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EXISTENCE AND MEAN APPROXIMATION OF FIXED POINTS
OF GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES

TOSHIHARU KAWASAKI AND WATARU TAKAHASHI

ABSTRACT. In this paper, we introduce a broad class of nonlinear mappings in a
Hilbert space which covers the class of super generalized hybrid mappings and the
class of widely generalized hybrid mappings defined by Kocourek, Takahashi and
Yao [11] and the authors [10], respectively. Then we prove fixed point theorems
for such new mappings. Furthermore, we prove nonlinear ergodic theorems of
Baillon’s type in a Hilbert space. It seems that the results are new and useful.
For example, using our fixed point theorems, we can directly prove Browder and
Petryshyn’s fixed point theorem [5] for strict pseudo-contractive mappings and
Kocourek, Takahashi and Yao’s fixed point theorem [11] for super generalized
hybrid mappings.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty subset of H. A mapping
T :C — H is said to be nonexpansive [16], nonspreading [13], hybrid [17] if

[Tz — Tyl < |z —yl],
2Tz — Ty|* < ||Tz —y|I* + | Ty — ||,
3Tz — Tyl* < |l =yl + 1Tz — ylI* + | Ty — |?
for any x,y € C, respectively; see also [8] and [19]. These mappings are independent

and they are deduced from a firmly nonexpansive mapping in a Hilbert space; see
[17]. A mapping F': C' — H is said to be firmly nonexpansive if

|Fz — Fy||> < (z —y, Fx — Fy)

for all z,y € C; see, for instance, Goebel and Kirk [7]. Motivated by these mappings,
Kocourek, Takahashi and Yao [11] defined a class of nonlinear mappings in a Hilbert
space. A mapping T from C into H is said to be generalized hybrid if there exist
real numbers « and [ such that

alTe = Tyl? + (1 = a)llz = Ty* < BTz — y|* + (1 = Bz — y|

for any z,y € C. We call such a mapping an («, )-generalized hybrid mapping. We
observe that the class of the mappings covers the classes of well-known mappings.
For example, an («, f)-generalized hybrid mapping is nonexpansive for a = 1 and
5 = 0, nonspreading for « = 2 and $ = 1, and hybrid for o = % and 5 = % They

proved fixed point theorems for such mappings; see also Kohsaka and Takahashi
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[12] and Iemoto and Takahashi [8]. Moreover, they proved the following nonlinear
ergodic theorem.

Theorem 1.1 ([11]). Let H be a real Hilbert space, let C' be a non-empty closed
convez subset of H, let T be a generalized hybrid mapping from C' into itself which

has a fized point, and let P be the metric projection of H onto the set of fixed points
of T. Then for any x € C,

1 n—1
Spz = — ¥
nL - Z T x
k=0
is weakly convergent to a fixed point p of T', where p = lim,,_,oo PT"x.

Furthermore, they defined a more broad class of nonlinear mappings than the
class of generalized hybrid mappings. A mapping T : C — H is called super
generalized hybrid if there exist real numbers «, 8 and v such that

a|Tz = Ty|* + (1 — a+ )z — Tyl
<SB+B-aITz—ylP+ (1 =8~ (B—a-1)y)|z -yl
+(a = B)yllz — Tal* +lly — Tyl

for any =,y € C. A generalized hybrid mapping with a fixed point is quasi-
nonexpansive. However, a super hybrid mapping is not quasi-nonexpansive gen-
erally even if it has a fixed point. Very recently, the authors [10] also defined a class
of nonlinear mappings in a Hilbert space which covers the class of contractive map-
pings and the class of generalized hybrid mappings defined by Kocourek, Takahashi
and Yao [11]. A mapping 7 from C into H is said to be widely generalized hybrid
if there exist real numbers «, 3,7, J, €, ¢ such that

alTz = Ty|* + Blla=Tyl* + 1Tz - y|* + dllz — y||*
+max{e||z — T|?, (lly — Ty|*} <0

for any z,y € C.

In this paper, motivated by these classes of nonlinear mappings, we introduce a
broad class of nonlinear mappings in a Hilbert space which covers the class of super
generalized hybrid mappings and the class of widely generalized hybrid mappings.
Then we prove fixed point theorems for such new mappings in a Hilbert space.
Furthermore, we prove nonlinear ergodic theorems of Baillon’s type in a Hilbert
space. It seems that the results are new and useful. For example, using our fixed
point theorems, we can directly prove Browder and Petryshyn’s fixed point theorem
[5] for strict pseudo-contractive mappings and Kocourek, Takahashi and Yao’s fixed
point theorem [11] for super generalized hybrid mappings.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product (-, -) and
norm || - ||. We denote the strong convergence and the weak convergence of {z,} to
x € H by x,, = x and z, — x, respectively. Let A be a nonempty subset of H. We
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denote by ¢0A the closure of the convex hull of A. In a Hilbert space, it is known
that

