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Also, we show that a game is CRIA if and only if none of its kth pseudo-cores is
empty. Furthermore, a CRIA game might have empty core, therefore, our geometric
interpretation is applied to the Shapley value for games with empty core. Finally,
our middle-way solution is different from the core-center(Gonzalez-Diaz& Sanchez-
Rodriguez [3], 2007).

2. Preliminaries

We adopt the notation as in most of mathematics text book, a vector in Rn is
usually denoted by a bold face letter, x = (x1, x2, . . . , xn) and the order relation
x ≥ y means that xi ≥ yi for all i ∈ N . Following [2],[6] and [8], we have definitions
and notations as follows.

Let N = {1, 2, . . . , n} be the set of players. The collection of coalitions(subsets)
in N is denoted by 2N . The coalition N is called the grand coalition. The number
of players in coalition S is denoted by |S|.

A cooperative n-person game with transferable utility, shortly TU game, in char-
acteristic function is a pair (N, v), where v : 2N → R is a function assigning, to
each coalition S ∈ 2N , its worth v(S) satisfying v(∅) = 0. The set of all n-person
games defined on N is denoted by GN .

A game (N, v) is said to be superadditive if and only if v(T ∪S) ≥ v(T )+v(S), for
all disjoint S, T ∈ 2N . Moreover, (N, v) is called a proper game if it is superadditive.
A proper game is clearly monotonic in the following sense: if S ⊆ T then v(S) ≤
v(T ). A game (N, v) is convex if, v(T ∪ S) + v(T ∩ S) ≥ v(T ) + v(S), for every
S, T ∈ 2N .

A payoff vector(allocation) x = (x1, x2, . . . , xn) is called an imputation if∑
i∈N xi = v(N) (group rationality or efficiency), and xi ≥ v({i}), for each i ∈ N

(individual rationality). The set of all imputations of v is denoted by I(v).
Given a payoff vector x, we define x(S) =

∑
j∈S xj , for each S ⊆ N , and define

x(∅) = 0.
The core(Gillies, 1953) of an n-person game (N, v) is the set of payoff vec-

tors(allocations)

(2.1) C(N, v) = {x ∈ Rn : x(S) ≥ v(S), for every S ⊆ N,x(N) = v(N)}.

The Shapley value on GN is well-known as the mapping ϕ = (ϕ1, . . . , ϕn) : G
N →

Rn such that

ϕi(v) =
∑
S⊂N
i̸∈S

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)), i = 1, . . . , n.

3. The coalitional regular in average games

Given an n-person game (N, v), for each integer k= 0, 1, 2, . . . , n, we define
Ωk = {T | |T | = k, T ⊆ N}. (Note: The indices k + 1, k, k − 1 and k − 2 always
denote the size of a coalition through out this article.)
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It is easy to see that the size of Ωk is |Ωk| =
(
n
k

)
. For each k, we define the average

of all the worths of the coalitions T ∈ Ωk by the following:

ave(k, v) =
1(
n
k

) ∑
|T |=k
T⊆N

v(T ).

It is easy to see ave(0, v) = 0 and ave(n, v) = v(N). Suppose that each prob-
ability function Pk defined on sample space Ωk is uniformly distributed and the
players in a coalition T share the worth v(T ) equally, i.e. each player in T shares
1
|T | ·v(T ), then the expected payoff for a player in a coalition of size k is 1

k ·ave(k, v).
Enlightened by the “snowballing” or “bandwagon” effect mentioned in the paper of
Shapley([5],1971), we propose the following definition.

Definition 3.1. A TU game (N, v) is called a coalitional regular in average game,
abbreviated as CRIA game if

(3.1)
1

n
· v(N) ≥ 1

k
· ave(k, v) = 1

k
· 1(

n
k

) ∑
|T |=k
T⊆N

v(T ), for each k = 1, 2, . . . , n− 1.

In the investigation of the solutions of a cooperative game, researchers usually
assume that the grand coalition N is formed, then study how to distribute v(N)
among all the players inN . A player has incentive to participate in a bigger coalition
if the expected payoff is bigger. The inequality (3.1) makes players have incentive
to participate in N , i.e. there is a “snowballing” or “bandwagon” effect in a CRIA
game. Therefore it is more acceptable in a CRIA game than in an improper game
to assume that the grand coalition is formed. As illustrations, we provide three
examples.

Example 3.2. Let N = {1, 2, 3}, v({1}) = v({2}) = v({3}) = 0, v({1, 2}) = 1,
v({1, 3}) = 3, v({2, 3}) = 2, v({1, 2, 3}) = 3. Then ave(1, v) = 0, ave(2, v) = 2, and
hence ave(1, v) ≤ 1

3v(N), ave(2, v) ≤ 2
3v(N). Hence, (N, v) is CRIA. On the other

hand, since for A = {1, 3}, B = {2, 3}, v(A ∪ B) + v(A ∩ B) = 3 + 0 ̸≥ 3 + 2 =
v(A)+V (B), (N, v) is not a convex game. Therefore a CRIA game is not necessarily
a convex game. Later, we will show that a convex game is a CRIA game.

Example 3.3. Let N = {1, 2, 3}, v({1}) = v({2}) = v({3}) = 0, v({1, 2}) =
2, v({1, 3}) = 2, v({2, 3}) = 2, and v({1, 2, 3}) = 2.5. (N, v) is clearly a proper
game. On the other hand, since 1

2 × 1

(32)
× (v({1, 2}) + v({1, 3}) + v({2, 3})) =

1
2 · 1

3(2 + 2 + 2) ̸≤ 1
3 × v(N) = 1

3 × 2.5, (N, v) is not a CRIA game. Therefore, a
proper game is not necessarily a CRIA game.

