 1, . . .} is
bounded. Since T is an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping
from C into itself, we obtain that

α∥Tx− Tn+1z∥2 + β∥x− Tn+1z∥2 + γ∥Tx− Tnz∥2 + δ∥x− Tnz∥2

+ε∥x− Tx∥2 + ζ∥Tnz − Tn+1z∥2 + η∥(x− Tx)− (Tnz − Tn+1z)∥2 ≤ 0
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for any n ∈ N ∪ {0} and for any x ∈ C. By (2.2) we obtain that

∥(x− Tx)− (Tnz − Tn+1z)∥2

= ∥x− Tx∥2 + ∥Tnz − Tn+1z∥2 − 2⟨x− Tx, Tnz − Tn+1z⟩
= ∥x− Tx∥2 + ∥Tnz − Tn+1z∥2 + ∥x− Tnz∥2 + ∥Tx− Tn+1z∥2

−∥x− Tn+1z∥2 − ∥Tx− Tnz∥2.
Thus we have that

(α+ η)∥Tx− Tn+1z∥2 + (β − η)∥x− Tn+1z∥2 + (γ − η)∥Tx− Tnz∥2

+(δ + η)∥x− Tnz∥2 + (ε+ η)∥x− Tx∥2 + (ζ + η)∥Tnz − Tn+1z∥2 ≤ 0.

From

(γ − η)∥Tx− Tnz∥2

= (α+ γ)(∥x− Tx∥2 + ∥x− Tnz∥2 − 2⟨x− Tx, x− Tnz⟩)
−(α+ η)∥Tx− Tnz∥2,

we have that

(α+ η)∥Tx− Tn+1z∥2 + (β − η)∥x− Tn+1z∥2

+(α+ γ)(∥x− Tx∥2 + ∥x− Tnz∥2 − 2⟨x− Tx, x− Tnz⟩)
−(α+ η)∥Tx− Tnz∥2 + (δ + η)∥x− Tnz∥2

+(ε+ η)∥x− Tx∥2 + (ζ + η)∥Tnz − Tn+1z∥2 ≤ 0

and hence

(α+ η)(∥Tx− Tn+1z∥2 − ∥Tx− Tnz∥2) + (β − η)∥x− Tn+1z∥2

−2(α+ γ)⟨x− Tx, x− Tnz⟩+ (α+ γ + δ + η)∥x− Tnz∥2

+(α+ γ + ε+ η)∥x− Tx∥2 + (ζ + η)∥Tnz − Tn+1z∥2 ≤ 0.

By α+ β + γ + δ ≥ 0, we have that

−(β − η) = −(β + δ) + δ + η ≤ α+ γ + δ + η.

From this inequality and ζ + η ≥ 0 we obtain that

(α+ η)(∥Tx− Tn+1z∥2 − ∥Tx− Tnz∥2)
+(β − η)(∥x− Tn+1z∥2 − ∥x− Tnz∥2)
−2(α+ γ)⟨x− Tx, x− Tnz⟩+ (α+ γ + ε+ η)∥x− Tx∥2 ≤ 0.

Applying a Banach limit µ to both sides of this inequality, we obtain that

(α+ η)(µn∥Tx− Tn+1z∥2 − µn∥Tx− Tnz∥2)
+(β − η)(µn∥x− Tn+1z∥2 − µn∥x− Tnz∥2)
−2(α+ γ)µn⟨x− Tx, x− Tnz⟩+ (α+ γ + ε+ η)µn∥x− Tx∥2 ≤ 0

and hence

(3.2) −2(α+ γ)µn⟨x− Tx, x− Tnz⟩+ (α+ γ + ε+ η)∥x− Tx∥2 ≤ 0.

Since there exists p ∈ C by Lemma 2.2 such that

µn⟨y, Tnz⟩ = ⟨y, p⟩
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for any y ∈ H, we obtain by (3.2) that

−2(α+ γ)⟨x− Tx, x− p⟩+ (α+ γ + ε+ η)∥x− Tx∥2 ≤ 0.

Putting x = p, we obtain that

(α+ γ + ε+ η)∥p− Tp∥2 ≤ 0.

Since α+ γ + ε+ η > 0, we obtain that ∥p− Tp∥2 ≤ 0 and hence Tp = p.
Next suppose that α+ β + γ + δ > 0. Let p1 and p2 be fixed points of T . Then

α∥Tp1 − Tp2∥2 + β∥p1 − Tp2∥2 + γ∥Tp1 − p2∥2 + δ∥p1 − p2∥2

+ε∥p1 − Tp1∥2 + ζ∥p2 − Tp2∥2 + η∥(p1 − Tp1)− (p2 − Tp2)∥2

= (α+ β + γ + δ)∥p1 − p2∥2 ≤ 0

and hence p1 = p2. Therefore a fixed point of T is unique.
In the case of α+ β + γ + δ ≥ 0, α+ β + ζ + η > 0 and ε+ η ≥ 0, we can obtain

the result by replacing the variables x and y. �

As a direct consequence of Theorem 3.1, we obtain the following.

