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WEAK CONVERGENCE THEOREM BY A MODIFIED
EXTRAGRADIENT METHOD FOR VARIATIONAL
INCLUSIONS,VARIATIONAL INEQUALITIES AND FIXED
POINT PROBLEMS

LU-CHUAN CENG*, SY-MING GUU', AND JEN-CHIH YAO?

ABSTRACT. In this paper, we investigate the problem of finding common solu-
tions of variational inclusions, variational inequalities and fixed point problems
in real Hilbert spaces. Motivated by Nadezhkina and Takahashi’s extragradient
method [N. Nadezhkina, W. Takahashi, Weak convergence theorem by an extra-
gradient method for nonexpansive mappings and monotone mappings, J. Optim.
Theory Appl. 128 (2006) 191-201], we propose and analyze a modified extragra-
dient algorithm for finding common solutions. It is proven that three sequences
generated by this algorithm converge weakly to the same common solution under
very mild conditions by virtue of the Opial condition of Hilbert spaces, the demi-
closedness principle for nonexpansive mappings and the coincidence of solutions
of variational inequalities with zeros of maximal monotone operators.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and norm || - || and let C'
be a nonempty closed convex subset of H. Let Po be the metric projection of H
onto C. A single-valued mapping A : C' — H is called monotone if

(Ax — Ay,x —y) >0, Vz,yeC.
The variational inequality is to find z € C such that
(1.1) (Az,y —x) >0, VyeC.

The solution set of problem (1.1) is denoted by VI(C, A). A single-valued mapping
A is called a-inverse strongly monotone if there exists a constant « > 0 such that

<A$—Ay,{I)—y> > OéHAJJ—AyHQ, V:I}7y€ C.

It is obvious that any a-inverse strongly monotone mapping A is monotone and
Lipschitz continuous. A self-mapping S : C' — C' is called nonexpansive if

Sz = Syl < |l —yll, Va,yeC.
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We denote by F'(S) the fixed point set of S; namely, F(S) ={z € C: Sz = z}.

A set-valued mapping M with domain D(M) and range R(M) in H is called
monotone if its graph G(M) = {(z,f) € H x H : = € D(M),f € Mz} is a
monotone set in H x H; namely, M is monotone if and only if

(z,f),(y,9) € GIM) = (z—vy,f—g)>0.

A monotone set-valued mapping M is called maximal if its graph G(M) is not
properly contained in the graph of any other monotone mapping in H.

Let A: C — H be a single-valued mapping and M be a multivalued mapping
with D(M) = C. Consider the following variational inclusion: find z € C, such
that

(1.2) 0€ Az + Mz.

We denote by 2 the solution set of problem (1.2).

In 1998, Huang [3] studied problem (1.2) in the case where M is maximal mono-
tone and A is strongly monotone and Lipschitz continuous with D(M) = C = H.
Subsequently, Zeng, Guu and Yao [13] further studied problem (1.2) in the case
which is more general than Huang’s one [3]. Moreover, the authors [13] obtained
the same strong convergence conclusion as in Huang’s result [3]. In addition, the
authors also gave the geometric convergence rate estimate for approximate solutions.

In 2003, for finding an element of F(S) N VI(C, A) under the assumption that a
set C' C H is nonempty, closed and convex, a mapping S : C' — C is nonexpansive
and a mapping A : C — H is a-inverse strongly monotone, Takahashi and Toyoda
[11] introduced the following iterative algorithm:

(1.3) Tnt1 = nTn + (1 — ap)SPo(zy, — A\pAzy),

for every n = 0,1,2, ..., where 29 = x € C chosen arbitrarily, {«,} is a sequence
in (0,1), and {A,} is a sequence in (0,2«a). They showed that, if F/(S) N VI(C, A)
is nonempty, the sequence {x,} generated by (1.3) converges weakly to some z €
F(S)NVI(C,A). On the other hand, for solving the variational inequality in the
finite-dimensional Euclidean space R™ under the assumption that a set C' C R" is
nonempty, closed and convex, a mapping A : C' — R" is monotone and k-Lipschitz
continuous and VI(C, A) is nonempty, Korpelevich [5] introduced the following so-
called extragradient method:

14
(1.4) { Tnt1 = Po(zn — ANAyp),

for every n = 0,1,2, ..., where g = x € C chosen arbitrarily, and A € (0, %) He
showed that the sequences {x,} and {y,} generated by (1.4) converge to the same
point z € VI(C, A).

