Journal of Nonlinear and Convex Analysis Volume 14, Number 1, 2013, 63–70

EQUILIBRIA OF ABSTRACT ECONOMIES WITH APPLICATIONS

CHIEN-HAO HUANG AND LIANG-JU CHU*

ABSTRACT. In a recent paper, we established a common existence theorem of maximal elements for majorized Q_{α} -condensing mappings in *l.c.*-spaces. As an application, we derive a new existence theorem of equilibria for noncompact abstract economies. Finally, the existence of solutions for a system of generalized quasi-variational inequalities in *l.c.*-spaces are also derived.

1. INTRODUCTION AND PRELIMINARY

Since Arrow and Debreu [1] established the existence theorem of Walrasian equilibria, the result has been extended in many directions. For more details, the reader might consult the references [4, 5, 9, 10, 11] and the references therein. Let I be any (finite or infinite) set of agents. An **abstract economy** is defined as a family of order quadruples $\Omega := (X_{\alpha}, A_{\alpha}, B_{\alpha}, P_{\alpha})_{\alpha \in I}$ such that for each $\alpha \in I$, X_{α} is a topological space, $A_{\alpha}, B_{\alpha} : X \longrightarrow 2^{X_{\alpha}}$ are constraint correspondences, where $X := \prod_{\alpha \in I} X_{\alpha}$, and $P_{\alpha} : X \longrightarrow 2^{X_{\alpha}}$ is a preference correspondence. An **equilibrium point** of Ω is a point $\hat{x} \in X$ such that for each $\alpha \in I$, $\hat{x}_{\alpha} \in clB_{\alpha}(\hat{x})$ and $A_{\alpha}(\hat{x}) \cap P_{\alpha}(\hat{x}) = \emptyset$, where $\hat{x}_{\alpha} = \pi_{\alpha}(\hat{x})$ denotes the projection of \hat{x} onto X_{α} . When $A_{\alpha} = B_{\alpha}$ and X_{α} is a topological vector space for each $\alpha \in I$, our definitions of an abstract economy and an equilibrium point coincide with the standard definition of Shafer and Sonnenschein [8].

Throughout this paper, all topological spaces are assumed to be Hausdorff. First we recall some definitions and notations. For a nonempty set X, we denote the set of all subsets of X and the set of all nonempty finite subsets of X by 2^X and $\langle X \rangle$, respectively. In addition, for any subset C of a topological space X, the closure of C is denoted by $cl_X C$.

An *H-space* is a topological space X, equipped with a family $\{\Gamma_D\}$ of some nonempty contractible subsets of X, indexed by $D \in \langle X \rangle$ such that $\Gamma_D \subset \Gamma_{D'}$ whenever $D \subset D'$. A nonempty subset C of X is said to be *H-convex*, if $\Gamma_D \subseteq C$ for all $D \in \langle C \rangle$. For a nonempty subset C of X, the *H-convex* hull of C is defined as

 $H\text{-}coC := \bigcap \{K \mid K \text{ is } H\text{-}convex \text{ in } X \text{ and } C \subseteq K \}.$

²⁰¹⁰ Mathematics Subject Classification. 47H04, 52A99, 54H25, 58E35, 91A10.

Key words and phrases. l.c.-space, maximal element, abstract economy, equilibrium point, quasi-variational inequalities.

^{*}Corresponding author.

In fact, C is H-convex if and only if C = H-coC. Moreover, for any finite set $D \in \langle X \rangle$, *H-coD* is called a **polytope**. We shall say that an *H*-space X is an *H*-space with precompact polytopes, if any polytope of X is precompact. For example, a locally convex topological vector space X is an H-space with precompact polytopes, by setting $\Gamma_D = coD$ for all $D \in \langle X \rangle$.