Theorem 3.2. Let H be a real Hilbert space, let C be a bounded closed convex subset
of H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from
C into itself which satisfies the following condition (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ + ε+ η > 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β + ζ + η > 0 and ε+ η ≥ 0.

Then T has a fixed point. In particular, a fixed point of T is unique in the case of
α+ β + γ + δ > 0 on the conditions (1) and (2).

The following theorem is an extension of Theorem 3.2.

Theorem 3.3. Let H be a real Hilbert space, let C be a bounded closed convex subset
of H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from
C into itself which satisfies the following condition (1) or (2):

(1) α+β+γ+δ ≥ 0, α+γ+ε+η > 0 and [0, 1)∩{λ | (α+β)λ+ζ+η ≥ 0} ̸= ∅;
(2) α+β+γ+δ ≥ 0, α+β+ζ+η > 0 and [0, 1)∩{λ | (α+γ)λ+ε+η ≥ 0} ̸= ∅.
Then T has a fixed point. In particular, a fixed point of T is unique in the case of
α+ β + γ + δ > 0 on the conditions (1) and (2).

Proof. Let λ ∈ [0, 1)∩{λ | (α+β)λ+ζ+η ≥ 0} and define S = (1−λ)T+λI. Since C
is convex, S is a mapping from C into itself. Since C is bounded, {Snz | n = 0, 1, . . .}
is bounded for any z ∈ C. Since λ ̸= 1, we obtain that F (S) = F (T ). Moreover,
from T = 1

1−λS − λ
1−λI and (2.1), we have that

α

∥∥∥∥( 1

1− λ
Sx− λ

1− λ
x

)
−

(
1

1− λ
Sy − λ

1− λ
y

)∥∥∥∥2
+β

∥∥∥∥x−
(

1

1− λ
Sy − λ

1− λ
y

)∥∥∥∥2 + γ

∥∥∥∥( 1

1− λ
Sx− λ

1− λ
x

)
− y

∥∥∥∥2
+δ∥x− y∥2
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+ε

∥∥∥∥x−
(

1

1− λ
Sx− λ

1− λ
x

)∥∥∥∥2 + ζ

∥∥∥∥y − (
1

1− λ
Sy − λ

1− λ
y

)∥∥∥∥2
+η

∥∥∥∥(x−
(

1

1− λ
Sx− λ

1− λ
x

))
−

(
y −

(
1

1− λ
Sy − λ

1− λ
y

))∥∥∥∥2
= α

∥∥∥∥ 1

1− λ
(Sx− Sy)− λ

1− λ
(x− y)

∥∥∥∥2
+β

∥∥∥∥ 1

1− λ
(x− Sy)− λ

1− λ
(x− y)

∥∥∥∥2
+γ

∥∥∥∥ 1

1− λ
(Sx− y)− λ

1− λ
(x− y)

∥∥∥∥2 + δ∥x− y∥2

+ε

∥∥∥∥ 1

1− λ
(x− Sx)

∥∥∥∥2 + ζ

∥∥∥∥ 1

1− λ
(y − Sy)

∥∥∥∥2
+η

∥∥∥∥ 1

1− λ
(x− Sx)− 1

1− λ
(y − Sy)

∥∥∥∥2
=

α

1− λ
∥Sx− Sy∥2 + β

1− λ
∥x− Sy∥2

+
γ

1− λ
∥Sx− y∥2 +

(
− λ

1− λ
(α+ β + γ) + δ

)
∥x− y∥2

+
ε+ γλ

(1− λ)2
∥x− Sx∥2 + ζ + βλ

(1− λ)2
∥y − Sy∥2

+
η + αλ

(1− λ)2
∥(x− Sx)− (y − Sy)∥2 ≤ 0.

Therefore S is an
(

α
1−λ ,

β
1−λ ,

γ
1−λ ,−

λ
1−λ(α+ β + γ) + δ, ε+γλ

(1−λ)2
, ζ+βλ
(1−λ)2

, η+αλ
(1−λ)2

)
-

widely more generalized hybrid mapping. Furthermore, we obtain that

α

1− λ
+

β

1− λ
+

γ

1− λ
− λ

1− λ
(α+ β + γ) + δ = α+ β + γ + δ ≥ 0,

α

1− λ
+

γ

1− λ
+

ε+ γλ

(1− λ)2
+

η + αλ

(1− λ)2
=

α+ γ + ε+ η

(1− λ)2
> 0,

ζ + βλ

(1− λ)2
+

η + αλ

(1− λ)2
=

(α+ β)λ+ ζ + η

(1− λ)2
≥ 0.

