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We denote by F (S) the fixed point set of S; namely, F (S) = {x ∈ C : Sx = x}.
A set-valued mapping M with domain D(M) and range R(M) in H is called

monotone if its graph G(M) = {(x, f) ∈ H × H : x ∈ D(M), f ∈ Mx} is a
monotone set in H ×H; namely, M is monotone if and only if

(x, f), (y, g) ∈ G(M) ⇒ ⟨x− y, f − g⟩ ≥ 0.

A monotone set-valued mapping M is called maximal if its graph G(M) is not
properly contained in the graph of any other monotone mapping in H.

Let A : C → H be a single-valued mapping and M be a multivalued mapping
with D(M) = C. Consider the following variational inclusion: find x̄ ∈ C, such
that

(1.2) 0 ∈ Ax̄+Mx̄.

We denote by Ω the solution set of problem (1.2).
In 1998, Huang [3] studied problem (1.2) in the case where M is maximal mono-

tone and A is strongly monotone and Lipschitz continuous with D(M) = C = H.
Subsequently, Zeng, Guu and Yao [13] further studied problem (1.2) in the case
which is more general than Huang’s one [3]. Moreover, the authors [13] obtained
the same strong convergence conclusion as in Huang’s result [3]. In addition, the
authors also gave the geometric convergence rate estimate for approximate solutions.

In 2003, for finding an element of F (S) ∩ VI(C,A) under the assumption that a
set C ⊂ H is nonempty, closed and convex, a mapping S : C → C is nonexpansive
and a mapping A : C → H is α-inverse strongly monotone, Takahashi and Toyoda
[11] introduced the following iterative algorithm:

(1.3) xn+1 = αnxn + (1− αn)SPC(xn − λnAxn),

for every n = 0, 1, 2, ..., where x0 = x ∈ C chosen arbitrarily, {αn} is a sequence
in (0, 1), and {λn} is a sequence in (0, 2α). They showed that, if F (S) ∩ VI(C,A)
is nonempty, the sequence {xn} generated by (1.3) converges weakly to some z ∈
F (S) ∩ VI(C,A). On the other hand, for solving the variational inequality in the
finite-dimensional Euclidean space Rn under the assumption that a set C ⊂ Rn is
nonempty, closed and convex, a mapping A : C → Rn is monotone and k-Lipschitz
continuous and VI(C,A) is nonempty, Korpelevich [5] introduced the following so-
called extragradient method:

(1.4)

{
yn = PC(xn − λAxn),
xn+1 = PC(xn − λAyn),

for every n = 0, 1, 2, ..., where x0 = x ∈ C chosen arbitrarily, and λ ∈ (0, 1k ). He
showed that the sequences {xn} and {yn} generated by (1.4) converge to the same
point z ∈ VI(C,A).

Recently, motivated by Korpelevich’s extragradient method, Nadezhkina and
Takahashi [6] introduced an iterative algorithm for finding a common element of
the fixed point set of a nonexpansive mapping and the solution set of the varia-
tional inequality for a monotone, Lipschitz continuous mapping in a real Hilbert
space. They gave a weak convergence theorem for two sequences generated by this
algorithm.
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Theorem NT (see [6]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C → H be a monotone k-Lipschitz continuous mapping and
let S : C → C be a nonexpansive mapping such that F (S) ∩ VI(C,A) ̸= ∅. Let
{xn}, {yn} be the sequences generated by

(1.5)

{
yn = PC(xn − λnAxn),
xn+1 = αnxn + (1− αn)SPC(xn − λnAyn),

for every n = 0, 1, 2, ..., where x0 = x ∈ C chosen arbitrarily, {λn} ⊂ [a, b] for
some a, b ∈ (0, 1k ) and {αn} ⊂ [c, d] for some c, d ∈ (0, 1). Then the sequences
{xn}, {yn} converges weakly to the same point z ∈ F (S)∩VI(C,A), where z = ∥ · ∥-
limn→∞ PF (S)∩VI(C,A)xn.

