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Our aim in this paper is to give some relations between the skewness s(X) and
James constant J(X) of X. Namely, we show that for any Banach space X,

2 + 4(2− J(X))− 4
√

(2− J(X))(4− J(X)) ≤ s(X) ≤ 4
{
1− 1

J(X)

}
(1.1)

(see Theorems 2.6 and 2.9). From the inequalities (1.1) we can directly obtain the
result that s(X) < 2 if and only if X is uniformly non-square, given by [2]. To
show the second inequality of (1.1) we use some results in Baronti and Papini [1],
Takahashi and Kato [9].

We recall some definitions (cf. [6]). A Banach space X is called uniformly convex
if, for every ε > 0 there is a δ > 0 such that for any x, y ∈ SX , ∥x + y∥ > 2 − δ
implies ∥x− y∥ < ε. It is well-known that X is uniformly convex if and only if, for
any sequences {xn}, {yn} in SX with ∥xn + yn∥ → 2, we have ∥xn − yn∥ → 0.

The modulus of smoothness of X is defined by

ρX(τ) = sup

{
∥x+ τy∥+ ∥x− τy∥

2
− 1 : x, y ∈ SX

}
.

It is known that X is uniformly non-square if and only if ρX(1) < 1([4]).
The following lemmas will be used later.

Lemma 1.1 ([5], Lemma 2). Let {xn}, {yn} be sequences in a Banach space X
such that {∥xn∥}∞n=1 and {∥yn∥}∞n=1 are convergent to non-zero limits, respectively.
Then the following are equivalent.
(i) lim

n→∞
∥xn + yn∥ = lim

n→∞
(∥xn∥+ ∥yn∥).

(ii) lim
n→∞

∥∥∥ xn
∥xn∥

+
yn

∥yn∥

∥∥∥ = 2.

Lemma 1.2 ([7], Lemma 5.4.14). Let X be a Banach space and x ∈ X with x ̸= 0.
Then for each y in X, the function

t 7→ ∥x+ ty∥ − ∥x∥
t

from R\{0} into R is non-decreasing.

2. Skewness and James constant

We first consider a relation between skewness and the modulus of smoothness.
Baronti and Papini [1] estimated s(X) from above by ρX(1), as follows:

Proposition 2.1 ([1], Proposition 6.3). Let X be a Banach space. Then

s(X) ≤ 2ρX(1).(2.1)

Remark 2.2. Let X be a Hilbert space. It is known that ρX(1) =
√
2− 1 (see [6]).

We also have s(X) = 0. Thus we obtain that the inequality (2.1) is strict in this
case.
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Proposition 2.3. If X is uniformly convex, then the inequality (2.1) in Proposition
2.1 is strict, that is, s(X) < 2ρX(1).

Proof. Suppose that X is uniformly convex but s(X) = 2ρX(1). By Remark 2.2 we
note thatX is not a Hilbert space, that is, s(X) ̸= 0. From the definition of skewness
we can find sequences {xn}, {yn} in SX such that s(X)− 1/n < ⟨xn, yn⟩− ⟨yn, xn⟩.
Fix t0 with 0 < t0 < 1. Since {∥xn + yn∥} is bounded, without loss of generality,
we may assume that ∥xn + yn∥ → a for some a. Similarly, we may assume that
∥xn − yn∥ → b and ∥xn + t0yn∥ → c for some b, c. By Lemma 1.2,

⟨xn, yn⟩ − ⟨yn, xn⟩ ≤
∥xn + t0yn∥ − ∥xn∥

t0
− ∥yn − xn∥ − ∥yn∥

−1

≤ ∥xn + yn∥ − ∥xn∥
1

+ ∥yn − xn∥ − ∥yn∥

≤ 2ρX(1).