Therefore by Theorem 3.1 we obtain F (S) ̸= ∅.
Next suppose that α+ β + γ + δ > 0. Let p1 and p2 be fixed points of T . Then

α∥Tp1 − Tp2∥2 + β∥p1 − Tp2∥2 + γ∥Tp1 − p2∥2 + δ∥p1 − p2∥2

+ε∥p1 − Tp1∥2 + ζ∥p2 − Tp2∥2 + η∥(p1 − Tp1)− (p2 − Tp2)∥2

= (α+ β + γ + δ)∥p1 − p2∥2 ≤ 0

and hence p1 = p2. Therefore a fixed point of T is unique.
In the case of α+β+γ+δ ≥ 0, α+β+ζ+η > 0 and [0, 1)∩{λ | (α+γ)λ+ε+η ≥

0} ̸= ∅, we can obtain the result by replacing the variables x and y. �
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Remark 3.4. We can also prove Theorems 3.1 and 3.3 by using the condition

−β − δ + ε+ η > 0, or − γ − δ + ε+ η > 0

instead of the condition

α+ γ + ε+ η > 0, or α+ β + ζ + η > 0,

respectly. In fact, in the case of the condition −β − δ + ε+ η > 0, we obtain from
α+ β + γ + δ ≥ 0 that

0 < −β − δ + ε+ η ≤ α+ γ + ε+ η.

Thus we obtain the desired result by Theorems 3.1 and 3.3. Similary, in the case of
−γ− δ+ ε+ η > 0, we can obtain the result by using the case of α+ β+ ζ + η > 0.

4. Fixed point theorems for well-known mappings

An (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping T above with α =
1, β = γ = ε = ζ = η = 0 and −1 < δ < 0 is a contractive mapping. Using
Theorem 3.1, we can show the Banach fixed point theorem in a Hilbert space.

Theorem 4.1 (The Banach fixed point theorem). Let H be a real Hilbert space and
let T be a contractive mapping from H into H, that is, there exists a real number
α with 0 < α < 1 such that

∥Tx− Ty∥ ≤ α∥x− y∥
for any x, y ∈ H. Then T has a unique fixed point.

Proof. Since

∥Tnx− x∥ ≤ ∥Tnx− Tn−1x∥+ ∥Tn−1x− Tn−2x∥+ · · ·+ ∥Tx− x∥
≤ (αn−1 + αn−2 + · · ·+ 1)∥Tx− x∥

≤ 1

1− α
∥Tx− x∥

for any x ∈ H, {Tnx | n = 0, 1, . . .} is bounded. By Theorem 3.1 T has a unique
fixed point. �

Using Theorem 3.1, we can show Kocourek, Takahashi and Yao’s fixed point
theorem [11] for generalized hybrid mappings in a Hilbert space.

Theorem 4.2 ([11]). Let H be a real Hilbert space, let C be a non-empty closed
convex subset of H and let T be a generalized hybrid mapping from C into itself,
that is, there exist real numbers α and β such that

α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for any x, y ∈ C. Then T has a fixed point if and only if there exists z ∈ C such
that {Tnz | n = 0, 1, . . .} is bounded.

Proof. An (α, β)-generalized hybrid mapping T from C into itself is an (α, 1 −
α,−β,−(1−β), 0, 0, 0)-widely more generalized hybrid mapping. Furthermore, α+
(1− α)− β − (1− β) = 0 ≥ 0, α+ (1− α) + 0 + 0 = 1 > 0 and 0 + 0 = 0 ≥ 0, that
is, it satisfies the condition (2) in Theorem 3.1. Then we obtain the desired result
from Theorem 3.1. �
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Using Theorem 3.1, we can show Kawasaki and Takahashi’s fixed point theorem
[10] for widely generalized hybrid mappings in a Hilbert space.

Theorem 4.3 ([10]). Let H be a real Hilbert space, let C be a non-empty closed
convex subset of H and let T be an (α, β, γ, δ, ε, ζ)-widely generalized hybrid mapping
from C into itself which satisfies the following condition (1) or (2):

(1) α+ β + γ + δ ≥ 0 and α+ γ + ε > 0;
(2) α+ β + γ + δ ≥ 0 and α+ β + ζ > 0.

