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In fact, C is H-convex if and only if C = H-coC. Moreover, for any finite set
D ∈ ⟨X⟩, H-coD is called a polytope . We shall say that an H-space X is an
H-space with precompact polytopes, if any polytope of X is precompact. For
example, a locally convex topological vector space X is an H-space with precompact
polytopes, by setting ΓD = coD for all D ∈ ⟨X⟩.

An H-space (X, {ΓD}) is called an l.c.-space , if X is an uniform space whose
topology is induced by its uniformity U , and there is a base B consisting of symmetric
entourages in U such that for each V ∈ B, the set V (E) := {y ∈ X | (x, y) ∈
V for some x ∈ E} is H-convex whenever E is H-convex. For more details about
uniform spaces, we refer to [7, 11, 12]. We shall use the notation (X,U ,B) to stand
for an l.c.-space, and adopt the following measure of precompactness of a subset
A in X, defined by

Q(A) := {V ∈ B | A ⊆ clXV (K) for some precompact set K of X}.
Let (Xα,Uα,Bα)α∈I be a family of l.c.-spaces with precompact polytope, where

I is a finite or infinite index set, and let X :=
∏

α∈I Xα be the product H-space.
For each α ∈ I, let πα be the projection of X onto Xα, and Qα be a measure
of precompactness in Xα. We say that a set-valued mapping Tα : X −→ 2Xα is
Qα-condensing , if Qα(πα(C)) ( Qα(Tα(C)) for each C ∈ X satisfying πα(C) is
a nonprecompact subset of Xα. It is clear that Tα : X −→ 2Xα is Qα-condensing
whenever Xα is compact. In case the index set I is singleton and πα is the identity
mapping, the Qα-condensing mapping reduces to an usual Q-condensing mapping.

2. Equilibria of abstract economies

In order to establish our main result, we first list some fundamental notions. Let
X be a topological space, Y an H-space, S, T : X −→ 2Y two set-valued mappings,
and θ : X −→ Y be a single-valued map.

(1) T is said to be upper semicontinuous, if for each x ∈ X and each open
subset V of Y with T (x) ⊆ V , there exists a neighborhood Nx of x such
that T (z) ⊆ V for all z ∈ Nx.

(2) T is said to be almost upper semicontinuous, if for each x ∈ X and each
open subset V of Y with T (x) ⊆ V , there exists a neighborhood Nx of x
such that T (z) ⊆ clY V for all z ∈ Nx.

(3) The set-valued mappings S ∩ T : X −→ 2Y and clT : X −→ 2Y are defined
by

(S ∩ T )(x) := S(x) ∩ T (x) and clT (x) := clY T (x) for each x ∈ X.

(4) T is said to be of class Lθ, if
(a) for each x ∈ X, θ(x) /∈ H-coT (x),
(b) for each y ∈ Y , T−1(y) is compactly open in X.

(5) A set-valued mapping Tx : X −→ 2Y is said to be an Lθ-majorant of T
at x , if there exists an open neighborhood Nx of x in X such that
(a) for each z ∈ Nx, T (z) ⊆ Tx(z) and θ(z) /∈ H-coTx(z),
(b) for each y ∈ Y , T−1

x (y) is compactly open in X.
(6) T is said to be Lθ-majorized , if for each x ∈ X with T (x) ̸= ∅, there exists

an Lθ-majorant of T at x.
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The following Theorem A [12, Theorem 2.1] and Theorem B [6, Theorem 2.6]
shall paly an important role.

Theorem A. Let (Xα,Uα,Bα)α∈I be a family of l.c.-spaces with precompact poly-
topes, X :=

∏
α∈I Xα, and Tα : X −→ 2Xα be Qα-condensing for each α ∈ I. Then

there exists a nonempty compact H-convex subset K :=
∏

α∈I Kα of X such that
Tα(K) ⊆ Kα.

