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problems can be formulated as the SFP; see, e.g., [2] and the references therein.
Recently, it is found that the SFP can also be applied to study intensity-modulated
radiation therapy; see, e.g., [6, 7, 9] and the references therein. In the recent past,
a wide variety of iterative methods have been used in signal processing and image
reconstruction and for solving the SFP; see, e.g., [2, 3, 6, 7, 9, 23, 25, 27–30] and the
references therein. A special case of the SFP is the following convex constrained
linear inverse problem [12] of finding an element x such that

(1.2) x ∈ C and Ax = b.

It has been extensively investigated in the literature using the projected Landweber
iterative method [17]. Comparatively, the SFP has received much less attention
so far, due to the complexity resulting from the set Q. Therefore, whether vari-
ous versions of the projected Landweber iterative method [17] can be extended to
solve the SFP remains an interesting open topics. For example, it is yet not clear
whether the dual approach to (1.2) of [22] can be extended to the SFP. The original
algorithm given in [8] involves the computation of the inverse A−1 (assuming the
existence of the inverse of A), and thus has not become popular. A seemingly more
popular algorithm that solves the SFP is the CQ algorithm of Byrne [2, 3] which
is found to be a gradient-projection method (GPM) in convex minimization. It is
also a special case of the proximal forward-backward splitting method [11]. The CQ
algorithm only involves the computation of the projections PC and PQ onto the sets
C and Q, respectively, and is therefore implementable in the case where PC and PQ

have closed-form expressions, for example, C and Q are closed balls or half-spaces.
However, it remains a challenge how to implement the CQ algorithm in the case
where the projections PC and/or PQ fail to have closed-form expressions, though
theoretically we can prove the (weak) convergence of the algorithm.

Very recently, Xu [28] gave a continuation of the study on the CQ algorithm
and its convergence. She applied Mann’s algorithm to the SFP and proposed an
averaged CQ algorithm which was proved to be weakly convergent to a solution of
the SFP. She also established the strong convergence result, which shows that the
minimum-norm solution can be obtained.

Furthermore, Korpelevich [16] introduced the so-called extragradient method for
finding a solution of a saddle point problem. He proved that the sequences gener-
ated by the proposed iterative algorithm converge to a solution of the saddle point
problem.

Throughout this paper, assume that the SFP is consistent, that is, the solution
set Γ of the SFP is nonempty. Let f : H1 −→ R be a continuous differentiable
function. The minimization problem

(1.3) min
x∈C

f(x) :=
1

2
∥Ax− PQAx∥2

is ill-posed. Therefore, Xu [28] considered the following Tikhonov regularization
problem:

(1.4) min
x∈C

fα(x) :=
1

2
∥Ax− PQAx∥2 + 1

2
α∥x∥2,
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where α > 0 is the regularization parameter. The regularized minimization (1.4)
has a unique solution which is denoted by xα. The following results are easy to
prove.

Proposition 1.1 (see [4, Proposition 3.1]). Given x∗ ∈ H1, the following statements
are equivalent:

(i) x∗ solves the SFP;
(ii) x∗ solves the fixed point equation

PC(I − λ∇f)x∗ = x∗,

where λ > 0, ∇f = A∗(I − PQ)A and A∗ is the adjoint of A;
(iii) x∗ solves the variational inequality problem (VIP) of finding x∗ ∈ C such

that

(1.5) ⟨∇f(x∗), x− x∗⟩ ≥ 0, ∀x ∈ C.

It is clear from Proposition 1.1 that

Γ = Fix(PC(I − λ∇f)) = VI(C,∇f)

for all λ > 0, where Fix(PC(I−λ∇f)) and VI(C,∇f) denote the set of fixed points
of PC(I − λ∇f) and the solution set of VIP (1.5), respectively.

Proposition 1.2 (see [4]). There hold the following statements:

(i) the gradient

∇fα = ∇f + αI = A∗(I − PQ)A+ αI

is (α+ ∥A∥2)-Lipschitz continuous and α-strongly monotone;
(ii) the mapping PC(I − λ∇fα) is a contraction with coefficient√

1− λ(2α− λ(∥A∥2 + α)2) (≤
√
1− αλ ≤ 1− 1

2
αλ),

where 0 < λ ≤ α
(∥A∥2+α)2

;

(iii) if the SFP is consistent, then the strong limα−→0 xα exists and is the minimum-
norm solution of the SFP.

Very recently, Ceng, Ansari and Yao [4] proposed an extragradient algorithm with
regularization, and proved that the sequences generated by the proposed algorithm
converge weakly to an element of Fix(S)∩ Γ , where S : C −→ C is a nonexpansive
mapping.

Theorem 1.3 (see [4, Theorem 3.1]). Let S : C −→ C be a nonexpansive mapping
such that Fix(S) ∩ Γ ̸= ∅. Let {xn} and {yn} be the sequences in C generated by
the following extragradient algorithm:

(1.6)

 x0 = x ∈ C chosen arbitrarily,
yn = PC(xn − λn∇fαn(xn)),
xn+1 = βnxn + (1− βn)SPC(xn − λn∇fαn(yn)), ∀n ≥ 0,

where
∑∞

n=0 αn < ∞, {λn} ⊂ [a, b] for some a, b ∈ (0, 1
∥A∥2 ) and {βn} ⊂ [c, d] for

some c, d ∈ (0, 1). Then, both the sequences {xn} and {yn} converge weakly to an
element x̂ ∈ Fix(S) ∩ Γ.
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On the other hand, assume that C is a nonempty, closed and convex subset of H
and A : C −→ H is a nonlinear mapping. The variational inequality problem (VIP)
on C is stated as:

find x∗ ∈ C such that ⟨Ax∗, x− x∗⟩ ≥ 0, ∀x ∈ C.

The set of solutions of the VIP is denoted by ΩA; see [15] for more details. In 2006,
Nadezhkina and Takahashi [18] first proved the weak convergence of the sequences
generated by their proposed extragradient method, to an element of Fix(S) ∩ ΩA

under approximate assumptions. In the meantime, by combining a hybrid-type
method with an extragradient-type method, Nadezhkina and Takahashi [19] intro-
duced the following iterative method for finding an element of Fix(S) ∩ ΩA and
established the following strong convergence theorem.