Then T has a fixed point if and only if there exists z ∈ C such that {Tnz | n =
0, 1, . . .} is bounded. In particular, a fixed point of T is unique in the case of α +
β + γ + δ > 0 on the conditions (1) and (2).

Proof. Since T is an (α, β, γ, δ, ε, ζ)-widely generalized hybrid mapping, we obtain
that

α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2

+max{ε∥x− Tx∥2, ζ∥y − Ty∥2} ≤ 0

for any x, y ∈ C. In the case of α+ γ + ε > 0, from

ε∥x− Tx∥2 ≤ max{ε∥x− Tx∥2, ζ∥y − Ty∥2},
we obtain that

α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2 + ε∥x− Tx∥2 ≤ 0,

that is, it is an (α, β, γ, δ, ε, 0, 0)-widely more generalized hybrid mapping. Further-
more, we have that α+β+γ+δ ≥ 0, α+γ+ε+0 = α+γ+ε > 0 and 0+0 = 0 ≥ 0,
that is, it satisfies the condition (1) in Theorem 3.1. Then we obtain the desired
result from Theorem 3.1. In the case of α + β + γ + δ ≥ 0 and α + β + ζ > 0, we
can obtain the result by replacing the variables x and y. �

Note that an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping T with
α = 1, β = γ = ε = ζ = 0, δ = −1 and η = −k ∈ (−1, 0] is a strict pseudo-
contractive mapping in the case of Browder and Petryshyn [5]. Using Theorem 3.3,
we can show the following fixed point theorem in a Hilbert space.

Theorem 4.4. Let H be a real Hilbert space, let C be a bounded closed convex
subset of H and let T be a strict pseudo-contractive mapping from C into itself,
that is, there exists a real number k with 0 ≤ k < 1 such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(x− Tx)− (y − Ty)∥2

for any x, y ∈ C. Then T has a fixed point.

Proof. A strict pseudo-contractive mapping T from C into itself is an (1, 0, 0,−1,
0, 0,−k)-widely more generalized hybrid mapping. Furthermore, 1+0+0+(−1) =
0 ≥ 0, 1+0+0+(−k) = 1−k > 0 and [0, 1)∩{λ | (1+0)λ+0−k ≥ 0} = [k, 1) ̸= ∅,
that is, it satisfies the condition (1) in Theorem 3.3. Then we obtain the desired
result from Theorem 3.3. �

Using Theorem 3.3, we can show the following fixed point theorem for super
generalized hybrid mappings in a Hilbert space.
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Theorem 4.5. Let H be a real Hilbert space, let C be a bounded closed convex
subset of H and let T be a super generalized hybrid mapping from C into itself, that
is, there exist real numbers α, β and γ such that

α∥Tx− Ty∥2 + (1− α+ γ)∥x− Ty∥2

≤ (β + (β − α)γ)∥Tx− y∥2 + (1− β − (β − α− 1)γ)∥x− y∥2

+(α− β)γ∥x− Tx∥2 + γ∥y − Ty∥2

for any x, y ∈ C. Suppose that α− β ≥ 0 or γ ≥ 0. Then T has a fixed point.

Proof. An (α, β, γ)-super generalized hybrid mapping T from C into itself is an
(α, 1− α+ γ,−β − (β − α)γ,−1 + β + (β − α− 1)γ,−(α− β)γ,−γ, 0)-widely more
generalized hybrid mapping. Furthermore, α + (1 − α + γ) + (−β − (β − α)γ) +
(−1+ β + (β −α− 1)γ) = 0 ≥ 0 and α+ (1−α+ γ) + (−γ) + 0 = 1 > 0, that is, it
satisfies the first and second conditions α+ β + γ + δ ≥ 0 and α+ β + ζ + η > 0 in
(2) of Theorem 3.3. Moreover, we have that

[0, 1) ∩ {λ | (α+ (−β − (β − α)γ))λ+ (−(α− β)γ) + 0 ≥ 0}
= [0, 1) ∩ {λ | (α− β)((1 + γ)λ− γ) ≥ 0}.