Example 3.4. Let N = {1, 2, 3}, v({1}) = v({2}) = v({3}) = 0, v({1, 2}) =
3, v({1, 3}) = 1, v({2, 3}) = 1 and v({1, 2, 3}) = 2.5. (N, v) is clearly not a proper
game. On the other hand, since ave(1, v) = 0, ave(2, v) = 5

3 , and hence ave(1, v) ≤
1
3v(N), 1

2ave(2, v) ≤
1
3v(N), hence (N, v) is a CRIA game. Therefore, a CRIA game

is not necessarily a proper game.
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4. Pseudo cores and middle-way solution

Observing the core C(v) as (2.1), for k = 1, 2, . . . , n − 1, we defined the kth

semi-cores Ck(v) as follows.

Definition 4.1. Given an integer k with 1 ≤ k ≤ n − 1, the kth semi-core of an
n-person game (N, v), denoted by Ck(v), is defined as follows.

(4.1) Ck(v) = {x | x(S) ≥ v(S), for all S ⊆ N with |S| = k and x(N) = v(N)}

Apparently, the first semi-core C1(v) is the set of all imputations of v. Also, it is
clear that the core of v is the intersection of all the kth semi-cores of v, i.e.

C(v) =
k=n−1∩
k=1

Ck(v).

We have the following example where all kth semi-cores Ck(v) ̸= ∅ but the core
C(v) = ∅.

Example 4.2. Let N = {1, 2, 3} and v be the TU game defined on 2N such that
v({1, 2}) = 2, v({3}) = 2, v({1, 2, 3}) = 3 and v(S) = 0 for any other coalition S.

Then, the core C(v) = ∅, the first semi-core C1(v) = {(x1, x2, x3) | x1 ≥ 0, x2 ≥
0, x3 ≥ 2 and x1 + x2 + x3 = 3} ̸= ∅ and the 2nd semi-core C2(v) = {(x1, x2, x3) |
x1 + x2 ≥ 2, x1 + x3 ≥ 0, x2 + x3 ≥ 0 and x1 + x2 + x3 = 3} ̸= ∅. Since the core
of v is empty, we cannot say that the Shapley value of v is the geometric center
of the core. However, since C1(v) ̸= ∅ and C2(v) ̸= ∅, the players may consider a
middle-way solution which is out of C1(v) and C2(v).

Given an n-person game (N, v), we consider the (k + 1)th semi-core of the game
(N, v) and a fixed player ℓ ∈ N . Write x = (x1, x2, . . . , xℓ−1, xℓ, xℓ+1, . . . , xn) ∈
C(k+1)(v). Observing

C(k+1)(v) = {x | x(S) ≥ v(S) for all S ⊂ N with |S| = k + 1 and x(N) = v(N)},
by a simple combinatorial calculation, we can see that the player ℓ appears

(
n−1
k

)
times in the coalitions S where |S| = k + 1 related to the inequalities x(S) ≥ v(S).
Also, by a simple combinatorial calculation, we can see that any other player i ̸= ℓ
appears

(
n−2
k−1

)
times in the coalitions S with ℓ ∈ S and |S| = k+1. Therefore, given

S = T ∪ {ℓ} with ℓ ̸∈ T and |S| = k + 1, there are
(
n−1
k

)
inequalities as follows.

(4.2) xℓ +
∑
i∈S
i̸=ℓ

xi ≥ v(T ∪ {ℓ}) = v(S), for each T ⊆ N − {ℓ} with |T | = k

Now, for all the inequalities corresponding to S where S = T ∪ {ℓ} with |T | = k
and ℓ ̸∈ T in (4.2), we have the following.

Case 1. When |T | = k = 0, T = ∅, then

xℓ + 0 ≥
∑
T=∅

v(T ∪ {ℓ}) = v({ℓ})

=
n− 1

n− k − 1

∑
T=∅

v(T ∪ {ℓ})− k

n− k − 1
v(N)(4.3)
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=
1

1
v({ℓ})− 0

n− k − 1
v(N) = w0

ℓ .(4.4)

Case 2. When |T | = k = 1, 2, . . . , n− 2, sum all the inequalities corresponding to
S where S = T ∪ {ℓ} with |T | = k and ℓ ̸∈ T in (4.2) together, we have(

n− 1

k

)
· xℓ +

(
n− 2

k − 1

)
·

∑
i∈N−{ℓ}

xi ≥
∑
ℓ∈S

|S|=k+1

v(S).

Since
(
n−1
k

)
=

(
n−2
k

)
+

(
n−2
k−1

)
, we have(

n− 1

k

)
· xℓ +

(
n− 2

k − 1

)
·

∑
i∈N−{ℓ}

xi

=

(
n− 2

k

)
· xℓ +

(
n− 2

k − 1

)
· xℓ +

(
n− 2

k − 1

)
·

∑
i∈N−{ℓ}

xi

=

(
n− 2

k

)
· xℓ +

(
n− 2

k − 1

)
·
∑
i∈N

xi

=

(
n− 2

k

)
· xℓ +

(
n− 2

k − 1

)
· v(N) ≥

∑
ℓ∈S

|S|=k+1

v(S).

Therefore by some simple algebraic computations, we have

xℓ ≥
1(

n−2
k

) ∑
|T |=k

T⊂N−{ℓ}

v(T ∪ {ℓ}) + (
−k

n− 1− k
)v(N)

=
n− 1

n− k − 1

[
1(

n−1
k

) ∑
T⊂N−{ℓ}

|T |=k

v(T ∪ {ℓ})
]
+

−k

n− k − 1
v(N).(4.5)

Combine (4.4) and (4.5) we have the following proposition.

Proposition 4.3. Given an n-person game (N, v) and its (k + 1)th semi-core

C(k+1)(v). let x = (x1, x2, . . . , xn) ∈ C(k+1)(v), then

xℓ ≥
n− 1

n− k − 1

[
1(

n−1
k

) ∑
T⊂N−{ℓ}

|T |=k

v(T ∪ {ℓ})
]
− k

n− k − 1
v(N)

def
=== wk+1

ℓ ,(4.6)

for each k = 0, 1, 2, . . . , n− 2 and each ℓ ∈ N .

