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Definition 1.2 ([19]). A convex metric space (X, d,W ) is said to be uniformly
convex if for any ε > 0, there exists δε ∈ (0, 1] such that for all r > 0 and x, y, z ∈ X
with d(z, x) ≤ r, d(z, y) ≤ r and d(x, y) ≥ rε imply that

d

(
z,W

(
x, y,

1

2

))
≤ (1− δε) r.

Obviously, uniformly convex Banach spaces are uniformly convex metric spaces.
In 2010, Kettapun et al. [8] introduced the iterative process to approximate a

common fixed point of a finite family of asymptotically quasi-nonexpansive map-
pings in Banach spaces. Yatakoat and Suantai [24] extended the results of Ket-
tapun et al. to a finite family of generalized asymptotically quasi-nonexpansive
mappings. Later on, Khan and Ahmed [10] introduced the iterative process in
convex metric spaces for finding a common fixed point of a finite family of asymp-
totically quasi-nonexpansive mappings. Recently, Khan et al. [11] given some suf-
ficient and necessary conditions for a general iteration scheme of a finite family of
asymptotically quasi-nonexpansive mappings in convex metric spaces and CAT(0)
spaces. Many authors has studied the specific space of a convex metric space, that
is, the class of hyperbolic spaces, which contain the class of CAT(0) spaces, see
[2, 5, 11, 12, 13, 14, 16].

Motivated by above results, we introduce a new iterative process for finding a
common fixed point in a convex metric space as follows: Let C be a convex subset

of a convex metric space (X, d,W ). Suppose that α
(i)
n ∈ [0, 1] for all n ∈ N and all

i = 1, 2, . . . , N . Let {Ti}Ni=1 be a finite family of self-mappings of C. For x1 ∈ C,
let {xn} be the sequence defined by

(1.1)



y(0)n = xn,

y(1)n = W
(
Tn
1 y

(0)
n , y(0)n , α(1)

n

)
,

y(2)n = W
(
Tn
2 y

(1)
n , y(1)n , α(2)

n

)
,

y(3)n = W
(
Tn
3 y

(2)
n , y(2)n , α(3)

n

)
,

...

y(N−1)
n = W

(
Tn
N−1y

(N−2)
n , y(N−2)

n , α(N−1)
n

)
,

xn+1 = W
(
Tn
Ny(N−1)

n , y(N−1)
n , α(N)

n

)
,

for all n ∈ N.
The purpose of this paper is to establish strong convergence of the iterative pro-

cess (1.1) for a finite family of generalized asymptotically quasi-nonexpansive map-
ping in a convex metric space. Moreover, we give characterization of a uniformly
convex metric space with continuous convex structure and prove a convergence the-
orem of the iterative process (1.1) under some suitable control conditions. Finally,
we apply our results to obtain strong convergence theorems in hyperbolic spaces
and CAT(0) spaces.
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2. Preliminaries

Let C be a nonempty subset of a metric space (X, d). T : C → C be a mapping.
The fixed point set of T is denote by F (T ) = {x ∈ C : x = Tx}. A mapping T is
called:

(i) nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C;
(ii) quasi-nonexpansive if F (T ) ̸= ∅ and d(Tx, p) ≤ d(x, p) for all x ∈ C and

p ∈ F (T );
(iii) asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) such

that limn→∞ kn = 1 and d (Tnx, Tny) ≤ knd (x, y) for all x, y ∈ C and n ∈
N;

(iv) asymptotically quasi-nonexpansive if F (T ) ̸= ∅ and there exists a sequence
{kn} ⊂ [1,∞) such that limn→∞ kn = 1 and d (Tnx, p) ≤ knd (x, p) for all
x ∈ C, p ∈ F (T ) and n ∈ N;

(v) generalized asymptotically nonexpansive if there exists two sequences {kn} ⊂
[1,∞) and {sn} ⊂ [0,∞) such that limn→∞ kn = 1, limn→∞ sn = 0 and
d (Tnx, Tny) ≤ knd (x, y) + sn for all x, y ∈ C and n ∈ N;

(vi) generalized asymptotically quasi-nonexpansive if F (T ) ̸= ∅ and there exists
two sequences {kn} ⊂ [1,∞) and {sn} ⊂ [0,∞) such that limn→∞ kn =
1, limn→∞ sn = 0 and d (Tnx, p) ≤ knd (x, p) + sn for all x ∈ C, p ∈
F (T ) and n ∈ N;

(vii) uniformly L-Lipschitzian if there exists constant L > 0 such that
d (Tnx, Tny) ≤ Ld (x, y) for all x, y ∈ C and n ∈ N.

From the above definitions, it is clear that:
(i) a nonexpansive mapping is asymptotically nonexpansive;
(ii) a quasi-nonexpansive mapping is asymptotically quasi-nonexpansive;
(iii) an asymptotically quasi-nonexpansive mapping is generalized asymptotically

quasi-nonexpansive;
(iv) if F (T ) ̸= ∅, then a nonexpansive mapping is quasi-nonexpansive, an asymp-

totically nonexpansive mapping is asymptotically quasi-nonexpansive and a gen-
eralized asymptotically nonexpansive mapping is generalized asymptotically quasi-
nonexpansive.