Theorem 1.4 (see [19, Theorem 3.1]). Let C be a nonempty closed convex subset of
a real Hilbert space H. Let A : C −→ H be a monotone and k-Lipschitz continuous
mapping and let S : C −→ C be a nonexpansive mapping such that Fix(S)∩ΩA ̸= ∅.
Let {xn}, {yn}, {zn} be sequences generated by

(1.7)



x0 = x ∈ C,
yn = PC(xn − λnAxn),
zn = αnxn + (1− αn)SPC(xn − λnAyn),
Cn = {z ∈ C : ∥zn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn∩Qnx,

for all n ≥ 0, where {λn} ⊂ [a, b] for some a, b ∈ (0, 1k ) and {αn} ⊂ [0, c] for some
c ∈ [0, 1). Then the sequences {xn}, {yn}, {zn} converge strongly to the same point
q = PFix(S)∩ΩA

x.

Very recently, Ceng, Hadjisavvas and Wong [5] introduced a hybrid extragradient-
like approximation method which is based on the above extragradient method and
the hybrid (or outer approximation) method, for finding an element of Fix(S)∩ΩA,
and derived the following strong convergence theorem.

Theorem 1.5 (see [5, Theorem 5]). Let C be a nonempty closed convex subset of a
real Hilbert space H, A : C −→ H be a monotone, k-Lipschitz continuous mapping
and let S : C −→ C be a nonexpansive mapping such that Fix(S) ∩ ΩA ̸= ∅. We
define inductively the sequences {xn}, {yn}, {zn} by

(1.8)



x0 ∈ C,
yn = (1− γn)xn + γnPC(xn − λnAxn),
zn = (1− αn − βn)xn + αnyn + βnSPC(xn − λnAyn),
Cn = {z ∈ C : ∥zn − z∥2 ≤ ∥xn − z∥2 + (3− 3γn + αn)b

2∥Axn∥2},
Qn = {z ∈ C : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0

for all n ≥ 0, where {λn} is a sequence in [a, b] with a > 0 and b < 1
2k , and

{αn}, {βn}, {γn} are three sequences in [0, 1] satisfying the conditions:
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(i) αn + βn ≤ 1 for all n ≥ 0;
(ii) limn−→∞ αn = 0;
(iii) lim infn−→∞ βn > 0;
(iv) limn−→∞ γn = 1 and γn > 3

4 for all n ≥ 0.

Then the sequences {xn}, {yn}, {zn} are well-defined and converge strongly to the
same point q = PFix(S)∩ΩA

x0.

In this paper, inspired by the iterative scheme (1.6) and utilizing the hybrid
extragradient-like approximation method in [5, Theorem 5], we propose the follow-
ing hybrid extragradient-like iterative algorithm with regularization:

(1.9)



x0 = x ∈ C chosen arbitrarily,
yn = PC(xn − λn∇fαn(xn)),
zn = (1− βn − γn)xn + βnyn + γnSPC(xn − λn∇fαn(yn)),
Cn = {z ∈ C : ∥zn − z∥2 ≤ ∥xn − z∥2 + 2αnλnκ(κ+ ∥yn∥)},
Qn = {z ∈ C : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0

for all n ≥ 0, where supp∈Fix(S)∩Γ ∥p∥ ≤ κ for some κ ≥ 0, and the following con-

ditions hold for four sequences {αn} ⊂ (0,∞), {λn} ⊂ (0, 1
∥A∥2 ) and {βn}, {γn} ⊂

[0, 1]:

(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1
∥A∥2 );

(ii) limn−→∞ αn = 0;
(iii) βn + γn ≤ 1 for all n ≥ 0;
(iv) limn−→∞ βn = 0 and lim infn−→∞ γn > 0.

It is shown that the sequences {xn}, {yn}, {zn} are well-defined and converge strongly
to the same point q = PFix(S)∩Γx0. It is worth emphasizing that our result is
new and novel for Hilbert spaces. The main result represents the supplementa-
tion, improvement, extension and development of the corresponding results in the
very recent literature, for example, [28, Theorem 5.7] and [4, Theorem 3.1] to a
great extent. Moreover, the hybrid extragradient-like approximation method given
in [5, Theorem 5] is extended to develop our hybrid extragradient-like approxima-
tion method with regularization. In addition, we also prove a new weak convergence
theorem by a modified extragradient method with regularization for the split feasi-
bility problem and fixed point problem, which essentially includes [4, Theorem 3.1]
as a special case.

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by ⟨·, ·⟩
and ∥ · ∥, respectively. Throughout the paper, unless otherwise specified, we denote
by xn −→ x (respectively, xn ⇀ x), the strong (respectively, weak) convergence of
the sequence {xn} to x. In addition, we use ωw(xn) to denote the weak ω-limit set
of the sequence {xn}; namely,

ωw(xn) := {x : xnk
⇀ x for some subsequence {xnk

} of {xn}}.
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Let K be a nonempty, closed and convex subset of H. Now we present some
known results and definitions which will be used in the sequel.

The metric (or nearest point) projection from H onto K is the mapping PK :
H −→ K which assigns to each point x ∈ H the unique point PKx ∈ K satisfying
the property

∥x− PKx∥ = inf
y∈K

∥x− y∥ =: d(x,K).

The following properties of projections are useful and pertinent to our purpose.

Proposition 2.1 (see [13]). For given x ∈ H and z ∈ K:

(i) z = PKx ⇔ ⟨x− z, y − z⟩ ≤ 0, ∀y ∈ K;
(ii) z = PKx ⇔ ∥x− z∥2 ≤ ∥x− y∥2 − ∥y − z∥2, ∀y ∈ K;
(iii) ⟨PKx−PKy, x−y⟩ ≥ ∥PKx−PKy∥2, ∀y ∈ H, which hence implies that PK

is nonexpansive and monotone.

Definition 2.2. A mapping T : H −→ H is said to be:

(a) nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ H;

(b) firmly nonexpansive if 2T − I is nonexpansive, or equivalently,

⟨x− y, Tx− Ty⟩ ≥ ∥Tx− Ty∥2, ∀x, y ∈ H;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =
1

2
(I + S),

where S : H −→ H is nonexpansive; projections are firmly nonexpansive.

Definition 2.3. Let T be a nonlinear operator whose domain is D(T ) ⊆ H and
whose range is R(T ) ⊆ H.

(a) T is said to be monotone if

⟨x− y, Tx− Ty⟩ ≥ 0, ∀x, y ∈ D(T ).

(b) Given a number β > 0, T is said to be β-strongly monotone if

⟨x− y, Tx− Ty⟩ ≥ β∥x− y∥2, ∀x, y ∈ D(T ).

(c) Given a number ν > 0, T is said to be ν-inverse strongly monotone (ν-ism)
if

⟨x− y, Tx− Ty⟩ ≥ ν∥Tx− Ty∥2, ∀x, y ∈ D(T ).

It can be easily seen that if S is nonexpansive, then I −S is monotone. It is also
easy to see that a projection PK is 1-ism.