(2.1) laz + (1 = a)y||? = allz|* + (1 = &)[ly[|* — a(l = a) |z — y|*
for any =,y € H and for any o € R; see [16]. Furthermore, we have that
(2.2) 20z —y,z —w) = o —wl® +|ly — 2> = |lz — 2[* — [ly — w|®
for any x,y,z,w € H. Let C be a nonempty subset of H and let T" be a mapping
from C into H. We denote by F(T') the set of fixed points of 7. A mapping 7" from
C into H with F(T) # 0 is called quasi-nonexpansive if ||z — Ty|| < ||z — y|| for
any ¢ € F(T) and for any y € C. It is well-known that if C' is closed and convex
and T : C' — C is quasi-nonexpansive, then F(T') is closed and convex; see Ito and
Takahashi [9]. It is not difficult to prove such a result in a Hilbert space. In fact,

for proving that F(T') is closed, take a sequence {z,} C F(T') with z, — z. Since
C is weakly closed, we have z € C'. Furthermore, from

Iz = T2| <z = zull + [lzn = T[] < 2|2 = zll =0,
z is a fixed point of T" and so F(T) is closed. Let us show that F'(T) is convex. For
z,y € F(T) and a € [0,1], put z = az + (1 — @)y. Then we have from (2.1) that

Iz = T2|* = oz + (1 — a)y — Tz

= afz = T2l + (1 = a)lly = T2|* - a(1 - a) |z — y|?

<ale—z*+ (1 =)y - 2]° - a(l - a)llz -yl

= a(l=a)[lz —y|* + (1 - a)o’|lz — y|I* — (1 — a)l|lz — y||?

=a(l-a)(l—a+a—1|z—y|?

=0
and hence Tz = z. This implies that F(T') is convex. Let D be a nonempty closed
convex subset of H and x € H. Then we know that there exists a unique nearest
point z € D such that ||z — z|| = infyep || — y||. We denote such a correspondence
by z = Ppz. The mapping Pp is called the metric projection of H onto D. It is
known that Pp is nonexpansive and

(x — Ppzx, Ppzr —u) >0

for any x € H and for any u € D; see [16] for more details. For proving a nonlinear
ergodic theorem in this paper, we also need the following lemma proved by Takahashi
and Toyoda [18].

Lemma 2.1. Let D be a non-empty closed convex subset of H. Let P be the metric
projection from H onto D. Let {u,} be a sequence in H. If ||ups11 — ul|| < ||up — ul|
for any uw € D and for any n € N, then {Pu,} converges strongly to some ug € D.

Let [*° be the Banach space of bounded sequences with supremum norm. Let
i be an element of (I°°)* (the dual space of *°). Then we denote by u(f) the
value of p at f = (x1,z2,23,...) € I°°. Sometimes, we denote by pu,(z,) the value
w(f). A linear functional p on I*° is called a mean if u(e) = ||| = 1, where
e=(1,1,1,...). A mean pu is called a Banach limit on [* if p,(zn4+1) = pn(xs).
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We know that there exists a Banach limit on {*°. If y is a Banach limit on [*°, then
for f = (z1,22,23,...) € 1%,

liminf z,, < pp(zy,) < limsup z,.

n—00 n—o0
In particular, if f = (z1,22,23,...) € [ and x,, — a € R, then we have u(f) =
tn(xyn) = a. See [15] for the proof of existence of a Banach limit and its other
elementary properties. Using means and the Riesz theorem, we can obtain the
following result; see [14] and [15].

Lemma 2.2. Let H be a real Hilbert space, let {x,} be a bounded sequence in H
and let pn be a mean on I°°. Then there exists a unique point zy € co{x, | n € N}
such that

fin(Tn,y) = (20,9)
foranyy € H.

3. FIXED POINT THEOREMS

Let H be a real Hilbert space and let C' be a nonempty subset of H. A map-
ping T from C into H is said to be widely more generalized hybrid if there exist
a, B3,7,90,¢,(,n € R such that

(3.1) o Tz — Ty|* + Bllz — Ty|* + v Tz — y||* + 8llz — y|*
+ellz — Tz|* + Clly — Tyl* +nll(x — Tz) — (y — Ty)|* <0

for any =,y € C. Such a mapping 7' is called (o, 8,7, 6, €, ¢, n)-widely more general-
ized hybrid. An («, 8,7, 0, ¢, (,n)-widely more generalized hybrid mapping is gener-
alized hybrid in the sense of Kocourek, Takahashi and Yao [11] if a+5 = —y—6 =1
and € = ( = n = 0. We first prove fixed point theorems for widely more generalized
hybrid mappings in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space, let C' be a mon-empty closed con-
vex subset of H and let T be an (a,f,7,9,e,(,n)-widely more generalized hybrid
mapping from C into itself which satisfies the following condition (1) or (2):

(1) a+pB+7+0>0,a+y+e+n>0and(+n=>0;

(2) a+p+v+6>0,a+B+(+n>0andec+n>0.

Then T has a fized point if and only if there exists z € C such that {T"z | n =

0,1,...} is bounded. In particular, a fized point of T is unique in the case of o +
B4~ 4+ >0 on the conditions (1) and (2).