We denote the greatest lower bound of xℓ in inequality (4.6) by wk+1
ℓ where ℓ

stands for player ℓ and k stands for the number of the other players who participate
in a coalition of size k + 1 with player ℓ. we called wk+1

ℓ the “worst” payoff for

player ℓ in Ck+1(v).
We do not define wk

ℓ for k = n − 1, however, when k = n − 1, we may regard

Ck+1(v) as the hyperplane x1 + x2 + · · ·+ xn = v(N) and xℓ ∈ R.
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Remark 4.4. Fixed a player ℓ, let Ωk+1
ℓ = {S : |S| = k + 1, ℓ ∈ S ⊆ N}, it is

easy to see the number of element |Ωk+1
ℓ | =

(
n−1
k

)
. We define the average of all the

worths of coalitions S’s of size k + 1 with ℓ ∈ S as follows.

ave(k + 1, v, ℓ) =
1(

n−1
k

) ∑
|T |=k

T⊆N−{ℓ}

v(T ∪ {ℓ}).

If the probability defined on Ωk+1
ℓ is uniformly distributed and the players in each

coalition S share the worth v(S) equally, then player ℓ’s expected payoff is ( 1
k+1) ·

ave(k + 1, v, ℓ). We have the following interesting observation.

wk+1
ℓ =

1

k + 1
ave(k + 1, v, ℓ)− n · k

n− k − 1

[ 1
n
ave(n, v, ℓ)− 1

k + 1
ave(k + 1, v, ℓ)

]
,

which implies wk+1
ℓ = 1

k+1ave(k + 1, v, ℓ) if and only if 1
nave(n, v, ℓ) =

1
k+1ave(k +

1, v, ℓ). Intuitively, when a player ℓ’s expected payoff in coalition of size (k + 1) is
the same as that in the grand coalition, the player at worst can get his expected
payoff in coalition of size (k + 1), w.r.t. any payoff vector x ∈ C(k+1)(v).

For convenience of combinatorial computations, we let k = 0, 1, . . . , n − 2 and
make the following definition.

Definition 4.5. The (k + 1)th pseudo-core of an n-person game (N, v) is defined
as follows.
(4.7)

PC(k+1)(v) = {(x1, . . . , xn) | xℓ ≥ wk+1
ℓ , for each ℓ ∈ N and x(N) = v(N)},

where

wk+1
ℓ = (

n− 1

n− k − 1
)

[
1(

n−1
k

) ∑
T⊂N−{ℓ}

|T |=k

v(T ∪ {ℓ})
]
− k

n− k − 1
v(N).

Remark 4.6. Please note that PC1(v) = C1(v) and PC(k+1)(v) ⊇ C(k+1)(v),

however in general C(k+1)(v) is a proper subset of PC(k+1)(v).

We denote H0 = {x ∈ Rn : x(N) = v(N)}. Given k ∈ {0, 1, 2, . . . , n − 2}, for
each ℓ ∈ N , we denote H

(k+1)
ℓ = {(x1, . . . , xn) ∈ Rn : xℓ = wk+1

ℓ }.
We can easily see that H0 and H

(k+1)
ℓ , for each k ∈ {0, 1, 2, . . . , n− 2} and each

ℓ ∈ N are hyperplanes in Rn.

Next, given a fixed r ∈ N , we define y(k+1),r = (y
(k+1),r
1 , y

(k+1),r
2 , . . . , y

(k+1),r
n ) ∈

PC(k+1)(v) to be the payoff vector where each player ℓ ∈ N − {r} get his“worst”

payoff wk+1
ℓ , i.e.

(4.8) y
(k+1),r
ℓ = wk+1

ℓ , for each ℓ ∈ N − {r},
then the player r gets

y(k+1),r
r = v(N)−

∑
ℓ∈N−{r}

y
(k+1),r
ℓ = v(N)−

∑
ℓ∈N−{r}

wk+1
ℓ



A NEW INTERPRETATION OF THE SHAPLEY VALUE 39

= v(N) + (n− 1) · k

n− 1− k
v(N)− 1(

n−2
k

) ∑
ℓ∈N−{r}

( ∑
|T |=k

T⊂N−{ℓ}

v(T ∪ {ℓ})
)
.(4.9)

Intuitively, since all the players other than r get their “worst” payoff’s w.r.t. y(k+1),r,
then with restriction to (4.6) and the efficiency restriction y(k+1),r(N) = v(N),

y
(k+1),r
r is the least upper bound of the inequality

xr ≤ v(N)−
∑

ℓ∈N−{r}

wk+1
ℓ ,

it comes from

xr = v(N)−
∑

ℓ∈N−{r}

xℓ and xℓ ≥ wk+1
ℓ ∀ ℓ ̸= r.

We call y
(k+1),r
r the “best” payoff of player r in PC(k+1)(v). Also, the payoff vector

y(k+1),r is said to be the “best” payoff vector in favor of player r, or player r’s
“best” payoff vector in PC(k+1)(v).

Since each player r takes his “best” payoff only once w.r.t. y(k+1),r and takes
his “worst” payoff wk+1

r in the rest of n − 1 times w.r.t. y(k+1),i, i ∈ N − {r}, in
PC(k+1)(v) it is easy to see the following.

y(k+1),1
r = y(k+1),2

r = · · · = y(k+1),(r−1)
r = y(k+1),(r+1)

r = · · · = y(k+1),n
r = wk+1

r .

(4.10)

From the setting of y(k+1),r, by (4.8), (4.9) and (4.10), we know that the inter-
section of the n hyperplanes ( ∩

ℓ∈N−{r}

H
(k+1)
ℓ

)
∩H0

is exactly the singleton {y(k+1),r}.

Definition 4.7. Given a TU game (N, v) and all its pseudo cores, let all the players

in N take turns to be the one who get his “best” payoff in PC(k+1)(v), then we have

constructed n points y(k+1),1,y(k+1),2, . . . ,y(k+1),n, in favor of player 1, 2, . . . ., n,
respectively, in PC(k+1)(v) ⊆ H0. It is certainly a middle-way method for the
players in N to take turns to get their “best” payoff, then accept the average of the

n “best” payoff vectors, denoted by y(k+1),··· where

y(k+1),··· =

∑
r∈N

y(k+1),r

n
.