Recently, motivated by Korpelevich’s extragradient method, Nadezhkina and
Takahashi [6] introduced an iterative algorithm for finding a common element of
the fixed point set of a nonexpansive mapping and the solution set of the varia-
tional inequality for a monotone, Lipschitz continuous mapping in a real Hilbert
space. They gave a weak convergence theorem for two sequences generated by this
algorithm.
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Theorem NT (see [6]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C — H be a monotone k-Lipschitz continuous mapping and
let S : C — C be a nonexpansive mapping such that F(S) N VI(C, A) # 0. Let
{zn}, {yn} be the sequences generated by

(1 5) Yn = PC(xn - AnA$n)7
' Tptl = Qplpy + (1 - O‘n)SPC(mn - )\nAyn)v

for every n = 0,1,2,..., where xy = x € C chosen arbitrarily, {\,} C [a,b] for
some a,b € (0,1) and {a,} C [e,d] for some c,d € (0,1). Then the sequences
{zn}, {yn} converges weakly to the same point z € F(S)NVI(C, A), where z = || - ||-
limy, 00 Pr(s)nvi(c,a)Zn-

In this paper, let A : C — H be an a-inverse strongly monotone mapping, M
be a maximal monotone mapping with D(M) = C and S : C — C be a non-
expansive mapping such that F(S) N 2 NVI(C,A) # 0. Inspired by Nadezhkina
and Takahashi’s extragradient algorithm (1.5) we introduce the following modified
extragradient algorithm

Yn = PC('fcn - AnAtxn)y

tn = Po(zn — A Ayn),

Zn = JM,)\n (tn - Anf4tn>7

Tpt1 = (1 — ap — &) T + anzn + 6,20,

(1.6)

for every n = 0,1,2,..., where Jy\, = (I + \,M)™}, 29 = 2 € C chosen ar-
bitrarily, {\,} C (0,c), and {a,},{a&,} C (0,1) such that a,, + &, < 1. It is
proven that under very mild conditions three sequences {z,}, {yn}, {zn} generated
by (1.6) converge weakly to the same point z € F(S)N2NVI(C, A), where z = || - ||-
limy, 00 Pr(s)nenvi(c,a)Tn. Our result improves and extends Nadezhkina and Taka-
hashi’s corresponding one [6], namely, the above Theorem NT.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-,-) and norm || - || and C be
a nonempty closed convex subset of H. We write — to indicate that the sequence
{zn} converges strongly to x and — to indicate that the sequence {x,} converges
weakly to x. Moreover, we use w,,(x,) to denote the weak w-limit set of the sequence
{xn}v namel}I)

wy(xn) == {x : z,, = x for some subsequence {xy,} of {xy}}.

For every point x € H, there exists a unique nearest point in C', denoted by Pz,
such that
lo - Poall <z —yll, Vaec.
Po is called the metric projection of H onto C. We know that Po is a firmly
nonexpansive mapping of H onto C'; namely, there holds the following relation

(Pcx — Pey,x —y) > ||Pex — Poyl||®, Va,y € H.
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Consequently, Po is nonexpansive and monotone. It is also known that Pg is
characterized by the following properties: Pox € C and

(2.1) (x — Pox, Pox —y) > 0,

(2.2) lz = ylI* > |l — Pez|® + |ly — Pox|?,

for all x € H,y € C; see [2] for more details. Let A : C — H be a monotone
mapping. In the context of the variational inequality, this implies that

(2.3) reVI(C,A) & z=Po(z— NAzx), VA > 0.

It is also known that H satisfies the Opial condition [8]; namely, for any sequence
{x,} with z,, — z, the inequality
(2.4) liminf ||z, — z| < liminf ||z, — y||

n—oo n—oo

holds for every y € H with y # x.

