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CONVEX VECTOR FUNCTIONS AND SOME APPLICATIONS

PHAN NHAT TINH AND DO SANG KIM*

ABSTRACT. We investigate some properties of convex vector functions and ap-
plications to vector optimization. By introducing the definition of the concept of
C'_ definite operator for operators from R™ to L(R", L(R",R™)) (where, C C R™
is a convex cone) which generalizes the concept of positively semi-definite matrix,
we show out a second order characterization of convexity for vector functions. In
addition, a first order characterization via the monotonicity of directional deriva-
tives is also presented. For continuity, we show that the closedness is sufficient
for convex vector functions to be continuous relative to any locally simplicial
subset of their domains. Finally, a definition of recession maps of convex vector
functions is proposed and by investigating properties of this object we obtain
existence conditions for optimal solutions of vector problems with constraints.

1. INTRODUCTION

Convex functions play an important role in nonlinear analysis, especially in opti-
mization. In the vector case, a lot of attention was paid to convex vector functions in
order to enlighten the structure of this class of vector functions and apply to vector
optimization ([2]-[11], [14]-[17]). In ([2], [5], [8], [10]), characterizations of convexity
are expressed in terms of scalarization and in terms of first order generalized deriva-
tives. But there are almost no results on the second order characterizations. One
of the useful properties of convex vector functions is the locally Lipschitz continuity
on the relative interiors of their domains ([10]). However we are also interested in
what conditions under which the continuity property is still valid at the boundary
points. In optimization, to get sufficient conditions for optimal solutions, we need
either a second order condition or a convexity assumption. Beside this, an approach
of the study on the existence condition of optimal solutions is based on recession
maps ([12], [13]). The difficulty in the extension and the study of recession maps in
the vector case is the set-valued structure of such maps.

The aim of this article is to investigate above problems. By introducing the defini-
tion of the concept of C'_ definite operator for operators from R™ to L(R", L(R™,R™))
(where, L(R™,R™) denotes the space of continuous linear maps from R" to R” and
C C R™ is a convex cone) which generalizes the concept of positively semi-definite
matrix, we show out a second order characterization of convexity of twice continu-
ous differentiable vector functions. In addition, a first order characterization via the
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monotonicity of directional derivatives is also presented. For continuity, we show
that the closedness is sufficient for convex vector functions to be continuous relative
to any locally simplicial subset of the domains. Finally, a definition of recession
maps of convex vector functions is proposed and by investigating properties of this
object we get existence conditions for optimal solutions of vector problems with and
without constraints. Several examples are also presented to illustrate the results.

The paper is organized as follows. In the next section we present some prelimi-
naries on cone orders in the Eucidean space R™. Section 3 deals to the continuity of
convex vector functions. Section 4 is devoted to characterizations of convexity. In
section 5 we investigate properties of recession maps of convex vector functions. The
final section presents existence conditions of optimal solutions of vector problems
in terms of recession maps.

2. PRELIMINARIES

We recall that a nonempty set C C R™ is said to be a cone if tx € C, Vo € C,t >
0. A cone C is called pointed if C' N (—C) = {0}. We say a set B C R™ generates a
cone C'if C' = {tb | b € B,t > 0} and denote C' = conB. The polar cone of a cone
C' is defined as the set C' := {{ € L(R™,R) : &(z) > 0, Yo € C'}. We list here
some properties of cones from ([4], [8]) which will be used in the sequel.

Lemma 2.1. Let C C R™ be a cone.

1) If C is closed, convex and pointed, then intC’ # .
2) Assume that the cone C is closed and convex. Let ¢ € R™. Then
(i) c € Cif and only if £(c) > 0, V& € C'\ {0}.
(ii) Supposing that intC # (). Then ¢ € intC if and only if £(c) > 0, V¢ €
C’\ {0}.

3) Assume that C' is a closed, convex and pointed cone. Then for every neigh-
borhood W of the origin in R™, there exists another neighborhood V' of the
origin such that

V+CoO)n(V-C)cw.
A convex cone C specifies in R a partial order “<¢” defined by
z,ye Rz <cysy—zel.

When intC' # () we write z < y if y — x € intC. We recall here the concepts of
efficiency.

Definition 2.2 ([8], Definition 2.1). Let A C R™ be a nonempty set and let a € A.
We say that
i) a is an ideal efficient (or, ideal minimal) element of A with respect to C if
a <c x, Yr € A. The set of ideal efficient elements of A is denoted by IMin(A|C).
ii) a is an efficient (or, Pareto minimal) element of A with respect to C' if Va €
A, x Zc a = a =¢ z. The set of efficient elements of A is denoted by Min(A|C').

We note that if IMin(A|C') is nonempty then Min(A|C)=IMin(A|C). In addition,
if C is pointed, then IMin(A|C) is a singleton. Concepts of Max and IMax are
defined analogously. Clearly, —MinA = Max(—A).
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Let A C R™ be a nonempty set and let a € R™. We say that a is an upper bound
of A with respect to C if

x =¢c a, Ve € A.

The set of upper bounds of A is denoted by Ub(A|C). We say that A is bounded
from above if Ub(A|C) # (). The concept of lower bounds is defined analogously
and the set of them is denoted by Lb(A|C).

Definition 2.3 ([17], Definition 2.3). Let A C R™ be a nonempty set and let
a € R™. We say that
i) a is an ideal supremal point of A with respect to C if a € IMin(UbA|C), i.e.,

r=<¢ca, Vr € A
a oy, Yy € Ub(A[C).

The set of ideal supremal points of A is denoted by ISup(A|C).
ii) a is a supremal point of A with respect to C if a € Min(UbA|C), i.e.,

r=<¢ca, Vr € A
Vy € Ub(A|C),y ¢ a = a =<¢cy.

The set of supremal points of A is denoted by Sup(A|C).
iii) a is an ideal infimal point of A with respect to C' if a € IMax(LbA|C), i.e.,

a=cz, Vre A
y <c a, Yy € Lb(A|C).

The set of ideal infimal points of A is denoted by IInf(A|C').
iv) @ is an infimal point of A with respect to C' if a € Max(LbA|C), i.e.,

a=<¢cx, VreA
Yy € Lb(A|C),a =¢c y =y ¢ a.

The set of infimal points of A is denoted by Inf(A|C).

Like the case of Min and IMin, we should note that if ISup(A|C') is nonempty
then ISup(A|C)=Sup(A|C) and in addition, if C' is pointed, then ISup(A|C) is a
singleton. Clearly, —SupA = Inf(—A).