Remark 2.1. If T is a generalized asymptotically quasi-nonexpansive mapping, it
is know that F (T ) is not necessarily closed, see [17].

We state the following conditions in metric spaces:

Condition (A): Let C be a subset of a metric space (X, d). A finite family of self-

mappings {Ti}Ni=1 of C is said to have Condition (A) if there exists a nondecreasing
function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r > 0 such
that d (x, Tix) ≥ f (d (x, F )) for some i, 1 ≤ i ≤ N and for all x ∈ C, where

d (x, F ) = inf{d (x, p) : p ∈ F =
∩N

i=1 F (Ti)}.
Semi-compact: Let C be a subset of a metric space (X, d). A mapping T is semi-
compact if for a sequence {xn} in C with limn→∞ d(xn, Txn) = 0, there exists a
subsequence {xni} of {xn} such that xni → p ∈ C.

The following results are needed for proving our results.
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Lemma 2.2 ([23]). Let {an}, {bn}, {cn} be sequences of nonnegative real numbers
satisfy:

an+1 = (1 + bn) an + cn, ∀n ∈ N

where
∑∞

n=1 bn < ∞ and
∑∞

n=1 cn < ∞. Then

(i) limn→∞ an exists;
(ii) If lim infn→∞ an = 0, then limn→∞ an = 0.

Definition 2.3 ([17]). Let {xn} be a sequence in a metric space (X, d) and F be a
subset of X. We say that {xn} is of

(i) monotone type (I) with respect to F if there exist sequences {rn} and {sn}
of nonnegative real numbers suth that

∑∞
n=1 rn < ∞,

∑∞
n=1 sn < ∞ and

d(xn+1, p) ≤ (1 + rn)d(xn, p) + sn for all n ∈ N and p ∈ F ;
(ii) monotone type (II) with respect to F if for each p ∈ F there exist sequences

{rn} and {sn} of nonnegative real numbers suth that
∑∞

n=1 rn < ∞,∑∞
n=1 sn < ∞ and d(xn+1, p) ≤ (1 + rn)d(xn, p) + sn for all n ∈ N.

Theorem 2.4 ([17, Theorem 2.4]). Let (X, d) be a complete metric space, F be a
subset of X and {xn} be a sequence in X. Then one has the following assertions.

(i) If {xn} is of monotone type (I) with respect to F , then limn→∞ d(xn, F )
exists.

(ii) If {xn} is of monotone type (I) with respect to F and lim infn→∞ d(xn, F ) =
0, then xn → p for some p ∈ X satisfying d(p, F ) = 0. In particular, if F is
closed, then p ∈ F .

(iii) If {xn} is of monotone type (II) with respect to F , then limn→∞ d(xn, p)
exists for all p ∈ F .

Lemma 2.5 ([1, 20]). Let (X, d,W ) be a convex metric space. For each x, y ∈ X
and λ ∈ [0, 1],

d (x,W (x, y, λ)) = (1− λ)d(x, y) and d (y,W (x, y, λ)) = λd(x, y).

Lemma 2.6 ([9, 18]). Let (X, d,W ) be a uniformly convex metric space with a
continuous convex structure W : X ×X × [0, 1] → X. Then for arbitrary positive
number ε and r, there exists ηε ∈ (0, 1] such that

d (z,W (x, y, λ)) ≤ (1− 2min{λ, 1− λ}ηε) r

for all x, y, z ∈ X, d(z, x) ≤ r, d(z, y) ≤ r, d(x, y) ≥ rε and λ ∈ [0, 1].

By using Lemma 2.6, we get the characterization of a uniformly convex metric
space as follows.

Lemma 2.7. Let (X, d,W ) be a convex metric space with continuous convex
structure. Then (X, d,W ) is uniformly convex if and only if for each x ∈ X
and r > 0, if {tn} is a sequence in [a, b] with 0 < a < b < 1 and {xn}, {yn}
are sequences in X with lim supn→∞ d (xn, x) ≤ r, lim supn→∞ d (yn, x) ≤ r and
limn→∞ d (W (xn, yn, tn) , x) = r imply limn→∞ d (xn, yn) = 0.
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Proof. (⇒) : Let r > 0. Suppose that limn→∞ d (xn, yn) ̸= 0. Then there are
subsequences, denoted by {xn} and {yn} such that infn d (xn, yn) > 0. Then there
is an ε ∈ (0, 1] such that

d(xn, yn) ≥ ε(r + 1) > 0, ∀n ∈ N.