As n → ∞, we get

c− 1 = t0(a− 1)(2.2)

and

s(X) = a+ b− 2 = 2ρX(1).(2.3)

From

∥xn + t0yn∥ = ∥t0(xn + yn) + (1− t0)xn∥ ≤ t0∥xn + yn∥+ (1− t0)∥xn∥
and the equality (2.2), we obtain

lim
n→∞

∥zn + wn∥ = lim
n→∞

∥zn∥+ lim
n→∞

∥wn∥,

where zn = t0(xn + yn) and wn = (1− t0)xn.
Case 1. ∥zn∥ 9 0.
By Lemma 1.1,

lim
n→∞

∥∥∥ zn
∥zn∥

+
wn

∥wn∥

∥∥∥ = 2.

Since X is uniformly convex, we have

lim
n→∞

∥∥∥ zn
∥zn∥

− wn

∥wn∥

∥∥∥ = 0,

that is,

lim
n→∞

∥∥∥ xn + yn
∥xn + yn∥

− xn

∥∥∥ = 0.

By ∥∥∥ xn + yn
∥xn + yn∥

− xn

∥∥∥ =
∥∥∥( 1

∥xn + yn∥
− 1)xn +

1

∥xn + yn∥
yn

∥∥∥
≥

∣∣∣∣∣∣ 1

∥xn + yn∥
− 1

∣∣∣− 1

∥xn + yn∥

∣∣∣,
we have ∣∣∣∣∣∣1

a
− 1

∣∣∣− 1

a

∣∣∣ = 0
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and hence a = 2. Thus ∥xn + yn∥ → 2. Since X is uniformly convex, we obtain
∥xn − yn∥ → 0, that is, b = 0.
Case 2. ∥zn∥ → 0.
Then we clearly have a = 0. Moreover, it follows from the inequalities

2 ≥ ∥xn − yn∥ = ∥xn + yn − 2yn∥ ≥ |∥xn + yn∥ − 2∥yn∥|
that we get ∥xn − yn∥ → 2, that is, b = 2.

Thus a + b = 2 is valid for any cases. By (2.3) we have s(X) = 0, which is a
contradiction. �

Remark 2.4. (i) IfX is not uniformly non-square, then by s(X) = 2 and ρX(1) = 1,
we have s(X) = 2ρX(1).
(ii) There is a uniformly non-square (not uniformly convex) Banach space X such
that s(X) = 2ρX(1). In fact, let X0 = R2 with the norm defined by

∥x∥ =

{
∥x∥∞ if x1x2 ≥ 0

∥x∥1 if x1x2 ≤ 0

for x = (x1, x2). It is clear that X0 is uniformly non-square and is not uniformly
convex. By Example 4 in [4] we have ρX0(1) = 1/2. From Proposition 2.1 we obtain
s(X0) ≤ 2ρX0(1) = 1. We next show s(X0) ≥ 1. For 0 < ε < 1 we put x = (1, 1)
and y = (−ε, 1 − ε). Let t > 0 be sufficiently small. It is clear that x, y ∈ SX0 .
Moreover ∥x+ ty∥ = 1 + t− tε and ∥y + tx∥ = 1. Hence

s(X0) ≥ ⟨x, y⟩ − ⟨y, x⟩ = 1− ε.

As ε → 0 we have s(X0) ≥ 1. Thus s(X0) = 2ρX0(1) = 1.

Recently, Takahashi and Kato in [9] estimated ρX(1) from above by J(X).

Proposition 2.5 ([9], Theorem 1). Let X be a Banach space. Then

ρX(1) ≤ 2
{
1− 1

J(X)

}
.

From Propositions 2.1 and 2.5, we obtain the following.

Theorem 2.6. Let X be a Banach space. Then

s(X) ≤ 4
{
1− 1

J(X)

}
.(2.4)

Remark 2.7. (i) Immediately from Proposition 2.3 we obtain that the inequality
(2.4) in Theorem 2.6 is strict for all uniformly convex spaces.
(ii) If X is not uniformly non-square, then by s(X) = 2 and J(X) = 2 we have
equality in (2.4).
(iii) We consider the space X0 in Remark 2.4 (ii). By Example 4 in [4] it follows
that J(X0) = 3/2. We also have s(X0) = 1. Thus the inequality (2.4) is strict for
the space X0.
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(iv) We do not know whether there is a uniformly non-square (not uniformly convex)
Banach space X such that the inequality (2.4) becomes equality.