An *H*-space $(X, \{\Gamma_D\})$ is called an *l.c.-space*, if X is an uniform space whose topology is induced by its uniformity \mathcal{U} , and there is a base \mathcal{B} consisting of symmetric entourages in \mathcal{U} such that for each $V \in \mathcal{B}$, the set $V(E) := \{y \in X \mid (x, y) \in \mathcal{I}\}$ V for some $x \in E$ is H-convex whenever E is H-convex. For more details about uniform spaces, we refer to [7, 11, 12]. We shall use the notation $(X, \mathcal{U}, \mathcal{B})$ to stand for an *l.c.*-space, and adopt the following *measure of precompactness* of a subset A in X, defined by

$$Q(A) := \{ V \in \mathcal{B} \mid A \subseteq cl_X V(K) \text{ for some precompact set } K \text{ of } X \}.$$

Let $(X_{\alpha}, \mathcal{U}_{\alpha}, \mathcal{B}_{\alpha})_{\alpha \in I}$ be a family of *l.c.*-spaces with precompact polytope, where I is a finite or infinite index set, and let $X := \prod_{\alpha \in I} X_{\alpha}$ be the product H-space. For each $\alpha \in I$, let π_{α} be the projection of X onto X_{α} , and Q_{α} be a measure of precompactness in X_{α} . We say that a set-valued mapping $T_{\alpha}: X \longrightarrow 2^{X_{\alpha}}$ is Q_{α} -condensing, if $Q_{\alpha}(\pi_{\alpha}(C)) \subsetneq Q_{\alpha}(T_{\alpha}(C))$ for each $C \in X$ satisfying $\pi_{\alpha}(C)$ is a nonprecompact subset of X_{α} . It is clear that $T_{\alpha}: X \longrightarrow 2^{X_{\alpha}}$ is Q_{α} -condensing whenever X_{α} is compact. In case the index set I is singleton and π_{α} is the identity mapping, the Q_{α} -condensing mapping reduces to an usual Q-condensing mapping.

2. Equilibria of abstract economies

In order to establish our main result, we first list some fundamental notions. Let X be a topological space, Y an H-space, $S, T: X \longrightarrow 2^Y$ two set-valued mappings, and $\theta: X \longrightarrow Y$ be a single-valued map.

- (1) T is said to be *upper semicontinuous*, if for each $x \in X$ and each open subset V of Y with $T(x) \subseteq V$, there exists a neighborhood N_x of x such that $T(z) \subseteq V$ for all $z \in N_x$.
- (2) T is said to be **almost upper semicontinuous**, if for each $x \in X$ and each open subset V of Y with $T(x) \subseteq V$, there exists a neighborhood N_x of x such that $T(z) \subseteq cl_Y V$ for all $z \in N_x$.
- (3) The set-valued mappings $S \cap T : X \longrightarrow 2^Y$ and $clT : X \longrightarrow 2^Y$ are defined by

$$(S \cap T)(x) := S(x) \cap T(x)$$
 and $clT(x) := cl_YT(x)$ for each $x \in X$

- (4) T is said to be of class \mathcal{L}_{θ} , if (a) for each $x \in X$, $\theta(x) \notin H\text{-}coT(x)$, (b) for each $y \in Y$, $T^{-1}(y)$ is compactly open in X.
- (5) A set-valued mapping $T_x: X \longrightarrow 2^Y$ is said to be an \mathcal{L}_{θ} -majorant of Tat x, if there exists an open neighborhood N_x of x in X such that
 - (a) for each $z \in N_x$, $T(z) \subseteq T_x(z)$ and $\theta(z) \notin H\text{-}coT_x(z)$, (b) for each $y \in Y$, $T_x^{-1}(y)$ is compactly open in X.
- (6) T is said to be \mathcal{L}_{θ} -majorized, if for each $x \in X$ with $T(x) \neq \emptyset$, there exists an \mathcal{L}_{θ} -majorant of T at x.

The following Theorem A [12, Theorem 2.1] and Theorem B [6, Theorem 2.6] shall paly an important role.

Theorem A. Let $(X_{\alpha}, \mathcal{U}_{\alpha}, \mathcal{B}_{\alpha})_{\alpha \in I}$ be a family of l.c.-spaces with precompact polytopes, $X := \prod_{\alpha \in I} X_{\alpha}$, and $T_{\alpha} : X \longrightarrow 2^{X_{\alpha}}$ be Q_{α} -condensing for each $\alpha \in I$. Then there exists a nonempty compact H-convex subset $K := \prod_{\alpha \in I} K_{\alpha}$ of X such that $T_{\alpha}(K) \subseteq K_{\alpha}.$

Theorem B. Let $(X_{\alpha}, \mathcal{U}_{\alpha}, \mathcal{B}_{\alpha})_{\alpha \in I}$ be a family of l.c.-spaces with precompact polytopes, $X := \prod_{\alpha \in I} X_{\alpha}$, and $T_{\alpha} : X \longrightarrow 2^{X_{\alpha}}$ be $\mathcal{L}_{\pi_{\alpha}}$ -majorized Q_{α} -condensing. If for each $\alpha \in I$, the set $\{x \in X \mid T_{\alpha}(x) \neq \emptyset\}$ is compactly open in X, then there exists $\hat{x} \in X$ such that $T_{\alpha}(\hat{x}) = \emptyset$ for all $\alpha \in I$; that is, \hat{x} is a common maximal element of T_{α} .