Since there exists ηε ∈ (0, 1] and 0 < 2a(1− b) < 1, we have 0 < 1− 2a(1− b)ηε <
1. We can also choose R ∈ (r, r + 1) such that (1− 2a(1− b)ηε)R < r. Since
lim supn→∞ d (xn, x) ≤ r, lim supn→∞ d (yn, x) ≤ r and r < R, there are futher
subsequences again denoted by {xn} and {yn} such that d(xn, x) ≤ R, d(yn, x) ≤
R, d(xn, yn) ≥ εR, ∀n ∈ N. Then by Lemma 2.6, we have

d (W (xn, yn, tn), x) ≤ (1− 2min{tn, 1− tn}ηε)R
≤ (1− 2tn(1− tn)ηε)R

≤ (1− 2a(1− b)ηε)R < r

for all n ∈ N. Taking n → ∞, we obtain limn→∞ d (W (xn, yn, tn), x) < r, which
contradiction to the hypothesis.

(⇐) : Suppose that the condition holds. We will show thatX is uniformly convex.
To show this, suppose not. Then, there exist ε > 0, r > 0 and z ∈ X such that
each n ∈ N, there are xn, yn ∈ X such that d(xn, z) ≤ r, d(yn, z) ≤ r, d(xn, yn) ≥
rε and d

(
z,W

(
xn, yn,

1
2

))
>
(
1− 1

n

)
r. It follows that lim supn→∞ d(xn, z) ≤ r,

lim supn→∞ d(yn, z) ≤ r and limn→∞ d
(
z,W

(
xn, yn,

1
2

))
= r. By the assumption,

we have limn→∞ d(xn, yn) = 0, which is a contradiction with d(xn, yn) ≥ rε ̸= 0.
Hence, we have X is uniformly convex. �

3. Main Results

In this section, we prove strong convergence theorems of the proposed iteration
method in convex metric spaces. We first note that if {Ti}Ni=1 is a finite fam-
ily of generalized asymptotically quasi-nonexpansive self-mappings of C with F =∩N

i=1 F (Ti) is nonempty, where C is a nonempty convex subset of a convex metric

space (X, d,W ). Then, for p ∈ F , we have d (Tn
i x, p) ≤ k

(i)
n d (x, p)+s

(i)
n for all x ∈ C

and all i = 1, 2, . . . , N , where {k(i)n } ⊂ [1,∞), {s(i)n } ⊂ [0,∞) with limn→∞ k
(i)
n = 1

and limn→∞ s
(i)
n = 0. Put kn = max1≤i≤N{k(i)n } and sn = max1≤i≤N{s(i)n }. It is

clear that limn→∞ kn = 1, limn→∞ sn = 0 and

d (Tn
i x, p) ≤ knd (x, p) + sn

for all x ∈ C, p ∈ F , i = 1, 2, . . . , N and all n ∈ N.

In order to prove our main results, the following lemmas are needed.

Lemma 3.1. Let (X, d,W ) be a convex metric space and C be a nonempty convex

subset of X. Let {Ti}Ni=1 be a finite family of generalized asymptotically quasi-
nonexpansive self-mappings of C with sequences {kn} ⊂ [1,∞) and {sn} ⊂ [0,∞).

Suppose F =
∩N

i=1 F (Ti) is nonempty. Let x1 ∈ C and the sequence {xn} be defined
by (1.1). Then, we heve the following:

(i) d(y
(i)
n , p) ≤ knd(y

(i−1)
n , p) + sn, ∀i = 1, 2, . . . , N − 1, ∀n ∈ N and ∀p ∈ F ;
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(ii) d(y
(i)
n , p) ≤ kind(xn, p) + sn

∑i
j=1 k

j−1
n , ∀i = 1, 2, . . . , N − 1, ∀n ∈ N and

∀p ∈ F ;

(iii) d(xn+1, p) ≤ kind(y
(N−i)
n , p) + sn

∑i
j=1 k

j−1
n , ∀i = 1, 2, . . . , N − 1, ∀n ∈ N

and ∀p ∈ F .

Proof. (i) : For i = 1, 2, . . . , N − 1, we have

d
(
y(i)n , p

)
= d

(
W
(
Tn
i y

(i−1)
n , y(i−1)

n , α(i)
n

)
, p
)

≤ α(i)
n d

(
Tn
i y

(i−1)
n , p

)
+
(
1− α(i)

n

)
d
(
y(i−1)
n , p

)
≤ α(i)

n

(
knd

(
y(i−1)
n , p

)
+ sn

)
+
(
1− α(i)

n

)
d
(
y(i−1)
n , p

)
≤

(
1− α

(i)
n

kn
+ α(i)

n

)
knd

(
y(i−1)
n , p

)
+ sn.

Since 0 ≤ 1−α
(i)
n

kn
+ α

(i)
n ≤ 1 for all i = 1, 2, . . . , N − 1, we obtain d(y

(i)
n , p) ≤

knd(y
(i−1)
n , p) + sn.

(ii) : By (i), we have

d
(
y(1)n , p

)
≤ knd

(
y(0)n , p

)
+ sn

= knd (xn, p) + sn

1∑
j=1

kj−1
n ,

and so

d
(
y(2)n , p

)
≤ knd

(
y(1)n , p

)
+ sn

≤ kn

knd (xn, p) + sn

1∑
j=1

kj−1
n

+ sn

= k2nd (xn, p) + sn

kn

1∑
j=1

kj−1
n + 1


= k2nd (xn, p) + sn

2∑
j=1

kj−1
n .