Inverse strongly monotone (also referred to as co-coercive) operators have been
applied widely in solving practical problems in various fields, for instance, in traffic
assignment problems; see, e.g., [1, 14].

A mapping T : H −→ H is said to be an averaged mapping if it can be written
as the average of the identity I and a nonexpansive mapping, that is,

T ≡ (1− α)I + αS
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where α ∈ (0, 1) and S : H −→ H is nonexpansive. More precisely, when the last
equality holds, we say that T is α-averaged. Thus firmly nonexpansive mappings
(in particular, projections) are 1

2 -averaged maps.

Proposition 2.4 (see [3]). Let T : H −→ H be a given mapping.

(i) T is nonexpansive if and only if the complement I − T is 1
2 -ism.

(ii) If T is ν-ism, then for γ > 0, γT is ν
γ -ism.

(iii) T is averaged if and only if the complement I−T is ν-ism for some ν > 1/2.
Indeed, for α ∈ (0, 1), T is α-averaged if and only if I − T is 1

2α -ism.

Proposition 2.5 (see [3, 10]). Let S, T, V : H −→ H be given operators.

(i) If T = (1 − α)S + αV for some α ∈ (0, 1) and if S is averaged and V is
nonexpansive, then T is averaged.

(ii) T is firmly nonexpansive if and only if the complement I − T is firmly
nonexpansive.

(iii) If T = (1 − α)S + αV for some α ∈ (0, 1) and if S is firmly nonexpansive
and V is nonexpansive, then T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is,
if each of the mappings {Ti}Ni=1 is averaged, then so is the composite T1 ◦
T2 ◦ · · · ◦ TN . In particular, if T1 is α1-averaged and T2 is α2-averaged,
where α1, α2 ∈ (0, 1), then the composite T1 ◦ T2 is α-averaged, where α =
α1 + α2 − α1α2.

(v) If the mappings {Ti}Ni=1 are averaged and have a common fixed point, then

N∩
i=1

Fix(Ti) = Fix(T1 · · · TN ).

The notation Fix(T ) denotes the set of all fixed points of the mapping T ,
that is, Fix(T ) = {x ∈ H : Tx = x}.

The following so-called demiclosedness principle for nonexpansive mappings will
often be used.

Lemma 2.6 (see [13, Demiclosedness Principle]). Let K be a nonempty closed
convex subset of a real Hilbert space H and let S : K −→ K be a nonexpansive
mapping with Fix(S) ̸= ∅. If {xn} is a sequence in K converging weakly to x and
if {(I − S)xn} converges strongly to y, then (I − S)x = y; in particular, if y = 0,
then x ∈ Fix(S).

The following elementary result in the real Hilbert spaces is quite well-known.

Lemma 2.7 (see [13]). Let H be a real Hilbert space. Then for every λ, µ, ν ∈ [0, 1]
with λ+ µ+ ν = 1, we have

∥λx+ µy + νz∥2 =λ∥x∥2 + µ∥y∥2 + ν∥z∥2 − λµ∥x− y∥2

− λν∥x− z∥2 − µν∥y − z∥2, ∀x, y, z ∈ H.

To prove a new weak convergence theorem by a modified extragradient method
with regularization for the split feasibility problem and fixed point problem, we
need the following lemma due to Osilike et al. [21].



170 L. C. CENG, M. M. WONG, AND J. C. YAO

Lemma 2.8 (see [21, p. 80]). Let {an}∞n=1, {αn}∞n=1 and {δn}∞n=1 be sequences of
nonnegative real numbers satisfying the inequality

an+1 ≤ (1 + αn)an + δn, ∀n ≥ 1.

If
∑∞

n=1 αn < ∞ and
∑∞

n=1 δn < ∞, then limn−→∞ an exists. If, in addition,
{an}∞n=1 has a subsequence which converges to zero, then limn−→∞ an = 0.

Corollary 2.9 (see [26, p. 303]). Let {an}∞n=0 and {δn}∞n=0 be two sequences of
nonnegative real numbers satisfying the inequality

an+1 ≤ an + δn, ∀n ≥ 0.

If
∑∞

n=0 δn converges, then limn−→∞ an exists.

The following fact is straightforward but useful.

Lemma 2.10. There holds the following inequality in an inner product space X:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ X.

Let K be a nonempty closed convex subset of a real Hilbert space H and let
F : K −→ H be a monotone mapping. The variational inequality problem (VIP) is
to find x ∈ K such that

⟨Fx, y − x⟩ ≥ 0, ∀y ∈ K.

The solution set of the VIP is denoted by VI(K,F ). It is well-known that

x ∈ VI(K,F ) ⇔ x = PK(x− λFx), ∀λ > 0.

Recall that a Banach space X is said to satisfy the Opial condition [20] if for any
sequence {xn} in X the condition that {xn} converges weakly to x ∈ X implies that
the inequality

lim inf
n−→∞

∥xn − x∥ < lim inf
n−→∞

∥xn − y∥

holds for every y ∈ X with y ̸= x. It is well-known that every Hilbert space satisfies
the Opial condition.

A set-valued mapping T : H −→ 2H is called monotone if for all x, y ∈ H, f ∈ Tx
and g ∈ Ty imply

⟨x− y, f − g⟩ ≥ 0.

A monotone mapping T : H −→ 2H is called maximal if its graph G(T ) is not
properly contained in the graph of any other monotone mapping. It is known that
a monotone mapping T is maximal if and only if, for (x, f) ∈ H×H, ⟨x−y, f−g⟩ ≥ 0
for every (y, g) ∈ G(T ) implies f ∈ Tx. Let F : K −→ H be a monotone and k-
Lipschitz continuous mapping and let NKv be the normal cone to K at v ∈ K, that
is,

NKv = {w ∈ H : ⟨v − y, w⟩ ≥ 0, ∀y ∈ K}.
Define

Tv =

{
Fv +NKv, if v ∈ K,
∅, if v ̸∈ K.

Then, T is maximal monotone and 0 ∈ Tv if and only if v ∈ VI(K,F ); see [24] for
more details.
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3. Main results

We are now in a position to prove that the sequences generated by the pro-
posed hybrid extragradient-like approximation method with regularization, con-
verge strongly to an element of Fix(S) ∩ Γ .