A set-valued mapping M : D(M) c H — 2 is called monotone if for all z,y €
D(M), f € Mz and g € My imply

A set-valued mapping M is called maximal monotone if M is monotone and (I +
AM)D(M) = H for each A > 0, where I is the identity mapping of H. We denote
by G(M) the graph of M. It is known that a monotone mapping M is maximal if
and only if, for (z, f) € H x H, (f —g,2 —y) > 0 for every (y,g) € G(M) implies
fe Mz

Let A: C — H be a monotone, k-Lipschitz continuous mapping and let Nov be
the normal cone to C' at v € C; namely,

Nev={we H: (v—u,w) >0, Yue C}.

Define
_ Av+ Nov, ifveC,
To= { 0, if v C.
Then, T is maximal monotone and 0 € Tv if and only if v € VI(C, A); see [9].

Assume that M : D(M) ¢ H — 2" is a maximal monotone mapping. Then, for
A > 0, associated with M, the resolvent operator Jys  can be defined as

Jupr = (I +XM) ‘e, Vre H.

In terms of Huang [3] (see also [13]), there holds the following property for the
resolvent operator Jys \ : H — H.

Lemma 2.1. Jy; )y is single-valued and firmly nonexpansive; namely,

(Juaz — Jupay, © —y) > [|Iupe — Iyl Vo € H.
Consequently, Jyr x s is nonexpansive and monotone.
Lemma 2.2 (see [10]). . There holds the relation:
1A+ py + vz|? = Az l? + wlly|? + vll2)? = Aullz =yl = prlly — 2| = Avflz - 2|
for all A\, pu,v € [0,1] with A\+pu+v =1 and all z,y,z € H.
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Lemma 2.3 (see [2]). Demiclosedness Principle. Assume that S is a nonexpansive
self-mapping on a nonempty closed convex subset C' of a Hilbert space H. If S has
a fized point, then I — S is demiclosed. That is, whenever {x,} is a sequence in C
weakly converging to some x € C' and the sequence {(I — S)x,} strongly converges
to some y, it follows that (I — S)x =vy. Here I is the identity mapping of H.

Lemma 2.4 (see [3, 13]). Let M be a maximal monotone mapping with D(M) = C.
Then for any given X > 0, u € C is a solution of problem (1.1) if and only if u € C
satisfies

u = Jyx(u— Nu).

Proposition 2.5 (see [13]). Let M be a maximal monotone mapping with D(M) =
C and let V : C — H be a strongly monotone, continuous and single-valued map-
ping. Then for each z € H, the equation z € Vo + AMx has a unique solution x)
for X > 0.

Lemma 2.6. Let M be a mazimal monotone mapping with D(M) = C and A : C —
H be a monotone, continuous and single-valued mapping. Then (I +A(M+ A))C =
H for each A > 0. In this case, M + A is mazimal monotone.

Proof. For each fixed A > 0, put V.= 1+ AA. Then V : C — H is a strongly
monotone, continuous and single-valued mapping. In terms of Proposition 2.5, we
obtain (V +AM)C = H. That is, (I + A(M + A))C = H. It is clear that M + A is
monotone. Therefore, M + A is maximal monotone. O

3. WEAK CONVERGENCE THEOREM
The following lemma was proved by Takahashi and Toyoda [11].

Lemma 3.1. Let H be a real Hilbert space and let D be a nonempty closed convex
subset of H. Let {x,,} be a sequence in H. Suppose that, for all u € D,

[2n1 = ull < [lzn — ul],

for every n = 0,1,2,.... Then, the sequence {Ppx,} converges strongly to some
z€D.

Now, we are in a position to state and prove a weak convergence theorem.

Theorem 3.2. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let A:C — H be an a-inverse strongly monotone mapping, M be a mazximal
monotone mapping with D(M) = C and S : C — C' be a nonexpansive mapping such
that F(S)NNNVI(C, A) # (. Forxzo = x € C chosen arbitrarily, let {x,}, {yn}, {zn}
be the sequences generated by