Assume that d(y
(m)
n , p) ≤ kmn d(xn, p) + sn

∑m
j=1 k

j−1
n for some m, 1 ≤ m ≤ N − 2.

By (i), we have

d
(
y(m+1)
n , p

)
≤ knd

(
y(m)
n , p

)
+ sn

≤ kn

kmn d (xn, p) + sn

m∑
j=1

kj−1
n

+ sn
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= km+1
n d (xn, p) + sn

kn

m∑
j=1

kj−1
n + 1


= km+1

n d (xn, p) + sn

m+1∑
j=1

kj−1
n .

By induction, we obtain d(y
(i)
n , p) ≤ kind(xn, p)+sn

∑i
j=1 k

j−1
n for all i = 1, 2, . . . , N−

1.

(iii) : By (1.1) and (i), we have

d (xn+1, p) = d
(
W
(
Tn
Ny(N−1)

n , y(N−1)
n , α(N)

n

)
, p
)

≤ α(N)
n d

(
Tn
Ny(N−1)

n , p
)
+
(
1− α(N)

n

)
d
(
y(N−1)
n , p

)
≤ α(N)

n

(
knd

(
y(N−1)
n , p

)
+ sn

)
+
(
1− α(N)

n

)
d
(
y(N−1)
n , p

)
≤

(
1− α

(N)
n

kn
+ α(N)

n

)
knd

(
y(N−1)
n , p

)
+ sn

≤ knd
(
y(N−1)
n , p

)
+ sn

1∑
j=1

kj−1
n

≤ kn

(
knd

(
y(N−2)
n , p

)
+ sn

)
+ sn

1∑
j=1

kj−1
n

= k2nd
(
y(N−2)
n , p

)
+ sn

2∑
j=1

kj−1
n

...

≤ kind
(
y(N−i)
n , p

)
+ sn

i∑
j=1

kj−1
n

for all i = 1, 2, . . . , N − 1. �

Lemma 3.2. Let (X, d,W ) be a convex metric space and C be a nonempty convex

subset of X. Let {Ti}Ni=1 be a finite family of generalized asymptotically quasi-
nonexpansive self-mappings of C with sequences {kn} ⊂ [1,∞) and {sn} ⊂ [0,∞)

such that
∑∞

n=1 (kn − 1) < ∞ and
∑∞

n=1 sn < ∞. Suppose F =
∩N

i=1 F (Ti) is
nonempty. Let x1 ∈ C and the sequence {xn} be defined by (1.1). Then, we have
the following:

(i) There exist two sequences {δn} and {εn} ⊂ [0,∞) such that
∑∞

n=1 δn < ∞
and

∑∞
n=1 εn < ∞ and d (xn+1, p) ≤ (1 + δn) d (xn, p) + εn for all p ∈ F

and n ∈ N;
(ii) limn→∞ d (xn, p) exists, for all p ∈ F .
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Proof. (i) : By Lemma 3.1(ii)-(iii), we have

d (xn+1, p) ≤ knd
(
y(N−1)
n , p

)
+ sn

≤ kn

kN−1
n d (xn, p) + sn

N−1∑
j=1

kj−1
n

+ sn

= kNn d (xn, p) + sn

kn

N−1∑
j=1

kj−1
n + 1


= kNn d (xn, p) + sn

N∑
j=1

kj−1
n

= (1 + (kn − 1))N d (xn, p) + sn

N∑
j=1

kj−1
n

= (1 + δn) d (xn, p) + εn,

where δn =
∑N

j=1

(
N
j

)
(kn − 1)j and εn = sn

∑N
j=1 k

j−1
n . Since

∑∞
n=1 (kn − 1) <

∞ and
∑∞

n=1 sn < ∞, it follows that
∑∞

n=1 δn < ∞ and
∑∞

n=1 εn < ∞. Hence, we
obtain the desired result.

(ii) : By (i) and Lemma 2.2(i), we obtain that limn→∞ d (xn, p) exists. �

Theorem 3.3. Let (X, d,W ) be a complete convex metric space and C be a nonempty

closed convex subset of X. Let {Ti}Ni=1 be a finite family of generalized asymptotically
quasi-nonexpansive self-mappings of C with sequences {kn} ⊂ [1,∞) and {sn} ⊂
[0,∞) such that

∑∞
n=1 (kn − 1) < ∞ and

∑∞
n=1 sn < ∞. Suppose F =

∩N
i=1 F (Ti)

is nonempty and closed. Let x1 ∈ C and the sequence {xn} be defined by (1.1).

Then {xn} converges to a common fixed point of the family {Ti}Ni=1 if and only if
lim infn→∞ d (xn, F ) = 0, where d (x, F ) = inf {d (x, p) : p ∈ F}.