In this paper, let A : C → H be an α-inverse strongly monotone mapping, M
be a maximal monotone mapping with D(M) = C and S : C → C be a non-
expansive mapping such that F (S) ∩ Ω ∩ VI(C,A) ̸= ∅. Inspired by Nadezhkina
and Takahashi’s extragradient algorithm (1.5) we introduce the following modified
extragradient algorithm

(1.6)


yn = PC(xn − λnAxn),
tn = PC(xn − λnAyn),
zn = JM,λn(tn − λnAtn),
xn+1 = (1− αn − α̂n)xn + αnzn + α̂nSzn,

for every n = 0, 1, 2, ..., where JM,λn = (I + λnM)−1, x0 = x ∈ C chosen ar-
bitrarily, {λn} ⊂ (0, α), and {αn}, {α̂n} ⊂ (0, 1) such that αn + α̂n ≤ 1. It is
proven that under very mild conditions three sequences {xn}, {yn}, {zn} generated
by (1.6) converge weakly to the same point z ∈ F (S)∩Ω ∩VI(C,A), where z = ∥·∥-
limn→∞ PF (S)∩Ω∩VI(C,A)xn. Our result improves and extends Nadezhkina and Taka-
hashi’s corresponding one [6], namely, the above Theorem NT.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥ and C be
a nonempty closed convex subset of H. We write → to indicate that the sequence
{xn} converges strongly to x and ⇀ to indicate that the sequence {xn} converges
weakly to x. Moreover, we use ωw(xn) to denote the weak ω-limit set of the sequence
{xn}; namely,

ωw(xn) := {x : xni ⇀ x for some subsequence {xni} of {xn}}.

For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx,
such that

∥x− PCx∥ ≤ ∥x− y∥, ∀x ∈ C.

PC is called the metric projection of H onto C. We know that PC is a firmly
nonexpansive mapping of H onto C; namely, there holds the following relation

⟨PCx− PCy, x− y⟩ ≥ ∥PCx− PCy∥2, ∀x, y ∈ H.
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Consequently, PC is nonexpansive and monotone. It is also known that PC is
characterized by the following properties: PCx ∈ C and

(2.1) ⟨x− PCx, PCx− y⟩ ≥ 0,

(2.2) ∥x− y∥2 ≥ ∥x− PCx∥2 + ∥y − PCx∥2,
for all x ∈ H, y ∈ C; see [2] for more details. Let A : C → H be a monotone
mapping. In the context of the variational inequality, this implies that

(2.3) x ∈ VI(C,A) ⇔ x = PC(x− λAx), ∀λ > 0.

It is also known that H satisfies the Opial condition [8]; namely, for any sequence
{xn} with xn ⇀ x, the inequality

(2.4) lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥

holds for every y ∈ H with y ̸= x.
A set-valued mapping M : D(M) ⊂ H → 2H is called monotone if for all x, y ∈

D(M), f ∈ Mx and g ∈ My imply

⟨f − g, x− y⟩ ≥ 0.

A set-valued mapping M is called maximal monotone if M is monotone and (I +
λM)D(M) = H for each λ > 0, where I is the identity mapping of H. We denote
by G(M) the graph of M . It is known that a monotone mapping M is maximal if
and only if, for (x, f) ∈ H ×H, ⟨f − g, x− y⟩ ≥ 0 for every (y, g) ∈ G(M) implies
f ∈ Mx.

Let A : C → H be a monotone, k-Lipschitz continuous mapping and let NCv be
the normal cone to C at v ∈ C; namely,

NCv = {w ∈ H : ⟨v − u,w⟩ ≥ 0, ∀u ∈ C}.
Define

Tv =

{
Av +NCv, if v ∈ C,
∅, if v ̸∈ C.

Then, T is maximal monotone and 0 ∈ Tv if and only if v ∈ VI(C,A); see [9].
Assume that M : D(M) ⊂ H → 2H is a maximal monotone mapping. Then, for

λ > 0, associated with M , the resolvent operator JM,λ can be defined as

JM,λx = (I + λM)−1x, ∀x ∈ H.

In terms of Huang [3] (see also [13]), there holds the following property for the
resolvent operator JM,λ : H → H.

Lemma 2.1. JM,λ is single-valued and firmly nonexpansive; namely,

⟨JM,λx− JM,λy, x− y⟩ ≥ ∥JM,λx− JM,λy∥2, ∀x ∈ H.

Consequently, JM,λ is is nonexpansive and monotone.

Lemma 2.2 (see [10]). . There holds the relation:

∥λx+ µy + νz∥2 = λ∥x∥2 + µ∥y∥2 + ν∥z∥2 − λµ∥x− y∥ − µν∥y − z∥2 − λν∥x− z∥2

for all λ, µ, ν ∈ [0, 1] with λ+ µ+ ν = 1 and all x, y, z ∈ H.
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Lemma 2.3 (see [2]). Demiclosedness Principle. Assume that S is a nonexpansive
self-mapping on a nonempty closed convex subset C of a Hilbert space H. If S has
a fixed point, then I − S is demiclosed. That is, whenever {xn} is a sequence in C
weakly converging to some x ∈ C and the sequence {(I − S)xn} strongly converges
to some y, it follows that (I − S)x = y. Here I is the identity mapping of H.