There are some different definitions of other authors on the concept of supremum.
Among of them, the definition of T. Tanino ([14]) is remarkable. Definition 2.3 is
an extension of the usual definition of supremum in R by a natural way: minimum
of the set of upper bounds of A. It seems suitable for establishing several results
concerning convex vector functions as shown in ([17]) and in sections 5,6 below.

From now on, when there is no afraid of confusion, we omit “with respect to C”
and “|¢” in the definitions above.

We list here some results from ([17]) which will be needed in the sequel. A
sequence {y}r C R™ is called decreasing (with respect to C') if yg+1 = yk, Vk. It is
called bounded from below if there exists a € R™ such that a < y, Vk.
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Lemma 2.4 ([17], Lemma 2.8). Assume that the order cone C' C R™ is closed,
convex and pointed. Let {yx}r C R be a decreasing sequence. If {yj} is bounded
from below then it is convergent and

lim y = I'Inf{yx | k € N}.
k—ro0

We say that a subset A C R™ is linearly ordered if for every z,y € A, = <
yory =z

Proposition 2.5 ([17], Proposition 2.9, Remark 2.10). Assume that the order cone
C C R™ is closed, convex and pointed. If a nonnempty linearly ordered subset A of
R™ is bounded from above, then ISupA # () and there exists an increasing sequence
in A converging to ISupA.

We should note that an analogous result holds true for IInf.

Theorem 2.6 ([17], Theorem 2.16, Remark 2.18). Assume that the order cone
C C R™ is closed, conver and pointed. Let A be a nonempty subset of R™. Then
SupA # O if and only if A is bounded from above. In this case, we have

Ub(A) = Sup(A) + C.

By this theorem, it is obvious that if SupA is a singleton then SupA=ISupA.
Now let D C R™ be a nonempty set and let f : D — R™. The epigraph of f with
respect to C' is defined as the set

epif :={(x,2) € DxR™ : f(x) < z}.

We say that f is convex (resp., closed ) with respect to C if epif is convex (resp.,
closed) in R™ x R™. It can see that f is convex if and only if D is convex and for
every x,y € D, X\ € [0, 1], we have

fOz+ (1= XNy) 2Af(x)+ (1= N)f(y).

f is called strictly convex with respect to C if

The relation between scalar convex functions and vector convex functions is ex-
pressed in the following lemma which will be used in Section 4.

Lemma 2.7 ([8], Lemma 2.1). Assume that the order cone C' C R™ is closed and
convex. Let f be a vector function from a nonempty and convex set D C R" to
R™. Then
i) f is convex with respect to C' if and only if £f is convex, for every £ € C”\ {0}.
ii) Supposing that intC # (), f is strictly convex with respect to C if and only if
£f is strictly convex, for every £ € C"\ {0}.

The level set of a vector function f : D C R™ — R™ at a € R™ with respect to
the cone C is defined as the set

levof :={z €D | f(z) < a}.

It is immediately from definitions that level sets of a convex vector function are
convex sets.
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Lemma 2.8. Assume that R™ is ordered by a convex cone C' C R™. Let f be a
vector function from a nonempty subset D C R™ to R™. If f is closed, then lev, f
is also closed for all a € R™. In addition, if C is closed with intC' # (), then the
converse is true.

Proof. Let a € R™ be arbitrary and let a sequence {xx} C lev,f be converging to
some x € R". Then the sequence {(wx,a)}y C epif and it converges to (z,a). Since
epif is closed we have (z,a) € epif. Hence f(x) < a, i.e., x € levyf. Thus lev,f is
closed.

Conversely, let any sequence {(xy,ar)}r C epif be converging to some (z,a) €
R™ x R™. Let ¢ € intC and real t > 0 be arbitrary. Then a € a + tc — intC'
which implies a; € a + tc — intC' for k sufficiently large. Hence xj € levgqyof for k
sufficiently large. By the closedness of level sets, one get x € lev,yy.f, i.e.,

f(z) < a+tc,Vt > 0.

Taking ¢ to 0, since C is closed we have f(z) < a which equivalent to (z,a) € epif.
Thus f is closed. 0

3. CONTINUITY

From now on, we always assume that R™ is ordered by a convex cone C.

Let f be a vector function from a nonempty set D C R™ to R™ and let S C
D, x € S. We say that f is lower (resp., upper) semicontinuous relative to S at x
with respect to C if for every neighborhood W of f(z), there exists a neighborhood
V of x such that

yeVnS= flyy e W+C (resp., fly) e W—-0C).

f is called lower (resp., upper) semicontinuous relative to S if it is lower (resp.,
upper) semicontinuous relative to S at every x € S. The concept of continuity
relative to S is defined analogously. When S = D we omit the phrase “relative to
S” in the definitions above. In this case, if m = 1 and C' = Ry then we get the
usual concepts of lower and upper semicontinuity for scalar functions. But it is not
like the scalar case, a vector function can be closed but not lower semicontinuous.
For instant, let’s consider the function f : [0, +00) — R? defined by

(0,0, z=o0,
f(x)'_{(l 0), z>0.

x?
R? is ordered by the cone C := cone(co{(—1,1),(1,1)}), where, coA denotes the
convex hull of A. Then f is closed but not lower semicontinuous at 0 with respect to
C. The reason of this fact comes from the nature of the partial order generated by a
cone. In ([1]) some characterizations of semicontinuity of vector functions are given.
Here we present a sufficient condition for a vector function to be semicontinuous.

Proposition 3.1. Assume that the order cone C C R™ is closed, convex and pointed
with intC # (). Let f be a vector function from a nonempty set D C R™ to R™ and
let S C D,xg € S. If f is closed and upper semicontinuous relative to S at xq, then
f s lower semicontinuous relative to S at xq.

To proof Proposition 3.1 we need the following lemmata.
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Lemma 3.2. Let C C R™ be a closed, convex and pointed cone and let £ € intC".
Then for every number « > 0, the set

A:={ceC : &) <a}
is compact.
Proof. Clearly A is closed. To complete the proof we only need to show that A is
bounded. This is equivalent to showing that for every sequence in A, there exists

a bounded subsequence. Let {cx}r C A be an arbitrary sequence. Without loss of
generality, we may assume that ¢ # 0, for all k. Then the sequence {”‘é—’;”}k has a

subsequence {”Z—ZZH}Z which converging to some unit vector ¢y € C. Since £ €intC’,
i

by Lemma 2.1 we have
I f(ckl)
im

l=00 ”Csz

= f(C()) > 0.

