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With the spectral decomposition above, for any given scalar function ϕ : J ⊆
R → R, we may define a vector-valued function ϕsoc : S ⊆ Rn → Rn by

(1.5) ϕsoc(x) := f(λ1(x))u
(1)
x + f(λ2(x))u

(2)
x

where J is an interval (finite or infinite, open or closed) of R, and S is the domain
of ϕsoc determined by ϕ. Then, we can define the SOC trace function associated
with ϕ

(1.6) ϕtr(x) := ϕ(λ1(x)) + ϕ(λ2(x)) = tr(ϕsoc(x)) ∀x ∈ S.

Chen, Liao and Pan [11] give the following relation between ϕtr and ϕsoc

(1.7) ∇ϕtr(x) = (ϕ
′
)soc(x) and ∇2ϕtr(x) = ∇(ϕ

′
)soc(x) ∀x ∈ intS.

By using Schur Complement Theorem, they establish the convexity of SOC trace
functions and the compounds of SOC trace functions. Some of these functions are
the key of penalty and barrier function methods for second-order cone programs
(SOCPs), as well as the establishment of some important inequalities associated
with SOCs, for which the proof of convexity of these functions is a necessity.

Some similar results associated with positive semidefinite cone are also investi-
gated by Auslender in [1, 2]. Since both SOC and positive semidefinite cone are
special cases of symmetric cone (SC for short). A natural question leads us to con-
sider the more general case. To this end, we need to recall some concepts regarding
Euclidean Jordan algebra. Let A = (V, ⟨·, ·⟩, ◦) be an n-dimensional Euclidean Jor-
dan algebra (see Section 2) and K be the symmetric cone in V. For any given scalar
function ϕ : J ⊆ R → R, we define the associated function

(1.8) ϕsc
V (x) := ϕ(λ1(x))c1 + · · ·+ ϕ(λr(x))cr,

and SC trace function

(1.9) ϕtr
V (x) := ϕ(λ1(x)) + · · ·+ ϕ(λr(x)) = tr(ϕsc

V (x)) ∀x ∈ S,

where x ∈ V has the spectral decomposition

x = λ1(x)c1 + · · ·+ λr(x)cr.

In this paper we extend the aforementioned results to general symmetric cone
setting where we establish the convexity of SC trace functions and the compounds
of SC trace functions. Throughout this note, for any x, y ∈ V, we write x ≽K y
if x − y ∈ K; and write x ≻K y if x − y ∈ intK. For a real symmetric matrix
A, we write A ≽ 0 (respectively, A ≻ 0) if A is positive semidefinite (respectively,
positive definite). For any ϕ : J → R, ϕ′(t) and ϕ′′(t) denote the first derivative and
second-order derivative of ϕ at the differentiable point t ∈ J , respectively. Suppose
F : S ⊆ V → R, ∇F (x) and ∇2F (x) denote the gradient and the Hessian matrix of
F at the differentiable point x ∈ S, respectively.
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2. Preliminaries

This section recalls some results on Euclidean Jordan algebras that will be used
in subsequent analysis. More detailed expositions of Euclidean Jordan algebras can
be found in Koecher’s lecture notes [16] and the monograph by Faraut and Korányi
[13].

Let V be an n-dimensional vector space over the real field R, endowed with a
bilinear mapping (x, y) 7→ x ◦ y from V × V into V. The pair (V, ◦) is called a
Jordan algebra if

(i) x ◦ y = y ◦ x for all x, y ∈ V,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V.

Note that a Jordan algebra is not necessarily associative, i.e., x ◦ (y ◦ z) = (x ◦ y) ◦ z
may not hold for all x, y, z ∈ V. We call an element e ∈ V the identity element if
x ◦ e = e ◦ x = x for all x ∈ V. A Jordan algebra (V, ◦) with an identity element e
is called a Euclidean Jordan algebra if there is an inner product ⟨·, ·⟩V such that

(iii) ⟨x ◦ y, z⟩V = ⟨y, x ◦ z⟩V for all x, y, z ∈ V.
Given a Euclidean Jordan algebra A = (V, ◦, ⟨·, ·⟩V), we denote the set of squares as

K :=
{
x2 | x ∈ V

}
.