Theorem 3.1. Let S : C −→ C be a nonexpansive mapping such that Fix(S)∩Γ is a
nonempty bounded subset of C. Let {xn}, {yn}, {zn} be the sequences in C generated
by the following hybrid extragradient-like iterative algorithm with regularization:

(3.1)



x0 = x ∈ C chosen arbitrarily,
yn = PC(xn − λn∇fαn(xn)),
zn = (1− βn − γn)xn + βnyn + γnSPC(xn − λn∇fαn(yn)),
Cn = {z ∈ C : ∥zn − z∥2 ≤ ∥xn − z∥2 + 2αnλnκ(κ+ ∥yn∥)},
Qn = {z ∈ C : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0

for all n ≥ 0, where supp∈Fix(S)∩Γ ∥p∥ ≤ κ for some κ ≥ 0, and the following con-

ditions hold for four sequences {αn} ⊂ (0,∞), {λn} ⊂ (0, 1
∥A∥2 ) and {βn}, {γn} ⊂

[0, 1]:

(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1
∥A∥2 );

(ii) limn−→∞ αn = 0;
(iii) βn + γn ≤ 1 for all n ≥ 0;
(iv) limn−→∞ βn = 0 and lim infn−→∞ γn > 0.

Then the sequences {xn}, {yn}, {zn} are well-defined and converge strongly to the
same point q = PFix(S)∩Γx0.

Proof. First, let us show that PC(I − λ∇fα) is ζ-averaged for each λ ∈ (0, 2
α+∥A∥2 ),

where

ζ =
2 + λ(α+ ∥A∥2)

4
.

Indeed, it is easy to see that ∇f = A∗(I − PQ)A is 1
∥A∥2 -ism, that is,

⟨∇f(x)−∇f(y), x− y⟩ ≥ 1

∥A∥2
∥∇f(x)−∇f(y)∥2.

Observe that

(α+ ∥A∥2)⟨∇fα(x)−∇fα(y), x− y⟩
= (α+ ∥A∥2)[α∥x− y∥2 + ⟨∇f(x)−∇f(y), x− y⟩]
= α2∥x− y∥2 + α⟨∇f(x)−∇f(y), x− y⟩+ α∥A∥2∥x− y∥2

+∥A∥2⟨∇f(x)−∇f(y), x− y⟩
≥ α2∥x− y∥2 + 2α⟨∇f(x)−∇f(y), x− y⟩+ ∥∇f(x)−∇f(y)∥2

= ∥α(x− y) +∇f(x)−∇f(y)∥2

= ∥∇fα(x)−∇fα(y)∥2.
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Hence, it follows that ∇fα = αI + A∗(I − PQ)A is 1
α+∥A∥2 -ism. Thus, λ∇fα is

1
λ(α+∥A∥2) -ism according to Proposition 2.4 (ii). By Proposition 2.4 (iii) the comple-

ment I − λ∇fα is λ(α+∥A∥2)
2 -averaged. Therefore, noting that PC is 1

2 -averaged and

utilizing Proposition 2.5 (iv), we know that for each λ ∈ (0, 2
α+∥A∥2 ), PC(I−λ∇fα)

is ζ-averaged with

ζ =
1

2
+

λ(α+ ∥A∥2)
2

− 1

2
· λ(α+ ∥A∥2)

2
=

2 + λ(α+ ∥A∥2)
4

∈ (0, 1).

This shows that PC(I−λ∇fα) is nonexpansive. Furthermore, for {λn} ⊂ [a, b] with
a, b ∈ (0, 1

∥A∥2 ), we have

a ≤ inf
n≥0

λn ≤ sup
n≥0

λn ≤ b <
1

∥A∥2
= lim

n−→∞

1

αn + ∥A∥2
.

Without loss of generality we may assume that

a ≤ inf
n≥0

λn ≤ sup
n≥0

λn ≤ b <
1

αn + ∥A∥2
, ∀n ≥ 0.

Consequently, it follows that for each integer n ≥ 0, PC(I−λn∇fαn) is ζn-averaged
with

ζn =
1

2
+

λn(αn + ∥A∥2)
2

− 1

2
· λn(αn + ∥A∥2)

2
=

2 + λn(αn + ∥A∥2)
4

∈ (0, 1).

This immediately implies that PC(I − λn∇fαn) is nonexpansive for all n ≥ 0.
Next we divide the remainder of the proof into several steps.

Step 1. Assuming that xn is a well-defined element of C for some n ≥ 0, we
show that Fix(S) ∩ Γ ⊂ Cn.

Since xn is defined, yn, zn are obviously well-defined elements of C. Now, take a
fixed p ∈ Fix(S) ∩ Γ arbitrarily. Then, we get Sp = p and PC(I − λ∇f)p = p for
λ ∈ (0, 2

∥A∥2 ). From (3.1) it follows that

(3.2)

∥yn − p∥ = ∥PC(I − λn∇fαn)xn − PC(I − λn∇f)p∥
≤ ∥PC(I − λn∇fαn)xn − PC(I − λn∇fαn)p∥

+∥PC(I − λn∇fαn)p− PC(I − λn∇f)p∥
≤ ∥xn − p∥+ ∥(I − λn∇fαn)p− (I − λn∇f)p∥
≤ ∥xn − p∥+ λnαn∥p∥.
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Utilizing Lemma 2.10 we also have
(3.3)

∥yn − p∥2 = ∥PC(I − λn∇fαn)xn − PC(I − λn∇f)p∥2

= ∥PC(I − λn∇fαn)xn − PC(I − λn∇fαn)p

+PC(I − λn∇fαn)p− PC(I − λn∇f)p∥2

≤ ∥PC(I − λn∇fαn)xn − PC(I − λn∇fαn)p∥2

+2⟨PC(I − λn∇fαn)p− PC(I − λn∇f)p, yn − p⟩
≤ ∥xn − p∥2 + 2∥PC(I − λn∇fαn)p− PC(I − λn∇f)p∥∥yn − p∥
≤ ∥xn − p∥2 + 2∥(I − λn∇fαn)p− (I − λn∇f)p∥∥yn − p∥
= ∥xn − p∥2 + 2λnαn∥p∥∥yn − p∥.

Put tn = PC(xn − λn∇fαn(yn)). Then, by Proposition 2.1 (ii), we have

∥tn − p∥2 ≤ ∥xn − λn∇fαn(yn)− p∥2 − ∥xn − λn∇fαn(yn)− tn∥2

= ∥xn − p∥2 − ∥xn − tn∥2 + 2λn⟨∇fαn(yn), p− tn⟩
= ∥xn − p∥2 − ∥xn − tn∥2 + 2λn(⟨∇fαn(yn)−∇fαn(p), p− yn⟩
+⟨∇fαn(p), p− yn⟩+ ⟨∇fαn(yn), yn − tn⟩)
≤ ∥xn − p∥2 − ∥xn − tn∥2 + 2λn(⟨∇fαn(p), p− yn⟩+ ⟨∇fαn(yn), yn − tn⟩)
= ∥xn − p∥2 − ∥xn − tn∥2 + 2λn[⟨(αnI +∇f)p, p− yn⟩+ ⟨∇fαn(yn), yn − tn⟩]
≤ ∥xn − p∥2 − ∥xn − tn∥2 + 2λn[αn⟨p, p− yn⟩+ ⟨∇fαn(yn), yn − tn⟩]
= ∥xn − p∥2 − ∥xn − yn∥2 − 2⟨xn − yn, yn − tn⟩ − ∥yn − tn∥2

+2λn[αn⟨p, p− yn⟩+ ⟨∇fαn(yn), yn − tn⟩]
= ∥xn − p∥2 − ∥xn − yn∥2 − ∥yn − tn∥2 + 2⟨xn − λn∇fαn(yn)− yn, tn − yn⟩
+2λnαn⟨p, p− yn⟩.