Theorem B. Let (Xα,Uα,Bα)α∈I be a family of l.c.-spaces with precompact poly-
topes, X :=

∏
α∈I Xα, and Tα : X −→ 2Xα be Lπα-majorized Qα-condensing. If for

each α ∈ I, the set {x ∈ X | Tα(x) ̸= ∅} is compactly open in X, then there exists
x̂ ∈ X such that Tα(x̂) = ∅ for all α ∈ I; that is, x̂ is a common maximal element
of Tα.

Now, we are ready to deduce an existence theorem of equilibria for noncompact
abstract economies.

Theorem 2.1. Let Ω := (Xα, Aα, Bα, Pα)α∈I be an abstract economy, and X :=∏
α∈I Xα, where I is a set of agents such that for each α ∈ I,

(1) Xα is an l.c.-space with precompact polytopes,
(2) for each x ∈ X, Aα(x) ̸= ∅ and H-coAα(x) ⊆ clBα(x),
(3) for each yα ∈ Xα, A

−1
α (yα) is compactly open in X,

(4) clBα : X −→ 2Xα is upper semicontinuous and Qα-condensing,
(5) Aα ∩ Pα is Lπα-majorized,
(6) the set {x ∈ X | (Aα ∩ Pα)(x) ̸= ∅} is compactly open in X.

Then Ω has an equilibrium point.

Proof. Since each clBα is Qα-condensing, by Theorem A, there exists a nonempty
compact H-convex subset K :=

∏
α∈I Kα of X such that clBα(K) ⊆ Kα. By (2), it

follows that Aα(x) ⊆ Kα for each x ∈ K. Notice that the set Fα := {x ∈ K | xα ∈
clBα(x)} is closed in K for each α ∈ I, since clBα is upper semicontinuous. Now,
we define Tα : K −→ 2Kα by

Tα(x) :=

{
(Aα ∩ Pα)(x) , if x ∈ Fα,
H-coAα(x) , if x ∈ K \ Fα.

We shall show that Tα satisfies the hypotheses of Theorem B. First, for each
α ∈ I, we have

{x ∈ K | Tα(x) ̸= ∅} = {x ∈ Fα | Tα(x) ̸= ∅} ∪ {x ∈ K \ Fα | Tα(x) ̸= ∅}
= (Fα ∩ {x ∈ K | (Aα ∩ Pα)(x) ̸= ∅}) ∪ (K \ Fα)

= {x ∈ K | (Aα ∩ Pα)(x) ̸= ∅} ∪ (K \ Fα),

which is open in K by (6), since K is compact and K \ Fα is open in K.

Next, for each x ∈ K with Tα(x) ̸= ∅, we will find an Lπα-majorant of Tα at x.
To see this, we consider the following two cases:

Case 1. x ∈ K \ Fα.
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Let Sx := H-coAα, and Nx := K \Fα. Then Nx is an open neighborhood of x in
K, satisfying the following facts:

(a) Tα(z) = Sx(z) for each z ∈ Nx, and zα = πα(z) /∈ H-coAα(z) = H-coSx(z)
by (2).

(b) S−1
x (yα) is open in K for all yα ∈ Kα, by (3) and [5, Lemma 3.1].

Therefore, Sx is an Lπα-majorant of Tα at x.

Case 2. x ∈ Fα.

Since Aα ∩ Pα is Lπα-majorized by (5), Aα ∩ Pα admits a Lπα-majorant Tx :
K −→ 2Kα at x; that is, there exists an open neighborhood Nx of x in K such that

(a′) for each z ∈ Nx, Tα(z) = (Aα ∩ Pα)(z) ⊆ Tx(z) and zα /∈ H-coTx(z).
(b′) for each yα ∈ Kα, T

−1
x (yα) is (compactly) open in K.

Define Sx : K −→ 2Kα by

Sx(z) :=

{
(H-coAα(z)) ∩ Tx(z) , if z ∈ Fα,
H-coAα(z) , if z /∈ Fα.