Proof. The necessity is obvious and then we prove only the sufficiency. Suppose
that lim infn→∞ d (xn, F ) = 0. By Lemma 3.2(i), we obtain that the sequence {xn}
is of monotone type (I) with respect to F . It follows by Theorem 2.4(ii), that {xn}
converges to a point p ∈ F . �

The following result is obtained direclty from Theorem 3.3. Clearly, the closedness
of
∩N

i=1 F (Ti) can be dropped if Ti is asymptotically quasi-nonexpansive mappings
for all i = 1, 2, . . . , N .

Corollary 3.4. Let (X, d,W ) be a complete convex metric space and C be a

nonempty closed convex subset of X. Let {Ti}Ni=1 be a finite family of asymptotically
quasi-nonexpansive self-mappings of C with a sequence {kn} ⊂ [1,∞) such that∑∞

n=1 (kn − 1) < ∞. Suppose F =
∩N

i=1 F (Ti) is nonempty. Let x1 ∈ C and the
sequence {xn} be defined by (1.1). Then {xn} converges to a common fixed point of

the family {Ti}Ni=1 if and only if lim infn→∞ d (xn, F ) = 0.
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Since any quasi-nonexpansive mapping is asymptotically quasi-nonexpansive, the
next corollary is obtained immediately from above corollary.

Corollary 3.5. Let (X, d,W ) be a complete convex metric space and C be a

nonempty closed convex subset of X. Let {Ti}Ni=1 be a finite family of quasi-

nonexpansive self-mappings of C with F =
∩N

i=1 F (Ti) is nonempty. Let x1 ∈ C
and the sequence {xn} be defined by (1.1). Then {xn} converges to a common fixed

point of the family {Ti}Ni=1 if and only if lim infn→∞ d (xn, F ) = 0.

Next, we prove a strong convergence theorem in a uniformly convex metric space.
The following lemma is very useful for our main result.

Lemma 3.6. Let (X, d,W ) be a complete uniformly convex metric space with con-
tinuous convex structure and C be a nonempty closed convex subset of X. Let
{Ti}Ni=1 be a finite family of uniformly L-Lipschitzian and generalized asymptotically
quasi-nonexpansive self-mappings of C with sequences {kn} ⊂ [1,∞) and {sn} ⊂
[0,∞) such that

∑∞
n=1 (kn − 1) < ∞ and

∑∞
n=1 sn < ∞. Suppose F =

∩N
i=1 F (Ti)

is nonempty. Let x1 ∈ C and the sequence {xn} be defined by (1.1) with {α(i)
n } ⊂

[a, b] for all i = 1, 2, . . . , N , where 0 < a < b < 1. Then limn→∞ d (xn, Tixn) = 0
for all i = 1, 2, . . . , N .

Proof. Let p ∈ F . By Lemma 3.2(ii), we get limn→∞ d (xn, p) exists. Then there is
c ≥ 0 such that

(3.1) lim
n→∞

d (xn, p) = c.

By Lemma 3.1(ii), we get

(3.2) lim sup
n→∞

d
(
y(i)n , p

)
≤ c for i = 1, 2, . . . , N − 1.

Since d(Tn
i y

(i−1)
n , p) ≤ knd(y

(i−2)
n , p) + sn and (3.2), we obtain

(3.3) lim sup
n→∞

d
(
Tn
i y

(i−1)
n , p

)
≤ c for i = 1, 2, . . . , N.

Since limn→∞ d (xn+1, p) = c, we have

(3.4) lim
n→∞

d
(
W
(
Tn
Ny(N−1)

n , y(N−1)
n , α(N)

n

)
, p
)
= c.

By (3.2), (3.3), (3.4) and Lemma 2.7, we can conclude that

lim
n→∞

d
(
Tn
Ny(N−1)

n , y(N−1)
n

)
= 0.

Assume that

lim
n→∞

d
(
Tn
j y

(j−1)
n , y(j−1)

n

)
= 0, for some j, 2 ≤ j ≤ N.

By Lemma 3.1(iii) and limn→∞ d(xn+1, p) = c, we have

c ≤ lim inf
n→∞

d
(
y(j−1)
n , p

)
for 2 ≤ j ≤ N.

By (3.2), we get limn→∞ d(y
(j−1)
n , p) = c for 2 ≤ j ≤ N . It follows that

(3.5) lim
n→∞

d
(
W
(
Tn
j−1y

(j−2)
n , y(j−2)

n , α(j−1)
n

)
, p
)
= lim

n→∞
d
(
y(j−1)
n , p

)
= c.
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Using (3.2), (3.3), (3.5) and Lemma 2.7, we can conclude that

lim
n→∞

d
(
Tn
j−1y

(j−2)
n , y(j−2)

n

)
= 0.

Therefore, we obtain by induction that

(3.6) lim
n→∞

d
(
Tn
i y

(i−1)
n , y(i−1)

n

)
= 0 for i = 1, 2, . . . , N.