If α− β > 0, then

[0, 1) ∩ {λ | (α− β)((1 + γ)λ− γ) ≥ 0} = [0, 1) ∩ {λ | (1 + γ)λ− γ ≥ 0}

=

{
[0, 1) if γ < 0,[

γ
1+γ , 1

)
if γ ≥ 0,

̸= ∅,

that is, it satisfies the third condition [0, 1) ∩ {λ | (α+ γ)λ+ ε+ η ≥ 0} ≠ ∅ in (2)
of Theorem 3.3. If α− β = 0, then

[0, 1) ∩ {λ | (α− β)((1 + γ)λ− γ) ≥ 0} = [0, 1) ̸= ∅,

that is, it satisfies the third condition [0, 1) ∩ {λ | (α+ γ)λ+ ε+ η ≥ 0} ≠ ∅ in (2)
of Theorem 3.3. If α− β < 0 and γ ≥ 0, then

[0, 1) ∩ {λ | (α− β)((1 + γ)λ− γ) ≥ 0} = [0, 1) ∩ {λ | (1 + γ)λ− γ ≤ 0}

=

[
0,

γ

1 + γ

]
̸= ∅,

that is, it satisfies the third condition [0, 1) ∩ {λ | (α+ γ)λ+ ε+ η ≥ 0} ≠ ∅ in (2)
of Theorem 3.3. Then we obtain the desired result from Theorem 3.3. �

Compare Theorem 4.5 with Kocourek, Takahashi and Yao’s theorem [11]. The
case of α− β ≥ 0 is new.

5. Nonlinear ergodic theorems

In this section, using the technique developed by Takahashi [14], we prove a non-
linear ergodic theorem of Baillon’s type for widely more generalized hybrid mappings
in a Hilbert space. Before proving the result, we need the following lemmas.
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Lemma 5.1. Let H be a real Hilbert space, let C be a non-empty closed convex sub-
set of H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping
from C into itself which has a fixed point and satisfies the condition:

α+ γ + ε+ η > 0, or α+ β + ζ + η > 0.

Then F (T ) is closed.

Proof. Suppose that {xn | n = 1, 2, . . .} ⊂ F (T ) is convergent to x ∈ H. We show
x ∈ F (T ). Putting y = xn in (3.1), we have that

α∥Tx− Txn∥2 + β∥x− Txn∥2 + γ∥Tx− xn∥2 + δ∥x− xn∥2

+ε∥x− Tx∥2 + ζ∥xn − Txn∥2 + η∥(x− Tx)− (xn − Txn)}2 ≤ 0

and hence

(5.1) (α+ γ)∥Tx− xn∥2 + (β + δ)∥x− xn∥2 + (ε+ η)∥x− Tx∥2 ≤ 0.

Letting n → ∞, we obtain that

(5.2) (α+ γ + ε+ η)∥Tx− x∥2 ≤ 0.

Since α+γ+ε+η > 0, we have from (5.2) that x ∈ F (T ). Therefore F (T ) is closed.
Similarly, we can obtain the desired result for the case of α+ β + ζ + η > 0. �

Lemma 5.2. Let H be a real Hilbert space, let C be a non-empty closed convex sub-
set of H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping
from C into itself such that F (T ) ̸= ∅ and it satisfies the condition (1) or (2):

(1) α+ β + γ + δ ≥ 0 and α+ γ + ε+ η > 0;
(2) α+ β + γ + δ ≥ 0 and α+ β + ζ + η > 0.

Then F (T ) is convex.

Proof. For x1, x2 ∈ F (T ) and λ ∈ R with 0 ≤ λ ≤ 1, put x = (1− λ)x1 + λx2. We
show that x ∈ F (T ). Putting y = x1 in (3.1), we have that

α∥Tx− Tx1∥2 + β∥x− Tx1∥2 + γ∥Tx− x1∥2 + δ∥x− x1∥2

+ε∥x− Tx∥2 + ζ∥x1 − Tx1∥2 + η∥(x− Tx)− (x1 − Tx1)∥2 ≤ 0

and hence

(5.3) (α+ γ)∥Tx− x1∥2 + (β + δ)λ2∥x1 − x2∥2 + (ε+ η)∥x− Tx∥2 ≤ 0.

Similarly, putting y = x2 in (3.1), we have that

(5.4) (α+ γ)∥Tx− x2∥2 + (β + δ)(1− λ)2∥x1 − x2∥2 + (ε+ η)∥x− Tx∥2 ≤ 0.

Therefore we obtain from (5.3) that

(α+ γ)∥Tx− x1∥2 + (β + δ)λ2∥x1 − x2∥2

+(ε+ η)(∥Tx− x1∥2 + λ2∥x1 − x2∥2 + 2λ⟨Tx− x1, x1 − x2⟩) ≤ 0.

Thus we have that

(α+ γ + ε+ η)∥Tx− x1∥2 + (β + δ + ε+ η)λ2∥x1 − x2∥2(5.5)

+2(ε+ η)λ⟨Tx− x1, x1 − x2⟩) ≤ 0.