Yn = PC('fcn - AnAtxn)y

th = Po(n — AnAyn),

Zn = JM,)\n (tn - AnAAtn)v

Tpt1 = (1 — ap — &) T + anzn + &,Szn,

(3.1)
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for every n =0,1,2, ..., where {\n} C [a,b] for some a,b € (0,a), {an} C [c,d] for
some ¢,d € (0,1), and {@n} C [¢,d] for some ¢ d € (0,1) such that d+d < 1. Then

the sequences {xn},{yn},{zn} converge weakly to the same point z € F(S)N 2N
VI(C, A), where

z= -1l = lim Pps)nenvie,a)@n-

Proof. Take a fixed u € F(S)N 2NVI(C, A) arbitrarily. From (2.2) we have

[t = ull® < llzn — Mo Ayn — ull® = [[20 — ApAyn — tal|?
= || — U||2 — llzn — thQ + 22X (Ayn, u — ty)
= [l — ull® = l|zn — tal®
+ 20 ((Aypn, — Auyu — yn) + (Au,u — ypn) + (Ayn, Yn — tn))
< lzn — U||2 — llan — thQ + 22 (AYn, Yn — tn)
= llen = ull® = llzn = yal® = 2@ = Yo, Yo — tn) — lyn — tal®
+ 20 (AYn, Yn — tn)
= llzn = ul® = 20 = yull* = llyn — tn
+ 2(xn — MAYR — Ynstn — Yn)-

I?

Further, from (2.1) we have

(Tn = MAYn = Yn, tn — Yn) = (Tn — M ATn — Yn, tn — Yn)
+ <)\nAxn - )\nAym by — yn>
(AnAxn - /\nAyna ty — yn>

<
< )\nkan - yn”th - yn”?

where k = é So, we obtain

It = ull® < llon = ull® = lzn = yull* = llyn — tal®

+ 2Xnkllzn — yalllltn — ynl

<l = ull® = Nz = yall® = lyn — tall® + Xk |20 =yl
+ llyn — tal

= llon = ull* + 0K = Dllzn — yul®

<l — ull®.
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Hence, utilizing Lemma 2.2 we get

||5Un+1 —ull? = [[(1 = ey — @n) (@ — u) + an(zn — ) + @ (Sz, — u)|?
< (1= ap = an)|zn —ull® + anllzn — ull* + @nl| Sz, — ul]?
—(1 = ap — an)an||zn — 2nl|* — andinllzn — Sz
< (1= an — én)l|zn — u”2 + (an + @)z — uH2
—(1 = ap — an)an||Tn — 20|12 — andnlzn — Szn||?
= 1—Oén— n Ha:n—u||2—|—(an+an)||JM>\n( —)\ At ) JM’An(u—/\nAu)HQ
—(1 = ap — an)an||zn — 20|12 — andn|lzn — Szn||?
< (1= oy — an)ll@n — ul|® + (an + @) (tn — AAty) — (u — Ay Au)||?

lzn = wll? + (om + ) [[ltn — ull? + An(An = 20)[| Aty — Aul]?]

)
)
)
n)on[2n — zn|* — andin|zn — Sz ?
)
)
)

—(1 — ap — ap)an||zn — 20l|* — andnl|zn — Szn]

< (1—ap = n)llzn —ull® + (n + én)[[ta —ul]?

—(1 = ap — Gn)an||zn — 20|12 — nin||2n — Sz

< (1 —ap —an)|z, —ul* + (an + &) [[lzn — ul® + ARk = Dz — yal?]
—(1 = ap — an)an||Tn — 20|12 — andnllzn — Szn||?

= [l — ull® + (an + Oén)(/\z/’f2 = Dllzn — yall?

—(1 — ap — an)ap||rn — 24| —Oznc»anzn—San2

< J#n — ull*,

due to the conditions that {A,} C [a, b] for some a,b € (0,a), {an} C [c,d] for some
¢,d € (0,1), and {ay,} C [¢,d] for some é,d € (0,1), such that d+d < 1. Thus there
holds the limit lim,, o ||z, — || and the sequences {x,},{y,}, {zn} are bounded.
From the last relations, we also obtain

(c+ &)1 = b2k2)||zn — ynll® + (1 — d — d)el|zn — 2a|? + cé]|2n — Sza)?

< (o + 6m)(1 = AZE?) |z — yn?

+(1 = ap — Gn)an||Tn — 2012 + andnllzn — Sza)?

< llzn = ull® = lensr — ul®.
So we have
(3.2) lim ||z, —yn|| = lim |, — 2,/ = lim ||z, — Sz,|| = 0.

