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monotonicity of directional derivatives is also presented. For continuity, we show
that the closedness is sufficient for convex vector functions to be continuous relative
to any locally simplicial subset of the domains. Finally, a definition of recession
maps of convex vector functions is proposed and by investigating properties of this
object we get existence conditions for optimal solutions of vector problems with and
without constraints. Several examples are also presented to illustrate the results.

The paper is organized as follows. In the next section we present some prelimi-
naries on cone orders in the Eucidean space Rm. Section 3 deals to the continuity of
convex vector functions. Section 4 is devoted to characterizations of convexity. In
section 5 we investigate properties of recession maps of convex vector functions. The
final section presents existence conditions of optimal solutions of vector problems
in terms of recession maps.

2. Preliminaries

We recall that a nonempty set C ⊂ Rm is said to be a cone if tx ∈ C, ∀x ∈ C, t ≥
0. A cone C is called pointed if C ∩ (−C) = {0}. We say a set B ⊂ Rm generates a
cone C if C = {tb | b ∈ B, t ≥ 0} and denote C = conB. The polar cone of a cone
C is defined as the set C ′ := {ξ ∈ L(Rm,R) : ξ(x) ≥ 0, ∀x ∈ C}. We list here
some properties of cones from ([4], [8]) which will be used in the sequel.

Lemma 2.1. Let C ⊂ Rm be a cone.

1) If C is closed, convex and pointed, then intC ′ ̸= ∅.
2) Assume that the cone C is closed and convex. Let c ∈ Rm. Then

(i) c ∈ C if and only if ξ(c) ≥ 0, ∀ξ ∈ C ′ \ {0}.
(ii) Supposing that intC ̸= ∅. Then c ∈ intC if and only if ξ(c) > 0, ∀ξ ∈

C ′ \ {0}.
3) Assume that C is a closed, convex and pointed cone. Then for every neigh-

borhood W of the origin in Rm, there exists another neighborhood V of the
origin such that

(V + C) ∩ (V − C) ⊂W.

A convex cone C specifies in Rm a partial order “≼C” defined by

x, y ∈ Rm, x ≼C y ⇔ y − x ∈ C.

When intC ̸= ∅ we write x ≪ y if y − x ∈ intC. We recall here the concepts of
efficiency.

Definition 2.2 ([8], Definition 2.1). Let A ⊂ Rm be a nonempty set and let a ∈ A.
We say that

i) a is an ideal efficient (or, ideal minimal) element of A with respect to C if
a ≼C x, ∀x ∈ A. The set of ideal efficient elements of A is denoted by IMin(A|C).

ii) a is an efficient (or, Pareto minimal) element of A with respect to C if ∀x ∈
A, x ≼C a⇒ a ≼C x. The set of efficient elements of A is denoted by Min(A|C).

We note that if IMin(A|C) is nonempty then Min(A|C)=IMin(A|C). In addition,
if C is pointed, then IMin(A|C) is a singleton. Concepts of Max and IMax are
defined analogously. Clearly, −MinA = Max(−A).
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Let A ⊂ Rm be a nonempty set and let a ∈ Rm. We say that a is an upper bound
of A with respect to C if

x ≼C a, ∀x ∈ A.

The set of upper bounds of A is denoted by Ub(A|C). We say that A is bounded
from above if Ub(A|C) ̸= ∅. The concept of lower bounds is defined analogously
and the set of them is denoted by Lb(A|C).

Definition 2.3 ([17], Definition 2.3). Let A ⊂ Rm be a nonempty set and let
a ∈ Rm. We say that

i) a is an ideal supremal point of A with respect to C if a ∈ IMin(UbA|C), i.e.,{
x ≼C a, ∀x ∈ A

a ≼C y, ∀y ∈ Ub(A|C).

The set of ideal supremal points of A is denoted by ISup(A|C).
ii) a is a supremal point of A with respect to C if a ∈ Min(UbA|C), i.e.,{

x ≼C a, ∀x ∈ A

∀y ∈ Ub(A|C), y ≼C a⇒ a ≼C y.

The set of supremal points of A is denoted by Sup(A|C).
iii) a is an ideal infimal point of A with respect to C if a ∈ IMax(LbA|C), i.e.,{

a ≼C x, ∀x ∈ A

y ≼C a, ∀y ∈ Lb(A|C).

The set of ideal infimal points of A is denoted by IInf(A|C).
iv) a is an infimal point of A with respect to C if a ∈ Max(LbA|C), i.e.,{

a ≼C x, ∀x ∈ A

∀y ∈ Lb(A|C), a ≼C y ⇒ y ≼C a.

The set of infimal points of A is denoted by Inf(A|C).

Like the case of Min and IMin, we should note that if ISup(A|C) is nonempty
then ISup(A|C)=Sup(A|C) and in addition, if C is pointed, then ISup(A|C) is a
singleton. Clearly, −SupA = Inf(−A).

There are some different definitions of other authors on the concept of supremum.
Among of them, the definition of T. Tanino ([14]) is remarkable. Definition 2.3 is
an extension of the usual definition of supremum in R by a natural way: minimum
of the set of upper bounds of A. It seems suitable for establishing several results
concerning convex vector functions as shown in ([17]) and in sections 5,6 below.

From now on, when there is no afraid of confusion, we omit “with respect to C”
and “|C” in the definitions above.

We list here some results from ([17]) which will be needed in the sequel. A
sequence {yk}k ⊂ Rm is called decreasing (with respect to C) if yk+1 ≼ yk, ∀k. It is
called bounded from below if there exists a ∈ Rm such that a ≼ yk, ∀k.



142 P. N. TINH AND D. S. KIM

Lemma 2.4 ([17], Lemma 2.8). Assume that the order cone C ⊂ Rm is closed,
convex and pointed. Let {yk}k ⊂ Rm be a decreasing sequence. If {yk}k is bounded
from below then it is convergent and

lim
k→∞

yk = IInf{yk | k ∈ N}.

We say that a subset A ⊂ Rm is linearly ordered if for every x, y ∈ A, x ≼
y or y ≼ x.

Proposition 2.5 ([17], Proposition 2.9, Remark 2.10). Assume that the order cone
C ⊂ Rm is closed, convex and pointed. If a nonnempty linearly ordered subset A of
Rm is bounded from above, then ISupA ̸= ∅ and there exists an increasing sequence
in A converging to ISupA.

We should note that an analogous result holds true for IInf.

Theorem 2.6 ([17], Theorem 2.16, Remark 2.18). Assume that the order cone
C ⊂ Rm is closed, convex and pointed. Let A be a nonempty subset of Rm. Then
SupA ̸= ∅ if and only if A is bounded from above. In this case, we have

Ub(A) = Sup(A) + C.