Lemma 2.4 (see [3, 13]). Let M be a maximal monotone mapping with D(M) = C.
Then for any given λ > 0, u ∈ C is a solution of problem (1.1) if and only if u ∈ C
satisfies

u = JM,λ(u− λAu).

Proposition 2.5 (see [13]). Let M be a maximal monotone mapping with D(M) =
C and let V : C → H be a strongly monotone, continuous and single-valued map-
ping. Then for each z ∈ H, the equation z ∈ V x + λMx has a unique solution xλ
for λ > 0.

Lemma 2.6. Let M be a maximal monotone mapping with D(M) = C and A : C →
H be a monotone, continuous and single-valued mapping. Then (I+λ(M+A))C =
H for each λ > 0. In this case, M +A is maximal monotone.

Proof. For each fixed λ > 0, put V = I + λA. Then V : C → H is a strongly
monotone, continuous and single-valued mapping. In terms of Proposition 2.5, we
obtain (V + λM)C = H. That is, (I + λ(M +A))C = H. It is clear that M +A is
monotone. Therefore, M +A is maximal monotone. �

3. Weak convergence theorem

The following lemma was proved by Takahashi and Toyoda [11].

Lemma 3.1. Let H be a real Hilbert space and let D be a nonempty closed convex
subset of H. Let {xn} be a sequence in H. Suppose that, for all u ∈ D,

∥xn+1 − u∥ ≤ ∥xn − u∥,

for every n = 0, 1, 2, .... Then, the sequence {PDxn} converges strongly to some
z ∈ D.

Now, we are in a position to state and prove a weak convergence theorem.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A : C → H be an α-inverse strongly monotone mapping, M be a maximal
monotone mapping with D(M) = C and S : C → C be a nonexpansive mapping such
that F (S)∩Ω∩VI(C,A) ̸= ∅. For x0 = x ∈ C chosen arbitrarily, let {xn}, {yn}, {zn}
be the sequences generated by

(3.1)


yn = PC(xn − λnAxn),
tn = PC(xn − λnAyn),
zn = JM,λn(tn − λnAtn),
xn+1 = (1− αn − α̂n)xn + αnzn + α̂nSzn,
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for every n = 0, 1, 2, ..., where {λn} ⊂ [a, b] for some a, b ∈ (0, α), {αn} ⊂ [c, d] for

some c, d ∈ (0, 1), and {α̂n} ⊂ [ĉ, d̂] for some ĉ, d̂ ∈ (0, 1) such that d+ d̂ < 1. Then
the sequences {xn}, {yn}, {zn} converge weakly to the same point z ∈ F (S) ∩ Ω ∩
VI(C,A), where

z = ∥ · ∥ − lim
n→∞

PF (S)∩Ω∩VI(C,A)xn.

Proof. Take a fixed u ∈ F (S) ∩ Ω ∩VI(C,A) arbitrarily. From (2.2) we have

∥tn − u∥2 ≤ ∥xn − λnAyn − u∥2 − ∥xn − λnAyn − tn∥2

= ∥xn − u∥2 − ∥xn − tn∥2 + 2λn⟨Ayn, u− tn⟩
= ∥xn − u∥2 − ∥xn − tn∥2

+ 2λn(⟨Ayn −Au, u− yn⟩+ ⟨Au, u− yn⟩+ ⟨Ayn, yn − tn⟩)
≤ ∥xn − u∥2 − ∥xn − tn∥2 + 2λn⟨Ayn, yn − tn⟩
= ∥xn − u∥2 − ∥xn − yn∥2 − 2⟨xn − yn, yn − tn⟩ − ∥yn − tn∥2

+ 2λn⟨Ayn, yn − tn⟩
= ∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − tn∥2

+ 2⟨xn − λnAyn − yn, tn − yn⟩.

Further, from (2.1) we have

⟨xn − λnAyn − yn, tn − yn⟩ = ⟨xn − λnAxn − yn, tn − yn⟩
+ ⟨λnAxn − λnAyn, tn − yn⟩

≤ ⟨λnAxn − λnAyn, tn − yn⟩
≤ λnk∥xn − yn∥∥tn − yn∥,

where k = 1
α . So, we obtain

∥tn − u∥2 ≤ ∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − tn∥2

+ 2λnk∥xn − yn∥∥tn − yn∥
≤ ∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − tn∥2 + λ2

nk
2∥xn − yn∥2

+ ∥yn − tn∥
= ∥xn − u∥2 + (λ2

nk
2 − 1)∥xn − yn∥2

≤ ∥xn − u∥2.