In the meantime, we obtain

[yn — tall = | Pc(zn — AnAwn) — Po(n — AnAyy)||
< (@ — AnAzn) — (20 — AnAyn) |

This together with the Lipschitz continuity of A and ||z, — yn|| — 0, implies that
lim |y, —tn]| = 0.
n—oo

Noting that
Hxn - th < Hxn - yn” + Hyn - th

we have
lim ||z, — t,|| = 0.
n—oo

Thus, from (3.2) it follows that
lim ||t, — z,|| = 0.

n—oo
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Again from the Lipschitz continuity of A, we get
lim ||Ay, — At,|| = 0.
n—oo

As {z,} is bounded, there exists a subsequence {z,,} of {z,} that converges
weakly to some z. We assert that z € F'(S) N 2N VI(C, A). Indeed, first, we show
that z € VI(C, A). Since z,, —t,, — 0 and y,, — t,, = 0, we obtain that ¢,, — z and
Yn;, — 2. Let

_ Av+ Neov, ifveC(,
Tv= { 0, if v ¢ C.
Then, T is maximal monotone and 0 € T'v if and only if v € VI(C, A); see [9]. Let
(v,w) € G(T). Then, we have w € Tv = Av + Ngv and hence w — Av € Nowv. So
we have
(3.3) (v—u,w—Av) >0, YueC.
Furthermore, noting that ¢, = Po(x, — \yAy,) and v € C, we have
(T, — ApAyp — tn, ty, —v) >0,
and hence,
tn — @
T A n) > 0.

" + Ayn) >
Therefore, from (3.3) and ¢,, € C' it follows that

<U - tni7w> = <U - tni7AU>

> (U= g, Av) = {0 — o, I+ Ay
= <’U - tm? Av — Atm> =+ <’U - tnmAtm' - Aym> - <U - tni’ tnl)\_nxnl>

tn-_ ng '
Z <’U - tn“Atnz - Aynl> - <U - tn“ 1)\7:‘ Z>‘

(v —tp,

Letting ¢ — oo, we get
(v—2z,w) > 0.
Since T is maximal monotone, we have z € T~10 and hence z € VI(C, A).

Secondly, we show that z € F(S). Indeed, since z,, — z, from (3.2) we deduce
that z,, — z and z,, — Sz,, — 0. By Lemma 2.3 we obtain z € F(5).

Next, we show that z € €. Indeed, since A is a-inverse strongly monotone and
M is maximal monotone, by Lemma 2.6 we know that M + A is maximal monotone.
Take a fixed (y, g) € G(M+ A) arbitrarily. Then we have g € (M + A)y. So, we have
g — Ay € My. Since 2y, = Jy,, (tn, — An;Atp,) yields ﬁ(tm — Zn; — An, Aly,) €
Mzy,,, we have '

1
7(75711' — Zn; T )\nzAtnz)> > 07

g — Ay —
(Y — 2n;,9 — Ay .

which hence yields
(Y= 2n,9) =y —2n;, Ay + ﬁ(tm — Zn; — An;Aly,))
= <y — Zn; Ay — Atnz> + <y — Zngs ﬁ(tnz - an)>
> afAy — AZmHz + (Y — zn; Azn, — Aly,) +(y — 2, ﬁ(tm = Zn,))
= <y — Zng) Aznz - Atm> + <y — Zng; )\%L,(tm - an)>
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Letting i — oo, we deduce from ||t,, — z,|| — 0 and the Lipschitz continuity of A
that
<y -2, g> > 0.

This shows that 0 € (A+ M)z. Hence, z € §2. Therefore, z € FI(S)N2NVI(C, A).

Let {x,,} be another subsequence of {x,} such that x,; — z’. Then we obtain
Z e F(S)N 2NVI(C,A). Let us show that z = 2z’. Assume that z # 2’. Utilizing
the Opial condition [8], we have

lim ||z, — 2| =liminf ||z, — 2| < liminf ||z,, — 2|
n—oo n—oo n—oo
= lim |z, — 2| = liminf ||z, — 2/||
n—00 j—o0
<liminf ||z, — 2| = lim |z, — 2.
J—00 n—o0

This is a contradiction. So, z = z/. This implies that z,, — z. Since z,, — y, — 0
and x, — z, — 0, we also have that y, — z and z, — z.