From [13, Theorem III.2.1], K is a symmetric cone which means that K is a self-dual
closed convex cone with nonempty interior and for any two elements x, y ∈ intK,
there exists an invertible linear transformation T : V → V such that T (K) = K and
T (x) = y.

For any given x ∈ A, let ζ(x) be the degree of the minimal polynomial of x, i.e.,

ζ(x) := min
{
k : {e, x, x2, · · · , xk} are linearly dependent

}
.

Then the rank of A is defined as max{ζ(x) : x ∈ V}. In this paper, we use r to
denote the rank of the underlying Euclidean Jordan algebra. Recall that an element
c ∈ V is idempotent if c2 = c. Two idempotents ci and cj are said to be orthogonal
if ci ◦ cj = 0. One says that {c1, c2, . . . , ck} is a complete system of orthogonal
idempotents if

c2j = cj , cj ◦ ci = 0 if j ̸= i for all j, i = 1, 2, · · · , k and
∑k

j=1 cj = e.

An idempotent is primitive if it is nonzero and cannot be written as the sum of
two other nonzero idempotents. We call a complete system of orthogonal primitive
idempotents a Jordan frame. Now we state the second version of the spectral
decomposition theorem.

Theorem 2.1 ([13, Theorem III.1.2]). Suppose that A is a Euclidean Jordan algebra
with rank r. Then for any x ∈ V, there exists a Jordan frame {c1, . . . , cr} and real
numbers λ1(x), . . . , λr(x), arranged in the decreasing order λ1(x) ≥ λ2(x) ≥ · · · ≥
λr(x), such that

x = λ1(x)c1 + λ2(x)c2 + · · ·+ λr(x)cr.
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The numbers λj(x) (counting multiplicities), which are uniquely determined by x,
are called the eigenvalues and tr(x) =

∑r
j=1 λj(x) the trace of x.

Since, by [13, Proposition III.1.5], a Jordan algebra (V, ◦) with an identity element
e ∈ V is Euclidean if and only if the symmetric bilinear form tr(x ◦ y) is positive
definite, we may define another inner product on V by ⟨x, y⟩ := tr(x ◦ y) for any
x, y ∈ V. The inner product ⟨·, ·⟩ is associative by [13, Prop. II. 4.3], i.e., ⟨x, y◦z⟩ =
⟨y, x ◦ z⟩ for any x, y, z ∈ V. For any given x ∈ V, let L(x) be the linear operator of
V defined by

L(x)y := x ◦ y ∀y ∈ V.
Then, L(x) is symmetric with respect to the inner product ⟨·, ·⟩ in the sense that

⟨L(x)y, z⟩ = ⟨y,L(x)z⟩ ∀y, z ∈ V.
In the sequel, we let ∥ · ∥ be the norm on V induced by the inner product, namely,

(2.1) ∥x∥ :=
√

⟨x, x⟩ =
(∑r

j=1 λ
2
j (x)

)1/2
∀x ∈ V.

A Euclidean Jordan algebra is called simple if it cannot be written as a direct sum
of the other two Euclidean Jordan algebras. It is known that every Euclidean Jordan
algebra is a direct sum of simple Euclidean Jordan algebras. Unless otherwise stated,
in the rest of this paper, we assume that A = (V, ◦, ⟨·, ·⟩) is a simple Euclidean
Jordan algebra of rank r. Let {c1, c2, . . . , cr} be a Jordan frame of A. From [13,
Lemma IV. 1.3], we know that the operators L(cj), j = 1, 2, . . . , r commute and
admit a simultaneous diagonalization. For i, j ∈ {1, 2, . . . , r}, define the subspaces

Vii := Rci and Vij :=

{
x ∈ V | ci ◦ x = cj ◦ x =

1

2
x

}
when i ̸= j.

Then, [13, Corollary IV.2.6] says

dim(Vij) = dim(Vst) for any i ̸= j ∈ {1, 2, . . . , r} and s ̸= t ∈ {1, 2, . . . , r},
and n = r + d

2r(r − 1) where d denotes this common dimension. Moreover, from
[13, Theorem IV.2.1], we have the following conclusion.