By this theorem, it is obvious that if SupA is a singleton then SupA=ISupA.
Now let D ⊂ Rn be a nonempty set and let f : D → Rm. The epigraph of f with

respect to C is defined as the set

epif := {(x, z) ∈ D × Rm : f(x) ≼ z} .
We say that f is convex (resp., closed ) with respect to C if epif is convex (resp.,
closed) in Rn × Rm. It can see that f is convex if and only if D is convex and for
every x, y ∈ D, λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≼ λf(x) + (1− λ)f(y).

f is called strictly convex with respect to C if

f(λx+ (1− λ)y) ≪ λf(x) + (1− λ)f(y), ∀x, y ∈ D,x ̸= y, λ ∈ (0, 1).

The relation between scalar convex functions and vector convex functions is ex-
pressed in the following lemma which will be used in Section 4.

Lemma 2.7 ([8], Lemma 2.1). Assume that the order cone C ⊂ Rm is closed and
convex. Let f be a vector function from a nonempty and convex set D ⊂ Rn to
Rm. Then

i) f is convex with respect to C if and only if ξf is convex, for every ξ ∈ C ′ \{0}.
ii) Supposing that intC ̸= ∅, f is strictly convex with respect to C if and only if

ξf is strictly convex, for every ξ ∈ C ′ \ {0}.

The level set of a vector function f : D ⊂ Rn → Rm at a ∈ Rm with respect to
the cone C is defined as the set

levaf := {x ∈ D | f(x) ≼ a}.
It is immediately from definitions that level sets of a convex vector function are
convex sets.
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Lemma 2.8. Assume that Rm is ordered by a convex cone C ⊂ Rm. Let f be a
vector function from a nonempty subset D ⊂ Rn to Rm. If f is closed, then levaf
is also closed for all a ∈ Rm. In addition, if C is closed with intC ̸= ∅, then the
converse is true.

Proof. Let a ∈ Rm be arbitrary and let a sequence {xk} ⊂ levaf be converging to
some x ∈ Rn. Then the sequence {(xk, a)}k ⊂ epif and it converges to (x, a). Since
epif is closed we have (x, a) ∈ epif . Hence f(x) ≼ a, i.e., x ∈ levaf . Thus levaf is
closed.

Conversely, let any sequence {(xk, ak)}k ⊂ epif be converging to some (x, a) ∈
Rn × Rm. Let c ∈ intC and real t > 0 be arbitrary. Then a ∈ a + tc − intC
which implies ak ∈ a+ tc− intC for k sufficiently large. Hence xk ∈ leva+tcf for k
sufficiently large. By the closedness of level sets, one get x ∈ leva+tcf , i.e.,

f(x) ≼ a+ tc, ∀t > 0.

Taking t to 0, since C is closed we have f(x) ≼ a which equivalent to (x, a) ∈ epif .
Thus f is closed. �

3. Continuity

From now on, we always assume that Rm is ordered by a convex cone C.
Let f be a vector function from a nonempty set D ⊂ Rn to Rm and let S ⊂

D, x ∈ S. We say that f is lower (resp., upper) semicontinuous relative to S at x
with respect to C if for every neighborhood W of f(x), there exists a neighborhood
V of x such that

y ∈ V ∩ S ⇒ f(y) ∈W + C ( resp., f(y) ∈W − C).

f is called lower (resp., upper) semicontinuous relative to S if it is lower (resp.,
upper) semicontinuous relative to S at every x ∈ S. The concept of continuity
relative to S is defined analogously. When S = D we omit the phrase “relative to
S” in the definitions above. In this case, if m = 1 and C = R+ then we get the
usual concepts of lower and upper semicontinuity for scalar functions. But it is not
like the scalar case, a vector function can be closed but not lower semicontinuous.
For instant, let’s consider the function f : [0,+∞) → R2 defined by

f(x) :=

{
(0, 0), x = 0,

( 1x , 0), x > 0.

R2 is ordered by the cone C := cone(co{(−1, 1), (1, 1)}), where, coA denotes the
convex hull of A. Then f is closed but not lower semicontinuous at 0 with respect to
C. The reason of this fact comes from the nature of the partial order generated by a
cone. In ([1]) some characterizations of semicontinuity of vector functions are given.
Here we present a sufficient condition for a vector function to be semicontinuous.

Proposition 3.1. Assume that the order cone C ⊂ Rm is closed, convex and pointed
with intC ̸= ∅. Let f be a vector function from a nonempty set D ⊂ Rn to Rm and
let S ⊂ D,x0 ∈ S. If f is closed and upper semicontinuous relative to S at x0, then
f is lower semicontinuous relative to S at x0.

To proof Proposition 3.1 we need the following lemmata.
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Lemma 3.2. Let C ⊂ Rm be a closed, convex and pointed cone and let ξ ∈ intC ′.
Then for every number α ≥ 0, the set

A := {c ∈ C : ξ(c) ≤ α}

is compact.

Proof. Clearly A is closed. To complete the proof we only need to show that A is
bounded. This is equivalent to showing that for every sequence in A, there exists
a bounded subsequence. Let {ck}k ⊂ A be an arbitrary sequence. Without loss of
generality, we may assume that ck ̸= 0, for all k. Then the sequence { ck

∥ck∥}k has a

subsequence { ckl
∥ckl∥

}l which converging to some unit vector c0 ∈ C. Since ξ ∈intC ′,

by Lemma 2.1 we have

lim
l→∞

ξ(ckl)

∥ckl∥
= ξ(c0) > 0.

This fact together the boundedness of the sequence {ξ(ckl)}l imply the boundedness
of {ckl}l. The proof is complete. �

Lemma 3.3. Assume that the order cone C ⊂ Rm is closed, convex and pointed
with intC ̸= ∅. Let ξ ∈ intC ′, a ∈ Rm and a number δ > 0 be arbitrary. Then for
every number α ∈ R the set

A := {y ∈ Rm : ξ(y) ≥ α} ∩ [B(a, δ)− C]

is compact.

Proof. The result is deduced from Lemma 3.2 and the fact that there exists c ∈ intC
such that B̄(a, δ)− C ⊂ c− C. �

Proof of Proposition 3.1. Suppose to the contrary that f is not lower semicontinuous
relative to S at x0. Then there exists a possitive number ϵ and a sequence {xk}k ⊂ S
converges to x0 such that

(3.1) f(xk) /∈ B(f(x0), ϵ) + C, (∀k)

where B(f(x0), ϵ) denotes the open ball with the center f(x0) and the radius ϵ. One
of two following cases holds.

i) The sequence {f(xk)}k is bounded. Without loss of generality we may assume
that {f(xk)}k converges to some y0 ∈ Rm. By (3.1),

(3.2) y0 /∈ B(f(x0), ϵ) + C.