Note that for each z ∈ Nx, z /∈ Fα. It follows that zα /∈ H-coSx(z) by (a′).
Moreover, for any yα ∈ Kα, the set

S−1
x (yα) = {z ∈ Fα | yα ∈ Sx(z)} ∪ {z ∈ K \ Fα | yα ∈ Sx(z)}

= {z ∈ Fα | yα ∈ (H-coAα(z)) ∩ Tx(z)} ∪ {z ∈ K \ Fα | yα ∈ H-coAα(z)}
=
[
Fα ∩ (H-coAα)

−1(yα)T
−1
x (yα)

]
∪
[
(K \ Fα) ∩ (H-coAα)

−1(yα)
]

=
[
T−1
x (yα) ∪ (K \ Fα)

]
∩ (H-coAα)

−1(yα)

is open in K by (3) and [5, Lemma 3.1]. Therefore, Sx is an Lπα-majorant of Tα at
x.

Consequently, Tα is Lπα-majorized, and hence by Theorem B, there exists x̂ ∈ K
such that Tα(x̂) = ∅ for all α ∈ I. By (2), it follows that x̂ ∈ Fα and Tα(x̂) =
Aα(x̂) ∩ Pα(x̂) for each α ∈ I. Hence x̂α ∈ clBα(x̂) and Aα(x̂) ∩ Pα(x̂) = ∅. Thus,
x̂ is an equilibrium point of Ω. �

We remark that Theorem 2.1 improves and generalizes [4, Theorem 4] and [10,
Theorem 7] to general noncompact l.c.-spaces. As a consequence, we have an ex-
tension of Ding [4] as follows.

Corollary 2.2. Let Ω := (Xα, Aα, Pα)α∈I be an abstract economy, where I is a set
of agents such that for each α ∈ I,

(1) Xα is a compact H-space,
(2) Aα : X −→ 2Xα is almost upper semicontinuous with nonempty H-convex

values,
(3) A−1

α (xα) is open for each xα ∈ Xα,
(4) Aα ∩ Pα is Lπα-majorized,
(5) the set {x ∈ X | (Aα ∩ Pα)(x) ̸= ∅} is open in X.

Then Ω has an equilibrium point.



EQUILIBRIA OF ABSTRACT ECONOMIES WITH APPLICATIONS 67

Proof. First, we note that the set-valued mapping clAα is upper semicontinuous
and Qα-condensing, since Aα is almost upper semicontinuous and Xα is compact.
Next, although the existence of K in proving Theorem 2.1 requires the conditions
(1) and (4) of Theorem 2.1, we can directly take Kα := Xα and K :=

∏
α∈I Xα,

instead of using those conditions. Thus, following the proof of Theorem 2.1 with
Aα = Bα, the abstract economy (Xα, Aα, Aα, Pα)α∈I has an equilibrium point; that
is, Ω has an equilibrium point. �

3. System of quasi-variational inequalities

Let I be an index set, (Xα)α∈I , (Yα)α∈I two families of topological spaces, and
X :=

∏
α∈I Xα, Y :=

∏
α∈I Yα. For each α ∈ I, let Tα : X −→ 2Yα , Aα : X −→ 2Xα

be two set-valued mappings, and ϕα : X×Yα×Xα −→ R be a real-valued function.
The system of generalized quasi-variational inequalities (in short, SGQVI)
is defined as follow:

(SGQVI) :

{
Find (x̂, ŷ) ∈ X × Y such that for each α ∈ I,

x̂α ∈ clAα(x̂), ŷα ∈ Tα(x̂), and ϕα(x̂, ŷα, zα) ≥ 0 for all zα ∈ Aα(x̂).

If the index set I = {1}, then SGQVI reduces to the quasi-variational inequality:
Find (x̂, ŷ) ∈ X × Y such that x̂ ∈ clA(x̂), ŷ ∈ T (x̂), and ϕ(x̂, ŷ, z) ≥ 0 for all
z ∈ A(x̂).