Further, by Proposition 2.1 (i), we have

⟨xn − λn∇fαn(yn)− yn, tn − yn⟩
= ⟨xn − λn∇fαn(xn)− yn, tn − yn⟩+ ⟨λn∇fαn(xn)− λn∇fαn(yn), tn − yn⟩
≤ ⟨λn∇fαn(xn)− λn∇fαn(yn), tn − yn⟩
≤ λn∥∇fαn(xn)−∇fαn(yn)∥∥tn − yn∥
≤ λn(αn + ∥A∥2)∥xn − yn∥∥tn − yn∥.

So, we obtain
(3.4)

∥tn − p∥2 ≤ ∥xn − p∥2 − ∥xn − yn∥2 − ∥yn − tn∥2

+2⟨xn − λn∇fαn(yn)− yn, tn − yn⟩+ 2λnαn⟨p, p− yn⟩
≤ ∥xn − p∥2 − ∥xn − yn∥2 − ∥yn − tn∥2 + 2λn(αn + ∥A∥2)∥xn − yn∥∥tn − yn∥
+2λnαn∥p∥∥yn − p∥
≤ ∥xn − p∥2 − ∥xn − yn∥2 − ∥yn − tn∥2

+λ2
n(αn + ∥A∥2)2∥xn − yn∥2 + ∥yn − tn∥2 + 2λnαn∥p∥∥yn − p∥

= ∥xn − p∥2 + 2λnαn∥p∥∥yn − p∥+ (λ2
n(αn + ∥A∥2)2 − 1)∥xn − yn∥2

≤ ∥xn − p∥2 + 2λnαn∥p∥∥yn − p∥.
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Consequently, utilizing Lemma 2.7, from (3.2), (3.3) and the last inequality, we
conclude that
(3.5)

∥zn − p∥2

= ∥(1− βn − γn)xn + βnyn + γnStn − p∥2

= (1− βn − γn)∥xn − p∥2 + βn∥yn − p∥2 + γn∥Stn − p∥2

−(1− βn − γn)βn∥xn − yn∥2 − (1− βn − γn)γn∥xn − Stn∥2 − βnγn∥yn − Stn∥2

≤ (1− βn − γn)∥xn − p∥2 + βn∥yn − p∥2 + γn∥tn − p∥2

−(1− βn − γn)βn∥xn − yn∥2 − (1− βn − γn)γn∥xn − Stn∥2 − βnγn∥yn − Stn∥2

≤ (1− βn − γn)∥xn − p∥2 + βn(∥xn − p∥2 + 2λnαn∥p∥∥yn − p∥)
+γn[∥xn − p∥2 + 2λnαn∥p∥∥yn − p∥+ (λ2

n(αn + ∥A∥2)2 − 1)∥xn − yn∥2]
−(1− βn − γn)βn∥xn − yn∥2 − (1− βn − γn)γn∥xn − Stn∥2 − βnγn∥yn − Stn∥2

≤ (1− βn − γn)∥xn − p∥2 + (βn + γn)(∥xn − p∥2 + 2λnαn∥p∥∥yn − p∥)
−(1− βn − γn)βn∥xn − yn∥2 − (1− βn − γn)γn∥xn − Stn∥2 − βnγn∥yn − Stn∥2

≤ ∥xn − p∥2 + 2λnαn∥p∥∥yn − p∥
−(1− βn − γn)βn∥xn − yn∥2 − (1− βn − γn)γn∥xn − Stn∥2 − βnγn∥yn − Stn∥2

≤ ∥xn − p∥2 + 2λnαn∥p∥∥yn − p∥
≤ ∥xn − p∥2 + 2λnαnκ(∥yn∥+ κ).

This implies that p ∈ Cn. Thus Fix(S) ∩ Γ ⊂ Cn.

Step 2. We show that the sequence {xn} is well-defined and Fix(S)∩Γ ⊂ Cn∩Qn

for all n ≥ 0.
We show this assertion by mathematical induction. For n = 0 we have Q0 = C.

Hence by Step 1 we get Fix(S) ∩ Γ ⊂ C0 ∩ Q0. Assume that xk is defined and
Fix(S) ∩ Γ ⊂ Ck ∩Qk for some k ≥ 0. Then yk, zk are well-defined elements of C.
Note that Ck is a closed convex subset of C since

Ck = {z ∈ C : ∥zk − xk∥2 + 2⟨zk − xk, xk − z⟩ ≤ 2λkαkκ(∥yk∥+ κ)}.
Also, it is obvious that Qk is closed and convex. Thus, Ck∩Qk is a closed convex

subset, which is nonempty since by assumption it contains Fix(S)∩Γ . Consequently,
xk+1 = PCk∩Qk

x0 is well-defined.
The definitions of xk+1 and of Qk+1 imply that Ck∩Qk ⊆ Qk+1. Hence, Fix(S)∩

Γ ⊆ Qk+1. Using Step 1 we infer that Fix(S) ∩ Γ ⊆ Ck+1 ∩Qk+1.

Step 3. We show that the following statements hold:
(1) {xn} is bounded, limn−→∞ ∥xn − x0∥ exists, and limn−→∞ ∥xn+1 − xn∥ = 0;
(2) limn−→∞ ∥zn − xn∥ = 0.
Indeed, take any p ∈ Fix(S) ∩ Γ . Using xn+1 = PCn∩Qnx0 and p ∈ Fix(S) ∩ Γ ⊂

Cn ∩Qn, we obtain

(3.6) ∥xn+1 − x0∥ ≤ ∥p− x0∥, ∀n ≥ 0.

Therefore, {xn} is bounded and so are both {yn} and {zn}. From the definition of
Qn it is clear that xn = PQnx0. Since xn+1 ∈ Cn ∩Qn ⊂ Qn, we have

∥xn+1 − xn∥2 ≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2, ∀n ≥ 0.