On other hand, since f is closed one has (x0, y0) ∈ epif . Hence y0 ≽ f(x0) which
contradicts (3.2).

ii) The sequence {f(xk)}k is not bounded. Since f is upper semicontinuous
relative to S at x0,

f(xk) ∈ B(f(x0), ϵ)− C

when k > K for K sufficiently large, where B(f(x0), ϵ) denotes the closed ball with
the center f(x0) and the radius ϵ. By Lemma 2.1, intC ′ ̸= ∅. Pick an element
ξ ∈ intC ′. Put

α := min{ξ(y) : y ∈ B(f(x0), ϵ)} − 1.
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By Lemma 3.3, the set

(B(f(x0), ϵ)− C) ∩ {y : ξ(y) ≥ α}

is compact. Then the set

E := (B(f(x0), ϵ)− C) ∩ {y : ξ(y) = α}

is also compact. We note that

(3.3) E ∩ (B(f(x0), ϵ) + C) = ∅.

For every k > K, there exists yk ∈ B(f(x0), ϵ), ck ∈ C such that

f(xk) = yk − ck.

Since the sequence {f(xk)}k is not bounded we may assume that

∥ck∥ → +∞.

Then by Lemma 3.2 we also may assume that

(3.4) lim ξ(ck) = +∞.

We have
f(xk) = yk − ck

= yk −
(
ξ(yk)− α

ξ(ck)

)
ck −

(
1− ξ(yk)− α

ξ(ck)

)
ck

= zk − λkck,

where

zk = yk −
(
ξ(yk)− α

ξ(ck)

)
ck ∈ E

λk = 1− ξ(yk)− α

ξ(ck)

By (3.4), λk > 0 when k sufficiently large. Then we have, f(xk) ≼ zk, i.e.,

(xk, zk) ∈ epif,

for k sufficiently large. Since {zk}k>K ⊂ E and E is compact we may assume {zk}k
converges to some

(3.5) z0 ∈ E.

By the closedness of f , he have

z0 ≽ f(x0).

This fact together (3.3) and (3.5) give us a contradiction. The proof is complete.�

Lemma 3.4. Assume that the order cone C ⊂ Rm is closed, convex and pointed.
Let f be a vector function from a nonempty set D ⊂ Rn to Rm and let S ⊂ D,x0 ∈
S. Then f is continuous relative to S at x0 if and only if f is lower and upper
semicontinuous relative to S at x0.
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Proof. ⇒: It is immediate from definitions.
⇐: Let W be an arbitrary neibourhood of f(x0). By Lemma 2.1, there exists a
neighborhood W’ of f(x0) such that

(3.6) (W ′ + C) ∩ (W ′ − C) ⊂W.

By the semicontinuity of f at x0, there exists a neighborhood V of x0 such that

(3.7) x ∈ V ∩ S ⇒ f(x) ∈ (W ′ + C) ∩ (W ′ − C).

(3.6) and (3.7) implies the continuity relative to S of f at x0. �
Convex vector functions have several nice properties as scalar convex functions

([5], [8]-[10], [14]-[17]). One of them is the Lipschitzian continuity property.

Proposition 3.5 ([10], Theorem 3.1). Assume that the closure clC of the order
cone C ⊂ Rm is pointed. Let f be a convex vector function from a nonempty convex
set D ⊂ Rn to Rm. Then f is locally Lipschitz on the relative interior riD of D.

In general, convex vector functions are not continuous at the boundary points
of the domains. However, under certain conditions this property is still valid. A
such condition concerns to the concept of locally simplicial sets. We recall some
background from ([13]). A subset S ⊂ Rn is called locally simplicial if for each
x ∈ S, there exist a finite collection of simplices S1, . . . , Sk ⊂ S such that, for some
neighborhood U of x

U ∩ S = U ∩ (S1 ∪ · · · ∪ Sk).
The class of locally simplicial sets includes, besides line segments and other sim-
plices, all polytopes and polyhedral convex sets. It also includes all relative open
convex sets.

Let T be a simplex with vertices x0, x1, . . . , xk and let x ∈ T . Then T can be
triangulated into simplices having x as a vertex, i.e. each y ∈ T belongs to a simplex
whose vertices are x and m of the m+ 1 vertices of T . Base on this fact we have

Theorem 3.6. Let f be a convex vector function from a nonempty convex set
D ⊂ Rn to Rm and let S be any locally simplicial subset of D. Then f is upper
semicontinuous relative to S. In addition, if the order cone C is closed, pointed
with intC ̸= ∅ and f is closed, then f is continuous relative to S.

Proof. Let x ∈ S be arbitrary. Then there exist simplices S1, . . . , Sk ⊂ S such
that Si contains x, for every i = 1, k, and U ∩ S = U ∩ (S1 ∪ · · · ∪ Sk), for some
neighborhood U of x. Each Si can be triangulated into simplices having x as vertex.
Denote these simplices by T1, . . . , Tl. Then U ∩ S = U ∩ (T1 ∪ · · · ∪ Tl). Hence to
prove the upper continuity relative to S of f at x it only needs to prove the upper
continuity relative to Ti of f at x, for every i = 1, l. Suppose that Ti is a p-
simplex with vertices x, x1, . . . , xp. Without loss of generality we may assume that
x = 0, p = n, xj = ej , j = 1, n, where {e1, . . . , en} is the canonical base of Rn. Let
ϵ > 0 be arbitrary. Put

r =


1, if f(ej)− f(0) = 0, ∀j = 1, n,

ϵ
n∑

j=1
∥f(ej)−f(0)∥

, if ∃j : f(ej)− f(0) ̸= 0.
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Let y = (λ1, . . . , λn) ∈ B(0, r) ∩ Ti. Then y can represent as

y = (1− λ1 − · · · − λn)0 + λ1e1 + · · ·+ λnen,

where λj ≥ 0, j = 1, n, λ1 + · · ·+ λn 6 1 . Hence by convexity of f , we have

f(y) ≼ (1− λ1 − · · · − λn)f(0) + λ1f(e1) + · · ·+ λnf(en),

or,

f(y)− f(0) ≼
n∑

i=j

λj(f(ej)− f(0)).

Since

∥
n∑

j=1

λj(f(ej)− f(0))∥ 6
n∑

j=1

λj∥f(ej)− f(0)∥

6 ∥y∥
n∑

j=1

∥f(ej)− f(0)∥

< r
n∑

j=1

∥f(ej)− f(0)∥

6 ϵ

one has f(y) − f(0) ∈ B(0, ϵ) − C which implies the upper semicontinuity relative
to Ti of f at x = 0. Thus f is upper semicontinuous relative to S.

Now, assume in addition that C is closed , pointed with intC ̸= ∅ and f is closed.
Then by Proposition 3.1, f is lower semicontinuous relative to S. Hence by Lemma
3.4, f is continuous relative to S. The proof is complete. �

4. Characterizations

Firstly, we recall some definitions. Let D ⊂ Rn be a nonempty set and let x ∈ D.
Denote by T0(D;x) the cone of feasible directions of D at x, i.e.,

T0(D;x) = {v ∈ Rn | ∃t0 > 0 such that x+ tv ∈ D, ∀t ∈ [0, t0]}.