This fact together the boundedness of the sequence {£(cy,)}; imply the boundedness
of {cg, };. The proof is complete. O

Lemma 3.3. Assume that the order cone C' C R™ is closed, convex and pointed
with intC' # 0. Let £ € intC’, a € R™ and a number § > 0 be arbitrary. Then for
every number a € R the set

A={yeR" : {(y) =2 a}N[B(a,) - C]
is compact.

Proof. The result is deduced from Lemma 3.2 and the fact that there exists ¢ € intC
such that B(a,d) —C C ¢ — C. O

Proof of Proposition 3.1. Suppose to the contrary that f is not lower semicontinuous
relative to S at zg. Then there exists a possitive number € and a sequence {x}p C S
converges to zg such that

(3.1) far) & B(f(x0),€) + C, (V)

where B(f(z0), €) denotes the open ball with the center f(zp) and the radius e. One
of two following cases holds.

i) The sequence {f(zx)}x is bounded. Without loss of generality we may assume
that {f(x)}r converges to some yp € R™. By (3.1),

(3.2) Yo ¢ B(f(wo),¢€) + C.

On other hand, since f is closed one has (z9,y) € epif. Hence yo > f(x¢) which
contradicts (3.2).

ii) The sequence {f(zg)}r is not bounded. Since f is upper semicontinuous
relative to S at xg,

f(zk) € B(f(x0),6) = C
when k > K for K sufficiently large, where B(f(z0), ¢) denotes the closed ball with

the center f(zg) and the radius e. By Lemma 2.1, intC’ # (). Pick an element
¢ € intC’. Put

o= min{¢(y) : y € B(f(wo) )} — 1.
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By Lemma 3.3, the set
(B(f(z0),6) —C)N{y : &(y) > a}

is compact. Then the set
E = (B(f(z0),€) —C)N{y : &(y) =a}
is also compact. We note that
(3.3) EN(B(f(xo),¢e) +C) = 0.
For every k > K, there exists y. € B(f(%0),¢€), cx € C such that
f(or) =y — .
Since the sequence {f(z)} is not bounded we may assume that

llexll = +oo.

Then by Lemma 3.2 we also may assume that

(3.4) lim &(eg) = +o0.
We have
flzr) = yp — i
L §(yk)—04) 3 ( 3D —Oé>
& ( e )T e )
= 2k — AkCk,
where

ZkZ%-(%y)ckeE

§(yk) — o
@
By (3.4), A > 0 when k sufficiently large. Then we have, f(xx) < 2, i.e.,

A =1—

(xk, 21) € epif,

for k sufficiently large. Since {zx}r>x C E and FE is compact we may assume {zj }
converges to some

(3.5) 2 € E.
By the closedness of f, he have
zo = f(20).
This fact together (3.3) and (3.5) give us a contradiction. The proof is complete.[]

Lemma 3.4. Assume that the order cone C' C R™ is closed, convex and pointed.
Let f be a vector function from a nonempty set D C R™ to R™ and let S C D,z €
S. Then f is continuous relative to S at xg if and only if f is lower and upper
semicontinuous relative to S at xg.
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Proof. =: It is immediate from definitions.
<«: Let W be an arbitrary neibourhood of f(z¢). By Lemma 2.1, there exists a
neighborhood W’ of f(xg) such that

(3.6) W' +C)n (W' —-C) c W.

By the semicontinuity of f at xg, there exists a neighborhood V of z( such that
(3.7) reVnS= flx)ye W+C)n(W' -0C).

(3.6) and (3.7) implies the continuity relative to S of f at xg. O

Convex vector functions have several nice properties as scalar convex functions
([5], [8]-[10], [14]-[17]). One of them is the Lipschitzian continuity property.

Proposition 3.5 ([10], Theorem 3.1). Assume that the closure clC of the order
cone C C R™ is pointed. Let f be a convex vector function from a nonempty convex
set D C R™ to R™. Then f is locally Lipschitz on the relative interior riD of D.

In general, convex vector functions are not continuous at the boundary points
of the domains. However, under certain conditions this property is still valid. A
such condition concerns to the concept of locally simplicial sets. We recall some
background from ([13]). A subset S C R" is called locally simplicial if for each
x € S, there exist a finite collection of simplices St,...,S; C S such that, for some
neighborhood U of z

UﬂSZUﬂ(S1U'”USk).

The class of locally simplicial sets includes, besides line segments and other sim-
plices, all polytopes and polyhedral convex sets. It also includes all relative open
convex sets.

Let T be a simplex with vertices xg,x1,...,2; and let x € T. Then T can be
triangulated into simplices having = as a vertex, i.e. each y € T belongs to a simplex
whose vertices are x and m of the m + 1 vertices of T'. Base on this fact we have

Theorem 3.6. Let f be a convex wvector function from a nonempty conver set
D C R™ to R™ and let S be any locally simplicial subset of D. Then f is upper
semicontinuous relative to S. In addition, if the order cone C is closed, pointed
with intC # () and f is closed, then f is continuous relative to S.

Proof. Let x € S be arbitrary. Then there exist simplices Sp,...,S; C S such
that S; contains z, for every i = 1,k, and UNS =UN(S1 U---USg), for some
neighborhood U of z. Each S; can be triangulated into simplices having = as vertex.
Denote these simplices by T7,...,7;. Then UNS =UN (T3 U---UT;). Hence to
prove the upper continuity relative to S of f at x it only needs to prove the upper
continuity relative to T; of f at x, for every ¢« = 1,I. Suppose that T; is a p-

simplex with vertices x,x1, ..., x,. Without loss of generality we may assume that
x=0,p=n,z; =e;,j = 1,n, where {e1,...,e,} is the canonical base of R". Let
€ > 0 be arbitrary. Put
L, if f(e;) — £(0) =0, =
r=ga————, if3j: fe;) — f(0) #0.