We call y(k+1),··· the (k + 1)th-middle-way payoff vector(allocation).

Again, we have the following definition.
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Definition 4.8. The middle-way solution of an n-person game is the average of all

the (k + 1)th-middle-way payoff vector, y(k+1),···, k = 0, 1, . . . , n− 2. We denote the
middle-way solution by µ(v) = (µ1(v), ·, µn(v)) = y where

y =

n−2∑
k=0

y(k+1),···

n− 1
.

Later, we will prove that the middle-way solution µ(v) is exactly the Shapley
value.

Now, the following example justifies the value of this paper.

Example 4.9. There are there children, 1:Alice, 2:Bob and 3:Cathy. Alice has an
ordinary jumping rope, she can play jumping rope by herself and get v({1}) = 10
unit of happiness. Bob has an ordinary jumping rope too and v({2}) = 10. Cathy
has a valuable kid’s rocking chair, she can play with the chair by herself and get
v({3}) = 15. If Alice and Bob play together, they can use the two jumping ropes to
make a simple swing and have more fun, say v({1, 2}) = 27. Only one jumping rope
cannot do much with the kid’s rocking chair, hence we let v({1, 3}) = v({2, 3}) = 26.
Suppose the three children play together, they may use the two jumping ropes and
the chair to make a comfortable swing with chair and have much more fun, say
v({1, 2, 3}) = 41. But, the swing will be broken if two or more children ride on it,
therefore, the children must take turns to ride on the swing.

Now, we use our mathematical model to explain the game. The player set is
N = {1, 2, 3} and the game (N, v) is CRIA.

Case 1: The upper index 1 of w1
i denotes the case that each child plays alone. We

have w1
1 = v({1}) = 10, w1

2 = v({2}) = 10 and w1
3 = v({3}) = 15. Intuitively, when

a child plays alone, at worst the child can get w1
i = v({i}). Hence, y1,1 = (16, 10, 15)

means that when Alice takes her turn to ride on the swing and enjoys 16 unit of
happiness, Bob and Cathy are happily waiting for their turns, Bob is as happy as
playing alone, Cathy is also as happy as playing alone. By similar calculations,
y1,2 = (10, 16, 15) and y1,3 = (10, 10, 21), hence y1,··· = (363 ,

36
3 ,

51
3 ) = (12, 12, 17).

Case 2: The upper index 2 of w2
i denotes the case that two children play together.

Now, w2
1 = 12 > 10 = v({1}) and w2

2 = 12 > 10 = v({2}) mean that a child
who has an ordinary jumping rope is better off whenever there is another child
playing with him or her. The very interesting case which w2

3 = 11 < 15 = v({3})
means that Cathy is a little reluctant to share her valuable kid’s rocking chair with
others. Therefore, y2,1 = (18, 12, 11) ̸∈ I(v) means that when Alice takes her turn
to ride on the swing and enjoys 18 unit of happiness, Bob and Cathy are happily
waiting for their turns, Bob is happier than playing alone, but Cathy is a little
reluctant to share her valuable rocking chair with others. By similar calculation,
y2,2 = (12, 18, 11) and y2,3 = (12, 12, 17), hence y2,··· = (423 ,

42
3 ,

39
3 ) = (14, 14, 13).

Finally, suppose the game is repeated 3 times, and each child has his or her turn
to ride on the comfortable swing, the middle-way solution is (13, 13, 15) which is
the Shapley value of (N, v). It is easy to see that the core of (N, v) is empty.

In game (N, v), Cathy has a very subtle situation, her payoff w.r.t the middle-way
solution (13, 13, 15) is 15. If she plays alone, she has at least 15 unit of happiness.
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If she plays with Alice and Bob, she has to share her valuable kid’s rocking chair
with others taking turns to ride on the comfortable swing and has the risks of
y2,1 = (18, 12, 11), y2,2 = (12, 18, 11) and y2,··· = (14, 14, 13) ̸∈ I(v). Nevertheless,
on the other hand, if she plays with Alice and Bob, she has opportunity to get
y2,3 = (12, 12, 17) or even y1,3 = (10, 10, 21) and y1,··· = (12, 12, 17). Suppose the
game is repeated 3 times, the children take turns to ride on the comfortable swing,
it is still rational for Cathy to accept the risks of y2,1, y2,2 and y2,··· and then has
chance to get y2,3 or even y1,3 and y1,···. It is still worthwhile studying a payoff vector
which is not in I(v).

Before we give the main results, we need the following lemma.

Lemma 4.10. Given a game (N, v) and an i ∈ N = {1, 2, 3, . . . , n} then∑
ℓ∈N−{i}

( ∑
|T |=k

T⊂N−{ℓ}

v(T ∪ {ℓ})
)

=k ·
∑
|T |=k

T⊂N−{i}

v(T ∪ {i}) + (k + 1) ·
∑

|T |=k+1
T⊂N−{i}

v(T ).(4.11)

Proof. We have the following combinatorial calculations.∑
ℓ∈N−{i}

( ∑
|T |=k

T⊂N−{ℓ}

v(T ∪ {ℓ})
)

=

{ ∑
ℓ∈N−{i}

( ∑
|T |=k

T⊂N−{ℓ}

v(T ∪ {ℓ})
)
+

∑
|T |=k

T⊂N−{i}

v(T ∪ {i})
}
−

∑
|T |=k

T⊂N−{i}

v(T ∪ {i})

=
∑
ℓ∈N

( ∑
|T |=k

T⊂N−{ℓ}

v(T ∪ {ℓ})
)
−

∑
|T |=k

T⊂N−{i}

v(T ∪ {i})

(4.12)

Now, observe the double summation∑
ℓ∈N

( ∑
|T |=k

T⊂N−{ℓ}

v(T ∪ {ℓ})
)
.(4.13)

Given any coalition with k+1 players, say {j1, j2, . . . , jk+1}, we can write the same
coalition in turns of k+ 1 different forms of T ∪ {ℓ} by choosing ℓ = j1, j2, . . . , jk+1

respectively. In other words, each v({j1, j2, . . . , jk+1}) of the same k + 1 players is
counted k + 1 times in the double summation (4.13).