Let f : D → Rm, x ∈ D, v ∈ TD(x). The directional derivative of f at x in the
direction v is defined as the following limit

f ′(x; v) = lim
t↓0

f(x+ tv)− f(x)

t
.

Suppose that intD ̸= ∅ and let x ∈ intD. f is said to be Gateaux differentiable at x
if f ′(x; v) exists for every v ∈ Rn and there is a continuous linear map, say DGf(x),
such that

f ′(x; v) = DGf(x)(v), ∀v ∈ Rn.

Definition 4.1. (i) Let a map A : D ⊂ Rn → L(Rn,Rm) be given. We say that A
is monotone (resp., strictly monotone) with respect to C if

A(x)(y − x) +A(y)(x− y) ≼ 0, ∀x, y ∈ D.

(resp., A(x)(y − x) +A(y)(x− y) ≪ 0, ∀x, y ∈ D.)
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(ii) Let a vector bifunction B : D×Rn → Rm be given. We say that B is monotone
(resp., strictly monotone) with respect to C if

B(x, y − x) +B(y, x− y) ≼ 0, ∀x, y ∈ D.

(resp., B(x, y − x) +B(y, x− y) ≪ 0, ∀x, y ∈ D.)

When m = 1 and C = R+ we return to the classical concept of monotonicity.
A characterization of convexity of scalar functions via the monotonicity of their
directional derivatives is shown out in the following result.

Lemma 4.2 ([9]). Let ϕ be a lower semicontinuous function from a nonempty
convex subset D ⊂ Rn to R. Suppose that ϕ′(x; v) exists for every x ∈ D, v ∈
T0(D;x). Then ϕ is convex (resp.; strictly convex) if and only if ϕ′(.; .) is monotone
(resp.; strictly monotone)in the classical sense.

Lemma 4.3. If a vector function f : D ⊂ Rn → Rm is lower semicontinuous with
respect to C, then ξf is also lower semicontinuous for every ξ ∈ C ′.

Proof. Let ξ ∈ C ′. We may assume that ξ ̸= 0. Let x ∈ D, ϵ > 0 be arbitrary.
Set ϵ′ = ϵ

∥ξ∥ (where, ∥ξ∥ := sup
∥x∥≤1

|ξ(x)|). By the definition of lower semicontinuity,

there exists a neighborhood V of x such that

x′ ∈ V ∩D ⇒ f(x′) ∈ f(x) +B(0, ϵ′) + C.

We have

ξ[f(x′)− f(x)] ≥ infξ[B(0, ϵ′) + C] = infξ[B(0, ϵ′)] = −ϵ′∥ξ∥ = −ϵ

which implies the lower semicontinuity of ξf at x. Since x ∈ D is arbitrary the
proof is complete. �

Theorem 4.4. Assume that the order cone C ⊂ Rm is convex and closed. Let f be
a lower semicontinuous vector function from a nonempty convex subset D ⊂ Rn to
Rm. Suppose that f ′(x; v) exists for every x ∈ D, v ∈ T0(D;x). Then f is convex
(resp.; strictly convex) if and only if f ′(.; .) is monotone (resp.; strictly monotone).

Proof. For every ξ ∈ C ′, ξf is lower semicontinuous by Lemma 4.3. Clearly
(ξf)′(x; v) exists for every x ∈ D, v ∈ TD(x). By applying Lemma 2.7 , Lemma
4.2 and Lemma 2.1, we have

f is convex ⇔ ξf is convex, ∀ξ ∈ C ′ \ {0}.
⇔ (ξf)′(x; y − x) + (ξf)′(y;x− y) ≤ 0, ∀x, y ∈ D, ξ ∈ C ′ \ {0}.
⇔ ξ

[
f ′(x; y − x) + f ′(y;x− y)

]
≤ 0, ∀x, y ∈ D, ξ ∈ C ′ \ {0}.

⇔ f ′(x; y − x) + f ′(y;x− y) ≼ 0, ∀x, y ∈ D.

⇔ f ′(.; .) is monotone.
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Analogously, we have

f is strictly convex ⇔ ξf is strictly convex, ∀ξ ∈ C ′ \ {0}.
⇔ (ξf)′(x; y − x) + (ξf)′(y;x− y) < 0, ∀x, y ∈ D,x ̸= y, ξ ∈ C ′ \ {0}.
⇔ ξ

[
f ′(x; y − x) + f ′(y;x− y)

]
< 0, ∀x, y ∈ D,x ̸= y, ξ ∈ C ′ \ {0}.

⇔ f ′(x; y − x) + f ′(y;x− y) ≪ 0, ∀x, y ∈ D, x ̸= y.

⇔ f ′(.; .) is strictly monotone.

The proof is complete. �

From Theorem 4.4 and definitions we have immediately the following result which
generalize the corresponding famous well- known result in convex analysis.

Corollary 4.5. Assume that the order cone C ⊂ Rm is convex and closed. Let f
be a vector function from a nonempty open convex subset D ⊂ Rn to Rm. Suppose
that f is lower semicontinuous and Gateaux differentiable on D. Then f is convex
(resp.; strictly convex) if and only if DGf is monotone (resp.; strictly monotone).

Example 4.6. Let R3 be ordered by the cone C = con(co{(1, 0, 1), (0,−1,−1),
(0, 0, 1)}). Let f : R2 → R3 be defined by f(x1, x2) = (x1

2 − x1 + x2,−x22 + x1 −
x2, x1

2 − x2
2). For every x = (x1, x2), y = (y1, y2) ∈ R2, we have

Df(x) = ((2x1 − 1, 1), (1,−2x2 − 1), (2x1,−2x2))

Df(y) = ((2y1 − 1, 1), (1,−2y2 − 1), (2y1,−2y2)) .

Then

(Df(x)−Df(y)) (x− y) = (2(x1 − y1)
2,−2(x2 − y2)

2, 2(x1 − y1)
2 − 2(x2 − y2)

2)

= 2(x1 − y1)
2(1, 0, 1) + 2(x2 − y2)

2(0,−1,−1)

∈ C.

Hence Df is monotone with respect to C which implies the convexity of f by
Corollary 4.5.

Now we investigate the second order characterization of convexity. Let X,Y be
normed spaces. The space of continuous linear maps from X to Y is denoted by
L(X,Y ). The norm in L(X,Y ) is defined as usual by

A ∈ L(X,Y ), ∥A∥ := sup{∥A(x)∥ |x ∈ X, ∥x∥ ≤ 1}.