2 [1f(ej)=F 0l
J=1
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Let y = (A1,...,An) € B(0,7) N T;. Then y can represent as

y:(1—>\1—"-—)\n)0+)\161+"'+)\n6n,
where A\; > 0,5 =1,n,A\1 +--- 4+ X, < 1. Hence by convexity of f, we have
f) 2 A=A == A)f(0) + A flen) + -+ Anflen),
or,
n
0) = Ai(f(ej) — f(0)).
1=j
Since

n

1> Xi(fej) = f <Y Aillfey) = Ol
j=1

7j=1
|

yHZIIf(ej) — fO)]
j=1

<Yy _[lf(e;) — O]
j=1

<€

one has f(y) — f(0) € B(0,e) — C which implies the upper semicontinuity relative
to T; of f at x = 0. Thus f is upper semicontinuous relative to S.

Now, assume in addition that C is closed , pointed with intC' # () and f is closed.
Then by Proposition 3.1, f is lower semicontinuous relative to S. Hence by Lemma
3.4, f is continuous relative to S. The proof is complete. O

4. CHARACTERIZATIONS

Firstly, we recall some definitions. Let D C R™ be a nonempty set and let x € D.
Denote by Ty(D;x) the cone of feasible directions of D at z, i.e.,

To(D;x) = {v € R" | 3ty > 0 such that x + tv € D,Vt € [0, o] }.
Let f : D — R™ x € D,v € Tp(x). The directional derivative of f at x in the
direction v is defined as the following limit
t —
tl0 t

Suppose that intD # () and let = € intD. f is said to be Gateaux differentiable at x
if f/(z;v) exists for every v € R™ and there is a continuous linear map, say D¢ f (),
such that

f'(x;v) = Daf(z)(v),Yv € R™,

Definition 4.1. (i) Let amap A: D C R" — L(R™,R™) be given. We say that A
is monotone (resp., strictly monotone) with respect to C' if

Alz)(y —2) + A(y)(xz —y) 2 0,Vz,y € D.
(resp., A(z)(y —z)+ A(y)(z —y) < 0,Vz,y € D.)
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(i) Let a vector bifunction B : D x R™ — R™ be given. We say that B is monotone
(resp., strictly monotone) with respect to C' if

B(z,y —x)+ B(y,z —y) 2 0,Vz,y € D.

(resp., B(xz,y —x)+ B(y,z —y) < 0,Vz,y € D.)

When m = 1 and C = Ry we return to the classical concept of monotonicity.
A characterization of convexity of scalar functions via the monotonicity of their
directional derivatives is shown out in the following result.

Lemma 4.2 ([9]). Let ¢ be a lower semicontinuous function from a nonempty
convex subset D C R™ to R. Suppose that ¢'(z;v) exists for every x € D,v €
To(D;z). Then ¢ is convex (resp.; strictly convex) if and only if ¢(.;.) is monotone
(resp.; strictly monotone)in the classical sense.

Lemma 4.3. If a vector function f: D C R® — R™ is lower semicontinuous with
respect to C, then £f is also lower semicontinuous for every £ € C'.

Proof. Let £ € C'. We may assume that £ # 0. Let z € D, € > 0 be arbitrary.

Set ¢ = Ten (where, ||&]| := sup |£(z)|). By the definition of lower semicontinuity,
llxll<1

there exists a neighborhood V' of z such that
¥ eVnD= f@) e f(z)+ B(0,€) + C.
We have
§[f(2') = f(x)] = infg[B(0,€') + C] = inf¢[B(0,€)] = —€[|¢]| = —e

which implies the lower semicontinuity of £f at x. Since x € D is arbitrary the
proof is complete. O

Theorem 4.4. Assume that the order cone C' C R™ is convex and closed. Let f be
a lower semicontinuous vector function from a nonempty convex subset D C R™ to
R™. Suppose that f'(x;v) exists for every x € D,v € To(D;x). Then f is convex
(resp.; strictly convex) if and only if f'(.;.) is monotone (resp.; strictly monotone).

Proof. For every £ € C', £f is lower semicontinuous by Lemma 4.3. Clearly
(&f) (z;v) exists for every z € D,v € Tp(x). By applying Lemma 2.7 , Lemma
4.2 and Lemma 2.1, we have
f is convex < £f is convex, V&€ € C'\ {0}.
S (Ef) (zy —2) + (€f) (y;2 —y) <0, Yo,y € D, & € C"\ {0}
& E[f(wy—a)+ flyiz —y)] <0, Yo,y € D,£ € C"\ {0}
< flryy — o)+ f(ysz —y) 20, Yo,y € D.

& f(.;.) is monotone.
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Analogously, we have
f is strictly convex < £f is strictly convex, V¢ € C"\ {0}.
& (€N @y —x)+ Ef) (y;2 —y) <0, Va,y € D,z #y,& € C'\ {0}.
SE[fl@wy—2)+ f(y;z—y)] <0, Vo,ye D,z #y, & € C"\ {0}
& fllayy—a)+ fly;2 —y) <0, Yo,y € D, x #y.
& f/(.;.) is strictly monotone.
The proof is complete. O

From Theorem 4.4 and definitions we have immediately the following result which
generalize the corresponding famous well- known result in convex analysis.

Corollary 4.5. Assume that the order cone C' C R™ is conver and closed. Let f
be a vector function from a nonempty open convexr subset D C R™ to R™. Suppose
that f is lower semicontinuous and Gateaux differentiable on D. Then f is convex
(resp.; strictly convez) if and only if Dgf is monotone (resp.; strictly monotone).

Example 4.6. Let R3 be ordered by the cone C' = con(co{(1,0,1),(0,—1,—1),
(0,0,1)}). Let f : R? — R3 be defined by f(z1,72) = (212 — 21 + 72, —12% + 21 —
T9, 212 — 292). For every @ = (z1,22),y = (y1,%2) € R?, we have

Df(z) = ((2z1 — 1,1),(1, =222 — 1), (221, —2x2))
Df(y) = ((2y1 — 1,1), (1, —2y2 — 1), (2y1, —2y2)) -
Then
(Df(x) = Df(y)) (x —y) = 2(x1 — y1)*, —2(x2 — y2)*, 2(z1 — 11)* = 2(x2 — 12)?)
=2(z1 — y1)%(1,0,1) + 2(z2 — y2)*(0, -1, —1)
eC.

Hence Df is monotone with respect to C which implies the convexity of f by
Corollary 4.5.

Now we investigate the second order characterization of convexity. Let X,Y be
normed spaces. The space of continuous linear maps from X to Y is denoted by
L(X,Y). The norm in £(X,Y) is defined as usual by

A€ L(X,Y), [|A]l = sup{[|A(z)[| o € X, [[«]| <1},
Let A € L(R™, L(R™,R™)). For every x,y € R", we denote
Alz,y) = [Al@)](y)-
Definition 4.7. We say that a map A € L(R", L(R",R™)) is C_definite if
A(z,z) € C, Yz € R™.