Therefore, ∑
ℓ∈N

( ∑
|T |=k

T⊂N−{ℓ}

v(T ∪ {ℓ})
)

= (k + 1) ·
∑

|T |=k+1
T⊂N

v(T )
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= (k + 1) ·
∑
|T |=k

T⊂N−{i}

v(T ∪ {i}) + (k + 1) ·
∑

|T |=k+1
T⊂N−{i}

v(T ).(4.14)

Combine (4.12), (4.13) and (4.14), we get (4.11) and complete the proof. �

The following theorem modifies the pseudo-cores and is one of our main results.

Theorem 4.11. Let (N, v) be an n-person game and y(k+1),1, . . . ,y(k+1),n, 0 ≤ k ≤
n− 2 be “best” payoff vectors in favor of players 1, 2, . . . , n respectively. Then

(i) y(k+1),1, . . . ,y(k+1),n are either distinct or identical.

(ii) PC(k+1)(v) is an empty set or a singleton or an (n−1) simplex of n vertices

y(k+1),1, . . . ,y(k+1),n in the (n− 1)-dimensional hyperplane H0.

In fact
(ii.a) PC(k+1)(v) ̸= ∅ if and only if

1

n
v(N) ≥ 1

k + 1

1(
n

k+1

) ∑
|T |=k+1
T⊂N

v(T ) =
1

k + 1
· ave(k + 1, v).

Or, equivalently,

PC(k+1)(v) = ∅ if and only if
1

n
v(N) <

1

k + 1
· 1(

n
k+1

) ∑
|T |=k+1
T⊂N

v(T ).

(ii.b) The following equality holds

1

n
v(N) =

1

k + 1

1(
n

k+1

) ∑
|T |=k+1
T⊂N

v(T ) if and only if PC(k+1)(v) = {y(k+1),j},

where y(k+1),j = y(k+1),ℓ, for all ℓ ∈ N , moreover, the ith coordinate of

y(k+1),j is of the form: y
(k+1),j
i = wk+1

i , for each i ∈ N. (In this case,

wk+1
1 + wk+1

2 + · · ·+ wk+1
n = v(N).)

(ii.c) The following inequality holds

1

n
v(N) >

1

k + 1
· 1(

n
k+1

) ∑
|T |=k+1
T⊂N

v(T )

if and only if PC(k+1)(v) is an (n−1) simplex of n vertices y(k+1),1, . . . ,

y(k+1),n in the (n− 1)-dimensional hyperplane H0.

Proof. First observe for each fixed i

y(k+1),i ∈ PC(k+1)(v) ⇐⇒

(4.15)
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y
(k+1),i
i ≥ wk+1

i , where wk+1
i =

1(
n−2
k

) ∑
|T |=k

T⊂N−{i}

v(T ∪ {i})− k

n− 1− k
v(N) ⇐⇒

(4.16)

v(N) + (n− 1) · k

n− 1− k
v(N)− 1(

n−2
k

) ∑
ℓ∈N−{i}

( ∑
|T |=k

T⊂N−{ℓ}

v(T ∪ {ℓ})
)

(4.17)

≥ − k

n− 1− k
v(N) +

1(
n−2
k

) ∑
|T |=k

T⊂N−{i}

v(T ∪ {i}) (by (4.9)) ⇐⇒

(n− 1) · k + 1

n− 1− k
v(N)(4.18)

≥ 1(
n−2
k

)
 ∑

|T |=k
T⊂N−{i}

v(T ∪ {i}) +
∑

ℓ⊂N−{i}

( ∑
|T |=k

T⊂N−{ℓ}

v(T ∪ {ℓ})
)

=
1(

n−2
k

)
 ∑

|T |=k
T⊂N−{i}

v(T ∪ {i}) + (by Lemma 4.10)

(
k ·

∑
|T |=k

T⊂N−{i}

v(T ∪ {i}) + (k + 1) ·
∑

|T |=k+1≤n
T⊂N−{i}

v(T )

)

=
(k + 1)(

n−2
k

)
 ∑

|T |=k
T⊂N−{i}

v(T ∪ {i}) +
∑

|T |=k+1
T⊂N−{i}

v(T )


=
(k + 1)(

n−2
k

) ∑
|T |=k+1

v(T )

⇐⇒ 1

n
v(N) ≥ 1

n
· (n− 1− k)

n− 1
· k!(n− 2− k)!

(n− 2)!
·

∑
|T |=k+1

v(T )

=
1

k + 1
· 1(

n
k+1

) ∑
|T |=k+1

v(T )(4.19)

Since i is arbitrary we see that

y(k+1),i ∈ PC(k+1)(v) for some i ⇐⇒ 1

n
v(N) ≥ 1

k + 1
· 1(

n
k+1

) ∑
|T |=k+1,T⊂N

v(T )

⇐⇒ y(k+1),j ∈ PC(k+1)(v), ∀j ∈ N.(4.20)
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Especially, by (4.20) we prove the “⇐” statement of (ii.a). On the other hand,
we also get the following:

1

n
v(N) <

1

k + 1
· 1(

n
k+1

) ∑
|T |=k+1

v(T )

⇐⇒ y(k+1),i /∈ PC(k+1)(v), for some i

⇐⇒ y(k+1),j /∈ PC(k+1)(v), ∀j ∈ N(4.21)

⇐⇒ y
(k+1),i
i < wk+1

i , for some i ⇐⇒ y
(k+1),j
j < wk+1

j , ∀j ∈ N

Next, if we claim that PC(k+1)(v) ̸= ∅, say (x1, . . . , xn) ∈ PC(k+1)(v), implies
1
nv(N) ≥ 1

k+1 · 1

( n
k+1)

∑
|T=k+1

v(T ), then the proof of (ii.a) is complete.