HYBRID EXTRAGRADIENT-LIKEAPPROXIMATION METHODWITHREGULARIZATION 175

In particular, ∥xn+1 − x0∥ ≥ ∥xn − x0∥. Hence limn−→∞ ∥xn − x0∥ exists. Then
it is easy to see that

(3.7) lim
n−→∞

∥xn+1 − xn∥ = 0.

Since xn+1 ∈ Cn, we have

∥zn − xn+1∥2 ≤ ∥xn − xn+1∥2 + 2αnλnκ(κ+ ∥yn∥).
Since {yn} is bounded, {λn} ⊂ [a, b] and limn−→∞ αn = 0, we deduce from (3.7) that
limn−→∞ ∥zn−xn+1∥ = 0. Again from (3.7) it follows that limn−→∞ ∥zn−xn∥ = 0.

Step 4. We show that the following statements hold:
(1) limn−→∞ ∥xn − yn∥ = 0;
(2) limn−→∞ ∥Sxn − xn∥ = 0.
Indeed, from inequality (3.5) we infer that

∥zn − p∥2 − ∥xn − p∥2 ≤ (−βn − γn)∥xn − p∥2 + βn∥yn − p∥2 + γn∥Stn − p∥2

≤ 2αnλnκ(κ+ ∥yn∥).
Since αn −→ 0, βn −→ 0, ∥zn − xn∥ −→ 0, {λn} ⊂ [a, b], and {xn}, {yn} are
bounded, we deduce from the last inequality that

lim
n−→∞

γn(∥Stn − p∥2 − ∥xn − p∥2) = 0.

Using lim infn−→∞ γn > 0 we get limn−→∞(∥Stn − p∥2 − ∥xn − p∥2) = 0. Then
inequality (3.4) implies that

lim
n−→∞

(∥Stn − p∥2 − ∥xn − p∥2) ≤ lim
n−→∞

(∥tn − p∥2 − ∥xn − p∥2)
≤ lim

n−→∞
2λnαn∥p∥∥yn − p∥ = 0.

Thus, limn−→∞(∥tn − p∥2 − ∥xn − p∥2) = 0. Now from inequality (3.4) we have

(1− b2(αn + ∥A∥2)2)∥xn − yn∥2 ≤ (1− λ2
n(αn + ∥A∥2)2)∥xn − yn∥2

≤ ∥xn − p∥2 − ∥tn − p∥2 + 2λnαn∥p∥∥yn − p∥.
This implies that

lim
n−→∞

(1− b2(αn + ∥A∥2)2)∥xn − yn∥2 = 0.

Taking into account [a, b] ⊂ (0, 1
∥A∥2 ), we have 1 − b2∥A∥4 > 0. Consequently,

limn−→∞ ∥xn − yn∥ = 0. Further, again from (3.4) we have

∥yn − tn∥2 ≤ ∥xn − p∥2 − ∥tn − p∥2 − ∥xn − yn∥2

+2λn(αn + ∥A∥2)∥xn − yn∥∥tn − yn∥+ 2λnαn∥p∥∥yn − p∥
≤ ∥xn − p∥2 − ∥tn − p∥2 + 2λn(αn + ∥A∥2)∥xn − yn∥∥tn − yn∥

+2λnαn∥p∥∥yn − p∥.
Since αn −→ 0, ∥xn − yn∥ −→ 0 and {tn} is bounded, we derive limn−→∞ ∥yn −
tn∥ = 0. Hence, limn−→∞ ∥xn − tn∥ = 0. Using the nonexpansivity of S, we get
limn−→∞ ∥Sxn − Stn∥ = 0.

We rewrite the definition of zn as

zn − xn = −βnxn + βnyn + γn(Stn − xn).
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From limn−→∞ ∥zn − xn∥ = 0, limn−→∞ βn = 0, lim infn−→∞ γn > 0, and the
boundedness of {xn}, {yn}, we infer that limn−→∞ ∥Stn − xn∥ = 0. Thus finally
limn−→∞ ∥Sxn − xn∥ = 0.

Step 5. We claim that ωw(xn) ⊂ Fix(S) ∩ Γ , where ωw(xn) denotes the weak
ω-limit set of {xn}, i.e.,

ωw(xn) := {u ∈ H1 : xnj ⇀ u for some subsequence {xnj} of {xn}}.

Indeed, since {xn} is bounded, it has a subsequence which converges weakly to
some point in C and hence ωw(xn) ̸= ∅. Let u ∈ ωw(xn) be arbitrary. Then there
exists a subsequence {xnj} ⊂ {xn} which converges weakly to u. Since we also
have limj−→∞(xnj − Sxnj ) = 0, from the demiclosedness principle it follows that
(I − S)u = 0. Thus u ∈ Fix(S). We now show that u ∈ Γ .

Since ∥xn− tn∥ −→ 0 and ∥yn− tn∥ −→ 0, it is known that tnj ⇀ u and ynj ⇀ u.
Let

Tv =

{
∇f(v) +NCv, if v ∈ C,

∅, if v ̸∈ C,

where NCv = {w ∈ H1 : ⟨v − y, w⟩ ≥ 0, ∀y ∈ C}. Then, T is maximal monotone
and 0 ∈ Tv if and only if v ∈ VI(C,∇f); see [24] for more details. Let (v, w) ∈ G(T ).
Then, we have

w ∈ Tv = ∇f(v) +NCv

and hence,

w −∇f(v) ∈ NCv.

So, we have

⟨v − y, w −∇f(v)⟩ ≥ 0, ∀y ∈ C.

On the other hand, from

tn = PC(xn − λn∇fαn(yn)) and v ∈ C,

we have

⟨xn − λn∇fαn(yn)− tn, tn − v⟩ ≥ 0,

and hence,

⟨v − tn,
tn − xn

λn
+∇fαn(yn)⟩ ≥ 0.

Therefore, from

w −∇f(v) ∈ NCv and tnj ∈ C,

we have

⟨v − tnj , w⟩ ≥ ⟨v − tnj ,∇f(v)⟩
≥ ⟨v − tnj ,∇f(v)⟩ − ⟨v − tnj ,

tnj−xnj

λnj
+∇fαnj

(ynj )⟩

= ⟨v − tnj ,∇f(v)⟩ − ⟨v − tnj ,
tnj−xnj

λnj
+∇f(ynj )⟩ − αnj ⟨v − tnj , ynj ⟩

= ⟨v − tnj ,∇f(v)−∇f(tnj )⟩+ ⟨v − tnj ,∇f(tnj )−∇f(ynj )⟩
−⟨v − tnj ,

tnj−xnj

λnj
⟩ − αnj ⟨v − tnj , ynj ⟩

≤ ⟨v − tnj ,∇f(tnj )−∇f(ynj )⟩ − ⟨v − tnj ,
tnj−xnj

λnj
⟩ − αnj ⟨v − tnj , ynj ⟩.
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So, we obtain

⟨v − u,w⟩ ≥ 0, as j −→ ∞.