By (1.1) and Lemma 2.5, we get

d
(
y(i)n , y(i−1)

n

)
= d

(
W
(
Tn
i y

(i−1)
n , y(i−1)

n , α(i)
n

)
, y(i−1)

n

)
= α(i)

n d
(
Tn
i y

(i−1)
n , y(i−1)

n

)
for i = 1, 2, . . . , N − 1. It follows by (3.6) that

(3.7) lim
n→∞

d
(
y(i)n , y(i−1)

n

)
= 0 for i = 1, 2, . . . , N − 1.

From

d
(
xn, y

(i)
n

)
≤ d

(
xn, y

(1)
n

)
+ d

(
y(1)n , y(2)n

)
+ · · ·+ d

(
y(i−1)
n , y(i)n

)
for i = 1, 2, . . . , N − 1. This implies by (3.7) that

(3.8) lim
n→∞

d
(
xn, y

(i)
n

)
= 0 for i = 1, 2, . . . , N − 1.

For 1 ≤ i ≤ N , we have

d (xn, T
n
i xn) ≤ d

(
xn, y

(i−1)
n

)
+ d

(
y(i−1)
n , Tn

i y
(i−1)
n

)
+ d

(
Tn
i y

(i−1)
n , Tn

i xn

)
≤ d

(
xn, y

(i−1)
n

)
+ d

(
y(i−1)
n , Tn

i y
(i−1)
n

)
+ Ld

(
y(i−1)
n , xn

)
.

By (3.6) and (3.8), we get

(3.9) lim
n→∞

d (xn, T
n
i xn) = 0 for i = 1, 2, . . . , N.

Using (1.1), we have

d (xn+1, xn) = d
(
W
(
Tn
Ny(N−1)

n , y(N−1)
n , α(N)

n

)
, xn

)
≤ α(N)

n d
(
Tn
Ny(N−1)

n , xn

)
+
(
1− α(N)

n

)
d
(
y(N−1)
n , xn

)
≤ α(N)

n

(
d
(
Tn
Ny(N−1)

n , y(N−1)
n

)
+ d

(
y(N−1)
n , xn

))
+
(
1− α(N)

n

)
d
(
y(N−1)
n , xn

)
= α(N)

n d
(
Tn
Ny(N−1)

n , y(N−1)
n

)
+ d

(
y(N−1)
n , xn

)
.

By (3.6) and (3.8), we have

(3.10) lim
n→∞

d (xn+1, xn) = 0.

For 1 ≤ i ≤ N , we have

d (xn, Tixn) ≤ d(xn, xn+1) + d
(
xn+1, T

n+1
i xn+1

)
+ d

(
Tn+1
i xn+1, T

n+1
i xn

)
+ d

(
Tn+1
i xn, Tixn

)
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≤ d(xn, xn+1) + d
(
xn+1, T

n+1
i xn+1

)
+ Ld (xn+1, xn) + Ld (Tn

i xn, xn)

= (1 + L)d(xn, xn+1) + d
(
Tn+1
i xn+1, xn+1

)
+ Ld (Tn

i xn, xn) .

By (3.9) and (3.10), we obtain limn→∞ d (xn, Tixn) = 0 for all i = 1, 2, . . . , N . �

Theorem 3.7. Let (X, d,W ) be a complete uniformly convex metric space with
continuous convex structure and C be a nonempty closed convex subset of X. Let
{Ti}Ni=1 be a finite family of uniformly L-Lipschitzian and generalized asymptot-
ically quasi-nonexpansive self-mappings of C with sequences {kn} ⊂ [1,∞) and
{sn} ⊂ [0,∞) such that

∑∞
n=1 (kn − 1) < ∞ and

∑∞
n=1 sn < ∞. Suppose that

F =
∩N

i=1 F (Ti) is nonempty. Let x1 ∈ C and the sequence {xn} be defined by

(1.1) with {α(i)
n } ⊂ [a, b] for all i = 1, 2, . . . , N , where 0 < a < b < 1. If one of the

following is satisfied:

(i) {Ti}Ni=1 satisfies Condition (A),

(ii) one member of the family {Ti}Ni=1 is semi-compact,

then {xn} converges to a common fixed point of the family {Ti}Ni=1.

Proof. By Lemma 3.6, limn→∞ d (xn, Tixn) = 0 for all i = 1, 2, . . . , N .
(i) : By the Condition (A), there exists a nondecreasing function f : [0,∞) →

[0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that

lim
n→∞

f (d (xn, F )) ≤ lim
n→∞

d (xn, Tixn) = 0,

for some i, 1 ≤ i ≤ N . It follows that limn→∞ d (xn, F ) = 0. By Theorem 3.3, we
can conclude that {xn} converges to a point p ∈ F .

(ii) : Without loss of generality, we assume that T1 is semi-compact. Then there
exists a subsequence

{
xnj

}
of {xn} such that xnj → p ∈ C. Hence, for each

i = 1, 2, . . . , N , we have

d(p, Tip) ≤ d(p, xnj ) + d(xnj , Tixnj ) + d(Tixnj , Tip)

≤ (1 + L)d(p, xnj ) + d(xnj , Tixnj ) → 0.