Proof. Suppose that T has a fixed point z. Then {T"z | n = 0,1,...} = {z}.
Therefore {T"z | n=0,1,...} is bounded.

Conversely suppose that there exists z € C such that {T"z | n = 0,1,...} is
bounded. Since T is an («, 3,7, 0, ¢, (,n)-widely more generalized hybrid mapping
from C into itself, we obtain that

al| Tz — T2 + Blla — T L2l® + 4| Tz — T"2|* + 6|z — T2
tello = Tal® + ¢ T = T2l + nll (2 — Ta) — (T2 = T 2)|I <0
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for any n € NU {0} and for any x € C. By (2.2) we obtain that
Iz = Ta) — (T — T"H12)|
= ||z = Tz|? + |T"z — T" " 2||? — 2(x — Tz, T"z — T"12)
= |lo — Tz||> + [|T"z — T" 2| + ||z — T"2||* + || Tz — T 2|?
—|le = T2 |? — || T — Tz
Thus we have that
()| Tz =T 2P + (B = n)lla = T" 2| + (v = )| Tz — T"2|
+O +n)llz = T + (e +m)|a = Tl + (C + )| T2 = T 2] < 0.
From
(v = )| Tw — T2
=(a+Y)(|lz - Tz|® + |z — T"2|* = 2(x — Tx,z — T"z))
—(a+n)||Te -T2,
we have that
(a+)l|Te =T 2| + (8 —n) |z — T 2|
+Ha+)(||z—Tz||® + |z — T"2||* — 2(x — Tz, x — T"2))
—(a+n)||Te =T + (8 +n)llz — T"2|
e+ )|z — Tl + (¢ + )Tz = T 2| <0
and hence
(@+n)(ITz = T 2|” — || T — T"2[*) + (8 — n)l|lz — T 2|
—2(a+ )& —Te,x = T"z) + (@ +v+ 8 + 1)z — T2
Ha+y+e+n)llz —Te|? + (C+n)|Trz =T 2] < 0.
By a+ 8+~ + 6 > 0, we have that
—B-n=-B+o)+o+n<aty+i+n
From this inequality and { + 71 > 0 we obtain that
(@ +n) (| Tz = T 2|* — || T — T"2|?)
+(B =)o = T2 = ||z = T"2|1%)
—2(a+7){x — Tz, —T"2) + (a + v +e+n)lz — Tz|* <O0.
Applying a Banach limit i to both sides of this inequality, we obtain that
(a4 ) (| Tz = T 2|1 = | T = T"2|1?)
(B =)l = T 2] = |z — T 2)1%)
—2(a+ Y pn(r = T,z =T 2) + (@ + 7 + & +n)pnllz — T[> <0
and hence
(3.2) —2(a+ Yl —Tr,x —T"2) + (a +y+e+n)||lz - Tz||> <0.
Since there exists p € C' by Lemma 2.2 such that
pn(y, T"z) = (y, p)
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for any y € H, we obtain by (3.2) that
—2(a+7)(x = Te,x —p) + (@ +7+e+n)|z—Tz|?> <0.
Putting x = p, we obtain that
(@+~+e+n)|p—Tpl* <0.
Since a + v + & + 1 > 0, we obtain that ||p — T'p||?> < 0 and hence Tp = p.
Next suppose that o+ 84+ + d > 0. Let p; and ps be fixed points of T. Then
a||Tpy — Tpa|* + Bllpr — Tp2|l* + I Tp1 — p2ll* + 6llp1 — pall®
+elpr — Tpal* + Cllp2 — Toa2ll* + 0l (pr — Tpr) — (p2 — Ta)|1?
= (a+B+7+38)p—p2f* <0
and hence p; = ps. Therefore a fixed point of T is unique.

In the case of a+8+~v+6 >0, a+8+(+n>0and e+ n >0, we can obtain
the result by replacing the variables x and y. O

As a direct consequence of Theorem 3.1, we obtain the following.

Theorem 3.2. Let H be a real Hilbert space, let C be a bounded closed convex subset
of H and let T be an («, 5,7, 9,¢,(,n)-widely more generalized hybrid mapping from
C' into itself which satisfies the following condition (1) or (2):

(1) a+p+7+d>0,a+y+e+n>0and(+n>0;

(2) a+p+v+6>0,a+8+C+n>0ande+n>0.

Then T has a fized point. In particular, a fived point of T is unique in the case of
a+ B +v+6 >0 on the conditions (1) and (2).

The following theorem is an extension of Theorem 3.2.

Theorem 3.3. Let H be a real Hilbert space, let C' be a bounded closed convex subset
of H and let T be an («, 8,7, 6,¢,(,n)-widely more generalized hybrid mapping from
C' into itself which satisfies the following condition (1) or (2):

(1) a+B+y+5>20,a+v+e+n>0and [0,1)N{A\ | (a+B)A+(+n >0} #0;
(2)  a+p+y+6>0,a+B+C+n>0and [0,1)N{\| (a+7y)A+e+n >0} # 0.
Then T has a fized point. In particular, a fixed point of T is unique in the case of
a+ B+~y+406 >0 on the conditions (1) and (2).