Suppose the conclusion fails, that is, 1
nv(N) < 1

k+1 · 1

( n
k+1)

∑
|T |=k+1

v(T ), which by

(4.21), implies y
(k+1),j
j < wk+1

j ∀j ∈ N . We shall get a contradiction. Now by the

definitions of PC(k+1)(v) and y(k+1),i we have

(x1, x2, . . . , xn) ∈ PC(k+1)(v)

=⇒ wk+1
j ≤ xj = v(N)− (x1 + x2 + · · ·+ xj−1 + xj+1 + · · ·+ xn)

≤ v(N)− (wk+1
1 + wk+1

2 + · · ·+ wk+1
j−1 + wk+1

j+1 + · · ·+ wk+1
n )

= v(N)− (y
(k+1),1
j + y

(k+1),2
j · · ·+ y

(k+1),j−1
j + y

(k+1),j+1
j + · · ·+ y

(k+1),n
j )

= y
(k+1),j
j , ∀j ∈ N.

(4.22)

Therefore, wk+1
i ≤ y

(k+1),i
i < wk+1

i , a contradiction occurs. We have proved our
claim.

Next observe

y
(k+1),i
i = wk+1

i ( notice that yk+1,j
i = wk+1

i , for all j ̸= i)

⇐⇒ v(N) + (n− 1) · k

n− 1− k
v(N)− 1(

n−2
k

) ∑
ℓ∈N−{i}

( ∑
|T |=k

T⊂N−{ℓ}

v(T ∪ {ℓ})
)(4.23)

= − k

n− 1− k
v(N) +

1(
n−2
k

) ∑
|T |=k

T⊂N−{i}

v(T ∪ {i}).

Equation (4.23) is exactly the same as (4.16) if the notation “≥” is replaced by
the notation “=” in inequality (4.16). Similar computation from (4.16) to (4.19)
with all those “≥” being replaced by “=”, we have for each fixed i,

y
(k+1),i
i = wk+1

i



A NEW INTERPRETATION OF THE SHAPLEY VALUE 45

⇐⇒ 1

n
v(N) =

1

k + 1
· 1(

n
k+1

) ∑
|T |=k+1
T⊂N

v(T ).(4.24)

Notice that by definition y
(k+1),j
i = wk+1

i , for each j ̸= i, therefore in the case of
(4.24), since i is arbitrary chosen, we have for each fixed j,

y(k+1),j = (y
(k+1),j
1 , . . . , y

(k+1),j
j−1 , y

(k+1),j
j , y

(k+1),j
j+1 , . . . , y(k+1),j

n )

= (wk+1
1 , . . . , wk+1

j−1 , w
k+1
j , wk+1

j+1 , . . . , w
k+1
n ), ( choose i = j in (4.24))

and hence

y(k+1),j = (wk+1
1 , . . . , wk+1

j−1 , w
k+1
j , wk+1

j+1 , . . . , w
k+1
n ), for some j

⇐⇒ 1

n
v(N) =

1

k + 1
· 1(

n
k+1

) ∑
|T |=k+1
T⊂N

v(T )

⇐⇒ y(k+1),1 = y(k+1),2 = . . . = y(k+1),n = (wk+1
1 , wk+1

2 , . . . , wk+1
n ).(4.25)

On the other hand, the statement in (4.24) is equivalent to

y
(k+1),i
i ̸= wk+1

i ( notice that by definition y
(k+1),j
i = wk+1

i for all j ̸= i)

⇐⇒ 1

n
v(N) ̸= 1

k + 1
· 1(

n
k+1

) ∑
|T |=k+1

v(T ).

(4.26)

But if for each fixed i, the inequalities y
(k+1),i
i ̸= y

(k+1),j
i for all j ̸= i, i = 1, . . . , n,

hold then it is equivalent to say y(k+1),i ̸= y(k+1),j for all j ̸= i, where i = 1, 2 . . . , n,
which means that all points y(k+1),i, i = 1, . . . , n are distinct. According to the
above argument as well as (4.26), we have proved the following:

All points y(k+1),i, i = 1, . . . , n, are distinct

⇐⇒ 1

n
v(N) ̸= 1

k + 1
· 1(

n
k+1

) ∑
|T |=k+1

v(T )(4.27)

By (4.25) and (4.27), we complete the proof of (i). Next suppose 1
nv(N) = 1

k+1 ·
1

( n
k+1)

∑
|T |=k+1 v(T ), then by the fact “(4.15)⇐⇒ (4.19)” and (4.25), we have

PC(k+1)(v) ⊇ {y(k+1),∗}, where y(k+1),∗ = y(k+1),1 = · · · = y(k+1),j = · · · =

y(k+1),n = (wk+1
1 , wk+1

2 , . . . , wk+1
n ). We shall claim PC(k+1)(v) = {y(k+1),∗}. Sup-

pose (x1, . . . , xn) ∈ PC(k+1)(v) − {y(k+1),∗}, then by (4.22) and (4.24), we get

(x1, . . . , xn) = (wk+1
1 , . . . , wk+1

n ) = {y(k+1),∗}, this contradicts to (x1, . . . , xn) ∈
PC(k+1)(v)− {y(k+1),∗}

Finally, by (4.20) and (4.27) we have

1

n
v(N) >

1

k + 1
· 1(

n
k+1

) ∑
|T |=k+1

v(T )(4.28)
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⇐⇒ PC(k+1)(v) contains y(k+1),1, . . . ,y(k+1),n, which are distinct points.

Therefore if we claim that
1

n
v(N) >

1

k + 1
· 1(

n
k+1

) ∑
|T |=k+1

v(T )

implies that PC(k+1)(v) is an (n−1) simplex of vertices y(k+1),1, . . . ,y(k+1),n in H0.
Then we can complete the proof of (ii.c) and hence complete the proof of theorem
4.11.