Thus p ∈ F . By continuity of x 7→ d(x, F ), we obtain limj→∞ d
(
xnj , F

)
= d(p, F ) =

0. It follows by Lemma 3.2(ii) that limn→∞ d (xn, F ) = 0. By Theorem 3.3, we can
conclude that {xn} converges to a point p ∈ F . �

4. Applications

In this section, we apply our main results to obtain strong convergence theorems
in both hyperbolic spaces and CAT(0) spaces.

Definition 4.1 ([12, 14, 16]). A hyperbolic space (X, d,W ) is a metric space (X, d)
together with a convexity mapping W : X ×X × [0, 1] → X satisfying

(i) d (z,W (x, y, λ)) ≤ λd (z, x) + (1− λ) d (z, y);
(ii) d (W (x, y, λ1) ,W (x, y, λ2)) = |λ1 − λ2|d (x, y);
(iii) W (x, y, λ) = W (y, x, 1− λ);
(iv) d (W (x, z, λ) ,W (y, w, λ)) ≤ λd (x, y) + (1− λ) d (z, w).
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If a triple (X, d,W ) satisfies (i)-(iii), then we get the notion of space of hyperbolic
type in the sense of Goebel and Kirk [6]. It is easy to see that hyperbolic spaces
are covex metric spaces. Then, our results in the previous section are also true for
hyperbolic spaces as follows.

Theorem 4.2. Let (X, d,W ) be a complete hyperbolic space and C be a nonempty

closed convex subset of X. Let {Ti}Ni=1 be a finite family of generalized asymptotically
quasi-nonexpansive self-mappings of C with sequences {kn} ⊂ [1,∞) and {sn} ⊂
[0,∞) such that

∑∞
n=1 (kn − 1) < ∞ and

∑∞
n=1 sn < ∞. Suppose F =

∩N
i=1 F (Ti)

is nonempty and closed. Let x1 ∈ C and the sequence {xn} be defined by (1.1).

Then {xn} converges to a common fixed point of the family {Ti}Ni=1 if and only if
lim infn→∞ d (xn, F ) = 0, where d (x, F ) = inf {d (x, p) : p ∈ F}.

The following result is a useful property in uniformly convex hyperbolic spaces,
see [13]. It can be applied to a CAT(0) space as well.

Lemma 4.3 ([13, Lemma 2.9]). Let (X, d,W ) be a uniformly convex hyperbolic
space with modulus of uniform convexity η such that η increases with r (for a
fixed ε). Let x ∈ X and suppose that {tn} is a sequence in [a, b] for some
a, b ∈ (0, 1) and {xn}, {yn} are sequences in X such that lim supn→∞ d (xn, x) ≤ r,
lim supn→∞ d (yn, x) ≤ r and limn→∞ d (W (xn, yn, tn), x) = r, where r ≥ 0. Then
limn→∞ d (xn, yn) = 0.

Using Lemma 4.3 and the same arguments as in the proof of Theorem 3.7, the
following result is obtained.

Theorem 4.4. Let (X, d,W ) be a complete uniformly convex hyperbolic space with
modulus of uniform convexity η such that η increases with r (for a fixed ε) and C be

a nonempty closed convex subset of X. Let {Ti}Ni=1 be a finite family of uniformly
L-Lipschitzian and generalized asymptotically quasi-nonexpansive self-mappings of
C with sequences {kn} ⊂ [1,∞) and {sn} ⊂ [0,∞) such that

∑∞
n=1 (kn − 1) < ∞

and
∑∞

n=1 sn < ∞. Suppose that F =
∩N

i=1 F (Ti) is nonempty. Let x1 ∈ C and the

sequence {xn} be defined by (1.1) with {α(i)
n } ⊂ [a, b] for all i = 1, 2, . . . , N , where

0 < a < b < 1. If one of the following is satisfied:

(i) {Ti}Ni=1 satisfies Condition (A),

(ii) one member of the family {Ti}Ni=1 is semi-compact,

then {xn} converges to a common fixed point of the family {Ti}Ni=1.

Next, we apply our main results to CAT(0) spaces. We first recall CAT(0) spaces,
see more details in [2]. Let (X, d) be a metric space. A geodesic path joining x ∈ X
to y ∈ X is a map c from a closed interval [0, l] ⊂ R toX such that c(0) = x, c(l) = y,
and d(c(t1), c(t2)) = |t1 − t2| for all t1, t2 ∈ [0, l]. In particular, c is an isometry and
d(x, y) = l. The image α of c is called a geodesic segment joining x and y. When it
is unique this geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic
metric space if every two points of X are joined by a geodesic, and X is said to be
uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X.
A subset Y of X is said to be convex if Y includes every geodesic segment joining
any two of its points.
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A geodesic triangle △(x1, x2, x3) in a geodesic metric space (X, d) consists of
three points x1, x2, x3 in X and a geodesic segment between each pair of vertices.
A comparison triangle for geodesic triangle △(x1, x2, x3) in (X, d) is a triangle
△(x1, x2, x3) := △(x̄1, x̄2, x̄3) in the Euclidean plane E2 such that dE2 (x̄i, x̄j) =
d(xi, xj) for i, j ∈ {1, 2, 3}. A geodesic metric space is said to be a CAT(0) space if
all geodesic triangles satisfy the following comparison axiom:

Let △ be a geodesic triangle in X and let △ be a comparison triangle for △. Then
△ is said to satisfy the CAT(0) inequality if for all x, y ∈ △ and all comparison
points x̄, ȳ ∈ △, d(x, y) ≤ dE2(x̄, ȳ).