Let A ∈ L(Rn,L(Rn,Rm)). For every x, y ∈ Rn, we denote

A(x, y) := [A(x)](y).

Definition 4.7. We say that a map A ∈ L(Rn,L(Rn,Rm)) is C definite if

A(x, x) ∈ C, ∀x ∈ Rn.

Let D ⊂ Rn be a nonempty set. An operator F : D → L(Rn,L(Rn,Rm)) is called
C definite if F(x) is C definite for every x ∈ D.

We see immediately that when m=1 and C = R+, A is C definite if and only if
the matrix representing A is semi positively semi-definite in the usual meaning.
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Theorem 4.8. Assume that the order cone C ⊂ Rm is closed and convex. Let
D ⊂ Rn be a nonempty, convex and open set and let F : D → L(Rn,Rm) be a
continuously differentiable map. Then F is monotone with respect to C if and only
if its derivative operator DF is C definite.

Proof. ⇒ : Suppose to the contrary that DF is not C−definite. Then there exist
x0 ∈ D, y0 ∈ Rn such that

(4.1) DF (x0)(y0, y0) /∈ C.

Put ϕ(t) = DF (x0 + ty0)(y0, y0). Since C is closed, by (4.1) there exists δ > 0 such
that

(4.2) B(ϕ(0), δ) ∩ C = ∅.

Since DF is continuous on a neighborhood of x0, ϕ is also continuous on a neigh-
borhood of 0. Then there exists a number ϵ ∈ (0, 1) such that

(4.3) ϕ(t) ∈ B(ϕ(0), δ), ∀t ∈ [0, ϵ].

Put Φ(t) = F (x0 + ty0)(y0). Then Φ = φ ◦ F ◦ ψ, where,

ψ : t 7→ x0 + ty0, φ : A ∈ L(Rn,Rm) 7→ A(y0).

Then Φ(t) is continuously differentiable on a neighborhood of [0, ϵ]. By Mean value
theorem for vector functions, there exist τ1, . . . , τk ∈ [0, ϵ], λ1, . . . , λk ≥ 0, λ1+ · · ·+
λk = 1 such that

(4.4) Φ(ϵ)− Φ(0) =
k∑

i=1

λiDΦ(τi)(ϵ).

By chain rule,

(4.5) DΦ(τi)(ϵ) = ϵDF (x0 + τiy0)(y0, y0) = ϵϕ(τi), i = 1, . . . , k.

From (4.3), (4.4) and (4.5), one has

(F (x0 + ϵy0)− F (x0))(x0 + ϵy0 − x0) = ϵ(F (x0 + ϵy0)− F (x0))(y0)

= ϵ(Φ(ϵ)− Φ(0))

= ϵ(
k∑

i=1

λiDΦ(τi)(ϵ))

= ϵ2(

k∑
i=1

λiϕ(τi))

∈ ϵ2B(ϕ(0), δ).

By (4.2), (F (x0 + ϵy0) − F (x0))(x0 + ϵy0 − x0) /∈ C. Hence F is not monotone on
D which contradicts the assumptions.

⇐ : Let x, y ∈ D be arbitrary. Consider the function

Φ(t) = F (x+ t(y − x))(y − x).
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Clearly Φ is continuously differentiable on an open interval which contains [0, 1]. By
Mean value theorem, there exist τ1, . . . , τk ∈ [0, 1], λ1, . . . , λk ≥ 0, λ1 + · · ·+ λk = 1
such that

Φ(1)− Φ(0) =

k∑
i=1

λiDΦ(τi)(1).

Hence

(F (y)− F (x))(y − x) = Φ(1)− Φ(0)

=

k∑
i=1

λiDΦ(τi)(1)

=

k∑
i=1

λiDF (x+ τi(y − x))(y − x, y − x)

∈ C( since DF is C definite).

Thus F is monotone. The proof is complete.
�

Theorem 4.9. Assume that the order cone C ⊂ Rm is closed and convex. Let
D ⊂ Rn be a nonempty convex and open set and let f : D → Rm be a twice
continuously differentiable vector function. Then f is convex if and only if D2f is
C−definite ( where D2f denotes the second order derivative map of f on D).

Proof. By Corrolary 4.5 and Theorem 4.8, we have

f is convex ⇔ Df is monotone

⇔ D2f is C−definite .

�

From Theorem 4.9 and from a note after Definition 4.7 we obtain immediately the
following famous well-known classic result.

Corollary 4.10. Let D ⊂ Rn be a nonempty convex and open set and let f : D → R
be a twice continuously differentiable function. Then f is convex if and only if the
Hessian matrix Hf (x) of f at every x ∈ D is positively semi-definite.

Example 4.11. Let R3 be ordered by the cone C = con(co{(1, 0, 1), (0,−1,−1),
(0, 0, 1)}). Let f : R2 → R3 be defined as in Example 4.6, i.e., f(x1, x2) = (x1

2 −
x1 + x2,−x22 + x1 − x2, x1

2 − x2
2). By computing we have

D2f(x) =

((
2 0
0 0

)
,

(
0 0
0 −2

)
,

(
2 0
0 −2

))
, ∀x ∈ R2.

Then
D2f(x)(y, y) = (2y1

2,−2y2
2, 2y1

2 − 2y2
2)

= 2y1
2(1, 0, 1) + 2y2

2(0,−1,−1)

∈ C, ∀x, y ∈ R2.

Hence D2f is C definite which implies the convexity of f by Theorem 4.9.
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5. Recession maps

We recall that the recession cone of a convex subset A of a real vector space X
is defined as the set

A∞ := {u ∈ X | x+ tu ∈ A,∀x ∈ A, t ≥ 0}.

The following basis result of recession cone in convex analysis will be needed.

Lemma 5.1 ([13]). (i) Let A ⊂ Rk be a nonempty, closed and convex set.
Then A is compact if and only if A∞ = {0}.

(ii) Let A ⊂ Rk be a nonempty, closed and convex set. Then A∞ is closed and
convex.

(iii) Let A ⊂ Rk be a nonempty and convex set and let u ∈ Rk. Then u ∈
A∞ if and only if A+ u ⊂ A.

(iv) Let A ⊂ Rk be a nonempty, convex and closed set and let u ∈ Rk. Then
u ∈ A∞ if and only if ∃x ∈ A : x+ λu ∈ A,∀λ ≥ 0.

(v) Let (Ai)i∈I be a family of convex subsets of Rk such that ∩
i∈I
Ai ̸= ∅. Then

∩
i∈I

(Ai)∞ ⊂ ( ∩
i∈I
Ai)∞.

If in addition Ai is closed for every i ∈ I, then the converse holds.

Let f be a convex vector function from a nonempty convex subset D ⊂ Rn to
Rm. For each x ∈ Rn, set

Sx := {u ∈ Rm| (x, u) ∈ (epif)∞}.