Proof. Let A € [0, 1)N{\ | (a+B)A\+(+n > 0} and define S = (1—X\)T+AI. Since C
is convex, S is a mapping from C into itself. Since C'is bounded, {S,z | n=0,1,...}
is bounded for any z € C. Since A # 1, we obtain that F'(S) = F(T). Moreover,
from T = 135 — 1251 and (2.1), we have that

1 A 1 Y
(1—Asx_1—xx>_<1—A5y_1—xy>

1 A 2 1 A
o x_<1—xsy_1—Ay> +7H(1—Asx_1—ﬁ>_y

+ollz — y?

2

a

2
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1 A 2 1 A
_ Sy — 2 S (N <A N
v (1)\ v 1)\x> +CHy <1)\ Y 1Ay>

o (o (e ) - (-0

2

2

+€

2

1
= ﬁ(sx—sw—li}\@—y)
A 2
] P R B R
A 2
#1|| 2y S0 - 5| +olle-ul?
2 1 2
+e 1_)\(37—533) +CH1_)\(?/—S3/)
il Ao 50 - - s
[ e D R 4
_ @ _ 2 _ 2
= 8z = Syl + T e - Sl

A
byl + (12 lak B 4)+0) o= P

1
5+'y)\ 2 ¢+ BA 2
- S S
gl = el + el — Sl
A
+ 1542 @ — ) — (y — Sy)I? <.

BRCIEDYE
Therefore S is an (%, %, Y —ﬁ(a +B4+7)+9, (i%\% (if\g\% gti;)_

widely more generalized hybrid mapping. Furthermore, we obtain that

o B Y
p— pu— >
T Tt T 1_)\(a+ﬁ+’y)+5 a+B+v+62>0,
Q@ ¥ e+ YA 7+ aX a+y+e+n
= 0
[ N W TR VA FR a—xz
¢+ BA N+ a (a+B)A+C+n
= > 0.
(I=X)2  (1-X)? (1=Xx2

Therefore by Theorem 3.1 we obtain F'(S) # 0.
Next suppose that a4+ 8+ v+ > 0. Let p; and py be fixed points of T. Then
al|Tpy — Tp2l” + Bllpr — Tl + A Tp1 — p2l|* + 6llp1 — pal|®
+elpr — Tpul* + Cllp2 — Toa2ll* + nll(pr — Tpr) — (p2 — Tp2)
=(@+B+v+0)pr—p2f* <0

I

and hence p; = po. Therefore a fixed point of T is unique.
In the case of a+f+v+d >0, a++C+n > 0and [0,1)N{\ | (a+Y)A+e+n >
0} # 0, we can obtain the result by replacing the variables = and y. O
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Remark 3.4. We can also prove Theorems 3.1 and 3.3 by using the condition
—-B—64+e+n>0, or —y—064+e+n>0
instead of the condition
at+y+e+n>0, or a+B+C+n>0,

respectly. In fact, in the case of the condition —3 — § + € + 1 > 0, we obtain from
a+ B8+v+ 30 >0 that

0<—-pB—-0+e+n<a+y+e+n.
Thus we obtain the desired result by Theorems 3.1 and 3.3. Similary, in the case of
—v—90+¢e+n >0, we can obtain the result by using the case of « + 5+ (+n > 0.

4. FIXED POINT THEOREMS FOR WELL-KNOWN MAPPINGS

An (o, B8,7,96,¢€,(,n)-widely more generalized hybrid mapping 7' above with o =
,B=y=e=(=n=0and —1 < § < 0 is a contractive mapping. Using
Theorem 3.1, we can show the Banach fixed point theorem in a Hilbert space.

Theorem 4.1 (The Banach fixed point theorem). Let H be a real Hilbert space and
let T be a contractive mapping from H into H, that is, there exists a real number
a with 0 < a < 1 such that

[Tz —Ty| < aflz -yl
for any x,y € H. Then T has a unique fized point.

Proof. Since

1T =z < (T 2 =T el + |T" e = T 22 + -+ | Tz — 2
< (@ a4 )T - g
1
< EHTCU -z
for any x € H, {T"x | n = 0,1,...} is bounded. By Theorem 3.1 T has a unique
fixed point. O

Using Theorem 3.1, we can show Kocourek, Takahashi and Yao’s fixed point
theorem [11] for generalized hybrid mappings in a Hilbert space.

Theorem 4.2 ([11]). Let H be a real Hilbert space, let C' be a non-empty closed
convex subset of H and let T be a generalized hybrid mapping from C' into itself,
that is, there exist real numbers o and [ such that

alTe = Tyl? + (1 = a)llz = Ty|* < BTz — y|* + (1 = Bz — y|?

for any x,y € C. Then T has a fixed point if and only if there exists z € C such
that {T"z | n=0,1,...} is bounded.