Now, we are ready to deduce an existence theorem of equilibria for noncompact abstract economies.

Theorem 2.1. Let $\Omega := (X_{\alpha}, A_{\alpha}, B_{\alpha}, P_{\alpha})_{\alpha \in I}$ be an abstract economy, and X := $\prod_{\alpha \in I} X_{\alpha}$, where I is a set of agents such that for each $\alpha \in I$,

- (1) X_{α} is an l.c.-space with precompact polytopes,

- (2) for each $x \in X$, $A_{\alpha}(x) \neq \emptyset$ and H-co $A_{\alpha}(x) \subseteq clB_{\alpha}(x)$, (3) for each $y_{\alpha} \in X_{\alpha}$, $A_{\alpha}^{-1}(y_{\alpha})$ is compactly open in X, (4) $clB_{\alpha}: X \longrightarrow 2^{X_{\alpha}}$ is upper semicontinuous and Q_{α} -condensing,
- (5) $A_{\alpha} \cap P_{\alpha}$ is $\mathcal{L}_{\pi_{\alpha}}$ -majorized,
- (6) the set $\{x \in X \mid (A_{\alpha} \cap P_{\alpha})(x) \neq \emptyset\}$ is compactly open in X.

Then Ω has an equilibrium point.

Proof. Since each clB_{α} is Q_{α} -condensing, by Theorem A, there exists a nonempty compact *H*-convex subset $K := \prod_{\alpha \in I} K_{\alpha}$ of X such that $clB_{\alpha}(K) \subseteq K_{\alpha}$. By (2), it follows that $A_{\alpha}(x) \subseteq K_{\alpha}$ for each $x \in K$. Notice that the set $F_{\alpha} := \{x \in K \mid x_{\alpha} \in K \}$ $clB_{\alpha}(x)$ is closed in K for each $\alpha \in I$, since clB_{α} is upper semicontinuous. Now, we define $T_{\alpha}: K \longrightarrow 2^{K_{\alpha}}$ by

$$T_{\alpha}(x) := \begin{cases} (A_{\alpha} \cap P_{\alpha})(x) &, \text{ if } x \in F_{\alpha}, \\ H\text{-}coA_{\alpha}(x) &, \text{ if } x \in K \setminus F_{\alpha} \end{cases}$$

We shall show that T_{α} satisfies the hypotheses of Theorem B. First, for each $\alpha \in I$, we have

$$\{x \in K \mid T_{\alpha}(x) \neq \emptyset\} = \{x \in F_{\alpha} \mid T_{\alpha}(x) \neq \emptyset\} \cup \{x \in K \setminus F_{\alpha} \mid T_{\alpha}(x) \neq \emptyset\}$$
$$= (F_{\alpha} \cap \{x \in K \mid (A_{\alpha} \cap P_{\alpha})(x) \neq \emptyset\}) \cup (K \setminus F_{\alpha})$$
$$= \{x \in K \mid (A_{\alpha} \cap P_{\alpha})(x) \neq \emptyset\} \cup (K \setminus F_{\alpha}),$$

which is open in K by (6), since K is compact and $K \setminus F_{\alpha}$ is open in K.

Next, for each $x \in K$ with $T_{\alpha}(x) \neq \emptyset$, we will find an $\mathcal{L}_{\pi_{\alpha}}$ -majorant of T_{α} at x. To see this, we consider the following two cases:

Case 1. $x \in K \setminus F_{\alpha}$.

Let $S_x := H - coA_\alpha$, and $N_x := K \setminus F_\alpha$. Then N_x is an open neighborhood of x in K, satisfying the following facts:

- (a) $T_{\alpha}(z) = S_x(z)$ for each $z \in N_x$, and $z_{\alpha} = \pi_{\alpha}(z) \notin H coA_{\alpha}(z) = H coS_x(z)$
- (b) $\tilde{S}_x^{-1}(y_{\alpha})$ is open in K for all $y_{\alpha} \in K_{\alpha}$, by (3) and [5, Lemma 3.1].