The following definition is suggested from the concept of recession map of scalar
convex functions.

Definition 5.2. The recession map of f is defined as follows.

f∞(x) :=

{
MinSx, Sx ̸= ∅,
∅, Sx = ∅.

Example 5.3. Let R2 be ordered by the positive orthant cone R2
+ and let f :

(0,+∞) → R2 be defined by f(x) = (x, x + 1
x). Then f is convex with respect to

R2
+ since component functions are scalar convex (on (0,+∞)).By computing we

obtain

(epif)∞ = {(x, u1, u2) ∈ R3 | x ≥ 0, u1 ≥ x, u2 ≥ x}.
From this we have

Sx = {u = (u1, u2) ∈ R2 | (x, u) ∈ (epif)∞} =

{
{(u1, u2) | u1 ≥ x, u2 ≥ x}, x ≥ 0

∅, x < 0.

Hence by the definition of recession map

f∞(x) =

{
MinSx, x ≥ 0

∅, x < 0.
=

{
{(x, x)}, x ≥ 0

∅, x < 0.
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Proposition 5.4. Assume that the order cone C is closed, convex and pointed. Let
f be a convex vector function from a nonempty convex subset D ⊂ Rn to Rm. Then

domf∞ = {x ∈ Rn| Sx ̸= ∅}

and

f∞(x) = Sup{f(y + x)− f(y)| y ∈ D}, ∀x ∈ domf∞.

Proof. Let x ∈ Rn, u ∈ Rm be arbitrary. By the definition of Sx and by Lemma 5.1,
one has

u ∈ Sx ⇔ (x, u) ∈ (epif)∞

⇔ (y, v) + (x, u) ∈ epif, ∀(y, v) ∈ epif

⇔ f(y + x) ≼ v + u, ∀(y, v) ∈ epif

⇔ f(y + x)− f(y) ≼ u, ∀y ∈ D

⇔ u ∈ Ub{f(y + x)− f(y)| y ∈ D}.

Thus,

(5.1) Sx = Ub{f(y + x)− f(y)| y ∈ D}.

Hence, Sx ̸= ∅ if and only if the set {f(y+x)− f(y)| y ∈ D} is bounded above. By
Theorem 2.6, this is equivalent to the fact Sup{f(y + x)− f(y)| y ∈ D} ̸= ∅. Then
by the definition of supremum and by (5.1), if Sx ̸= ∅ we have

f∞(x) = MinSx

= Min(Ub{f(y + x)− f(y)| y ∈ D})
= Sup{f(y + x)− f(y)| y ∈ D} ̸= ∅.

The proposition is proved. �

We note that, by the formula in Proposition 5.4, one has f∞(0) = {0}.
From Definition 5.2 we see that the recession maps of convex vector functions

have set-valued structure. So for further investigations we need some concepts of
set-valued maps. Let F be a set-valued map from Rn to Rm. We define the epigraph
of F with respect to C as the set

epiF := {(x, u) ∈ Rn × Rm| u ∈ F (x) + C}.

F is said to be convex (respectively, closed) if epiF is convex (respectively, closed).
F is said to be positively homogeneous if

F (λx) = λF (x), ∀x ∈ domF, λ ≥ 0.

In the remain of this section, the order cone C is assumed convex, closed and
pointed.

Proposition 5.5. Let f be a convex vector function from a nonempty convex subset
D ⊂ Rn to Rm. Then

epi(f∞) = (epif)∞.



154 P. N. TINH AND D. S. KIM

Proof. Let (x, u) ∈ Rn × Rm be arbitrary. By Proposition 5.4, (5.1) and Theorem
2.6, one has

(x, u) ∈ epi(f∞) ⇔ u ∈ f∞(x) + C

⇔ u ∈ Sup{f(y + x)− f(y)| y ∈ D}+ C

⇔ u ∈ Ub{f(y + x)− f(y)| y ∈ D}
⇔ u ∈ Sx

⇔ (x, u) ∈ (epif)∞.

The proposition is proved. �

We note that, from Proposition 5.5, domf∞ is a convex cone and domf∞ ⊂ D∞.
The inverse inclusion is not true in general. For instant, let f : R → R defined
by f(x) := x2, ∀x ∈ R. Then domf∞ = {0} while D∞ = R. By this proposition
we also see that Definition 5.2 is an extension of the concept of recession maps for
scalar convex functions to the vector case.

Lemma 5.6. Let f be a convex vector function from a nonempty convex subsetD ⊂
Rn to Rm. Let x0 ∈ D,x ∈ D∞ be arbitrary. Then the set {f(x0+λx)−f(x0)

λ } | λ > 0}
is linearly ordered.

Proof. Let λ ≥ λ′ > 0 be arbitrary. We have

x0 + λ′x = (1− λ′

λ
)x0 +

λ′

λ
(x0 + λx).

Then by convexity of f ,

f(x0 + λ′x) ≼ (1− λ′

λ
)f(x0) +

λ′

λ
f(x0 + λx)

which implies
f(x0 + λ′x)− f(x0)

λ′
≼ f(x0 + λx)− f(x0)

λ
.

Hence the set {f(x0+λx)−f(x0)
λ } | λ > 0} is linearly ordered. The proof is complete.

�

In general, the recession maps of vector functions have set-valued structure. How-
ever, under certain conditions they reduce to single-valued maps. One such condi-
tion is the closedness as shown in the following proposition.

Proposition 5.7. Let f be a convex vector function from a nonempty convex subset
D ⊂ Rn to Rm. Then the recession map f∞ is a positively homogeneous convex set-
valued map. In addition, if f is closed, then f∞ reduces to a single-valued closed
function and for any x0 ∈ D, f∞ is given by the following formula

f∞(x) = ISup

{
f(x0 + λx)− f(x0)

λ
| λ > 0

}
, ∀x ∈ domf∞.

Proof. The convexity of f∞ is immediate from Proposition 5.5. By a note follows
Proposition 5.4 and by following equalities

Sλx = λSx, ∀x ∈ Rn, λ > 0,
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Min(λA) = λMinA,∀A ⊂ Rm, λ > 0,

f∞ is positively homogeneous. Now, assume that f is closed. Then by Lemma 5.1
and by Proposition 5.5 above, epif∞ is closed. Hence, so is f∞. Finally, let x0 ∈ D,
x ∈ Rn and u ∈ Rm be arbitrary. Since epif is closed and convex, we have

u ∈ Sx ⇔ (x, u) ∈ (epif)∞

⇔ (x0, f(x0)) + λ(x, u) ∈ epif, ∀λ > 0

⇔ f(x0 + λx)− f(x0)

λ
≼ u, ∀λ > 0

⇔ u ∈ Ub

{
f(x0 + λx)− f(x0)

λ
| λ > 0

}
.