So let us suppose

1

n
v(N) >

1

k + 1
· 1(

n
k+1

) ∑
|T |=k+1

v(T ),

then by (4.28) we have PC(k+1)(v) ̸= ∅.
Let (x1, x2, . . . , xn) ∈ PC(k+1)(v), then by (4.22), there exist t1, . . . , tn with 0 ≤

ti ≤ 1 such that xi = tiy
(k+1),i
i + (1− ti)w

k+1
i , i = 1, . . . , n.

Now,

v(N) =
n∑

i=1

xi =
n∑

i=1

ti · y(k+1),i
i +

n∑
i=1

wk+1
i −

n∑
i=1

ti · wk+1
i

=
n∑

i=1

ti(v(N)−
∑

ℓ∈N−{i}

y
(k+1),i
ℓ )

+

n∑
ℓ=1

wk+1
ℓ −

n∑
i=1

tiw
k+1
i (because y(k+1),i) ∈ H0)

=

n∑
i=1

ti(v(N)−
∑

ℓ∈N−{i}

wk+1
ℓ ) +

n∑
ℓ=1

wk+1
ℓ +

n∑
i=1

tiw
k+1
i

=

n∑
i=1

tiv(N)−
n∑

i=1

(ti

n∑
ℓ=1

wk+1
ℓ ) +

n∑
ℓ=1

wk+1
ℓ

= (

n∑
i=1

ti)v(N)− (

n∑
i=1

ti)

n∑
ℓ=1

wk+1
ℓ +

n∑
ℓ=1

wk+1
ℓ

=⇒ (1−
n∑

i=1

ti)v(N) = (1−
n∑

i=1

ti)
n∑

ℓ=1

wk+1
ℓ .

If 1 −
n∑

i=1
ti ̸= 0 then v(N) =

n∑
ℓ=1

wk+1
ℓ . But v(N) = y

(k+1),j
j +

∑
ℓ∈N−{j}

wk+1
ℓ (by

definition of “best” payoff vector), j = 1, 2, . . . , n. Therefore, wk+1
j = y

(k+1),j
j ,

j = 1, . . . , n. By (4.24) PC(k+1)(v) contains only one point (wk+1
1 , . . . , wk+1

n ) =

y(k+1),j , j = 1, . . . , n, this contradicts y
(k+1),j
j , j = 1, . . . , n, being distinct points.

Hence, 1−
n∑

i=1
ti = 0, that is,

n∑
i=1

ti = 1. Now for i = 1, . . . , n,
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xi = tiy
(k+1),i
i + (1− ti)w

k+1
i = tiy

(k+1),i
i + (

∑
j ̸=i

tj)w
k+1
i

= tiy
(k+1),i
i +

∑
j ̸=i

(tjw
k+1
i ) = tiy

(k+1),i
i +

∑
j ̸=i

tjy
(k+1),j
i =

n∑
j=1

tjy
(k+1),j
i ,

therefore, (x1, . . . , xn) =
∑n

j=1 tjy
(k+1),j . This proves that PC(k+1)(v) is the convex

hull of n points y(k+1),1, . . . ,y(k+1),n. But y(k+1),1, . . . ,y(k+1),n are distinct points
in H0 and H0 is (n−1)-dimensional, we have that PC(k+1)(v) is an (n−1) simplex

of vertices y(k+1),1, . . . ,y(k+1),n in H0. This proves the claim. �
Remark 4.12. Intuitively, PCk(v) is empty whenever yk,ii < wk

i , i.e. the “best”
payoff of player i is less than the “worst” payoff of player i.

By Theorem 4.11 we have the following proposition immediately.

Proposition 4.13. Suppose that (N, v) is an n-person convex game, then it is a
CRIA game.

5. A new interpretation of the Shapley value

While each player is willing to participate in a coalition with any other k players
and share the worth of the coalition according to a payoff vector in PC(k+1)(v).
Intuitively, it is a middle-way method for the players if the players take turns to
get the “best” payoff and find the average of all the payoff vectors of all the turns.
In geometric, the average of all the payoff vectors of all the turns(either distinct or

identical, see Theorem 4.11) is the center of mass of PC(k+1)(v)(either a (n − 1)-

simplex or a singleton) provided that PC(k+1)(v) is nonempty. Considering the

vertices y(k+1),1, . . . ,y(k+1),n(either distinct or identical) as vectors, the centroid is

y(k+1),··· =
y(k+1),1 + · · ·+ y(k+1),n

n

Now, for all the players in N there are n − 1 possible ways to share v(N), say,

y1,···,y2,···, . . . ,y(n−1),···. Again, it is a middle-way method to choose the average of the
above n− 1 payoff vectors which is the geometric center of the n− 1 points in the
hyperplane H0. Surprisingly, it is the Shapely value.

Theorem 5.1. Given an n-person CRIA cooperative TU game (N, v), the Shapely

value of v is the geometric center of the n − 1 points y1,···,y2,···, . . . ,y(n−1),··· in Rn,

where each yk,··· is the center of mass of PCk(v), the kth pseudo-core of v which is
either an (n− 1)-simplex or a singleton, for k = 1, 2, . . . , n− 1. In other words, the
Shapely value is the geometric centroid of the n − 1 mass centers of pseudo-cores
PCk(v), k = 1, 2, . . . , n− 1.

Proof. Let

(µ1, µ2, . . . , µn) =
y1,··· + y2,··· + · · ·+ y(n−1),···

n− 1
,

and write yk,··· = (yk,·
··

1 , . . . , yk,·
··

i , . . . , yk,·
··

n ) for k = 1, 2, . . . n− 1.
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Then

µi =
y1,·

··
i + y2,·

··
i + y3,·

··
i + · · ·+ y

(n−1),···
i

n− 1
,

for i = 1, . . . , n. We are going to show that

µi =
∑
S⊂N
i̸∈S

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)).