Therefore, S_x is an $\mathcal{L}_{\pi_{\alpha}}$ -majorant of T_{α} at x.

Case 2. $x \in F_{\alpha}$.

Since $A_{\alpha} \cap P_{\alpha}$ is $\mathcal{L}_{\pi_{\alpha}}$ -majorized by (5), $A_{\alpha} \cap P_{\alpha}$ admits a $\mathcal{L}_{\pi_{\alpha}}$ -majorant T_x : $K \longrightarrow 2^{K_{\alpha}}$ at x; that is, there exists an open neighborhood N_x of x in K such that

(a') for each $z \in N_x$, $T_{\alpha}(z) = (A_{\alpha} \cap P_{\alpha})(z) \subseteq T_x(z)$ and $z_{\alpha} \notin H\text{-}coT_x(z)$. (b') for each $y_{\alpha} \in K_{\alpha}$, $T_x^{-1}(y_{\alpha})$ is (compactly) open in K.

Define $S_x: K \longrightarrow 2^{K_\alpha}$ by

$$S_x(z) := \begin{cases} (H - coA_\alpha(z)) \cap T_x(z) &, \text{ if } z \in F_\alpha, \\ H - coA_\alpha(z) &, \text{ if } z \notin F_\alpha. \end{cases}$$

Note that for each $z \in N_x$, $z \notin F_{\alpha}$. It follows that $z_{\alpha} \notin H$ -co $S_x(z)$ by (a'). Moreover, for any $y_{\alpha} \in K_{\alpha}$, the set

$$S_x^{-1}(y_\alpha) = \{z \in F_\alpha \mid y_\alpha \in S_x(z)\} \cup \{z \in K \setminus F_\alpha \mid y_\alpha \in S_x(z)\}$$

= $\{z \in F_\alpha \mid y_\alpha \in (H\text{-}coA_\alpha(z)) \cap T_x(z)\} \cup \{z \in K \setminus F_\alpha \mid y_\alpha \in H\text{-}coA_\alpha(z)\}$
= $[F_\alpha \cap (H\text{-}coA_\alpha)^{-1}(y_\alpha)T_x^{-1}(y_\alpha)] \cup [(K \setminus F_\alpha) \cap (H\text{-}coA_\alpha)^{-1}(y_\alpha)]$
= $[T_x^{-1}(y_\alpha) \cup (K \setminus F_\alpha)] \cap (H\text{-}coA_\alpha)^{-1}(y_\alpha)$

is open in K by (3) and [5, Lemma 3.1]. Therefore, S_x is an \mathcal{L}_{π_α} -majorant of T_α at x.

Consequently, T_{α} is $\mathcal{L}_{\pi_{\alpha}}$ -majorized, and hence by Theorem B, there exists $\hat{x} \in K$ such that $T_{\alpha}(\hat{x}) = \emptyset$ for all $\alpha \in I$. By (2), it follows that $\hat{x} \in F_{\alpha}$ and $T_{\alpha}(\hat{x}) =$ $A_{\alpha}(\hat{x}) \cap P_{\alpha}(\hat{x})$ for each $\alpha \in I$. Hence $\hat{x}_{\alpha} \in \operatorname{cl}B_{\alpha}(\hat{x})$ and $A_{\alpha}(\hat{x}) \cap P_{\alpha}(\hat{x}) = \emptyset$. Thus, \hat{x} is an equilibrium point of Ω .

We remark that Theorem 2.1 improves and generalizes [4, Theorem 4] and [10, Theorem 7] to general noncompact l.c.-spaces. As a consequence, we have an extension of Ding [4] as follows.

Corollary 2.2. Let $\Omega := (X_{\alpha}, A_{\alpha}, P_{\alpha})_{\alpha \in I}$ be an abstract economy, where I is a set of agents such that for each $\alpha \in I$,

- (1) X_{α} is a compact *H*-space,
- (2) $A_{\alpha}^{(1)}: X \longrightarrow 2^{X_{\alpha}}$ is almost upper semicontinuous with nonempty H-convex values,
- (3) $A_{\alpha}^{-1}(x_{\alpha})$ is open for each $x_{\alpha} \in X_{\alpha}$,
- (4) $A_{\alpha} \cap P_{\alpha}$ is $\mathcal{L}_{\pi_{\alpha}}$ -majorized,
- (5) the set $\{x \in X \mid (A_{\alpha} \cap P_{\alpha})(x) \neq \emptyset\}$ is open in X.