Let D C R™ be a nonempty set. An operator F : D — L(R", L(R",R™)) is called
C'_ definite if F(x) is C_definite for every xz € D.

We see immediately that when m=1 and C' = Ry, A is C _definite if and only if
the matrix representing A is semi positively semi-definite in the usual meaning.
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Theorem 4.8. Assume that the order cone C C R™ is closed and convex. Let
D C R™ be a nonempty, conver and open set and let F' : D — L(R™,R™) be a
continuously differentiable map. Then F' is monotone with respect to C if and only
if its derivative operator DF is C_definite.

Proof. = : Suppose to the contrary that DF' is not C'—definite. Then there exist
xg € D, yo € R" such that

(4.1) DF(x0)(yo, yo) ¢ C.

Put ¢(t) = DF(x0 + tyo)(yo, yo). Since C' is closed, by (4.1) there exists 6 > 0 such
that

(4.2) B(¢(0),0)NnC = 0.

Since DF' is continuous on a neighborhood of zq, ¢ is also continuous on a neigh-
borhood of 0. Then there exists a number € € (0,1) such that

(4.3) ¢(t) € B(¢(0),0), vt € [0, €.
Put ®(t) = F(xo + tyo)(yo). Then ® = ¢ o F o 1), where,
Yt xg+tyo, p: A€ LR, R™) — A(yo).

Then ®(t) is continuously differentiable on a neighborhood of [0,¢]. By Mean value
theorem for vector functions, there exist 71,...,7, € [0,€],A1,..., Ap >0, A1+ -+
Ar = 1 such that

k
(4.4) O(e) — 0(0) = Y _NDI(7i)(e).
=1

By chain rule,
(4.5) D®(7i)(€) = eDF (w0 + Tiyo) (yo, Yo) = €¢(7i),i = 1,..., k.
From (4.3), (4.4) and (4.5), one has

(F(xo + eyo) — F(z0))(zo + eyo — x0) = e(F
(P

2o + €yo) — F(20))(%o)
€) — 2(0))

k
= ¢(D>_AiD®(7;)(c))
=1
k

=D _Xig(m))
=1
e 2B(¢(0),9).

By (4.2), (F(xo + eyo) — F(x0))(zo + €yo — zo) ¢ C. Hence F' is not monotone on
D which contradicts the assumptions.
< : Let x,y € D be arbitrary. Consider the function

O(t) = Flz +ty — ) (y — x).

€
€

(
(
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Clearly @ is continuously differentiable on an open interval which contains [0, 1]. By
Mean value theorem, there exist 7y,...,7% € [0,1],A\1,..., g >0, A\ + -+ A\ =1
such that

k
(1) — ®(0) = Z/\Z»DQ(Ti)(l).

Hence
(F(y) — F(2))(y —2) = ©(1) — ©(0)

k
= > AiD®(7)(1)
=1

k
=Y MDF(z+ 7y —2))(y — =,y — x)
i=1
€ C( since DF is C_definite).

Thus F' is monotone. The proof is complete.
O

Theorem 4.9. Assume that the order cone C C R™ is closed and conver. Let
D C R" be a nonempty convexr and open set and let f : D — R™ be a twice
continuously differentiable vector function. Then f is convex if and only if D*f is
C—definite ( where D%f denotes the second order derivative map of f on D).
Proof. By Corrolary 4.5 and Theorem 4.8, we have
f is convex < D f is monotone
& D?*f is C—definite .
O

From Theorem 4.9 and from a note after Definition 4.7 we obtain immediately the
following famous well-known classic result.

Corollary 4.10. Let D C R" be a nonempty convex and open set and let f : D — R
be a twice continuously differentiable function. Then f is convex if and only if the
Hessian matriz Hy(x) of f at every x € D is positively semi-definite.

Example 4.11. Let R? be ordered by the cone C' = con(co{(1,0,1),(0,—1, 1),
(0,0,1)}). Let f : R? — R3 be defined as in Example 4.6, i.e., f(x1,72) = (1% —
1+ T2, —x2% + 11 — 9, 12— x22). By computing we have

pro=((3 8.3 4)-(3 4))orer

D*f()(y,y) = (291%, —2u2°, 201% — 22°)
=2y1%(1,0,1) 4+ 2y2°(0, -1, -1)
e C,Vz,y € R?.
Hence D?f is C_definite which implies the convexity of f by Theorem 4.9.

Then
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5. RECESSION MAPS

We recall that the recession cone of a convex subset A of a real vector space X
is defined as the set

A ={ue X |z+tuec A Vr e At > 0}.
The following basis result of recession cone in convex analysis will be needed.

Lemma 5.1 ([13]). (i) Let A C R¥ be a nonempty, closed and convex set.

Then A is compact if and only if A = {0}.

(ii) Let A C R* be a nonempty, closed and convex set. Then A, is closed and
convex.

(iii) Let A € R* be a nonempty and convex set and let v € R*. Then u €
As if and only if A+ u C A.

(iv) Let A C R* be a nonempty, convex and closed set and let u € R¥. Then
u € Ay ifandonly if dz € A:z+ Au € A, VA > 0.

(v) Let (A;)ier be a family of convex subsets of R¥ such that 'QIAi # (. Then

(2

iQI<Ai)OO . (iQIAi)OO'
If in addition A; is closed for every ¢ € I, then the converse holds.

Let f be a convex vector function from a nonempty convex subset D C R" to
R"™. For each x € R", set

Sz :={u e R™| (xz,u) € (epif)oc}-

The following definition is suggested from the concept of recession map of scalar
convex functions.

Definition 5.2. The recession map of f is defined as follows.

o MinSﬁB? SLE 7é 07
Fool) = {0), S, =0.

Example 5.3. Let R? be ordered by the positive orthant cone R?, and let f :
(0,400) — R? be defined by f(z) = (2,2 + 1). Then f is convex with respect to
R2, since component functions are scalar convex (on (0,+occ)).By computing we
obtain

(epif)oo = {(x, u1,u2) €R® | 2 > 0,u1 > &, uy > z}.
From this we have
> > >0
Se = {u = (u1,u2) € R?| (x,u) € (epif)oe} = { é(ulai@g | ur > 2,up > 2}, v >
, © <0.