A MODIFIED EXTRAGRADIENT METHOD FOR VI 27

Hence, utilizing Lemma 2.2 we get

∥xn+1 − u∥2 = ∥(1− αn − α̂n)(xn − u) + αn(zn − u) + α̂n(Szn − u)∥2
≤ (1− αn − α̂n)∥xn − u∥2 + αn∥zn − u∥2 + α̂n∥Szn − u∥2
−(1− αn − α̂n)αn∥xn − zn∥2 − αnα̂n∥zn − Szn∥2
≤ (1− αn − α̂n)∥xn − u∥2 + (αn + α̂n)∥zn − u∥2
−(1− αn − α̂n)αn∥xn − zn∥2 − αnα̂n∥zn − Szn∥2
= (1− αn − α̂n)∥xn − u∥2 + (αn + α̂n)∥JM,λn(tn − λnAtn)− JM,λn(u− λnAu)∥2
−(1− αn − α̂n)αn∥xn − zn∥2 − αnα̂n∥zn − Szn∥2
≤ (1− αn − α̂n)∥xn − u∥2 + (αn + α̂n)∥(tn − λnAtn)− (u− λnAu)∥2
−(1− αn − α̂n)αn∥xn − zn∥2 − αnα̂n∥zn − Szn∥2
≤ (1− αn − α̂n)∥xn − u∥2 + (αn + α̂n)[∥tn − u∥2 + λn(λn − 2α)∥Atn −Au∥2]
−(1− αn − α̂n)αn∥xn − zn∥2 − αnα̂n∥zn − Szn∥2
≤ (1− αn − α̂n)∥xn − u∥2 + (αn + α̂n)∥tn − u∥2
−(1− αn − α̂n)αn∥xn − zn∥2 − αnα̂n∥zn − Szn∥2
≤ (1− αn − α̂n)∥xn − u∥2 + (αn + α̂n)[∥xn − u∥2 + (λ2

nk
2 − 1)∥xn − yn∥2]

−(1− αn − α̂n)αn∥xn − zn∥2 − αnα̂n∥zn − Szn∥2
= ∥xn − u∥2 + (αn + α̂n)(λ

2
nk

2 − 1)∥xn − yn∥2
−(1− αn − α̂n)αn∥xn − zn∥2 − αnα̂n∥zn − Szn∥2
≤ ∥xn − u∥2,

due to the conditions that {λn} ⊂ [a, b] for some a, b ∈ (0, α), {αn} ⊂ [c, d] for some

c, d ∈ (0, 1), and {α̂n} ⊂ [ĉ, d̂] for some ĉ, d̂ ∈ (0, 1), such that d+ d̂ < 1. Thus there
holds the limit limn→∞ ∥xn − u∥ and the sequences {xn}, {yn}, {zn} are bounded.
From the last relations, we also obtain

(c+ ĉ)(1− b2k2)∥xn − yn∥2 + (1− d− d̂)c∥xn − zn∥2 + cĉ∥zn − Szn∥2
≤ (αn + α̂n)(1− λ2

nk
2)∥xn − yn∥2

+(1− αn − α̂n)αn∥xn − zn∥2 + αnα̂n∥zn − Szn∥2
≤ ∥xn − u∥2 − ∥xn+1 − u∥2.

So we have

(3.2) lim
n→∞

∥xn − yn∥ = lim
n→∞

∥xn − zn∥ = lim
n→∞

∥zn − Szn∥ = 0.

In the meantime, we obtain

∥yn − tn∥ = ∥PC(xn − λnAxn)− PC(xn − λnAyn)∥
≤ ∥(xn − λnAxn)− (xn − λnAyn)∥
= λn∥Axn −Ayn∥.

This together with the Lipschitz continuity of A and ∥xn − yn∥ → 0, implies that

lim
n→∞

∥yn − tn∥ = 0.

Noting that
∥xn − tn∥ ≤ ∥xn − yn∥+ ∥yn − tn∥.

we have
lim
n→∞

∥xn − tn∥ = 0.

Thus, from (3.2) it follows that

lim
n→∞

∥tn − zn∥ = 0.
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Again from the Lipschitz continuity of A, we get

lim
n→∞

∥Ayn −Atn∥ = 0.