Then Ω has an equilibrium point.

66

Proof. First, we note that the set-valued mapping clA_{α} is upper semicontinuous and Q_{α} -condensing, since A_{α} is almost upper semicontinuous and X_{α} is compact. Next, although the existence of K in proving Theorem 2.1 requires the conditions (1) and (4) of Theorem 2.1, we can directly take $K_{\alpha} := X_{\alpha}$ and $K := \prod_{\alpha \in I} X_{\alpha}$, instead of using those conditions. Thus, following the proof of Theorem 2.1 with $A_{\alpha} = B_{\alpha}$, the abstract economy $(X_{\alpha}, A_{\alpha}, A_{\alpha}, P_{\alpha})_{\alpha \in I}$ has an equilibrium point; that is, Ω has an equilibrium point.

3. System of quasi-variational inequalities

Let *I* be an index set, $(X_{\alpha})_{\alpha \in I}$, $(Y_{\alpha})_{\alpha \in I}$ two families of topological spaces, and $X := \prod_{\alpha \in I} X_{\alpha}, Y := \prod_{\alpha \in I} Y_{\alpha}$. For each $\alpha \in I$, let $T_{\alpha} : X \longrightarrow 2^{Y_{\alpha}}, A_{\alpha} : X \longrightarrow 2^{X_{\alpha}}$ be two set-valued mappings, and $\phi_{\alpha} : X \times Y_{\alpha} \times X_{\alpha} \longrightarrow \mathbb{R}$ be a real-valued function. The *system of generalized quasi-variational inequalities* (in short, **SGQVI**) is defined as follow:

$$(\mathbf{SGQVI}): \begin{cases} \text{Find } (\hat{x}, \hat{y}) \in X \times Y \text{ such that for each } \alpha \in I, \\ \hat{x}_{\alpha} \in \text{cl}A_{\alpha}(\hat{x}), \ \hat{y}_{\alpha} \in T_{\alpha}(\hat{x}), \text{ and } \phi_{\alpha}(\hat{x}, \hat{y}_{\alpha}, z_{\alpha}) \geq 0 \text{ for all } z_{\alpha} \in A_{\alpha}(\hat{x}). \end{cases}$$

If the index set $I = \{1\}$, then SGQVI reduces to the quasi-variational inequality: Find $(\hat{x}, \hat{y}) \in X \times Y$ such that $\hat{x} \in clA(\hat{x}), \hat{y} \in T(\hat{x})$, and $\phi(\hat{x}, \hat{y}, z) \geq 0$ for all $z \in A(\hat{x})$.

As an application to SGQVI, we recall that a topological space X is called **acyclic**, if all of its reduced Čech homology groups over rationals vanish. In particular, any contractible space is acyclic, and thus any convex or star-shaped set is acyclic. In an *H*-space X, a function $f: X \longrightarrow \mathbb{R} \cup \{\pm \infty\}$ is called *H*-quasiconvex, provided that for each $r \in \mathbb{R}$, the set $\{x \in X \mid f(x) < r\}$ is *H*-convex. Next result provides an existence theorem of solutions to SGQVI.

Theorem 3.1. Let $(X_{\alpha}, \mathcal{U}_{\alpha}, \mathcal{B}_{\alpha})_{\alpha \in I}$ be a family of l.c.-spaces with precompact polytopes, $(Y_{\alpha})_{\alpha \in I}$ a family of topological space, and $X := \prod_{\alpha \in I} X_{\alpha}, Y := \prod_{\alpha \in I} Y_{\alpha}$. Suppose that for each $\alpha \in I$, $A_{\alpha} : X \longrightarrow 2^{X_{\alpha}}$ is an almost upper semicontinuous Q_{α} -condensing set-valued mapping with nonempty H-convex values, satisfying $A_{\alpha}^{-1}(x_{\alpha})$ is compactly open for each $x_{\alpha} \in X_{\alpha}$, and $T_{\alpha} : X \longrightarrow 2^{Y_{\alpha}}$ is upper semicontinuous with nonempty compact values. If $\phi_{\alpha} : X \times Y_{\alpha} \times X_{\alpha} \longrightarrow \mathbb{R}$ is an upper semicontinuous function such that