Hence,

(5.2) Sx = Ub

{
f(x0 + λx)− f(x0)

λ
| λ > 0

}
.

If x ∈ domf∞, then by Proposition 5.4, Sx ̸= ∅ . From (5.2), the set

{f(x0+λx)−f(x0)
λ | λ > 0} is bounded from above. On other hand, by Lemma 5.6,

the set {f(x0+λx)−f(x0)
λ | λ > 0} is linearly ordered. Then by Proposition 2.5, there

exists ISup{f(x0+λx)−f(x0)
λ | λ > 0}. From definitions of supremum and recession

map together (5.2) and the note which follows Definition 2.3 we have

f∞(x) = MinSx

= Min

(
Ub

{
f(x0 + λx)− f(x0)

λ
| λ > 0

})
= Sup

{
f(x0 + λx)− f(x0)

λ
| λ > 0

}
= ISup

{
f(x0 + λx)− f(x0)

λ
| λ > 0

}
.

Since C is pointed, ISup{f(x0+λx)−f(x0)
λ | λ > 0} is a singleton. Hence f∞ is a

single-valued map. The proposition is proved. �

Example 5.8. Let R2 be ordered by the positive orthant cone R2
+ and let f :

(0,+∞) → R2 be defined as in Example 5.3, i.e., f(x) = (x, x + 1
x). For every

nonempty level set levaf one has

levaf = {x ∈ (0,+∞) | f(x) ≼ a}

= {x ∈ (0,+∞) | x ≤ a1, x+
1

x
≤ a2}

= (0, a1] ∩ [α1, α2]

(where, αi > 0, i = 1, 2, are the solutions of the equation x+ 1
x = a2). Hence levaf

is closed. Then by Lemma 2.8, f is closed too. Applying Proposition 5.7, for every
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x ∈ domf∞ = R+, we have

f∞(x) = IIsup{f(1 + λx)− f(1)

λ
| λ > 0}

= IIsup{
(
x, x− 1

λ
+

1

λ(1 + λx)

)
| λ > 0}.

By the definition of IIsup, we can verify that

IIsup{
(
x, x− 1

λ
+

1

λ(1 + λx)

)
| λ > 0} = {(x, x)}.

Hence

f∞(x) =

{
{(x, x)}, x ≥ 0

∅, x < 0,

which coincides to the results in Example 5.3.

A function ϕ : A ⊂ R → Rm is called decreasing (with respect to the cone C) if

∀r, s ∈ A, r > s⇒ ϕ(r) ≼ ϕ(s).

Proposition 5.9. Let f be a convex vector function from a nonempty convex subset
D ⊂ Rn to Rm and let x0 ∈ D∞. Then f(y + λx0) is a decreasing function of
λ(λ ≥ 0) for every y ∈ D if and only if

f∞(x0) ∩ (−C) ̸= ∅.

Proof. ⇒: Since f(y+ x0)− f(y) ≼ 0 for every y ∈ D, we have 0 ∈ Ub{f(y+ x0)−
f(y)|y ∈ D}. Then by Theorem 2.6, one has

Sup{f(y + x0)− f(y)|y ∈ D} ∩ (−C) ̸= ∅.

By Proposition 5.4, this implies

f∞(x0) ∩ (−C) ̸= ∅.

⇐: Let y ∈ D be arbitrary and let λ, λ′ ∈ R such that λ > λ′ ≥ 0. Since f∞ is
positively homogeneous we have

(5.3) f∞
(
(λ− λ′)x0

)
∩ (−C) ̸= ∅.

By Proposition 5.4,

f∞
(
(λ− λ′)x0

)
= Sup{f(z + (λ− λ′)x0)− f(z)| z ∈ D}

which together (5.3) and the definition of supremum imply

f(z + (λ− λ′)x0)− f(z) ≼ 0, ∀z ∈ D.

Observe that

f(y + λx0)− f(y + λ′x0) = f(y + λ′x0 + (λ− λ′)x0)− f(y + λ′x0)

then one has

f(y + λx0)− f(y + λ′x0) ≼ 0.

Hence f(y + λx0) is a decreasing function of λ ∈ R+. The proof is complete. �
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Corollary 5.10. Let f be a closed convex vector function from a nonempty convex
subset D ⊂ Rn to Rm and let x0 ∈ D∞. If there is a point ȳ ∈ D having the property
that f(ȳ + λx0) is a decreasing function of λ(λ ≥ 0), then this property holds for
every y ∈ D.

Proof. Since f is closed convex and the set
{

f(ȳ+λx0)−f(ȳ)
λ | λ > 0

}
is bounded above

by 0, we have Sx0 ̸= ∅ by (5.2), hence x0 ∈ domf∞. From Proposition 5.7 and the
definition of ISup, one has

f∞(x0) = ISup

{
f(ȳ + λx0)− f(ȳ)

λ
| λ > 0

}
≼ 0.

Apply Proposition 5.9, we complete the proof. �

The set of all vectors x ∈ Rn such that f∞(x) ∩ (−C) ̸= ∅ is said to be the
recession cone of f and denoted by Rec(f). It is easy to see that it is a convex cone.
The directions of vectors in Rec(f) is called the recession directions of f .

Proposition 5.11. Let f be a closed convex vector function from a nonempty con-
vex subset D ⊂ Rn to Rm. Then all the nonempty level sets of f have the same
recession cone, namely the recession cone of f , i.e., for every a ∈ Rm such that
levaf ̸= ∅ one has

(levaf)∞ = Rec(f).

Proof. Let a ∈ Rm such that levaf ̸= ∅ and let y ∈ levaf . Then (y, a) ∈ epif . Since
f is closed, by Lemma 2.8, levaf is closed also. Then for every vector x ∈ Rn, one
has

x ∈ (levaf)∞ ⇔ y + λx ∈ levaf, ∀λ > 0

⇔ f(y + λx) ≼ a, ∀λ > 0

⇔ (y, a) + λ(x, 0) ∈ epif, ∀λ > 0

⇔ (x, 0) ∈ (epif)∞

⇔ (x, 0) ∈ epi(f∞), ( by Proposition 5.5)

⇔ 0 ∈ f∞(x) + C

⇔ f∞(x) ∩ (−C) ̸= ∅
⇔ x ∈ Rec(f).

The proposition is proved. �

6. Applications

In this section we investigate the sufficient conditions for the existence of optimal
solutions of vector optimization problems based on recession directions of objective
functions. Let f be a vector function from a nonempty subset D ⊂ Rn to Rm, where
Rm is ordered by a convex cone C. Firstly, we consider the following unconstraint
vector optimization problem {

Minf(x)

s.t. x ∈ D.
(V P )
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We need to find a point x∗ ∈ D, called an optimal (or minimal, or efficient)
solution of (VP), such that

f(x∗) ∈ Min(f(D)|C).
In the remain of this section we assume that the order cone C ⊂ Rm is convex,
closed and pointed with intC ̸= ∅.