Hence by the definition of recession map

B MinS;, = >0 {(z,z)}, x>0
foo(x)_{ 0, z <O. _{ 0, z <O0.
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Proposition 5.4. Assume that the order cone C is closed, convex and pointed. Let
f be a convex vector function from a nonempty convex subset D C R™ to R™. Then

domfeo = {x € R"| S, # 0}

and
foo(x) = Sup{f(y +x) — f(y)| y € D}, Vo € domfw.

Proof. Let x € R",u € R™ be arbitrary. By the definition of S, and by Lemma 5.1,
one has
u€ Sy < (z,u) € (epif)so

< (y,v) + (x,u) € epif, V(y,v) € epif

< fly+x) 2v+u, Y(y,v) € epif

& fly+x)— fly) Ju, VyeD

< ueUb{fy+a)— fy)lyeD}
Thus,

(5.1) S =Ub{f(y +2) - f(y)| y € D}.

Hence, S, # 0 if and only if the set {f(y +z) — f(y)| y € D} is bounded above. By
Theorem 2.6, this is equivalent to the fact Sup{f(y + x) — f(y)| y € D} # (. Then
by the definition of supremum and by (5.1), if S, # 0 we have
foo(x) = MinS,,
= Min(Ub{f(y +2) — f(y)| y € D})
= Sup{f(y+z) - f(y)| y € D} # .

The proposition is proved. O

We note that, by the formula in Proposition 5.4, one has foo(0) = {0}.

From Definition 5.2 we see that the recession maps of convex vector functions
have set-valued structure. So for further investigations we need some concepts of
set-valued maps. Let I be a set-valued map from R" to R™. We define the epigraph
of I with respect to C' as the set

epiF' := {(z,u) e R" x R™| v € F(x) + C}.

F is said to be convex (respectively, closed) if epiF’ is convex (respectively, closed).
F is said to be positively homogeneous if

F(\z) = AF(z), Vz € domF,\ > 0.

In the remain of this section, the order cone C' is assumed convex, closed and
pointed.

Proposition 5.5. Let f be a convex vector function from a nonempty convex subset
D CR" to R™. Then

epi(foo) = (€pif)oo-
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Proof. Let (z,u) € R™ x R™ be arbitrary. By Proposition 5.4, (5.1) and Theorem
2.6, one has

(2,u) € epi(fu) & u € fool) +C
< ueSup{f(y+z)—-fy)lyeDi+C
cueUb{fly+az)—fly)lyeD}
SuesS,
< (z,u) € (epif)oco-
The proposition is proved. U
We note that, from Proposition 5.5, dom f, is a convex cone and domf, C Dxo.
The inverse inclusion is not true in general. For instant, let f : R — R defined
by f(z) := 22, Vo € R. Then domf,, = {0} while Do, = R. By this proposition

we also see that Definition 5.2 is an extension of the concept of recession maps for
scalar convex functions to the vector case.

Lemma 5.6. Let f be a convex vector function from a nonempty convex subset D C

R™ to R™. Let g € D,x € Do be arbitrary. Then the set {w} | A >0}
is linearly ordered.

Proof. Let A > X > 0 be arbitrary. We have
N N

zo+ Nw = (1— X)a:o + X(a:o + Ax).
Then by convexity of f,
N N
flzo + Na) = (1= ) f(wo) + 3 f(wo + Az)

which implies
flzo + Nz) — flwo) _ flzo+Az) — f(x0)
N - A .
{M} | A > 0} is linearly ordered. The proof is complete.
U

Hence the set

In general, the recession maps of vector functions have set-valued structure. How-
ever, under certain conditions they reduce to single-valued maps. One such condi-
tion is the closedness as shown in the following proposition.

Proposition 5.7. Let f be a convex vector function from a nonempty convex subset
D C R"™ to R™. Then the recession map fo 1S a positively homogeneous convex set-
valued map. In addition, if f is closed, then fs reduces to a single-valued closed
function and for any xog € D, fs is given by the following formula

Fool) = ISup { f(xo + )\3)?\) — f(z0)

Proof. The convexity of f. is immediate from Proposition 5.5. By a note follows
Proposition 5.4 and by following equalities

Sxe = ASz, Ve € R™, A > 0,

| )\>0}, Vo € domfs.
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Min(AA) = AMinA,VA C R™, X > 0,

fxo is positively homogeneous. Now, assume that f is closed. Then by Lemma 5.1
and by Proposition 5.5 above, epifs, is closed. Hence, so is fo,. Finally, let xg € D,
x € R™ and u € R™ be arbitrary. Since epif is closed and convex, we have

u € Sy < (z,u) € (epif)so
< (g, f(xo)) + Az, u) € epif, VA >0
flaotAx) = flxo) 'y o
A Y
@ueUb{f(x0+)\f\)_f(x0)| )\>0}
Hence,
(5.2) Sx:Ub{f(w0+>\§)_f(x0)|>\>0}.

If x € domfy, then by Proposition 5.4, S, # ( . From (5.2), the set
{M] A > 0} is bounded from above. On other hand, by Lemma 5.6,
the set {w] A > 0} is linearly ordered. Then by Proposition 2.5, there

exists ISup{w] A > 0}. From definitions of supremum and recession

map together (5.2) and the note which follows Definition 2.3 we have
foo(x) = MinS,
— Min (Ub{f(mo+>\$) — @), 0})

A
_Sup{f($o+)\ﬂj\)—f($o)’/\>0}
:ISup{f(x0+)\i)_f(x0)|>\>0}.

Since C' is pointed, ISup{M| A > 0} is a singleton. Hence f is a
single-valued map. The proposition is proved. O

Example 5.8. Let R? be ordered by the positive orthant cone R?, and let f :
(0,400) — R? be defined as in Example 5.3, ie., f(z) = (z,z + 1). For every
nonempty level set lev, f one has

levef ={z € (0,+00) | f(z) X a}
= {z € (0,+00) | xgal,x—i-égag}

= (0,a1] N [y, as]

(where, a;; > 0,7 = 1,2, are the solutions of the equation x + i = ag). Hence lev, f
is closed. Then by Lemma 2.8, f is closed too. Applying Proposition 5.7, for every
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x € domf, = Ry, we have

1+ Az) — f(1)
)

foo() = Hsup{f( | A >0}

1 1
=1I e A > 0}
Sup{("’“"’x Y Taas /\x)> 4> 0}
By the definition of IIsup, we can verify that

1 1
ITsup{ <x,a¢ -5t M) | A >0} ={(z,2)}.