Since T is maximal monotone, we have u ∈ T−10, and hence, u ∈ VI(C,∇f). Thus
it is clear that u ∈ Γ . This shows that ωw(xn) ⊂ Fix(S) ∩ Γ .

Step 6. We show that {xn}, {yn} and {zn} converge strongly to the same point
q = PFix(S)∩Γx0.

Assume that {xn} does not converge strongly to q. Then there exists ε > 0 and
a subsequence {xni} ⊂ {xn} such that ∥xni − q∥ > ε for all i. Without loss of
generality we may assume that {xni} converges weakly to some point u. By Step
5, u ∈ Fix(S)∩Γ . Utilizing q = PFix(S)∩Γx0, the weak lower semicontinuity of ∥ · ∥,
and relation (3.6) for p = q, we obtain

(3.8) ∥q − x0∥ ≤ ∥u− x0∥ ≤ lim inf
i−→∞

∥xni − x0∥ = lim
n−→∞

∥xn − x0∥ ≤ ∥q − x0∥.

This implies that ∥q − x0∥ = ∥u − x0∥. Hence u = q since q is the unique element
in Fix(S) ∩ Γ that minimizes the distance from x0. Also, relation (3.8) leads to
limi−→∞ ∥xni − x0∥ = ∥q − x0∥. Since {xni − x0} converges weakly to q − x0, this
shows that {xni − x0} converges strongly to q − x0, and hence {xni} converges
strongly to q, a contradiction.

Therefore, {xn} converges strongly to q. It is easy to see that both {yn} and
{zn} converge strongly to the same point q. This completes the proof. �

Corollary 3.2. Let S : C −→ C be a nonexpansive mapping such that Fix(S) ∩ Γ
is a nonempty bounded subset of C. Let {xn}, {yn}, {zn} be the sequences in C gen-
erated by the following hybrid extragradient iterative algorithm with regularization:

(3.9)



x0 = x ∈ C chosen arbitrarily,

yn = PC(xn − λn∇fαn(xn)),

zn = (1− γn)xn + γnSPC(xn − λn∇fαn(yn)),

Cn = {z ∈ C : ∥zn − z∥2 ≤ ∥xn − z∥2 + 2αnλnκ(κ+ ∥yn∥)},
Qn = {z ∈ C : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0

for all n ≥ 0, where supp∈Fix(S)∩Γ ∥p∥ ≤ κ for some κ ≥ 0, and the following

conditions hold for three sequences {αn} ⊂ (0,∞), {λn} ⊂ (0, 1
∥A∥2 ) and {γn} ⊂

[0, 1]:

(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1
∥A∥2 );

(ii) limn−→∞ αn = 0;
(iii) lim infn−→∞ γn > 0.

Then the sequences {xn}, {yn}, {zn} are well-defined and converge strongly to the
same point q = PFix(S)∩Γx0.

Proof. In Theorem 3.1, put βn = 0 for all n ≥ 0. Then iterative algorithm (3.1)
reduces to (3.9), and conditions (iii) and (iv) in Theorem 3.1 reduce to condition
(iii) in Corollary 3.2. Thus, by Theorem 3.1 we obtain the conclusion. �
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Remark 3.3. we remark that [28, Theorem 5.7] and [4, Theorem 3.1] are weak con-
vergence results for solving the SFP. Therefore, Theorem 3.1 as a strong convergence
result is quite interesting. This result represents the supplementation, improvement,
extension and development of the corresponding results in the very recent literature,
for example, [28, Theorem 5.7] and [4, Theorem 3.1] to a great extent.

We now propose a modified extragradient method with regularization and prove
that the sequences generated by the proposed method converge weakly to an element
of Fix(S) ∩ Γ .

Theorem 3.4. Let S : C −→ C be a nonexpansive mapping such that Fix(S)∩Γ ̸=
∅. Let {xn} and {yn} be the sequences in C generated by the following modified
extragradient iterative algorithm with regularization:

(3.10)


x0 = x ∈ C chosen arbitrarily,

yn = PC(xn − λn∇fαn(xn)),

xn+1 = (1− βn − γn)xn + βnyn + γnSPC(xn − λn∇fαn(yn))

for all n ≥ 0, where the following conditions hold for four sequences {αn} ⊂
(0,∞), {λn} ⊂ (0, 1

∥A∥2 ) and {βn}, {γn} ⊂ [0, 1]:

(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1
∥A∥2 );

(ii)
∑∞

n=0 αn < ∞;
(iii) βn + γn ≤ 1 for all n ≥ 0;
(iv) 0 < lim infn−→∞ γn ≤ lim supn−→∞(βn + γn) < 1.

Then, both the sequences {xn} and {yn} converge weakly to an element x̂ ∈ Fix(S)∩
Γ.

Proof. First, as shown in the proof of Theorem 3.1, PC(I −λ∇fα) is ζ-averaged for

each λ ∈ (0, 2
α+∥A∥2 ), where ζ = 2+λ(α+∥A∥2)

4 ∈ (0, 1). It is known that PC(I−λ∇fα)

is nonexpansive. Further, for {λn} ⊂ [a, b] with a, b ∈ (0, 1
∥A∥2 ), PC(I − λn∇fαn)

is ζn-averaged with ζn = 2+λn(αn+∥A∥2)
4 ∈ (0, 1). It is known immediately that

PC(I − λn∇fαn) is nonexpansive for all n ≥ 0.
Next, we show that the sequence {xn} is bounded. Indeed, take a fixed p ∈

Fix(S)∩Γ arbitrarily. Then, we get Sp = p and PC(I−λ∇f)p = p for λ ∈ (0, 2
∥A∥2 ).