Proof. An (a, §)-generalized hybrid mapping 7' from C' into itself is an (a,1 —
a,—fB,—(1—7),0,0,0)-widely more generalized hybrid mapping. Furthermore, o +
l-a)—-B-(1-p5)=0>0,a+(1—a)+0+0=1>0and 0+0=0 >0, that
is, it satisfies the condition (2) in Theorem 3.1. Then we obtain the desired result
from Theorem 3.1. U
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Using Theorem 3.1, we can show Kawasaki and Takahashi’s fixed point theorem
[10] for widely generalized hybrid mappings in a Hilbert space.

Theorem 4.3 ([10]). Let H be a real Hilbert space, let C' be a non-empty closed
convex subset of H and let T be an («, 8,7, 9, €, ¢ )-widely generalized hybrid mapping
from C' into itself which satisfies the following condition (1) or (2):

(1) a+p+y+6>0anda+vy+e>0;

(2) a+p+y+d>0anda+pB+(>0.

Then T has a fized point if and only if there exists z € C such that {T"z | n =
0,1,...} is bounded. In particular, a fixed point of T is unique in the case of o +
B+~ + 3 >0 on the conditions (1) and (2).

Proof. Since T is an («, 3,7, d, e, ()-widely generalized hybrid mapping, we obtain
that

a|Tz = Ty|* + Blla — Ty||* + || Tz — y[|* + 8|z — y|*
+max{e||z - Tz|? ¢lly - Ty|*} <0
for any z,y € C. In the case of « + v+ ¢ > 0, from
elle — Tz|* < max{ellz — Tz||, [ly — Tyl*},
we obtain that
allTw = Ty + Bl — Tyll? + 1Tz — yl> + 81z — yl> + =)}z — Tal]? <0,

that is, it is an («, 3,7, d,¢€, 0, 0)-widely more generalized hybrid mapping. Further-
more, we have that a+8+~v+6 >0, a+7+ec+0=a+v+e>0and 0+0=0 >0,
that is, it satisfies the condition (1) in Theorem 3.1. Then we obtain the desired
result from Theorem 3.1. In the case of a + 8+~ +d >0 and a+ S+ > 0, we
can obtain the result by replacing the variables x and y. O

Note that an («, 8,7, 9, ¢, (,n)-widely more generalized hybrid mapping 7" with
a=1,p=7v=e=(=0,0=—-1and n = —k € (—1,0] is a strict pseudo-
contractive mapping in the case of Browder and Petryshyn [5]. Using Theorem 3.3,
we can show the following fixed point theorem in a Hilbert space.

Theorem 4.4. Let H be a real Hilbert space, let C be a bounded closed convex
subset of H and let T be a strict pseudo-contractive mapping from C' into itself,
that is, there exists a real number k with 0 < k < 1 such that

ITx = Ty||* < ||lz = yl* + &l (z — Tz) — (y = Ty)|>
for any x,y € C. Then T has a fixed point.
Proof. A strict pseudo-contractive mapping 7' from C into itself is an (1,0,0,—1,
0,0, —k)-widely more generalized hybrid mapping. Furthermore, 1+04+0+(—1) =
0>0,1404+04+(—k)=1—k>0and [0,1)N{\ | 1+0)A+0—k >0} = [k, 1) # 0,
that is, it satisfies the condition (1) in Theorem 3.3. Then we obtain the desired
result from Theorem 3.3. O

Using Theorem 3.3, we can show the following fixed point theorem for super
generalized hybrid mappings in a Hilbert space.
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Theorem 4.5. Let H be a real Hilbert space, let C' be a bounded closed convex
subset of H and let T be a super generalized hybrid mapping from C into itself, that
is, there exist real numbers o, f and v such that
a| T =Tyl + (1 —a+7) |z — Ty|?
<B+B-aTz—yl>+ (1 =8 —(B-a-1)y)lz -yl
+a = Blle — Tx|* +~lly — Tyl
for any x,y € C. Suppose that « — >0 or~v > 0. Then T has a fixed point.

Proof. An (a, 3,7)-super generalized hybrid mapping 7' from C' into itself is an
(01— at7,—B— (B—a)y,—1+ B+ (B—a—1)y,—(a— B)y,—7,0)-widely more
generalized hybrid mapping. Furthermore, a + (1 —a+ )+ (=8 — (8 — a)y) +
(-14+p+(B-—a—-1)y)=0>0and a+ (1 —a+7)+(—y) +0=1>0, that is, it
satisfies the first and second conditions o+ 5 +~v+d>0and a+ 8+ (+n > 0in
(2) of Theorem 3.3. Moreover, we have that

0, ) N{A | (a+ (=B —=(B—-a))A+ (=(a=B)y) +0 =0}
= [0, 1) N {A [ (= B)(1 +7)A =) = 0}.
If « — 5 >0, then

0.0 (A (@=B)((1+DA =) 20} = [0,1)1{A] (L+7)A—7 20}
[0,1) if v <0,
T\ [) gz
# 0,
that is, it satisfies the third condition [0,1) N{A | (¢ +y)A+e+n >0} # 0 in (2)

of Theorem 3.3. If o — 5 = 0, then

0, ) {A [ (a=B)((L+7)A=7) 20} =1[0,1) #0,

that is, it satisfies the third condition [0,1) N{\ | (e + )X +e+n >0} # 0 in (2)
of Theorem 3.3. If « — 8 < 0 and v > 0, then