Hence

B {(z,z)}, x>0
Joola) = { 0, <0,

which coincides to the results in Example 5.3.
A function ¢ : A C R — R™ is called decreasing (with respect to the cone C) if
Vr,s € A;r > s = o(r) < ¢(s).

Proposition 5.9. Let f be a convex vector function from a nonempty convex subset
D C R" to R™ and let xg € Doy. Then f(y + Axo) is a decreasing function of
A(A > 0) for every y € D if and only if

foo(fEO) n (—C) 75 @

Proof. =: Since f(y+ xo) — f(y) < 0 for every y € D, we have 0 € Ub{f(y + x¢) —
f(y)ly € D}. Then by Theorem 2.6, one has

Sup{f(y +z0) — f(y)ly € D} N (=C) # 0.
By Proposition 5.4, this implies
foo(@o) N (=C) # 0.

«: Let y € D be arbitrary and let A\, \" € R such that A > X\ > 0. Since f is
positively homogeneous we have

(5.3) foo (A= XN)z0) N(=C) # 0.
By Proposition 5.4,
foo (A= N)zo) = Sup{f(z + (A = X)z0) — f(2)| = € D}

which together (5.3) and the definition of supremum imply

f(z+ A =X)zo) — f(2) X0,Vz € D.
Observe that

Fly 4+ Azo) — fly + Nwo) = fly + Nag+ (A= N)xzo) — f(y + Nixo)

then one has

Fly +Awo) = f(y + Nwo) 2 0.
Hence f(y + Axg) is a decreasing function of A € R;. The proof is complete. O
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Corollary 5.10. Let f be a closed convex vector function from a nonempty convex
subset D C R™ to R™ and let xg € Do. If there is a point §y € D having the property
that f(g + Axg) is a decreasing function of A(A > 0), then this property holds for
everyy € D.

f(??-f—)\m/{))—f(ﬂ)‘ A>0

Proof. Since f is closed convex and the set { } is bounded above

by 0, we have S, # ) by (5.2), hence z¢ € domf.. From Proposition 5.7 and the
definition of ISup, one has

7 ae) — (@
Foo(0) :ISup{f(y+ x;) 1), )\>0} =<0.
Apply Proposition 5.9, we complete the proof. O

The set of all vectors x € R"™ such that foo(z) N (=C) # 0 is said to be the
recession cone of f and denoted by Rec(f). It is easy to see that it is a convex cone.
The directions of vectors in Rec(f) is called the recession directions of f.

Proposition 5.11. Let f be a closed convex vector function from a nonempty con-
vexr subset D C R™ to R™. Then all the nonempty level sets of f have the same

recesston cone, namely the recession cone of f, i.e., for every a € R™ such that
levef # 0 one has

(levaf)oo = Rec(f)'
Proof. Let a € R™ such that lev, f # () and let y € lev, f. Then (y,a) € epif. Since

f is closed, by Lemma 2.8, lev, f is closed also. Then for every vector x € R™, one

has
x € (levyfloo © y+ Az € levy f, VA >0

< fly+ ) <a, VA >0
< (y,a) + A(z,0) € epif, VA >0
& (2,0) € (epif)os
& (,0) € epi(fo), ( by Proposition 5.5)
S 0€ foolr)+C
& foolz) N (=C) #1
& z € Rec(f).
The proposition is proved. O

6. APPLICATIONS

In this section we investigate the sufficient conditions for the existence of optimal
solutions of vector optimization problems based on recession directions of objective
functions. Let f be a vector function from a nonempty subset D C R™ to R™, where
R™ is ordered by a convex cone C'. Firstly, we consider the following unconstraint

vector optimization problem
{Min F(=) vP)

st.xeD.
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We need to find a point z* € D, called an optimal (or minimal, or efficient)
solution of (VP), such that

f(z*) € Min(f(D)|C).

In the remain of this section we assume that the order cone C C R™ is convex,
closed and pointed with intC' # §).

Lemma 6.1. Let ¢ € intC and « € R™ be arbitrary. Then there exists k£ € N such
that

—ke < .

Proof. Since 0 € —c + intC' there exists r > 0 such that the open ball B(0,r) C
—c+intC. Then one can find a number £ € N such that 7 € B(0,r). This implies

x € —kc+ kintC C —kx+C
which complete the proof. O

Theorem 6.2. Assume that f is convex and closed. If f has no nonzero direction
of recession, i.e., Rec(f) = {0}, then the vector optimization problem (VP) has an
optimal solution.

Proof. Let y € f(D) be arbitrary. Set B := (y — C) N f(D). Clearly MinB C
Minf (D). Then to complete the proof of the theorem, it is sufficient to show that
MinB # (). For this, let S be any nonempty linearly ordered subset of B. We
shall show that S is bounded below. Indeed, suppose to the contrary that S is not
bounded below. Let ¢ € intC'. Then by induction, we can construct a sequence
{yr}, C S such that

(6.1) —ke Ay,

(6.2) Yr+1 = Yk,
for every k. Since Rec(f) = {0}, by Proposition 5.11, Lemma 2.7 and Lemma 5.1,
levy, f is a nonempty compact subset, for every k. From (6.2), one has

levy, ., f Clevy, f, Vk.

Hence,
A lev f#0
ST :

Let z € korilevykf. Then f(x) < yg, for every k. Hence by (6.1),

(6.3) —ke £ f(z), Vk.

Since ¢ € intC, by Lemma 6.1 there exists ko such that —koc < f(z) which contra-
dicts to (6.3). Thus, S is bounded below. By Proposition 2.5 and the note which
follows it, IInfS exists and there is a decreasing sequence {f(zy)}, C S converging
to IInfS. Since lev, f is compact and {zy}, C lev, f, without loss of generality, we
may assume that {z}, converges to some zg € lev, f . By the closedness of f, one
has (z9,InfS) € epif. Hence S is bounded below from f(z¢) € B. Applying Zorn’s
Lemma we obtain MinB # (). The theorem is proved. O
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Example 6.3. Let R? be ordered by the positive orthant cone R?_.. Consider the
vector problem

{Minf(x)

s.t. € (0,400),

where, f: (0, +00) — R? is defined as in Example 5.3. Since

) @) x>0
foo(ﬂf)—{ 0, <0

we have Rec(f) = {0}. Then by Theorem 6.2 the problem above has an optimal
solution. Here we can see that x = 1 is an optimal solution of the problem.