Theorem 2.2. The space V is the orthogonal direct sum of subspaces Vij (1 ≤ i ≤
j ≤ r), i.e., V = ⊕i≤jVij. Furthermore,

Vij ◦ Vij ⊂ Vii + Vij ,

Vij ◦ Vjk ⊂ Vik, if i ̸= k,

Vij ◦ Vkl = {0}, if {i, j} ∩ {k, l} = ∅.

Let x ∈ V have the spectral decomposition x =
∑r

j=1 λj(x)cj , where λ1(x) ≥
λ2(x) ≥ · · · ≥ λr(x) are the eigenvalues of x and {c1, c2, . . . , cr} is the correspond-
ing Jordan frame. For i, j ∈ {1, 2, . . . , r}, let Cij(x) be the orthogonal projec-
tion operator onto Vij . Then, from Theorem IV 2.1 of [13], it follows that for all
i, j = 1, 2, . . . , r,

(2.2) Cjj(x) = 2L2(cj)− L(cj) and Cij(x) = 4L(ci)L(cj) = 4L(cj)L(ci) = Cji(x).
Moreover, the orthogonal projection operators {Cij(x) : i, j = 1, 2, . . . , r} satisfy

Cij(x) = C∗
ij(x), C2

ij(x) = Cij(x), Cij(x)Ckl(x) = 0 if {i, j} ̸= {k, l}(2.3)
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and

(2.4)
∑

1≤i≤j≤r

Cij(x) = I.

Suppose ϕ : R → R be a scalar valued function and we define the Löwner operator
associated with ϕ as

ϕsc
V (x) =:

r∑
j=1

ϕ(λj(x))cj ,

where x ∈ V has the spectral decomposition x =
∑r

j=1 λj(x)cj . Korányi [15] (or

see [19]) proves the following result, which generalizes Löwner result on symmetric
matrices to Euclidean Jordan algebras.

Theorem 2.3. Let x =
∑r

j=1 λj(x)cj and (a, b) be an open interval in R that

contains λj(x), j = 1, 2, . . . , r. If ϕ is continuously differentiable on (a, b), then ϕsc
V

is differentiable at x and its derivative, for any h ∈ V, is given by

(2.5)
(
∇ϕsc

V

)
(x)(h) =

r∑
j=1

(
ϕ[1](λ(x))

)
jj
Cjj(x)h+

∑
1≤j<l≤r

(
ϕ[1](λ(x))

)
jl
Cjl(x)h

where the coefficient is defined as

(2.6) ϕ[1](λ(x))jl :=

{
ϕ

′
(λj) if λj = λl,

ϕ(λj)−ϕ(λl)
λj−λl

if λj ̸= λl.

Moreover, based on this theorem, Sun and Sun [19] show that ϕsc
V is continu-

ously differentiable at x if and only if ϕ is continuously differentiable at λj(x), j =
1, 2, · · · , r. We will exploit such property to achieve Lemma 3.1 which paves a way
to our main result.

3. Main results

In this section, we present how we achieve the convexity of symmetric cone trace
functions. We start with a technical lemma.

Lemma 3.1. For any given scalar function ϕ : J ⊆ R → R, let ϕsc
V : S → V and

ϕtr
V : S → R be given by (1.8) and (1.9), respectively. Assume that J is an open

interval in R. Then, the following results hold.

(a) The domain S of ϕsc
V and ϕtr

V is open and convex.

(b) If ϕ is (continuously) differentiable, then ϕtr
V is (continuously) differentiable

on S with ∇ϕtr
V (x)(h) = ⟨h, (ϕ′

)scV (x)⟩ for all h ∈ V.
(c) If ϕ is twice (continuously) differentiable, then ϕtr

V is twice (continuously)

differentiable on S with ∇2ϕtr
V (x)(h, k) = ⟨h,∇(ϕ

′
)scV (x)k⟩ for all h, k ∈ V.