0, )N {A [ (a=B)((A+A—=7) =0} = [0,1)N{A][(1+v)A—~ <0}
Y
= |0, —— 0,
[ 1+ v] #
that is, it satisfies the third condition [0,1) N{\ | (e + V)X +e+n >0} # 0 in (2)
of Theorem 3.3. Then we obtain the desired result from Theorem 3.3. O

Compare Theorem 4.5 with Kocourek, Takahashi and Yao’s theorem [11]. The
case of a — 8 > 0 is new.

5. NONLINEAR ERGODIC THEOREMS

In this section, using the technique developed by Takahashi [14], we prove a non-
linear ergodic theorem of Baillon’s type for widely more generalized hybrid mappings
in a Hilbert space. Before proving the result, we need the following lemmas.
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Lemma 5.1. Let H be a real Hilbert space, let C' be a non-empty closed convex sub-
set of H and let T be an («, f3,7,0,¢,(,n)-widely more generalized hybrid mapping
from C into itself which has a fixed point and satisfies the condition:

a+y+e+n>0, ora+pB+(+n>0.
Then F(T) is closed.

Proof. Suppose that {z, | n=1,2,...} C F(T) is convergent to x € H. We show
x € F(T). Putting y = z,, in (3.1), we have that

a|Te = Tay|® + Blle — Taa|® + | T — zul|* + 8|z — 20l
tellz = Tal” + Cllan — Twal* + 0l (x — T2) — (20 — T2n)}* <0
and hence
(5.1) (@ +PITz =z, + (B + )|z — @nl® + (¢ + )|z — Tz|* < 0.
Letting n — co, we obtain that
(5.2) (47 +e+n)|Tz —z|* <0,

Since a+7y+e+n > 0, we have from (5.2) that x € F(T"). Therefore F(T) is closed.
Similarly, we can obtain the desired result for the case of a + 5+ (+n > 0. O

Lemma 5.2. Let H be a real Hilbert space, let C' be a non-empty closed convex sub-
set of H and let T be an (a, f3,7,0,¢,(,n)-widely more generalized hybrid mapping
from C' into itself such that F(T) # 0 and it satisfies the condition (1) or (2):

(1) a+p+y+0>0anda+~vy+e+n>0;
(2) a+p+y+0>0anda+B+(¢+n>0.
Then F(T) is conver.

Proof. For x1,29 € F(T) and A € R with 0 < A <1, put = (1 — A\)z1 + Azxa. We
show that x € F(T). Putting y = z1 in (3.1), we have that

a|Tz — Tar||* + Bllz — Ta1||* + 4| Tz — 21|* + 6|2 — a1

rellz — Tal® + ¢ller — Taa|® +nll(z — Tx) — (21 — Ta1)||* <0
and hence
(5.3) (@ + Tz =1 + (B + 6)N[|lzr — 22| + (e + )|l — Tz||* < 0.
Similarly, putting y = 2 in (3.1), we have that
(54)  (a+N|Tz — w2 + (B+0)(1 = N)?[lzr — z2|* + (¢ + )|« — Tz|* < 0.
Therefore we obtain from (5.3) that

(@ +NNTx = 21| + (8 + )N |x1 — 2|
+(e+n)(|Tz — z1|)* + N||z1 — 22]|® + 2M Tz — 1, 21 — x2)) < 0.

Thus we have that

(5.5) (@t y+etn)|Te—zi|> + (B+6+e+n)A|lar — 2
+2(e + ATz — x1,21 — x2)) < 0.
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Similarly, we have from (5.4) that
(5.6) (a+y+etn)|Te—wof* + (B+0+e+n)1 = N[l — 22
—2(e+n)(1 = XN)(Tx —x2,21 — 22)) <O0.
Using (2.1), (5.5), (5.6), a+v+c+7n>0and a+ 8+~ +3 >0, we obtain that
T2 — x|
= || Tz — (1 = N)z1 + Ao ||?
= (L= NITz — 1] + M|Tw — z2]|* = M1 = N)]le1 — 22|

+ 6+ +n)\
<a-x (- DX 0, — ag?
at+y+e+n
2(e+n)A
2= TR Ty — _
a+7+€+ﬁ<x B mﬁ)
+0+e+n)(1—N)?
_}_)\(_(ﬂ 77)( ) ||CC1—1,‘2||2
a+y+etn
2 1—A
(e +n)( )<Tw_x2’xl_$2>>
a+v+e+n

— A1 = N)[|z1 — 22|
(B+0+e+n)A2(1—N)

_ 2
B at+y+etn s = 2]
_(5+5+€+mAﬂ—Afwm_mﬂ2
at+ty+e+n
2 A=A
EIAE = oy — - M1 = Wl — o]
NHAL—=A
:_(O"i_ﬂj:f}/j: )+( )\\301—96‘2H2§0
aTyTeETN
and hence z € F(T). Thus F(T) is convex. Similarly, we can obtain the desired
result in the case of o+ 3+ (+1n > 0. d

Lemma 5.3. Let H be a real Hilbert space, let C be a non-empty closed convex sub-
set of H and let T be an (a, f3,7,0,¢,(,n)-widely more generalized hybrid mapping
from C' into itself such that F(T) # 0 and it satisfies the condition (1) or (2):

(1) a+p4+v4+6>0,(+n>0anda+p>0;
(2) a+p+v+6>0,e4+n>0anda+~vy>0.

