SKEWNESS AND JAMES CONSTANT OF BANACH SPACES

KEN-ICHI MITANI, KICHI-SUKE SAITO*, AND YASUJI TAKAHASHI

Abstract

Let X be a real Banach space. The notion of skewness of X was introduced by Fitzpatrick and Reznick. Also, the notion of James constant of X was introduced by Gao and Lau. In this paper we give some relations between these two constants of X.

1. Introduction and preliminaries

Throughout this paper let X be a real Banach space with $\operatorname{dim} X \geq 2$ and $S_{X}=$ $\{x \in X:\|x\|=1\}$. Fitzpatrick and Reznick [2] introduced the skewness $s(X)$ of X, which describes the asymmetry of norm:

$$
\begin{aligned}
s(X) & =\sup \left\{\lim _{t \rightarrow 0^{+}} \frac{\|x+t y\|-\|y+t x\|}{t}: x, y \in S_{X}\right\} \\
& =\sup \left\{\langle x, y\rangle-\langle y, x\rangle: x, y \in S_{X}\right\},
\end{aligned}
$$

where

$$
\langle x, y\rangle=\|x\| \lim _{t \rightarrow 0^{+}} \frac{\|x+t y\|-\|x\|}{t}
$$

for $x, y \in X$. As stated in [2], if X is smooth, then $\langle\cdot, \cdot\rangle$ is a generalized inner product by Ritt [10]. It is clear that $0 \leq s(X) \leq 2$ for any Banach space X. They showed that $s(X)=0$ if and only if X is a Hilbert space, and calculated the skewness for L_{p} spaces where $1 \leq p \leq \infty$. Moreover, the uniform non-squareness of X can be described in terms of the skewness $s(X)$. Indeed, they showed that $s(X)<2$ if and only if X is uniformly non-square, that is, there exists a $\delta>0$ such that for any $x, y \in S_{X}$, either $\|x+y\| \leq 2(1-\delta)$ or $\|x-y\| \leq 2(1-\delta)$. A modified version of skewness was introduced and studied by Baronti and Papini [1].

The James constant $J(X)$ of X is defined by

$$
J(X)=\sup \left\{\min \{\|x+y\|,\|x-y\|\}: x, y \in S_{X}\right\},
$$

(Gao and Lau [3]). It is well-known that $\sqrt{2} \leq J(X) \leq 2$ for any Banach space X. If X is a Hilbert space, then $J(X)=\sqrt{2}$, and the converse is not true. The James constant for L_{p} spaces where $1 \leq p \leq \infty$ was calculated. Namely, if $1 \leq p \leq \infty$ and $\operatorname{dim} L_{p} \geq 2$, then $J\left(L_{p}\right)=\max \left\{2^{1 / p}, 2^{1 / q}\right\}$, where $1 / p+1 / q=1$. Also, X is uniformly non-square if and only if $J(X)<2$ (see [3]). Moreover, some relations between the James constant and other constants are discussed by several authors (see $[4,8,9]$).

[^0]Our aim in this paper is to give some relations between the skewness $s(X)$ and James constant $J(X)$ of X. Namely, we show that for any Banach space X,

$$
\begin{equation*}
2+4(2-J(X))-4 \sqrt{(2-J(X))(4-J(X))} \leq s(X) \leq 4\left\{1-\frac{1}{J(X)}\right\} \tag{1.1}
\end{equation*}
$$

(see Theorems 2.6 and 2.9). From the inequalities (1.1) we can directly obtain the result that $s(X)<2$ if and only if X is uniformly non-square, given by [2]. To show the second inequality of (1.1) we use some results in Baronti and Papini [1], Takahashi and Kato [9].

We recall some definitions (cf. [6]). A Banach space X is called uniformly convex if, for every $\varepsilon>0$ there is a $\delta>0$ such that for any $x, y \in S_{X},\|x+y\|>2-\delta$ implies $\|x-y\|<\varepsilon$. It is well-known that X is uniformly convex if and only if, for any sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in S_{X} with $\left\|x_{n}+y_{n}\right\| \rightarrow 2$, we have $\left\|x_{n}-y_{n}\right\| \rightarrow 0$.