Proof. (a) Suppose J = (a, b). Then the domain S is open because it is the inter-
section of two open sets S1 and Sr, where S1 and Sr are defined as

S1 = {x ∈ V : λ1(x) < b} and Sr = {x ∈ V : λr(x) > a}.
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We note here that the eigenvalue functions λj(x) are continuous, see [19]. For
convexity of S, we suppose x, y ∈ S and 0 ≤ λ ≤ 1. We want to verify that
λx + (1 − λ)y ∈ S. First, we know that the largest eigenvalue function λ1(x) is a
convex function [8] which implies

λ1(λx+ (1− λ)y) ≤ λλ1(x) + (1− λ)λ1(y) < λa+ (1− λ)a = a.

This means λx+ (1− λ)y ∈ S1. Analogously, we know that the smallest eigenvalue
function λr(x) is concave which leads to λr(λx+(1−λ)y) > b, i.e. λx+(1−λ)y ∈ Sr.

(b) As mentioned earlier, the (continuous) differentiability is known. From the
following formula

ϕtr
V (x) :=

r∑
j=1

ϕ(λj(x)) =

⟨
r∑

j=1

ϕ(λj(x))cj , e

⟩
= ⟨ϕsc

V (x), e⟩,

we have that, for any h ∈ V,

∇ϕtr
V (x)(h) =

⟨
∇ϕsc

V (x)h, e
⟩
=
⟨
h,∇ϕsc

V (x)e
⟩

where we use symmetry property of ∇ϕsc
V (x) in the second equation. By applying

equations (2.5) and (2.6), we obtain

∇ϕsc
V (x)e =

r∑
j=1

(
ϕ[1](λ(x))

)
jj
Cjj(x)e+

∑
1≤j<l≤r

(ϕ[1](λ(x)))jlCjl(x)e

=
r∑

j=1

(ϕ[1](λ(x)))jjcj

=
r∑

j=1

ϕ
′
(λj(x))cj = (ϕ

′
)scV (x)(3.1)

Note that e = c1 + · · ·+ cr. Hence Cjj(x)e = cj and Cjl(x)e = 0 for j ̸= l.

(c) Suppose now that ϕ is twice (continuously) differentiable. It is not hard to see

that ϕtr
V is twice (continuously) differentiable on S with∇2ϕtr

V (x)(h, k) = ⟨h,∇(ϕ
′
)scV (x)k⟩

by the expression ∇ϕtr
V (x)(h) = ⟨h, (ϕ′

)scV (x)⟩. 2

Theorem 3.2. For any given f : J → R, let ϕV : S → Rn and ϕtr
V : S → R be given

by (1.5) and (1.6), respectively. Assume that J is an open interval in R. If ϕ is
twice differentiable on J , then

(a) ϕ
′′
(t) ≥ 0 for any t ∈ J ⇐⇒ ∇2ϕtr

V (x) ≽ 0 for any x ∈ S ⇐⇒ ϕtr
V is convex

in S.
(b) ϕ

′′
(t) > 0 for any t ∈ J ⇐⇒ ∇2ϕtr

V (x) ≻ 0 ∀x ∈ S =⇒ ϕtr
V is strictly convex

in S.

Proof. (a) We substitute ϕ by ϕ′, then the coefficient equation (2.6) becomes

ϕ′[1](λ(x))jl :=

{
ϕ′′(λj) if λj = λl;

ϕ′(λj)−ϕ′(λl)
λj−λl

if λj ̸= λl.
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Hence the the coefficients are all nonnegative because of the assumption ϕ
′′
(t) ≥ 0.

Observing that V is a direct sum of orthogonal spaces V = ⊕i≤jVij , we can give an

orthonormal basis B = {c1 . . . , cr, c(1)12 , . . . , c
(d)
12 , c

(1)
13 , . . . , c

(d)
13 , . . . , c

(1)
r−1,r, . . . , c

(d)
r−1,r}

for V and {c(1)jl , . . . , c
(d)
jl } spans the space Vjl, where d is the common dimension of

Vjl, j < l.

Let h, k ∈ B. Plug in Lemma 3.1 (c), then the Hessian ∇2ϕtr
V (x) can be presented

as a diagonal matrix under the basis B

A = diag(ϕ′[1](λ(x))11, . . . , ϕ
′[1](λ(x))rr,

d′s︷ ︸︸ ︷
ϕ′[1](λ(x))12, . . . , ϕ

′[1](λ(x))12,

, . . . . . . . . . . . . . . . . . . ,

d′s︷ ︸︸ ︷
ϕ′[1](λ(x))r−1,r, . . . , ϕ

′[1](λ(x))r−1,r).