As an application to SGQVI, we recall that a topological space X is called
acyclic, if all of its reduced Čech homology groups over rationals vanish. In par-
ticular, any contractible space is acyclic, and thus any convex or star-shaped set is
acyclic. In an H-spaceX, a function f : X −→ R∪{±∞} is calledH-quasiconvex,
provided that for each r ∈ R, the set {x ∈ X | f(x) < r} is H-convex. Next result
provides an existence theorem of solutions to SGQVI.

Theorem 3.1. Let (Xα,Uα,Bα)α∈I be a family of l.c.-spaces with precompact poly-
topes, (Yα)α∈I a family of topological space, and X :=

∏
α∈I Xα, Y :=

∏
α∈I Yα.

Suppose that for each α ∈ I, Aα : X −→ 2Xα is an almost upper semicontinu-
ous Qα-condensing set-valued mapping with nonempty H-convex values, satisfying
A−1

α (xα) is compactly open for each xα ∈ Xα, and Tα : X −→ 2Yα is upper semi-
continuous with nonempty compact values. If ϕα : X × Yα ×Xα −→ R is an upper
semicontinuous function such that

(1) for each (x, yα) ∈ X × Yα, zα 7→ ϕα(x, yα, zα) is H-quasiconvex,
(2) for each x ∈ X, there exists yα ∈ Tα(x) such that ϕα(x, yα, xα) ≥ 0,
(3) for each (x, zα) ∈ X × Xα, the set {yα ∈ Tα(x) | ϕα(x, yα, zα) ≥ 0} is

acyclic,

then there is a solution to SGQVI.

Proof. For each α ∈ I, we define a set-valued mapping Pα : X −→ 2Xα by

Pα(x) :=

{
zα ∈ Xα | sup

yα∈Tα(x)
ϕα(x, yα, zα) < 0

}
, ∀ x ∈ X.
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Then each Pα(x) is an H-convex set, since ϕα is H-quasiconvex in zα. Since ϕα is
upper semicontinuous and Tα : X −→ 2Yα is upper semicontinuous with nonempty
compact values, the function x 7→ supyα∈Tα(x) ϕα(x, yα, zα) is upper semicontinuous,

by Proposition 21 of [2, p.119]. Hence for each zα ∈ Xα,

P−1
α (zα) = {x ∈ X | zα ∈ Pα(x)} =

{
x ∈ X | sup

yα∈Tα(x)
ϕα(x, yα, zα) < 0

}
is open in X. In addition, by (2), xα /∈ Pα(x) = H-coPα(x) for each x ∈ X. Thus,
Pα is of class Lπα , and hence is Lπα-majorized. Therefore, the set-valued mapping
Aα ∩ Pα is also Lπα-majorized.

Note that for each nonempty compact subset K of X, since A−1
α (zα)∩K is open,

the set

{x ∈ X | (Aα ∩ Pα)(x) ̸= ∅} ∩K =

( ∪
zα∈Xα

(Aα ∩ Pα)
−1(zα)

)
∩K

=
∪

zα∈Xα

(
A−1

α (zα) ∩K) ∩ P−1
α (zα)

)
is open in K; i.e., the set {x ∈ X | (Aα ∩ Pα)(x) ̸= ∅} is compactly open in X.
Further, the set-valued mapping clAα is upper semicontinuous and Qα-condensing.
Consequently, by virtue of Theorem 2.1 with Bα = Aα, there exists x̂ ∈ X such
that x̂α ∈ clAα(x̂) and Aα(x̂) ∩ Pα(x̂) = ∅ for each α ∈ I. It follows that

sup
yα∈Tα(x̂)

ϕα(x̂, yα, zα) ≥ 0, ∀ zα ∈ Aα(x̂).