Lemma 6.1. Let c ∈ intC and x ∈ Rm be arbitrary. Then there exists k ∈ N such
that

−kc ≼ x.

Proof. Since 0 ∈ −c + intC there exists r > 0 such that the open ball B(0, r) ⊂
−c+ intC. Then one can find a number k ∈ N such that x

k ∈ B(0, r). This implies

x ∈ −kc+ kintC ⊂ −kx+ C

which complete the proof. �

Theorem 6.2. Assume that f is convex and closed. If f has no nonzero direction
of recession, i.e., Rec(f) = {0}, then the vector optimization problem (VP) has an
optimal solution.

Proof. Let y ∈ f(D) be arbitrary. Set B := (y − C) ∩ f(D). Clearly MinB ⊂
Minf(D). Then to complete the proof of the theorem, it is sufficient to show that
MinB ̸= ∅. For this, let S be any nonempty linearly ordered subset of B. We
shall show that S is bounded below. Indeed, suppose to the contrary that S is not
bounded below. Let c ∈ intC. Then by induction, we can construct a sequence
{yk}k ⊂ S such that

(6.1) −kc � yk,

(6.2) yk+1 ≼ yk,

for every k. Since Rec(f) = {0}, by Proposition 5.11, Lemma 2.7 and Lemma 5.1,
levykf is a nonempty compact subset, for every k. From (6.2), one has

levyk+1
f ⊂ levykf, ∀k.

Hence,
∞
∩

k=1
levykf ̸= ∅.

Let x ∈
∞
∩

k=1
levykf . Then f(x) ≼ yk, for every k. Hence by (6.1),

(6.3) −kc � f(x), ∀k.
Since c ∈ intC, by Lemma 6.1 there exists k0 such that −k0c ≼ f(x) which contra-
dicts to (6.3). Thus, S is bounded below. By Proposition 2.5 and the note which
follows it, IInfS exists and there is a decreasing sequence {f(xk)}k ⊂ S converging
to IInfS. Since levyf is compact and {xk}k ⊂ levyf , without loss of generality, we
may assume that {xk}k converges to some x0 ∈ levyf . By the closedness of f , one
has (x0, IInfS) ∈ epif . Hence S is bounded below from f(x0) ∈ B. Applying Zorn’s
Lemma we obtain MinB ̸= ∅. The theorem is proved. �
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Example 6.3. Let R2 be ordered by the positive orthant cone R2
+. Consider the

vector problem {
Minf(x)

s.t. x ∈ (0,+∞),

where, f : (0,+∞) → R2 is defined as in Example 5.3. Since

f∞(x) =

{
{(x, x)}, x ≥ 0

∅, x < 0

we have Rec(f) = {0}. Then by Theorem 6.2 the problem above has an optimal
solution. Here we can see that x = 1 is an optimal solution of the problem.

Now, we consider the following vector optimization problem with a general set
constraint. 

Minf(x)

s.t. x ∈ D

x ∈ E.

(SV P )

where, E is a subset of Rn. Denote by S the feasible set of (SVP), i.e., S = {x ∈
D | x ∈ E}. We should note that if f and E are closed then fD∩E is also closed,
where, fD∩E denotes the restriction of f on D ∩ E.

Corollary 6.4. Assume that f and E are convex, closed and the feasible set S is
nonempty. If Rec(f) ∩ E∞ = {0} then the vector optimization problem (SVP) has
an optimal solution.

Proof. We only need to show that

Rec(fD∩E) = Rec(f) ∩ E∞

then applying Theorem 6.2 we obtain the result.
Let x ∈ Rec(fD∩E) and y ∈ D ∩ E be arbitrary. Then x ∈ (D ∩ E)∞ and by

Proposition 5.9, f(y+ λx) is a decreasing function of λ (λ ≥ 0). By Corollary 5.10,
x ∈ Rec(f). On other hand from the closedness of E, applying Lemma 5.1 we have
x ∈ E∞.

Conversely, let x ∈ Rec(f) ∩ E∞ and let y ∈ D ∩ E be arbitrary. Then x ∈
(D ∩E)∞ (by Lemma 6.1) and f(y + λx) is a decreasing function of λ (λ ≥ 0). By
Proposition 5.9, x ∈ Rec(fD∩E). The proof is complete.

�

Finally, we consider a vector optimization problem with inequality constraints as
follows 

Minf(x)

s.t. x ∈ D

x ∈ Di, fi(x) ≼Ci 0, i ∈ I.

(IV P )

where, f : D ⊂ Rn → Rm, fi : Di ⊂ Rn → Rmi , i ∈ I, be vector functions with I is
an arbitrary index set and for every i ∈ I, Rmi is ordered by a closed, pointed and
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convex cone Ci with intCi ̸= ∅. Set Ei := {x ∈ Di|fi(x) ≼Ci 0}, ∀i ∈ I, E := ∩
i∈I
Ei.

Denote by T the feasible set of (IVP),i.e.,

T = {x ∈ D | x ∈ Di, fi(x) ≼Ci 0,∀i ∈ I}.

Corollary 6.5. Assume that the feasible set T is nonempty and the functions
f, fi, i ∈ I, are convex and closed. If f, fi, i ∈ I, have no nonzero direction of
recession in common, i.e.,

Rec(f) ∩
(
∩
i∈I

Rec(fi)

)
= {0},

then the problem (IVP) has an optimal solution.

Proof. By Lemma 2.8, Ei is closed for every i ∈ I. Then by Lemma 5.1, one has
E∞ = ∩

i∈I
(Ei)∞. Applying Proposition 5.11, we get E∞ = ∩

i∈I
Rec(fi). Then using

Corollary 6.4 we complete the proof. �

Example 6.6. Let X = R2 be ordered by the positive orthant cone C = R2
+ and

let X1 = R2 be ordered by the cone C1 = {α(1, 1) + β(−1, 1) | α, β ≥ 0}. Consider
the following inequality constraint vector problem

Minf(x)

s.t., x ∈ R2

f1(x) ≼C1 0

f2(x) ≼C 0,

where, f, f2 : R2 → X, f1 : R2 → X1 are defined as follows.

f(x, y) = (x+ y, ex − y), f1(x, y) = (−x,−2y), f2(x, y) = (y − x, e−x − 1− y).

By computing we obtain

Rec(f) = {α(−1, 0) + β(−1, 1) | α, β ≥ 0}

Rec(f1) = {α(−1,
1

2
) + β(1,

1

2
) | α, β ≥ 0}

Rec(f2) = {α(1, 0) + β(1, 1) | α, β ≥ 0}.

Hence Rec(f) ∩ Rec(f1) ∩ Rec(f2) = {0}. Then by Corollary 6.5 we know that the
problem above has an optimal solution.
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