In the following, we shall present an estimate s(X) from below by J(X). To do
this we need the following lemma.

Lemma 2.8. Let X be a Banach space. Then

s(X) >
2(J(X)− 2 + t− t2)

t(1 + t)

for all t with 0 < t ≤ 1.

Proof. Let 0 < t0 ≤ 1. We first show that

s(X) ≥ 2(J(X)− 2 + t0 − t20)

t0(1 + t0)
.(2.5)

By s(X) ≥ 0, we may assume that J(X) − 2 + t0 − t20 > 0. Let ε > 0 with

ε < min(J(X)−2+t0−t20,
√
2−1). Then there exist u, v ∈ SX such that J(X)−ε <

min(∥u+v∥, ∥u−v∥). Let w = u+ t0v and z = v− t0u. Using the triangle inequality
we have

∥w∥ ≤ ∥u∥+ t0∥v∥ = 1 + t0.(2.6)

Also,

∥w∥ = ∥u+ v − (1− t0)v∥ ≥ ∥u+ v∥ − (1− t0) > J(X)− ε− 1 + t0.(2.7)

Similarly,

∥z∥ ≤ 1 + t0(2.8)

and

∥z∥ ≥ ∥v − u∥ − 1 + t0 > J(X)− ε− 1 + t0.(2.9)

Note that w and z are non-zero elements, because

J(X)− ε− 1 + t0 ≥
√
2− 1− ε+ t0 > t0 > 0

holds. Moreover,

∥w − t0z∥ = ∥u+ t20u∥ = 1 + t20(2.10)

and

∥z + t0w∥ = ∥v + t20v∥ = 1 + t20.(2.11)

It follows by Lemma 1.2 and from the inequalities (2.7) and (2.10) that for t with
0 < t < t0,

∥w + tz∥ − ∥w∥
t

≥ ∥w − t0z∥ − ∥w∥
−t0

=
∥w∥ − ∥w − t0z∥

t0

>
J(X)− ε− 1 + t0 − (1 + t20)

t0
and so

∥w + tz∥ − ∥w∥
t

>
J(X)− 2− ε+ t0 − t20

t0
.(2.12)
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We define
Aε = J(X)− 2− ε+ t0 − t20

for ε > 0. Note that Aε > 0. Put x = w
∥w∥ and y = z

∥z∥ . From the inequalities (2.8)

and (2.12),

⟨x, y⟩ = ⟨w, z⟩
∥w∥∥z∥

=
1

∥z∥
lim
t→0+

∥w + tz∥ − ∥w∥
t

≥ Aε

t0∥z∥
≥ Aε

t0(1 + t0)
.(2.13)

By Lemma 1.2, (2.9) and (2.11) we have for t with 0 < t < t0,

∥z + tw∥ − ∥z∥
t

≤ ∥z + t0w∥ − ∥z∥
t0

<
1 + t20 − (J(X)− ε− 1 + t0)

t0

=
−Aε

t0

and hence

−⟨y, x⟩ = − ⟨z, w⟩
∥z∥∥w∥

≥ Aε

t0∥w∥
≥ Aε

t0(1 + t0)
.(2.14)

Consequently we have

s(X) ≥ ⟨x, y⟩ − ⟨y, x⟩ ≥ 2Aε

t0(1 + t0)
.(2.15)

As ε → 0, we obtain (2.5).
We next prove that the inequality (2.5) is strict. Suppose that

s(X) =
2(J(X)− 2 + t0 − t20)

t0(1 + t0)
(2.16)

for some t0 with 0 < t0 ≤ 1. By s(X) ≥ 0 it follows that J(X) − 2 + t0 − t20 ≥ 0.
From J(X)− 7/4 ≥ (t0− 1/2)2 ≥ 0, we obtain J(X) ≥ 7/4. This inequality implies
that X is not a Hilbert space. Hence s(X) > 0. By (2.16), J(X)− 2 + t0 − t20 > 0
holds. Take a number n0 such that n ≥ n0 imples

1

n
< min(J(X)− 2 + t0 − t20,

√
2− 1).