Since each ϕα is upper semicontinuous and Tα(x̂) is compact, it follows that for
each zα ∈ Aα(x̂), there exists yα(zα) ∈ Tα(x̂) such that ϕα(x̂, yα(zα), zα) ≥ 0. This

leads us to define a set-valued mapping Gα : Aα(x̂) −→ 2Tα(x̂) by

Gα(zα) := {yα ∈ Tα(x̂) | ϕα(x̂, yα, zα) ≥ 0} , ∀ zα ∈ Aα(x̂).

By the upper semicontinuity of ϕα, the graph of Gα is closed. Moreover, since Tα(x̂)
is compact, Gα is upper semicontinuous, with nonempty acyclic values by (3).

Assume that the conclusion of Theorem 3.1 is false. Then there exists β ∈ I such
that for each yβ ∈ Tβ(x̂), there exists a point zβ ∈ Aβ(x̂) satisfying ϕβ(x̂, yβ, zβ) < 0.

Let the set-valued mapping Sβ : Tβ(x̂) −→ 2Aβ(x̂) be defined by

Sβ(yβ) := {zβ ∈ Aβ(x̂) | ϕβ(x̂, yβ, zβ) < 0} , ∀ yβ ∈ Tβ(x̂).

Then, by (1) and the H-convexity of Aβ(x̂), Sβ has nonempty H-convex values. For
each zβ ∈ Aβ(x̂), the set

S−1
β (zβ) = {yβ ∈ Tβ(x̂) | zβ ∈ Sβ(yβ)} = {yβ ∈ Tβ(x̂) | ϕβ(x̂, yβ, zβ) < 0}

is open in Tβ(x̂). By [3, Theorem 3.1], there exists a coincidence (x̄β, ȳβ) for Sβ

and Gβ; that is, x̄β ∈ Sβ(ȳβ) and ȳβ ∈ Gβ(x̄β). It follows that ϕβ(x̂, ȳβ, x̄β) < 0
and ϕβ(x̂, ȳβ, x̄β) ≥ 0, which is a trivial contradiction each other. Therefore, we
complete the proof. �
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Remark that Theorem 3.1 generalizes and improves [11, Theorem 8] as follows:

(1) The space X need not be perfectly normal.
(2) Theorem 3.1 is concerning a system of generalized quasivariational inequal-

ities.
(3) Theorem 3.1 need not have an extra acyclic condition [11, Theorem 8 (iii)].

As a consequence, the following Corollary extends [11, Corollary 9].

Corollary 3.2. Let (Xα)α∈I be a family of locally convex topological vector spaces,
X∗

α the conjugate space with respect to Xα, and X :=
∏

α∈I Xα, X
∗ :=

∏
α∈I X

∗
α.

For each α ∈ I, let Aα : X −→ 2Xα be an almost upper semicontinuous Qα-
condensing set-valued mapping with nonempty convex values, satisfying A−1

α (xα) is
compactly open for each xα ∈ Xα, and Tα : X −→ 2X

∗
α be upper semicontinuous

with nonempty compact convex values. Then there exists (x̂, ŷ) ∈ X ×X∗ such that
for each α ∈ I,

x̂α ∈ clAα(x̂), ŷα ∈ Tα(x̂), and Re⟨ŷα, zα − x̂α⟩ ≥ 0 for all zα ∈ Aα(x̂).

Proof. Let Nα be the family of all neighborhoods of zero in Xα. For each Nα ∈ Nα,
we define Uα := {(xα, yα) ∈ Xα × Xα | xα − yα ∈ Nα}. Then (Xα, {coDα})
(Dα ∈ ⟨Xα⟩) is an l.c.-space with precompact polytopes, whose uniformity is Uα :=
{ Uα | Nα ∈ Nα}. For each (x, yα, zα) ∈ X×X∗

α×Xα, let ϕα(x, yα, zα) = Re⟨yα, zα−
πα(x)⟩. Then ϕα is continuous and satisfies all the conditions of Theorem 3.1.
Consequently, the conclusion follows from Theorem 3.1. �
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