- (1) for each $(x, y_{\alpha}) \in X \times Y_{\alpha}, z_{\alpha} \mapsto \phi_{\alpha}(x, y_{\alpha}, z_{\alpha})$ is *H*-quasiconvex,
- (2) for each $x \in X$, there exists $y_{\alpha} \in T_{\alpha}(x)$ such that $\phi_{\alpha}(x, y_{\alpha}, x_{\alpha}) \ge 0$,
- (3) for each $(x, z_{\alpha}) \in X \times X_{\alpha}$, the set $\{y_{\alpha} \in T_{\alpha}(x) \mid \phi_{\alpha}(x, y_{\alpha}, z_{\alpha}) \geq 0\}$ is acyclic,

then there is a solution to SGQVI.

Proof. For each $\alpha \in I$, we define a set-valued mapping $P_{\alpha}: X \longrightarrow 2^{X_{\alpha}}$ by

$$P_{\alpha}(x) := \left\{ z_{\alpha} \in X_{\alpha} \mid \sup_{y_{\alpha} \in T_{\alpha}(x)} \phi_{\alpha}(x, y_{\alpha}, z_{\alpha}) < 0 \right\}, \quad \forall \ x \in X.$$

Then each $P_{\alpha}(x)$ is an *H*-convex set, since ϕ_{α} is *H*-quasiconvex in z_{α} . Since ϕ_{α} is upper semicontinuous and $T_{\alpha}: X \longrightarrow 2^{Y_{\alpha}}$ is upper semicontinuous with nonempty compact values, the function $x \mapsto \sup_{y_{\alpha} \in T_{\alpha}(x)} \phi_{\alpha}(x, y_{\alpha}, z_{\alpha})$ is upper semicontinuous, by Proposition 21 of [2, p.119]. Hence for each $z_{\alpha} \in X_{\alpha}$,

$$P_{\alpha}^{-1}(z_{\alpha}) = \{x \in X \mid z_{\alpha} \in P_{\alpha}(x)\} = \left\{x \in X \mid \sup_{y_{\alpha} \in T_{\alpha}(x)} \phi_{\alpha}(x, y_{\alpha}, z_{\alpha}) < 0\right\}$$

is open in X. In addition, by (2), $x_{\alpha} \notin P_{\alpha}(x) = H - coP_{\alpha}(x)$ for each $x \in X$. Thus, P_{α} is of class $\mathcal{L}_{\pi_{\alpha}}$, and hence is $\mathcal{L}_{\pi_{\alpha}}$ -majorized. Therefore, the set-valued mapping $A_{\alpha} \cap P_{\alpha}$ is also $\mathcal{L}_{\pi_{\alpha}}$ -majorized.

Note that for each nonempty compact subset K of X, since $A_{\alpha}^{-1}(z_{\alpha}) \cap K$ is open, the set

$$\{x \in X \mid (A_{\alpha} \cap P_{\alpha})(x) \neq \emptyset\} \cap K = \left(\bigcup_{z_{\alpha} \in X_{\alpha}} (A_{\alpha} \cap P_{\alpha})^{-1}(z_{\alpha})\right) \cap K$$
$$= \bigcup_{z_{\alpha} \in X_{\alpha}} \left(A_{\alpha}^{-1}(z_{\alpha}) \cap K) \cap P_{\alpha}^{-1}(z_{\alpha})\right)$$

is open in K; i.e., the set $\{x \in X \mid (A_{\alpha} \cap P_{\alpha})(x) \neq \emptyset\}$ is compactly open in X. Further, the set-valued mapping clA_{α} is upper semicontinuous and Q_{α} -condensing. Consequently, by virtue of Theorem 2.1 with $B_{\alpha} = A_{\alpha}$, there exists $\hat{x} \in X$ such that $\hat{x}_{\alpha} \in clA_{\alpha}(\hat{x})$ and $A_{\alpha}(\hat{x}) \cap P_{\alpha}(\hat{x}) = \emptyset$ for each $\alpha \in I$. It follows that

$$\sup_{y_{\alpha}\in T_{\alpha}(\hat{x})}\phi_{\alpha}(\hat{x}, y_{\alpha}, z_{\alpha}) \ge 0, \quad \forall \ z_{\alpha} \in A_{\alpha}(\hat{x}).$$