Finally, let us show that u, — z, where u, = Pp(s)nonvi(c,4)Zn for every n =
0,1,2,.... Indeed, since

un = Pp(s)nonvic,a)Zn and  z € F(S)N 2N VI(C, A),

we have
<Z — Up, Up — $n> >0,

for every n = 0,1,2,.... Utilizing Lemma 3.1, from (3.3) we obtain that {u,}
converges strongly to some Z € F(S) N 2N VI(C, A). Then, we have

(z—2,Z2—2)>0
and hence z = Z. This completes the proof. O

Remark 3.3. Compared with Theorem 3.2 in Nadezhkina and Takahashi [6], our
Theorem 3.2 improves and extends Nadezhkina and Takahashi [6, Theorem 3.1] in
the following aspects:

(i) Nadezhkina and Takahashi’s extragradient algorithm in [6, Theorem 3.1] is
extended to develop the modified extragradient algorithm in our Theorem 3.2.

(ii) the technique of proving weak convergence in our Theorem 3.2 is very different
from that in Nadezhkina and Takahashi [6, Theorem 3.1] because our technique
depends on the properties for maximal monotone mappings and their resolvent
operators, and the demiclosedness principle for nonexpansive mappings in Hilbert
spaces.

(iii) our problem of finding an element of Fix(S) N 2 N VI(C, A) is more general
than Nadezhkina and Takahashi’s problem of finding an element of Fix(S)NVI(C, A)
in [6, Theorem 3.1].

Furthermore, utilizing our Theorem 3.2 as above, we can immediately obtain the
following weak convergence results:

Corollary 3.4. Let H be a real Hilbert space. Let A : H — H be a monotone
k-Lipschitz continuous mapping, M : H — 28 be a mazimal monotone mapping



30 L.-C. CENG, S-M. GUU, AND J.-C. YAO

and S : H — H be a nonexpansive mapping such that F(S)N 2N A~'0 # (). For
xg =x € H chosen arbitrarily, let {x,},{t,} be the sequences generated by

tn = Ty — MA(zy — A\Azy),

Tpt1 = (1 — an — &n)zn + andyn, (tn — MAL,) + &n ST, (tn — ApAty),
for everyn =0,1,2,..., where {\n} C [a,b] for some a,b € (0,c), {an} C [c,d] for
some ¢,d € (0,1), and {&,} C [&,d] for some é&,d € (0,1) such that d+d < 1. Then

the sequences {x,}, {t,} converge weakly to the same point z € F(S)N 2 N A0,
where

z= |-l = lim Ppg)nena-toZn-
Proof. We have C = D(M) = H, A='0 = VI(H, A) and Py = I. By Theorem 3.2,
we obtain the desired result. O

Remark 3.5. Whenever M = [ the identity mapping of H, we have {2 = H and
F(S)NNNA~t0=F(S)NnA~10 c VI(F(S), A). See also Yamada [12] for the case
when A : H — H is a strongly monotone and Lipschitz continuous mapping and
S : H — H is a nonexpansive mapping.

Corollary 3.6. Let H be a real Hilbert space. Let A : H — H be a monotone
k-Lipschitz continuous mapping and B,M : H — 29 be two mazimal monotone
mappings such that A~10NB~10N 2 # 0. For xg = x € H chosen arbitrarily, let
{zn}, {tn} be the sequences generated by

tn = xp — MA(zy — A\Azy),
Tnt1 = (1 — ap — Gn)xn + andun, (tn — MAty) + GndBrJun, (tn — AnAty),

for every n =0,1,2, ..., where {\n} C [a,b] for some a,b € (0,a), {an} C [c,d] for
some ¢,d € (0,1), and {&n} C [&,d] for some é&,d € (0,1) such that d+d < 1. Then
the sequences {xn}, {tn} converge weakly to the same point = € A~10N B~10N 0,
where

z=|-| - nlgfolo Pp-10nB-10n0%n-

Proof. We have C = D(M) = H, A710 = VI(H, A) and F(Jg,) = B~10. Putting
Py =1, by Theorem 3.2 we obtain the desired result. H
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