As {xn} is bounded, there exists a subsequence {xni} of {xn} that converges
weakly to some z. We assert that z ∈ F (S) ∩ Ω ∩ VI(C,A). Indeed, first, we show
that z ∈ VI(C,A). Since xn − tn → 0 and yn − tn → 0, we obtain that tni ⇀ z and
yni ⇀ z. Let

Tv =

{
Av +NCv, if v ∈ C,
∅, if v ̸∈ C.

Then, T is maximal monotone and 0 ∈ Tv if and only if v ∈ VI(C,A); see [9]. Let
(v, w) ∈ G(T ). Then, we have w ∈ Tv = Av +NCv and hence w − Av ∈ NCv. So
we have

(3.3) ⟨v − u,w −Av⟩ ≥ 0, ∀u ∈ C.

Furthermore, noting that tn = PC(xn − λnAyn) and v ∈ C, we have

⟨xn − λnAyn − tn, tn − v⟩ ≥ 0,

and hence,

⟨v − tn,
tn − xn

λn
+Ayn⟩ ≥ 0.

Therefore, from (3.3) and tn ∈ C it follows that

⟨v − tni , w⟩ ≥ ⟨v − tni , Av⟩
≥ ⟨v − tni , Av⟩ − ⟨v − tni ,

tni−xni
λni

+Ayni⟩
= ⟨v − tni , Av −Atni⟩+ ⟨v − tni , Atni −Ayni⟩ − ⟨v − tni ,

tni−xni
λni

⟩
≥ ⟨v − tni , Atni −Ayni⟩ − ⟨v − tni ,

tni−xni
λni

⟩.

Letting i → ∞, we get

⟨v − z, w⟩ ≥ 0.

Since T is maximal monotone, we have z ∈ T−10 and hence z ∈ VI(C,A).
Secondly, we show that z ∈ F (S). Indeed, since xni ⇀ z, from (3.2) we deduce

that zni ⇀ z and zni − Szni → 0. By Lemma 2.3 we obtain z ∈ F (S).
Next, we show that z ∈ Ω. Indeed, since A is α-inverse strongly monotone and

M is maximal monotone, by Lemma 2.6 we know that M+A is maximal monotone.
Take a fixed (y, g) ∈ G(M+A) arbitrarily. Then we have g ∈ (M+A)y. So, we have
g − Ay ∈ My. Since zni = JM,λni

(tni − λniAtni) yields 1
λni

(tni − zni − λniAtni) ∈
Mzni , we have

⟨y − zni , g −Ay − 1

λni

(tni − zni − λniAtni)⟩ ≥ 0,

which hence yields

⟨y − zni , g⟩ ≥ ⟨y − zni , Ay +
1

λni
(tni − zni − λniAtni)⟩

= ⟨y − zni , Ay −Atni⟩+ ⟨y − zni ,
1

λni
(tni − zni)⟩

≥ α∥Ay −Azni∥2 + ⟨y − zni , Azni −Atni⟩+ ⟨y − zni ,
1

λni
(tni − zni)⟩

≥ ⟨y − zni , Azni −Atni⟩+ ⟨y − zni ,
1

λni
(tni − zni)⟩.
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Letting i → ∞, we deduce from ∥tn − zn∥ → 0 and the Lipschitz continuity of A
that

⟨y − z, g⟩ ≥ 0.

This shows that 0 ∈ (A+M)z. Hence, z ∈ Ω . Therefore, z ∈ F (S)∩Ω ∩VI(C,A).
Let {xnj} be another subsequence of {xn} such that xnj ⇀ z′. Then we obtain

z′ ∈ F (S) ∩ Ω ∩ VI(C,A). Let us show that z = z′. Assume that z ̸= z′. Utilizing
the Opial condition [8], we have

lim
n→∞

∥xn − z∥ = lim inf
n→∞

∥xni − z∥ < lim inf
n→∞

∥xni − z′∥
= lim

n→∞
∥xn − z′∥ = lim inf

j→∞
∥xnj − z′∥

< lim inf
j→∞

∥xnj − z∥ = lim
n→∞

∥xn − z∥.

This is a contradiction. So, z = z′. This implies that xn ⇀ z. Since xn − yn → 0
and xn − zn → 0, we also have that yn ⇀ z and zn ⇀ z.