Now, we consider the following vector optimization problem with a general set
constraint.

Min f(z)
st.xe D (SVP)
T € F.

where, F is a subset of R”. Denote by S the feasible set of (SVP), i.e., S = {z €
D | z € E}. We should note that if f and F are closed then fpng is also closed,
where, fpng denotes the restriction of f on DN E.

Corollary 6.4. Assume that f and E are convex, closed and the feasible set S is
nonempty. If Rec(f) N Eoo = {0} then the vector optimization problem (SVP) has
an optimal solution.

Proof. We only need to show that

Rec(fpne) = Rec(f) N Ex

then applying Theorem 6.2 we obtain the result.

Let ©z € Rec(fpng) and y € D N E be arbitrary. Then z € (D N E) and by
Proposition 5.9, f(y + Az) is a decreasing function of A (A > 0). By Corollary 5.10,
x € Rec(f). On other hand from the closedness of E, applying Lemma 5.1 we have
T € Fy.

Conversely, let x € Rec(f) N Ex and let y € D N E be arbitrary. Then z €
(DN E)s (by Lemma 6.1) and f(y + Az) is a decreasing function of A (A > 0). By
Proposition 5.9, x € Rec(fpng). The proof is complete.

O

Finally, we consider a vector optimization problem with inequality constraints as
follows

Minf(x)
st.xeD (IVP)
x € Dz,fz(m) = 0,7i€l.
where, f: D CR" - R™, f;: D; CR"™ — R™ ¢ € I, be vector functions with [ is
an arbitrary index set and for every ¢ € I, R is ordered by a closed, pointed and
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convex cone C; with intC; # 0. Set E; := {z € D;|fi(z) Z¢, 0},Vie I, E := AﬁIEi'
1€
Denote by T the feasible set of (IVP),i.e.,
T={xeD|xzeD,,fi(x) 3¢, 0,Vi e I}.

Corollary 6.5. Assume that the feasible set T is nonempty and the functions
f, fi,i € I, are convexr and closed. If f, fi,i € I, have mo nonzero direction of
recession in common, i.e.,

rec( ) ( g et ) = (0%
1€
then the problem (IVP) has an optimal solution.
Proof. By Lemma 2.8, F; is closed for every ¢ € I. Then by Lemma 5.1, one has

Ey = ﬂI(E,-)OO. Applying Proposition 5.11, we get Fo, = ‘ﬂIRec(fi). Then using
S (1S
Corollary 6.4 we complete the proof. O

Example 6.6. Let X = R? be ordered by the positive orthant cone C = R?, and
let X; = R? be ordered by the cone C; = {a(1,1) + 8(—1,1) | a, B > 0}. Consider
the following inequality constraint vector problem

Minf(x)

s.t., x € R?

fi(z) 26, 0

fa(z) 2¢ 0,

where, f, fo: R? = X, f1 : R? = X are defined as follows.
f(xay) - (JI =+ y’ex - y)?fl(l.?y) = (_J;a —2y),f2(x,y) - (y - w’e—x —-1- y)

By computing we obtain
Rec(f) - {a(—l,O) + /8(_17 1) ’ a,B > 0}
Rec(f1) = {a(~1,5) + (L 5) | @6 > 0)

Rec(f2) = {a(1,0) + B(1,1) | o, 5 > 0}.
Hence Rec(f) N Rec(f1) NRec(f2) = {0}. Then by Corollary 6.5 we know that the

problem above has an optimal solution.

REFERENCES

[1] M. Ait Mansour, C. Malivert and M. Thera, Semicontinuity of vector valued mappings, Opti-
mization 56 (2007), 241-252.

[2] J. Benoist and N. Popovici, Characterizations of convexr and quasiconvex set-valued maps,
Math Meth Oper Res 57 (2003), 427-435.

[3] R. L Bot, S-M. Grad and G. Wanka, Duality in Vector Optimization, Springer, Berlin , 2009.

[4] G. Cheng, X. Huang and X. Yang, Vector optimization, Lecture notes in Economics and
Mathematical Systems, 541, Springer, Berlin , 2005, pp. 1-360.

[5] C. Cusano, M. Fini and D. Torre, Characterizations of convex vector functions and optimiza-
tion, Journal of Inequalities in Pure and Applied mathematics 5 (2004), 1-10.

[6] J. Jahn, Vector Optimization, Springer-Verlag, Berlin Heidelberg, 2004.



CONVEX VECTOR FUNCTIONS AND SOME APPLICATIONS 161

[7] D. La Torre, Optimality conditions for convex vector functions by mollified derivatives, Lecture
notes in Economics and Mathematical Systems, 583, Springer, Berlin, 2007, pp. 327-335.
[8] D. T. Luc, Theory of vector optimization, Lecture notes in Economics and Mathematical
Systems, 319, Springer, Berlin, 1989, pp. 1-175.
[9] D. T. Luc, Generalized convezity and some applications to vector optimization, Viet. J. Math.
26 (1998), 95-110.
[10] D. T. Luc, N. X. Tan and P. N. Tinh, Convez vector functions and their subdifferential, Acta
Math. Viet. 28 (1998), 107-127.
[11] D. T. Luc, Generalized convezity in vector optimization. Handbook of generalized convezity
and generalizes monotonicity, Nonconvex optim. Appl. 76 (2005), 195-236.
[12] D. T. Luc, Recession maps and applications, Optimization 27 (1993), 1-15.
[13] R. T. Rockafellar, Conver Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970.
[14] T. Tanino, Conjugate duality in vector optimization, Journal of Mathematical Analysis and
Applications 167 (1992), 84-67.
[15] P. N. Tinh, On a representation of convex vector functions and the mazimal cyclical mono-
tonicity of their subdifferential, Acta Math. Viet. 24 (1999), 183-191.
[16] P. N. Tinh, N. X. Tan and D. T. Luc, Subdifferential characterization of quasiconvex and
convez vector functions, Viet. J. Math. 26 (1998), 53-69.
[17] P. N. Tinh and N. X. Tan, On conjugate maps and directional derivatives of convex vector
functions, Acta Math. Viet. 25 (2000), 315-345.

Manuscript received Novemver 23, 2011
revised December 5, 2012

PuAN NHAT TINH
Department of Mathematics, Faculty of sciences, University of Hue, Vietnam
E-mail address: pntinh@yahoo.com

Do SanG Kim
Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea.
E-mail address: dskim@pknu.ac.kr