Since each ϕ_{α} is upper semicontinuous and $T_{\alpha}(\hat{x})$ is compact, it follows that for each $z_{\alpha} \in A_{\alpha}(\hat{x})$, there exists $y_{\alpha}(z_{\alpha}) \in T_{\alpha}(\hat{x})$ such that $\phi_{\alpha}(\hat{x}, y_{\alpha}(z_{\alpha}), z_{\alpha}) \ge 0$. This leads us to define a set-valued mapping $G_{\alpha} : A_{\alpha}(\hat{x}) \longrightarrow 2^{T_{\alpha}(\hat{x})}$ by

$$G_{\alpha}(z_{\alpha}) := \left\{ y_{\alpha} \in T_{\alpha}(\hat{x}) \mid \phi_{\alpha}(\hat{x}, y_{\alpha}, z_{\alpha}) \ge 0 \right\}, \quad \forall \ z_{\alpha} \in A_{\alpha}(\hat{x}).$$

By the upper semicontinuity of ϕ_{α} , the graph of G_{α} is closed. Moreover, since $T_{\alpha}(\hat{x})$ is compact, G_{α} is upper semicontinuous, with nonempty acyclic values by (3).

Assume that the conclusion of Theorem 3.1 is false. Then there exists $\beta \in I$ such that for each $y_{\beta} \in T_{\beta}(\hat{x})$, there exists a point $z_{\beta} \in A_{\beta}(\hat{x})$ satisfying $\phi_{\beta}(\hat{x}, y_{\beta}, z_{\beta}) < 0$. Let the set-valued mapping $S_{\beta}: T_{\beta}(\hat{x}) \longrightarrow 2^{A_{\beta}(\hat{x})}$ be defined by

$$S_{\beta}(y_{\beta}) := \{ z_{\beta} \in A_{\beta}(\hat{x}) \mid \phi_{\beta}(\hat{x}, y_{\beta}, z_{\beta}) < 0 \}, \quad \forall \ y_{\beta} \in T_{\beta}(\hat{x}).$$

Then, by (1) and the *H*-convexity of $A_{\beta}(\hat{x})$, S_{β} has nonempty *H*-convex values. For each $z_{\beta} \in A_{\beta}(\hat{x})$, the set

$$S_{\beta}^{-1}(z_{\beta}) = \{ y_{\beta} \in T_{\beta}(\hat{x}) \mid z_{\beta} \in S_{\beta}(y_{\beta}) \} = \{ y_{\beta} \in T_{\beta}(\hat{x}) \mid \phi_{\beta}(\hat{x}, y_{\beta}, z_{\beta}) < 0 \}$$

is open in $T_{\beta}(\hat{x})$. By [3, Theorem 3.1], there exists a coincidence $(\bar{x}_{\beta}, \bar{y}_{\beta})$ for S_{β} and G_{β} ; that is, $\bar{x}_{\beta} \in S_{\beta}(\bar{y}_{\beta})$ and $\bar{y}_{\beta} \in G_{\beta}(\bar{x}_{\beta})$. It follows that $\phi_{\beta}(\hat{x}, \bar{y}_{\beta}, \bar{x}_{\beta}) < 0$ and $\phi_{\beta}(\hat{x}, \bar{y}_{\beta}, \bar{x}_{\beta}) \geq 0$, which is a trivial contradiction each other. Therefore, we complete the proof. Remark that Theorem 3.1 generalizes and improves [11, Theorem 8] as follows:

- (1) The space X need not be perfectly normal.
- (2) Theorem 3.1 is concerning a system of generalized quasivariational inequalities.
- (3) Theorem 3.1 need not have an extra acyclic condition [11, Theorem 8 (iii)].

As a consequence, the following Corollary extends [11, Corollary 9].