82 T. KAWASAKI AND W. TAKAHASHI

Similarly, we have from (5.4) that

(α+ γ + ε+ η)∥Tx− x2∥2 + (β + δ + ε+ η)(1− λ)2∥x1 − x2∥2(5.6)

−2(ε+ η)(1− λ)⟨Tx− x2, x1 − x2⟩) ≤ 0.

Using (2.1), (5.5), (5.6), α+ γ + ε+ η > 0 and α+ β + γ + δ ≥ 0, we obtain that

∥Tx− x∥2

= ∥Tx− ((1− λ)x1 + λx2)∥2

= (1− λ)∥Tx− x1∥2 + λ∥Tx− x2∥2 − λ(1− λ)∥x1 − x2∥2

≤ (1− λ)

(
−(β + δ + ε+ η)λ2

α+ γ + ε+ η
∥x1 − x2∥2

− 2(ε+ η)λ

α+ γ + ε+ η
⟨Tx− x1, x1 − x2⟩

)
+ λ

(
−(β + δ + ε+ η)(1− λ)2

α+ γ + ε+ η
∥x1 − x2∥2

+
2(ε+ η)(1− λ)

α+ γ + ε+ η
⟨Tx− x2, x1 − x2⟩

)
− λ(1− λ)∥x1 − x2∥2

= −(β + δ + ε+ η)λ2(1− λ)

α+ γ + ε+ η
∥x1 − x2∥2

− (β + δ + ε+ η)λ(1− λ)2

α+ γ + ε+ η
∥x1 − x2∥2

+
2(ε+ η)λ(1− λ)

α+ γ + ε+ η
∥x1 − x2∥2 − λ(1− λ)∥x1 − x2∥2

= −(α+ β + γ + δ)λ(1− λ)

α+ γ + ε+ η
∥x1 − x2∥2 ≤ 0

and hence x ∈ F (T ). Thus F (T ) is convex. Similarly, we can obtain the desired
result in the case of α+ β + ζ + η > 0. �

Lemma 5.3. Let H be a real Hilbert space, let C be a non-empty closed convex sub-
set of H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping
from C into itself such that F (T ) ̸= ∅ and it satisfies the condition (1) or (2):

(1) α+ β + γ + δ ≥ 0, ζ + η ≥ 0 and α+ β > 0;
(2) α+ β + γ + δ ≥ 0, ε+ η ≥ 0 and α+ γ > 0.

Then T is quasi-nonexpansive.

Proof. Suppose that the condition (2) holds. We have from (3.1) that for any x ∈ C
and for any y ∈ F (T ),

α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2

+ε∥x− Tx∥2 + ζ∥y − Ty∥2 + η∥(x− Tx)− (y − Ty)∥2

= (α+ γ)∥Tx− y∥2 + (β + δ)∥x− y∥2 + (ε+ η)∥x− Tx∥2 ≤ 0.
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We obtain from α+ γ > 0 that

∥Tx− y∥2 ≤ −β + δ

α+ γ
∥x− y∥2 − ε+ η

α+ γ
∥x− Tx∥2.

Since − β+δ
α+γ ≤ 1 from α+β+γ+δ ≥ 0 and − ε+η

α+γ ≤ 0 from ε+η ≥ 0, we obtain that

∥Tx−y∥2 ≤ ∥x−y∥2 and hence ∥Tx−y∥ ≤ ∥x−y∥. Thus T is quasi-nonexpansive.
Similarly, we can obtain the desired result for the case of the condition (1). �

We also have the following lemma.

Lemma 5.4. Let H be a real Hilbert space, let C be a non-empty closed convex sub-
set of H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping
from C into itself such that F (T ) ̸= ∅ and it satisfies the condition (1) or (2):

(1) α+ β + γ + δ ≥ 0, [0, 1) ∩ {λ | (α+ β)λ+ ζ + η ≥ 0} ̸= ∅ and α+ β > 0;
(2) α+ β + γ + δ ≥ 0, [0, 1) ∩ {λ | (α+ γ)λ+ ε+ η ≥ 0} ̸= ∅ and α+ γ > 0.

Take λ ∈ [0, 1)∩{λ | (α+β)λ+ ζ+η ≥ 0} or λ ∈ [0, 1)∩{λ | (α+γ)λ+ ε+η ≥ 0}.
Then (1− λ)T + λI is quasi-nonexpansive.

Proof. Let λ ∈ [0, 1)∩ {λ | (α+ β)λ+ ζ + η ≥ 0} and define S = (1− λ)T + λI. As
in the proof of Theorem 3.3, S is a mapping from C into itself and F (S) = F (T ).