Now since y(k+1),··· is the center of mass of PCk(v) with vertices y(k+1),1,y(k+1),2, . . . ,

y(k+1),n(either distinct or identical), it follows from the definition of “best payoff”
vectors, we have

y
(k+1),···
i =

y
(k+1),1
i + y

(k+1),2
i + · · ·+ y

(k+1),n
i

n

=
(y

(k+1),1
i + · · ·+ y

(k+1),i−1
i + y

(k+1),i−1
i + · · ·+ y

(k+1),n
i ) + y

(k+1),i
i

n

=
1

n

{
(n− 1) ·

[
− k

n− 1− k
v(N) +

1(
n−2
k

) ∑
|T |=k

T⊂N−{i}

v(T ∪ {i})
]
(see (4.5))

+ v(N) + (n− 1) · k

n− 1− k
v(N)− 1(

n−2
k

) ∑
ℓ∈N−{i}

( ∑
|T |=k

T⊂N−{ℓ}

v(T ∪ {ℓ})
)}

.

(5.1)

It follows from (5.1) and lemma 4.10 that

y
(k+1),···
i =

1

n

{
n− 1(
n−2
k

) ∑
|T |=k

T⊂N−{i}

v(T ∪ {i}) + v(N)

− 1(
n−2
k

)[k ·
∑
|T |=k

T⊂N−{i}

v(T ∪ {i}) + (k + 1) ·
∑

|T |=k+1
T⊂N−{i}

v(T )

]}

=
1

n

v(N) +
∑
|T |=k

T⊂N−{i}

[
(n− 1)(

n−2
k

) − k(
n−2
k

)] v(T ∪ {i})

−(k + 1)(
n−2
k

) ∑
|T |=k+1
T⊂N−{i}

v(T )


=

1

n
v(N) +

(n− 1)

n
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·

 1(
n−1
k

) ∑
|T |=k

T⊂N−{i}

v(T ∪ {i})− 1(
n−1
k+1

) ∑
|T |=k+1
T⊂N−{i}

v(T )

 .(5.2)

Let

ak+1 =
1(

n−1
k

) ∑
|T |=k

T⊂N−{i}

v(T ∪ {i}), k = 0, . . . , n− 2,(5.3)

and

bk+1 =
1(

n−1
k+1

) ∑
|T |=k+1
T⊂N−{i}

v(T ), k = 0, . . . , n− 2,(5.4)

then

y
(k+1),···
i =

1

n
v(N) +

n− 1

n
(ak+1 − bk+1).(5.5)

Next, observe

ak+1 − bk =
1(

n−1
k

) ∑
|T |=k

T⊂N−{i}

[v(T ∪ {i})− v(T )]

=
1

(n−1)!
k!(n−1−k)!

∑
|S|=k,S⊂N

i ̸∈S

[v(S ∪ {i})− v(S)]

=
∑

|S|=k,S⊂N
i ̸∈S

|S|!(n− |S| − 1)!

(n− 1)!
[v(S ∪ {i})− v(S)],(5.6)

for k = 1, . . . , n− 2,

a1 =
1(

n−1
0

) · v({i}) = 1
(n−1)!
0!(n−1)!

[v({i})− v(∅)]

=
∑

|S|=0,S⊂N
i̸∈S

|S|!(n− |S| − 1)!

(n− 1)!
[v(S ∪ {i})− v(S)] (in fact here S = ∅)(5.7)

and

− bn−1 + v(N) = − 1(
n−1
n−1

) ∑
|T |=n−1
T⊂N−{i}

v(T ) + v(N)

=
1

(n−1)!
(n−1)!0!

[v(N)− v(N − {i})]
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=
∑

|S|=n−1,S⊂N
i̸∈S

|S|!(n− |S| − 1)!

(n− 1)!
[v(S ∪ {i})− v(S)]( in fact here S = N − {i}).

(5.8)

It follows from (5.2), (5.3), (5.4), (5.6), (5.7) and (5.8)

µi =
y1,·

··
i + · · ·+ yk,·

··
i + y

(k+1),···
i + · · ·+ y

(n−1),···
i

n− 1

=
1

n− 1

([v(N)

n
+

n− 1

n
(a1 − b1)

]
+ · · ·+

[v(N)

n
+

n− 1

n
(ak − bk)

]
+

[v(N)

n
+

n− 1

n
(ak+1 − bk+1)

]
+ · · ·+

[v(N)

n
+

n− 1

n
(an−1 − bn−1)

])

=
1

n− 1

n− 1

n

[
a1 + (−b1 + a2) + · · ·+ (−bk + ak+1)

+ · · ·+ (−bn−2 + an−1) + (−bn−1 + v(N))
]

=
∑
S⊂N
i ̸∈S

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)].(5.9)

�

Theorem 5.1 shows that the geometric centroid of the n − 1 mass centers of
the pseudo-cores of the game (N, v) is the Shapley value. Further, even when

PC(k+1)(v) = ∅, the points y(k+1),r, r = 1, . . . , n are still in the hyperplane x1 +
x2 + · · ·+ xn = v(N), then by the proof of Theorem 5.1, we have Theorem 5.2.

Theorem 5.2. Given an n-person cooperative game (N, v), the Shapely value is the

geometric center of the n − 1 points y1,···,y2,···, . . . ,y(n−1),··· in Rn, where yk,··· is the
geometric center of the n vertices yk,1,yk,2, . . . ,yk,n, for k = 1, 2, . . . , n− 1.

Conclusion Let a cooperative TU game (N, v) be repeated n times, then we may
not only propose a new interpretation for the Shapley value but also propose the
investigation of a payoff vector which is not even an imputation. In our Example
4.9, Cathy justifies the worth of studying a payoff vector which is not an imputation.

We introduce a new class of CRIA games which are not necessarily proper, also
proper games are not necessarily CRIA. We show that a game is CRIA if and only
if none of its pseudo cores is empty. In a CRIA game the players have incentive to
participate in the grand coalition. It is more acceptable in a CRIA game than in
an improper game to assume that the grand coalition is formed.
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