Corollary 3.2. Let $(X_{\alpha})_{\alpha \in I}$ be a family of locally convex topological vector spaces, X_{α}^{*} the conjugate space with respect to X_{α} , and $X := \prod_{\alpha \in I} X_{\alpha}, X^{*} := \prod_{\alpha \in I} X_{\alpha}^{*}$. For each $\alpha \in I$, let $A_{\alpha} : X \longrightarrow 2^{X_{\alpha}}$ be an almost upper semicontinuous Q_{α} condensing set-valued mapping with nonempty convex values, satisfying $A_{\alpha}^{-1}(x_{\alpha})$ is compactly open for each $x_{\alpha} \in X_{\alpha}$, and $T_{\alpha} : X \longrightarrow 2^{X_{\alpha}^{*}}$ be upper semicontinuous with nonempty compact convex values. Then there exists $(\hat{x}, \hat{y}) \in X \times X^{*}$ such that for each $\alpha \in I$,

$$\hat{x}_{\alpha} \in clA_{\alpha}(\hat{x}), \ \hat{y}_{\alpha} \in T_{\alpha}(\hat{x}), \ and \ Re\langle \hat{y}_{\alpha}, z_{\alpha} - \hat{x}_{\alpha} \rangle \geq 0 \ for \ all \ z_{\alpha} \in A_{\alpha}(\hat{x}).$$

Proof. Let \mathcal{N}_{α} be the family of all neighborhoods of zero in X_{α} . For each $N_{\alpha} \in \mathcal{N}_{\alpha}$, we define $U_{\alpha} := \{(x_{\alpha}, y_{\alpha}) \in X_{\alpha} \times X_{\alpha} \mid x_{\alpha} - y_{\alpha} \in N_{\alpha}\}$. Then $(X_{\alpha}, \{coD_{\alpha}\})$ $(D_{\alpha} \in \langle X_{\alpha} \rangle)$ is an *l.c.*-space with precompact polytopes, whose uniformity is $\mathcal{U}_{\alpha} :=$ $\{U_{\alpha} \mid N_{\alpha} \in \mathcal{N}_{\alpha}\}$. For each $(x, y_{\alpha}, z_{\alpha}) \in X \times X_{\alpha}^* \times X_{\alpha}$, let $\phi_{\alpha}(x, y_{\alpha}, z_{\alpha}) = Re\langle y_{\alpha}, z_{\alpha} - \pi_{\alpha}(x) \rangle$. Then ϕ_{α} is continuous and satisfies all the conditions of Theorem 3.1. Consequently, the conclusion follows from Theorem 3.1.

References

- K. J. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica 22 (1954), 265–290.
- [2] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
- [3] X. P. Ding and E. Tarafder, Some coincidence theorems and applications, Bull. Austral. Math. Soc. 50 (1994), 73–80.
- [4] X. P. Ding, W. K. Kim and K. K. Tan, Equilibria of non-compact Generalized Games with *L*^{*}-majorized preference correspondences, J. Math. Anal. Appl. 164 (1992), 508–517.
- X. P. Ding, Fixed points, minimax inequalities and equilibria of noncompact abstract economics, Taiwanese J. Math. 2 (1998), 25–55.
- [6] C. H. Huang and L. J. Chu, Common Maximal Elements of Condensing Mappings, (2012) (submitted for publication).
- [7] J. L. Kelley, General Topology, Springer-Verlag, New York, 1975.
- [8] W. Shafer and H. Sonnenschein, Equilibrium in abstract economies in without ordered preferences, J. Math. Econom. 2 (1975), 345–348.
- K. K. Tan and X. Z. Yuan, Some minimax inequalities and applications to existence of equilibria in H-spaces, Nonlinear Anal. 24 (1995), 1457–1470.
- [10] X. Wu, Existence theorem for maximal elements in H-spaces with applications on the minimax inequalities and equilibrium of games, J. Appl. Anal. 6 (2000), 283–293.
- [11] X. Wu and Z. F. Shen, Equilibrium of abstract economy and generalized quasi-variational inequality in H-spaces, Topology Appl. 153 (2005), 123–132.
- [12] Y. L. Wu, C. H. Huang and L. J. Chu, An extension of Mehta theorem with applications, J. Math. Anal. Appl. 391(2) (2012), 489–495.

Manuscript received March 27, 2012 revised December 2, 2012 CHIEN-HAO HUANG

Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan, Republic of China

E-mail address: huangch@math.ntnu.edu.tw

LIANG-JU CHU

Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan, Republic of China

E-mail address: chulj@math.ntnu.edu.tw

70