If x, y1, y2 are points in a CAT(0) space and if y0 is the midpoint of the segment
[y1, y2], then the CAT(0) inequality implies

d(x, y0)
2 ≤ 1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 − 1

4
d(y1, y2)

2.

This is the (CN) inequality of Bruhat and Tits [3]. By using the (CN) inequality, it
is easy to see the CAT(0) spaces are uniformly convex. In fact [2], a geodesic metric
space is a CAT(0) space if and only if it satisfies the (CN) inequality. Moreover, if
X is CAT(0) space and x, y ∈ X, then for any λ ∈ [0, 1], there exists a unique point
λx⊕ (1− λ)y ∈ [x, y] such that

d(z, λx⊕ (1− λ)y) ≤ λd(z, x) + (1− λ)d(z, y),

for any z ∈ X.

Remark 4.5. In view of the above inequality, CAT(0) spaces have convex structure
W (x, y, λ) = λx ⊕ (1 − λ)y. Then, the iterative process (1.1) can be translated to
CAT(0) spaces as follows:

(4.1)



y(0)n = xn,

y(1)n = α(1)
n Tn

1 y
(0)
n ⊕

(
1− α(1)

n

)
y(0)n ,

y(2)n = α(2)
n Tn

2 y
(1)
n ⊕

(
1− α(2)

n

)
y(1)n ,

y(3)n = α(3)
n Tn

3 y
(2)
n ⊕

(
1− α(3)

n

)
y(2)n ,

...

y(N−1)
n = α(N−1)

n Tn
N−1y

(N−2)
n ⊕

(
1− α(N−1)

n

)
y(N−2)
n ,

xn+1 = α(N)
n Tn

Ny(N−1)
n ⊕

(
1− α(N)

n

)
y(N−1)
n ,

for all n ∈ N.

In 2007, Leuştean [14] proved that CAT(0) spaces are uniformly convex hyperbolic

spaces with modulus of uniform convexity η := ε2

8 . Thus, Theorem 4.2 and 4.4 can
be applied to CAT(0) spaces as follows.

Theorem 4.6. Let X be a complete CAT(0) space and C be a nonempty closed

convex subset of X. Let {Ti}Ni=1 be a finite family of generalized asymptotically
quasi-nonexpansive self-mappings of C with sequences {kn} ⊂ [1,∞) and {sn} ⊂
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[0,∞) such that
∑∞

n=1 (kn − 1) < ∞ and
∑∞

n=1 sn < ∞. Suppose F =
∩N

i=1 F (Ti)
is nonempty and closed. Let x1 ∈ C and the sequence {xn} be defined by (4.1).

Then {xn} converges to a common fixed point of the family {Ti}Ni=1 if and only if
lim infn→∞ d (xn, F ) = 0, where d (x, F ) = inf {d (x, p) : p ∈ F}.

Theorem 4.7. Let X be a complete CAT(0) space and C be a nonempty closed

convex subset of X. Let {Ti}Ni=1 be a finite family of uniformly L-Lipschitzian and
generalized asymptotically quasi-nonexpansive self-mappings of C with sequences
{kn} ⊂ [1,∞) and {sn} ⊂ [0,∞) such that

∑∞
n=1 (kn − 1) < ∞ and

∑∞
n=1 sn < ∞.

Suppose that F =
∩N

i=1 F (Ti) is nonempty. Let x1 ∈ C and the sequence {xn} be

defined by (4.1) with {α(i)
n } ⊂ [a, b] for all i = 1, 2, . . . , N , where 0 < a < b < 1. If

one of the following is satisfied:

(i) {Ti}Ni=1 satisfies Condition (A),

(ii) one member of the family {Ti}Ni=1 is semi-compact,

then {xn} converges to a common fixed point of the family {Ti}Ni=1.

Remark 4.8. The results in Section 3 and Section 4 hold true in a Banach space,
if we set W (x, y, λ) = λx+(1−λ)y. Theorem 3.3 extends and generalizes Theorem
3.2 of Kettapun et al. [8] to a finite family of generalized asymptotically quasi-
nonexpansive mappings and to a convex metric space setting. Theorem 3.3 extends
and generalizes Theorem 3.2 of Yatakoat and Suantai [24] from a Banach space to
a convex metric space setting.
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