Furthermore, S is an
(

α
1−λ ,

β
1−λ ,

γ
1−λ ,−

λ
1−λ(α+ β + γ) + δ, ε+γλ

(1−λ)2
, ζ+βλ
(1−λ)2

, η+αλ
(1−λ)2

)
-

widely more generalized hybrid mapping. We also obtain that

α

1− λ
+

β

1− λ
+

γ

1− λ
− λ

1− λ
(α+ β + γ) + δ = α+ β + γ + δ ≥ 0,

ζ + βλ

(1− λ)2
+

η + αλ

(1− λ)2
=

(α+ β)λ+ ζ + η

(1− λ)2
≥ 0,

α

1− λ
+

β

1− λ
=

α+ β

1− λ
> 0.

By Lemma 5.3, S is quasi-nonexpansive. Similarly, we can obtain the desired result
for the case of α + β + γ + δ ≥ 0, [0, 1) ∩ {λ | (α + γ)λ + ε + η ≥ 0} ̸= ∅ and
α+ γ > 0. �

Now we have the following nonlinear ergodic theorem for widely more generalized
hybrid mappings in a Hilbert space.

Theorem 5.5. Let H be a real Hilbert space, let C be a non-empty closed con-
vex subset of H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid
mapping from C into itself such that F (T ) ̸= ∅ and it satisfies the condition (1) or
(2):

(1) α+ β + γ + δ ≥ 0, α+ γ + ε+ η > 0, ζ + η ≥ 0 and α+ β > 0;
(2) α+ β + γ + δ ≥ 0, α+ β + ζ + η > 0, ε+ η ≥ 0 and α+ γ > 0.

Then for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

is weakly convergent to a fixed point p of T , where P is the metric projection of H
onto F (T ) and p = limn→∞ PTnx.
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Proof. Since F (T ) is nonempty and T is quasi-nonexpansive from Lemma 5.3, we
obtain that

∥Tn+1x− y∥ ≤ ∥Tnx− y∥

for any n ∈ N ∪ {0} and for any y ∈ F (T ), we have that {Tnx} is bounded for any
x ∈ C. Since

∥Snx− y∥ ≤ 1

n

n−1∑
k=0

∥T kx− y∥ ≤ ∥x− y∥

for any n ∈ N ∪ {0} and for any y ∈ F (T ), {Snx | n = 0, 1, . . .} is also bounded.
Therefore there exists a strictly increasing sequence {ni} and p ∈ H such that
{Snix | i = 0, 1, . . .} is weakly convergent to p. Since C is closed and convex,
C is weakly closed. Thus p ∈ C. We first show that p ∈ F (T ). Indeed, using
α+ β + γ + δ ≥ 0 and ζ + η ≥ 0, as in the proof of Theorem 3.1 we have that

(α+ η)(∥Tz − T k+1x∥2 − ∥Tz − T kx∥2)
+(β − η)(∥z − T k+1x∥2 − ∥z − T kx∥2)
−2(α+ γ)⟨z − Tz, z − T kx⟩+ (α+ γ + ε+ η)∥z − Tz∥2 ≤ 0

for any k ∈ N∪{0} and for any z ∈ C. Summing up these inequalities with respect
to k = 0, 1, . . . , n− 1 and dividing by n, we obtain that

α+ η

n
(∥Tz − Tnx∥2 − ∥Tz − x∥2) + β − η

n
(∥z − Tnx∥2 − ∥z − x∥2)

−2(α+ γ)⟨z − Tz, z − Snx⟩+ (α+ γ + ε+ η)∥z − Tz∥2 ≤ 0.

Replacing n by ni, we obtain that

α+ η

ni
(∥Tz − Tnix∥2 − ∥Tz − x∥2) + β − η

ni
(∥z − Tnix∥2 − ∥z − x∥2)

−2(α+ γ)⟨z − Tz, z − Snix⟩+ (α+ γ + ε+ η)∥z − Tz∥2 ≤ 0.

Letting i → ∞, we obtain that

−2(α+ γ)⟨z − Tz, z − p⟩+ (α+ γ + ε+ η)∥z − Tz∥2 ≤ 0.

Putting z = p, we obtain that

(α+ γ + ε+ η)∥p− Tp∥2 ≤ 0.