Then T is quasi-nonerpansive.

Proof. Suppose that the condition (2) holds. We have from (3.1) that for any =z € C
and for any y € F(T),

al|Tz = Ty|? + Blz — Tyl* + 9| Tz — yl* + 6]z — y||?
+ellz = Tal? + Clly — Tyl +nll(z — Tz) — (y — Ty)|
= (a + Tz = y|* + B+ )]z~ y|* + (e + n)z - Tz|* < 0.
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We obtain from a + v > 0 that

B+4 s €+7
—lz—ylF = ——
o+ a+ 7y

i B+ e+n :

Since — oty <1 from a+B+~v+d > 0and oty < 0 from e+n > 0, we obtain that

|72 —y||* < |l —y||* and hence || Tz —y|| < ||z —yl|. Thus T is quasi-nonexpansive.

Similarly, we can obtain the desired result for the case of the condition (1). O

1Tz —y|* < — lx — T,

We also have the following lemma.

Lemma 5.4. Let H be a real Hilbert space, let C' be a non-empty closed convex sub-
set of H and let T be an («, f3,7,0,¢,(,n)-widely more generalized hybrid mapping
from C' into itself such that F(T) # 0 and it satisfies the condition (1) or (2):

1) a+B+7+6>0,0,)Nn{N|(a+BA+(+1n>0}#0 and o+ 3 > 0;
(2) a+B+y+6>0,0,)Nn{N|(a+)A+e+n>0}#0 and v+ > 0.
Take A € [0,1)N{X | (a+B)A+C+n >0} or A€ [0, 1)N{N | (a+y)A+e+n > 0}.
Then (1 — AT + X is quasi-nonexpansive.

Proof. Let A € [0,1) N{A | (o 4+ B)A+(+n >0} and define S = (1 — X\)T + Al. As
in the proof of Theorem 3.3, S is a mapping from C into itself and F(S) = F(T).

e+yA  (+BA ntad )_
P I=N2 (1=027 (1-N)2
widely more generalized hybrid mapping. We also obtain that

Furthermore, S is an (%,%,%,—ﬁ(a—&—ﬁ—i—y) 445

@ B v A
_ — >
T tT o T T 1_Am+ﬁ+vyh5 at+B+v+4=0,
¢+ BA n+ak (a+,6’)/\+C+77>0
1=22  (1-22 (1—A)2 7
o I5; _a+f
T N T W s W

By Lemma 5.3, S is quasi-nonexpansive. Similarly, we can obtain the desired result
for the case of a+ B8 +~v+d >0, [0,1)N{X | (¢ + )X +e+n > 0} # 0 and
a+vy>0. Il

Now we have the following nonlinear ergodic theorem for widely more generalized
hybrid mappings in a Hilbert space.

Theorem 5.5. Let H be a real Hilbert space, let C' be a mon-empty closed con-
vex subset of H and let T be an (a,B,7,0,¢€,(,n)-widely more generalized hybrid
mapping from C into itself such that F(T) # 0 and it satisfies the condition (1) or
(2):

(1) a+p4+v+6>0,a+v+e+n>0,(+n>0anda+p>0;

(2) a+p+7+6>0,a+8+(+n>0,e+n>0anda+~y>0.

Then for any x € C,

1 n—1
Snx = - ,;)Tkx

is weakly convergent to a fized point p of T, where P is the metric projection of H
onto F(T) and p = lim,,_,oc PT"x.



84 T. KAWASAKI AND W. TAKAHASHI

Proof. Since F(T) is nonempty and T is quasi-nonexpansive from Lemma 5.3, we
obtain that

1T e — y|| < || T 2 — y]

for any n € NU {0} and for any y € F(T), we have that {T"z} is bounded for any
x € C. Since

1 n—1 N
15z =yl < ~ YT e =yl < o =y
k=0

for any n € NU {0} and for any y € F(T), {Spz | n = 0,1,...} is also bounded.
Therefore there exists a strictly increasing sequence {n;} and p € H such that
{Sp,x | i = 0,1,...} is weakly convergent to p. Since C is closed and convex,
C' is weakly closed. Thus p € C. We first show that p € F(T). Indeed, using
a+B8+v+d>0and (+n >0, as in the proof of Theorem 3.1 we have that
(@ +n) (T2 =T | — | T2 — T*z|?)
+(B = n)(llz = T a|* — ||z = T*x|?)
—2a4+)(z =Tz z2-Trzx) + (a+vy+e+n)|z—Tz*> <0
for any k € NU{0} and for any z € C'. Summing up these inequalities with respect
tok=0,1,...,n — 1 and dividing by n, we obtain that
a+n
n