Utilizing Lemma 2.7, from (3.10) and inequalities (3.2), (3.3) and (3.4), we con-
clude that

∥xn+1 − p∥2

= ∥(1− βn − γn)xn + βnyn + γnStn − p∥2

= (1− βn − γn)∥xn − p∥2 + βn∥yn − p∥2 + γn∥Stn − p∥2

−(1− βn − γn)βn∥xn − yn∥2 − (1− βn − γn)γn∥xn − Stn∥2 − βnγn∥yn − Stn∥2

≤ (1− βn − γn)∥xn − p∥2 + βn∥yn − p∥2 + γn∥tn − p∥2
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(3.11)
−(1− βn − γn)βn∥xn − yn∥2 − (1− βn − γn)γn∥xn − Stn∥2 − βnγn∥yn − Stn∥2

≤ (1− βn − γn)∥xn − p∥2 + βn(∥xn − p∥2 + 2λnαn∥p∥∥yn − p∥)
+γn[∥xn − p∥2 + 2λnαn∥p∥∥yn − p∥+ (λ2

n(αn + ∥A∥2)2 − 1)∥xn − yn∥2]
−(1− βn − γn)βn∥xn − yn∥2 − (1− βn − γn)γn∥xn − Stn∥2 − βnγn∥yn − Stn∥2

≤ (1− βn − γn)∥xn − p∥2 + (βn + γn)(∥xn − p∥2 + 2λnαn∥p∥∥yn − p∥)
−γn(1− λ2

n(αn + ∥A∥2)2)∥xn − yn∥2 − (1− βn − γn)γn∥xn − Stn∥2

≤ ∥xn − p∥2 + 2λnαn∥p∥∥yn − p∥
−γn(1− λ2

n(αn + ∥A∥2)2)∥xn − yn∥2 − (1− βn − γn)γn∥xn − Stn∥2

≤ ∥xn − p∥2 + 2λnαn∥p∥∥yn − p∥
≤ ∥xn − p∥2 + 2λnαn∥p∥(∥xn − p∥+ λnαn∥p∥)
≤ ∥xn − p∥2 + αn(λ

2
n∥p∥2 + ∥xn − p∥2) + 2λ2

nα
2
n∥p∥2

= (1 + αn)∥xn − p∥2 + αnλ
2
n∥p∥2(1 + 2αn)

= (1 + αn)∥xn − p∥2 + δn,

where δn = αnλ
2
n∥p∥2(1 + 2αn). Since

∑∞
n=0 αn < ∞ and {λn} ⊂ [a, b] for some

a, b ∈ (0, 1
∥A∥2 ), we derive

∑∞
n=0 δn < ∞. Therefore, by Lemma 2.8 we obtain that

(3.12) lim
n−→∞

∥xn − p∥ exists for each p ∈ Fix(S) ∩ Γ ,

and the sequences {xn} and {yn} are bounded. From (3.11) we also obtain

γn(1− b2(αn + ∥A∥2)2)∥xn − yn∥2 + (1− βn − γn)γn∥xn − Stn∥2

≤ γn(1− λ2
n(αn + ∥A∥2)2)∥xn − yn∥2 + (1− βn − γn)γn∥xn − Stn∥2

≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + 2λnαn∥p∥∥yn − p∥.
Since 0 < lim infn−→∞ γn ≤ lim supn−→∞(βn + γn) < 1, we deduce from (3.12) and
αn −→ 0 that

(3.13) lim
n−→∞

∥xn − yn∥ = lim
n−→∞

∥xn − Stn∥ = 0.

Furthermore, we get

∥yn − tn∥ = ∥PC(xn − λn∇fαn(xn))− PC(xn − λn∇fαn(yn))∥
≤ ∥(xn − λn∇fαn(xn))− (xn − λn∇fαn(yn))∥
= λn∥∇fαn(xn)−∇fαn(yn)∥
≤ λn(αn + ∥A∥2)∥xn − yn∥.

This together with (3.13) implies that

(3.14) lim
n−→∞

∥yn − tn∥ = 0.

Note that
∥tn − Stn∥ ≤ ∥tn − yn∥+ ∥yn − xn∥+ ∥xn − Stn∥.

This together with (3.13) and (3.14) implies that

(3.15) lim
n−→∞

∥tn − Stn∥ = 0.

Also, from
∥xn − tn∥ ≤ ∥xn − yn∥+ ∥yn − tn∥,
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we get

(3.16) lim
n−→∞

∥xn − tn∥ = 0.

Since ∇f = A∗(I − PQ)A is Lipschitz continuous, we have

(3.17) lim
n−→∞

∥∇f(yn)−∇f(tn)∥ = 0.

As {xn} is bounded, there is a subsequence {xni} of {xn} that converges weakly
to some x̂. Thus ωw(xn) ̸= ∅. Repeating the same argument as in Step 5 of the
proof of Theorem 3.1, we obtain that x̂ ∈ Fix(S) ∩ Γ .

Furthermore, let {xnj} be another subsequence of {xn} such that xnj ⇀ x̄. Then,
x̄ ∈ Fix(S) ∩ Γ . Let us show that x̂ = x̄. Assume that x̂ ̸= x̄. From the Opial
condition [20], we have

lim
n−→∞

∥xn − x̂∥ = lim inf
i−→∞

∥xni − x̂∥ < lim inf
i−→∞

∥xni − x̄∥
= lim

n−→∞
∥xn − x̄∥ = lim inf

j−→∞
∥xnj − x̄∥

< lim inf
j−→∞

∥xnj − x̂∥ = lim
n−→∞

∥xn − x̂∥.

This is a contraction. Thus, we have x̂ = x̄. This implies

xn ⇀ x̄ ∈ Fix(S) ∩ Γ .

Further, from ∥xn − yn∥ −→ 0, it follows that yn ⇀ x̄. This shows that both
sequences {xn} and {yn} converge weakly to x̂ ∈ Fix(S) ∩ Γ . This completes the
proof. �

Corollary 3.5. Let S : C −→ C be a nonexpansive mapping such that Fix(S)∩Γ ̸=
∅. Let {xn} and {yn} be the sequences in C generated by the following extragradient
iterative algorithm with regularization:

(3.18)


x0 = x ∈ C chosen arbitrarily,

yn = PC(xn − λn∇fαn(xn)),

xn+1 = (1− γn)xn + γnSPC(xn − λn∇fαn(yn))

for all n ≥ 0, where the following conditions hold for three sequences {αn} ⊂
(0,∞), {λn} ⊂ (0, 1

∥A∥2 ) and {γn} ⊂ [0, 1]:

(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1
∥A∥2 );

(ii)
∑∞

n=0 αn < ∞;
(iii) 0 < lim infn−→∞ γn ≤ lim supn−→∞ γn < 1.

Then, both the sequences {xn} and {yn} converge weakly to an element x̂ ∈ Fix(S)∩
Γ.

Proof. In Theorem 3.4, put βn = 0 for all n ≥ 0. Then iterative algorithm (3.10)
reduces to (3.18), and conditions (iii) and (iv) in Theorem 3.4 reduce to condition
(iii) in Corollary 3.5. Thus, by Theorem 3.4 we obtain the conclusion. �

Remark 3.6. Compared with [4, Theorem 3.1], Corollary 3.5 essentially coincides
with it. Thus, Theorem 3.4 essentially includes [4, Theorem 3.1] as a special case.
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