Finally, let us show that un → z, where un = PF (S)∩Ω∩VI(C,A)xn for every n =
0, 1, 2, .... Indeed, since

un = PF (S)∩Ω∩VI(C,A)xn and z ∈ F (S) ∩ Ω ∩VI(C,A),

we have

⟨z − un, un − xn⟩ ≥ 0,

for every n = 0, 1, 2, .... Utilizing Lemma 3.1, from (3.3) we obtain that {un}
converges strongly to some z̃ ∈ F (S) ∩ Ω ∩VI(C,A). Then, we have

⟨z − z̃, z̃ − z⟩ ≥ 0

and hence z = z̃. This completes the proof. �

Remark 3.3. Compared with Theorem 3.2 in Nadezhkina and Takahashi [6], our
Theorem 3.2 improves and extends Nadezhkina and Takahashi [6, Theorem 3.1] in
the following aspects:

(i) Nadezhkina and Takahashi’s extragradient algorithm in [6, Theorem 3.1] is
extended to develop the modified extragradient algorithm in our Theorem 3.2.

(ii) the technique of proving weak convergence in our Theorem 3.2 is very different
from that in Nadezhkina and Takahashi [6, Theorem 3.1] because our technique
depends on the properties for maximal monotone mappings and their resolvent
operators, and the demiclosedness principle for nonexpansive mappings in Hilbert
spaces.

(iii) our problem of finding an element of Fix(S) ∩ Ω ∩VI(C,A) is more general
than Nadezhkina and Takahashi’s problem of finding an element of Fix(S)∩VI(C,A)
in [6, Theorem 3.1].

Furthermore, utilizing our Theorem 3.2 as above, we can immediately obtain the
following weak convergence results:

Corollary 3.4. Let H be a real Hilbert space. Let A : H → H be a monotone
k-Lipschitz continuous mapping, M : H → 2H be a maximal monotone mapping
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and S : H → H be a nonexpansive mapping such that F (S) ∩ Ω ∩ A−10 ̸= ∅. For
x0 = x ∈ H chosen arbitrarily, let {xn}, {tn} be the sequences generated by{

tn = xn − λnA(xn − λnAxn),
xn+1 = (1− αn − α̂n)xn + αnJM,λn(tn − λnAtn) + α̂nSJM,λn(tn − λnAtn),

for every n = 0, 1, 2, ..., where {λn} ⊂ [a, b] for some a, b ∈ (0, α), {αn} ⊂ [c, d] for

some c, d ∈ (0, 1), and {α̂n} ⊂ [ĉ, d̂] for some ĉ, d̂ ∈ (0, 1) such that d+ d̂ < 1. Then
the sequences {xn}, {tn} converge weakly to the same point z ∈ F (S) ∩ Ω ∩ A−10,
where

z = ∥ · ∥ − lim
n→∞

PF (S)∩Ω∩A−10xn.

Proof. We have C = D(M) = H, A−10 = VI(H,A) and PH = I. By Theorem 3.2,
we obtain the desired result. �
Remark 3.5. Whenever M = I the identity mapping of H, we have Ω = H and
F (S)∩Ω ∩A−10 = F (S)∩A−10 ⊂ VI(F (S), A). See also Yamada [12] for the case
when A : H → H is a strongly monotone and Lipschitz continuous mapping and
S : H → H is a nonexpansive mapping.

Corollary 3.6. Let H be a real Hilbert space. Let A : H → H be a monotone
k-Lipschitz continuous mapping and B,M : H → 2H be two maximal monotone
mappings such that A−10 ∩ B−10 ∩ Ω ̸= ∅. For x0 = x ∈ H chosen arbitrarily, let
{xn}, {tn} be the sequences generated by{

tn = xn − λnA(xn − λnAxn),
xn+1 = (1− αn − α̂n)xn + αnJM,λn(tn − λnAtn) + α̂nJB,rJM,λn(tn − λnAtn),

for every n = 0, 1, 2, ..., where {λn} ⊂ [a, b] for some a, b ∈ (0, α), {αn} ⊂ [c, d] for

some c, d ∈ (0, 1), and {α̂n} ⊂ [ĉ, d̂] for some ĉ, d̂ ∈ (0, 1) such that d+ d̂ < 1. Then
the sequences {xn}, {tn} converge weakly to the same point z ∈ A−10 ∩ B−10 ∩ Ω,
where

z = ∥ · ∥ − lim
n→∞

PA−10∩B−10∩Ωxn.

Proof. We have C = D(M) = H, A−10 = VI(H,A) and F (JB,r) = B−10. Putting
PH = I, by Theorem 3.2 we obtain the desired result. �
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