B—n
(ITz = T"|]* — ||Tz — =||*) + — (=~ Tz|* — ||z — z?)
2+ {(z—Tz,z—Spx)+ (a+vy+e+n)|z— T2H2 < 0.
Replacing n by n;, we obtain that

a+n

. B—n .
—(|ITz = T"z|* — | Tz — =|1*) + ——(|lz = T"=||*> — ||z — z*)

(2 K3

—2(a+)(z =Tz, 2 — Sp,x) + (a+v+e+n)|z—Tz|* <0.
Letting ¢ — oo, we obtain that
~2a+)(z =Tz 2 =p)+(a+y+e+n)z—T=|* <0.
Putting z = p, we obtain that
(a+y+e+n)p-Tp|*<0.

Since ao + v+ ¢ +n > 0, we obtain that Tp = p.
Since F(T) is closed and convex from Lemmas 5.1 and 5.2, the metric projection
P from H onto F(T) is well-defined. By Lemma 2.1, there exists ¢ € F(T') such
that {PT"x | n =0,1,...} is convergent to g. To complete the proof, we show that
q = p. Note that the metric projection P satisfies
(z = Pz,Pz—u) >0
for any z € H and for any u € F(T); see [15]. Therefore

(T*z — PT*2, PT 2z — ) > 0
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for any £ € NU {0} and for any y € F(T). Since P is the metric projection and T

is quasi-nonexpansive, we obtain that
|T"z — PT || |T"z — PT" 'z

<

< |7 te - PT g

that is, {||T"z — PT"z| | n =0,1,...} is non-increasing. Therefore we obtain
(Trkx — PT*z,y — q) (T*kx — PT*z, PT*x — q)

1T — PT"a| - [|PT*z — q|

lz — Pz|| - | PT*z — ql.

IN AN IA

Summing up these inequalities with respect to £ = 0,1,...,n — 1 and dividing by
n, we obtain

S x—lgPTkx y—q) < Hx_Pﬂ:’SHPTkx—qH
' " =0 ’ - " k=0 |

Since {Sp,x | i = 0,1,...} is weakly convergent to p and {PT"x | n = 0,1,...} is
convergent to g, we obtain that

P—ay—q) <0
Putting y = p, we obtain

lp—gqll> <0

and hence ¢ = p. This completes the proof.
Similarly, we can obtain the desired result for the case of a + 8 +~v+ 3 > 0,
a+pB+¢+n>0,e+n>0and a+vy>0. O

We also have the following nonlinear ergodic theorem.

Theorem 5.6. Let H be a real Hilbert space, let C' be a mon-empty closed con-
vex subset of H and let T' be an (a,f,7,9,e,(,n)-widely more generalized hybrid
mapping from C into itself such that F(T) # (0 and it satisfies the condition (1) or
(2):
(1) a+pB4+7+0>0,a+y+e+n>0,

0, )N{A | (a+BA+(+n>0}#0 and o+ > 0;
(2) a+B+7+520,a+B+C+n>0,

0, )N{A| (a+NA+e+n>0}#0 and o+ > 0.
Take A € [0,1)N{A | (a+B)A+C+n >0} or A€ [0,1)N{\| (a+7)A+ec+n > 0}.
Then for any x € C,

n—1

&x:ﬁiyﬂ—kﬂ4ﬂﬂ%
k=0
is weakly convergent to a fived point p of T, where P is the metric projection of H
onto F(T) and p = lim, oo P((1 = X\)T + XI)"x.
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Proof. Let A € [0,1)N{\ | (e +B)A+(+n >0} and S = (1 — A\)T + AI. Since S

is an (125, 125, 12 2y @+ B+ 9) + 6, 50 5 (5 ) -widely more gen-

eralized hybrid mapping from C' into itself and

« I} 0% A
_ = >
Tt T T 1_)\(04—1—54-7)4—6 a+pB+v+6>0,
Q@ ~ e+ A 7+ aX a+y+e+n
= 0
[ R W FE VR FR a—xz
¢+ BA n+a (a+B)A+C+n
pr >0,
(1=X)2 (1-A)2 (1—=A)2 -
o I5; _a+f
T WA T W g W

by Theorem 5.5 S,z is weakly convergent to p € F(S) = F(T).

Since F'(S) is closed and convex from Lemmas 5.1 and 5.2, the metric projection
P from H onto F(5) is well-defined. Since S is quasi-nonexpansive from Lemma 5.4,
we obtain that

15"z — g < [|15"2 — ]|

for any n € NU {0} and for any y € F(S). Therefore we can obtain the desired
result similarly to the proof of Theorem 5.5.

Similarly, we can obtain the desired result for the case of a + 5+ v+ > 0,
a+pB+C+n>0,0,1)Nn{N| (a+y)A+e+n>0}#0and o+ > 0. O
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