For each n with n ≥ n0 we take un, vn in SX with

J(X)− 1/n < min(∥un + vn∥, ∥un − vn∥).
Put

wn = un + t0vn, zn = vn − t0un, xn =
wn

∥wn∥
, yn =

zn
∥zn∥

.

As in the inequalities (2.13), (2.14) and (2.15), we have for each n ≥ n0,

⟨xn, yn⟩ ≥
Bn

t0∥zn∥
≥ Bn

t0(1 + t0)
, −⟨yn, xn⟩ ≥

Bn

t0∥wn∥
≥ Bn

t0(1 + t0)
(2.17)

and

s(X) ≥ ⟨xn, yn⟩ − ⟨yn, xn⟩ ≥
2Bn

t0(1 + t0)
,(2.18)
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where Bn = A1/n = J(X) − 2 − 1/n + t0 − t20. Since {∥zn∥}∞n=1 and {∥wn∥}∞n=1

are bounded, we may assume that these sequences have limits. As n → ∞, the
inequalities (2.17) and (2.18) imply

lim
n→∞

∥wn∥ = lim
n→∞

∥un + t0vn∥ = 1 + t0

and

lim
n→∞

∥zn∥ = lim
n→∞

∥vn − t0un∥ = 1 + t0.

By Lemma 1.1,

lim
n→∞

∥un + vn∥ = lim
n→∞

∥un − vn∥ = 2.

Hence X is not uniformly non-square and so s(X) = J(X) = 2. Thus it follows
from (2.16) that

2 = 2
t0 − t20

t0(1 + t0)
.

By t0 > 0, this is a contradiction. Thus the inequality (2.5) is strict.
�

Theorem 2.9. Let X be a Banach space. Then

s(X) ≥ 2 + 4(2− J(X))− 4
√

(2− J(X))(4− J(X)),(2.19)

where equality holds only when X is not uniformly non-square.

Proof. We define a function f on (0, 1] as

f(t) =
2(J(X)− 2 + t− t2)

t(1 + t)
.

To prove the inequality (2.19) we calculate the supremum of f(t) on (0, 1]. If X is
not uniformly non-square, that is, J(X) = 2, then

f(t) =
2(1− t)

1 + t

for all t with 0 < t ≤ 1 and so the function f is decreasing on (0, 1]. Hence, by
Lemma 2.8 we have

s(X) ≥ lim
t→0+

f(t) = 2.

By s(X) ≤ 2 we obtain s(X) = 2. Thus (2.19) is valid for this case and then (2.19)
becomes equality. Let X be uniformly non-square, that is, J(X) < 2. By

f(t) = −2 +
2(2t+ J(X)− 2)

t2 + t
(2.20)

the derivative of f is

f ′(t) = 2 · 2(t
2 + t)− (2t+ J(X)− 2)(2t+ 1)

(t2 + t)2
.

Put

t0 =
2− J(X) +

√
J(X)2 − 6J(X) + 8

2
.
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Note that 0 < t0 < 1 by
√
2 ≤ J(X) < 2. Then f ′(t0) = 0 and f has the maximum

at t = t0. From (2.20) and the equality 2(t20 + t0)− (2t0 + J(X)− 2)(2t0 + 1) = 0,
we have

f(t0) = −2 +
4

2t0 + 1

= −2 +
4

3− J(X) +
√

J(X)2 − 6J(X) + 8

= 2 + 4(2− J(X))− 4
√

(2− J(X))(4− J(X)).

By Lemma 2.8 it holds that s(X) > f(t0) and thus this completes the proof. �

From Theorems 2.6 and 2.9 we direct have the following.

Corollary 2.10 ([2], Theorem 3.1). Let X be a Banach space. Then X is uniformly
non-square if and only if s(X) < 2.
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