Since α+ γ + ε+ η > 0, we obtain that Tp = p.
Since F (T ) is closed and convex from Lemmas 5.1 and 5.2, the metric projection

P from H onto F (T ) is well-defined. By Lemma 2.1, there exists q ∈ F (T ) such
that {PTnx | n = 0, 1, . . .} is convergent to q. To complete the proof, we show that
q = p. Note that the metric projection P satisfies

⟨z − Pz, Pz − u⟩ ≥ 0

for any z ∈ H and for any u ∈ F (T ); see [15]. Therefore

⟨T kx− PT kx, PT kx− y⟩ ≥ 0
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for any k ∈ N ∪ {0} and for any y ∈ F (T ). Since P is the metric projection and T
is quasi-nonexpansive, we obtain that

∥Tnx− PTnx∥ ≤ ∥Tnx− PTn−1x∥
≤ ∥Tn−1x− PTn−1x∥,

that is, {∥Tnx− PTnx∥ | n = 0, 1, . . .} is non-increasing. Therefore we obtain

⟨T kx− PT kx, y − q⟩ ≤ ⟨T kx− PT kx, PT kx− q⟩
≤ ∥T kx− PT kx∥ · ∥PT kx− q∥
≤ ∥x− Px∥ · ∥PT kx− q∥.

Summing up these inequalities with respect to k = 0, 1, . . . , n − 1 and dividing by
n, we obtain⟨

Snx− 1

n

n−1∑
k=0

PT kx, y − q

⟩
≤ ∥x− Px∥

n

n−1∑
k=0

∥PT kx− q∥.

Since {Snix | i = 0, 1, . . .} is weakly convergent to p and {PTnx | n = 0, 1, . . .} is
convergent to q, we obtain that

⟨p− q, y − q⟩ ≤ 0.

Putting y = p, we obtain

∥p− q∥2 ≤ 0

and hence q = p. This completes the proof.
Similarly, we can obtain the desired result for the case of α + β + γ + δ ≥ 0,

α+ β + ζ + η > 0, ε+ η ≥ 0 and α+ γ > 0. �

We also have the following nonlinear ergodic theorem.

Theorem 5.6. Let H be a real Hilbert space, let C be a non-empty closed con-
vex subset of H and let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid
mapping from C into itself such that F (T ) ̸= ∅ and it satisfies the condition (1) or
(2):

(1) α+ β + γ + δ ≥ 0, α+ γ + ε+ η > 0,
[0, 1) ∩ {λ | (α+ β)λ+ ζ + η ≥ 0} ̸= ∅ and α+ β > 0;

(2) α+ β + γ + δ ≥ 0, α+ β + ζ + η > 0,
[0, 1) ∩ {λ | (α+ γ)λ+ ε+ η ≥ 0} ̸= ∅ and α+ γ > 0.

Take λ ∈ [0, 1)∩{λ | (α+β)λ+ ζ+η ≥ 0} or λ ∈ [0, 1)∩{λ | (α+γ)λ+ ε+η ≥ 0}.
Then for any x ∈ C,

Snx =
1

n

n−1∑
k=0

((1− λ)T + λI)kx

is weakly convergent to a fixed point p of T , where P is the metric projection of H
onto F (T ) and p = limn→∞ P ((1− λ)T + λI)nx.
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Proof. Let λ ∈ [0, 1) ∩ {λ | (α+ β)λ+ ζ + η ≥ 0} and S = (1− λ)T + λI. Since S

is an
(

α
1−λ ,

β
1−λ ,

γ
1−λ ,−

λ
1−λ(α+ β + γ) + δ, ε+γλ

(1−λ)2
, ζ+βλ
(1−λ)2

, η+αλ
(1−λ)2

)
-widely more gen-

eralized hybrid mapping from C into itself and

α

1− λ
+

β

1− λ
+

γ

1− λ
− λ

1− λ
(α+ β + γ) + δ = α+ β + γ + δ ≥ 0,

α

1− λ
+

γ

1− λ
+

ε+ γλ

(1− λ)2
+

η + αλ

(1− λ)2
=

α+ γ + ε+ η

(1− λ)2
> 0,

ζ + βλ

(1− λ)2
+

η + αλ

(1− λ)2
=

(α+ β)λ+ ζ + η

(1− λ)2
≥ 0,

α

1− λ
+

β

1− λ
=

α+ β

1− λ
> 0,

by Theorem 5.5 Snx is weakly convergent to p ∈ F (S) = F (T ).
Since F (S) is closed and convex from Lemmas 5.1 and 5.2, the metric projection

P fromH onto F (S) is well-defined. Since S is quasi-nonexpansive from Lemma 5.4,
we obtain that

∥Sn+1x− y∥ ≤ ∥Snx− y∥

for any n ∈ N ∪ {0} and for any y ∈ F (S). Therefore we can obtain the desired
result similarly to the proof of Theorem 5.5.

Similarly, we can obtain the desired result for the case of α + β + γ + δ ≥ 0,
α+ β + ζ + η > 0, [0, 1) ∩ {λ | (α+ γ)λ+ ε+ η ≥ 0} ̸= ∅ and α+ γ > 0. �
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