Then, the first part equivalence follows clearly from Lemma 3.2 whereas the second
part is a well-known result in analysis.

(b) The arguments are similar to those in part(a), we omit them here. 2

Indeed, the fact that the strict convexity of ϕ implies the strict convexity of ϕtr
V

was proved in [2, 8] via checking the definition of convex function. But, here our

analysis is much simpler and we also give the relation between ∇(ϕ
′
)scV and ∇2ϕtr

V to
achieve the convexity of SC trace functions. In addition , we note that the necessity
involved in the first equivalence of Theorem 3.2(a) was given in [12] for SOC case
via a different way. Next, we will illustrate the application of Theorem 3.2 with
some SC trace functions.

Theorem 3.3. The following functions associated with K are all strictly convex.

(a) F1(x) = − ln(det(x)) for x ∈ intK.
(b) F2(x) = tr(x−1) for x ∈ intK.
(c) F3(x) = tr(h(x)) for x ∈ intK, where

h(x) =

{
xp+1−e
p+1 + x1−q−e

q−1 if p ∈ [0, 1], q > 1;
xp+1−e
p+1 − lnx if p ∈ [0, 1], q = 1.

(d) F4(x) = − ln(det(e− x)) for x ≺K e.
(e) F5(x) = tr((e− x)−1 ◦ x) for x ≺K e.
(f) F6(x) = tr(exp(x)) for x ∈ V.
(g) F7(x) = ln(det(e+ exp(x))) for x ∈ V.

(h) F8(x) = tr

(
x+ (x2 + 4e)1/2

2

)
for x ∈ V.

Proof. Note that F1(x), F2(x) and F3(x) are the SC trace functions associated with
ϕ1(t) = − ln t (t > 0), ϕ2(t) = t−1 (t > 0) and ϕ3(t) (t > 0), respectively, where

ϕ3(t) =

{
tp+1−1
p+1 + t1−q−1

q−1 if p ∈ [0, 1], q > 1,
tp+1−1
p+1 − ln t if p ∈ [0, 1], q = 1,
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F4(x) is the SC trace function associated with ϕ4(t) = − ln(1− t) (t < 1), F5(x) is
the SC trace function associated with ϕ5(t) =

t
1−t (t < 1) by noting that

(e− x)−1 ◦ x =
λ1(x)

1− λ1(x)
c1(x) + · · ·+ λr(x)

1− λr(x)
cr(x);

F6(x) and F7(x) are the SC trace functions associated with ϕ6(t) = exp(t) (t ∈ R)
and ϕ7(t) = ln(1 + exp(t)) (t ∈ R), respectively, and F8(x) is the SC trace function

associated with ϕ8(t) = 2−1
(
t+

√
t2 + 4

)
(t ∈ R). It is easy to verify that the

functions ϕ1-ϕ8 have positive second-order derivatives in their respective domain,
and therefore F1-F8 are strictly convex functions by Theorem 3.2(b). 2

Analogous to SOC case, e.g., [6, 7, 17, 18, 20], the functions F1, F2 and F3 can be
served as barrier functions for symmetric cone programming (SCP) which also play
a key role in the development of interior point methods for SCPs. The function F3

covers a wide range of barrier functions for SCPs, including the classical logarithmic
barrier function, the self-regular functions and the non-self-regular functions; see [7]
for details. The functions F4 and F5 are called shifted barrier functions [1, 2, 3] for
SOCPs, and F6-F8 can be used as penalty functions for SCPs.

Besides the application in establishing convexity for SC trace functions, our es-
tablishment of convexity of some compound functions of SC trace functions and
scalar-valued functions is much simpler, which is usually difficult to achieve by the
definition of convex function.

4. Conclusions

We establish convexity of SC-functions, especially for SC trace functions, which
are the key of penalty and barrier function methods for symmetric cone program-
ming and some important inequalities associated with symmetric cones. We believe
that the results in this paper will be helpful towards establishing further properties
of other SC functions.
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