The modulus of smoothness of X is defined by

$$
\rho_{X}(\tau)=\sup \left\{\frac{\|x+\tau y\|+\|x-\tau y\|}{2}-1: x, y \in S_{X}\right\} .
$$

It is known that X is uniformly non-square if and only if $\rho_{X}(1)<1([4])$.
The following lemmas will be used later.
Lemma 1.1 ([5], Lemma 2). Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be sequences in a Banach space X such that $\left\{\left\|x_{n}\right\|\right\}_{n=1}^{\infty}$ and $\left\{\left\|y_{n}\right\|\right\}_{n=1}^{\infty}$ are convergent to non-zero limits, respectively. Then the following are equivalent.
(i) $\lim _{n \rightarrow \infty}\left\|x_{n}+y_{n}\right\|=\lim _{n \rightarrow \infty}\left(\left\|x_{n}\right\|+\left\|y_{n}\right\|\right)$.
(ii) $\lim _{n \rightarrow \infty}\left\|\frac{x_{n}}{\left\|x_{n}\right\|}+\frac{y_{n}}{\left\|y_{n}\right\|}\right\|=2$.

Lemma 1.2 ([7], Lemma 5.4.14). Let X be a Banach space and $x \in X$ with $x \neq 0$. Then for each y in X, the function

$$
t \mapsto \frac{\|x+t y\|-\|x\|}{t}
$$

from $\mathbb{R} \backslash\{0\}$ into \mathbb{R} is non-decreasing.

2. Skewness and James constant

We first consider a relation between skewness and the modulus of smoothness. Baronti and Papini [1] estimated $s(X)$ from above by $\rho_{X}(1)$, as follows:
Proposition 2.1 ([1], Proposition 6.3). Let X be a Banach space. Then

$$
\begin{equation*}
s(X) \leq 2 \rho_{X}(1) \tag{2.1}
\end{equation*}
$$

Remark 2.2. Let X be a Hilbert space. It is known that $\rho_{X}(1)=\sqrt{2}-1$ (see [6]). We also have $s(X)=0$. Thus we obtain that the inequality (2.1) is strict in this case.

Proposition 2.3. If X is uniformly convex, then the inequality (2.1) in Proposition 2.1 is strict, that is, $s(X)<2 \rho_{X}(1)$.

Proof. Suppose that X is uniformly convex but $s(X)=2 \rho_{X}(1)$. By Remark 2.2 we note that X is not a Hilbert space, that is, $s(X) \neq 0$. From the definition of skewness we can find sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in S_{X} such that $s(X)-1 / n<\left\langle x_{n}, y_{n}\right\rangle-\left\langle y_{n}, x_{n}\right\rangle$. Fix t_{0} with $0<t_{0}<1$. Since $\left\{\left\|x_{n}+y_{n}\right\|\right\}$ is bounded, without loss of generality, we may assume that $\left\|x_{n}+y_{n}\right\| \rightarrow a$ for some a. Similarly, we may assume that $\left\|x_{n}-y_{n}\right\| \rightarrow b$ and $\left\|x_{n}+t_{0} y_{n}\right\| \rightarrow c$ for some b, c. By Lemma 1.2,

$$
\begin{aligned}
\left\langle x_{n}, y_{n}\right\rangle-\left\langle y_{n}, x_{n}\right\rangle & \leq \frac{\left\|x_{n}+t_{0} y_{n}\right\|-\left\|x_{n}\right\|}{t_{0}}-\frac{\left\|y_{n}-x_{n}\right\|-\left\|y_{n}\right\|}{-1} \\
& \leq \frac{\left\|x_{n}+y_{n}\right\|-\left\|x_{n}\right\|}{1}+\left\|y_{n}-x_{n}\right\|-\left\|y_{n}\right\| \\
& \leq 2 \rho_{X}(1)
\end{aligned}
$$

As $n \rightarrow \infty$, we get

$$
\begin{equation*}
c-1=t_{0}(a-1) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
s(X)=a+b-2=2 \rho_{X}(1) \tag{2.3}
\end{equation*}
$$

From

$$
\left\|x_{n}+t_{0} y_{n}\right\|=\left\|t_{0}\left(x_{n}+y_{n}\right)+\left(1-t_{0}\right) x_{n}\right\| \leq t_{0}\left\|x_{n}+y_{n}\right\|+\left(1-t_{0}\right)\left\|x_{n}\right\|
$$

and the equality (2.2), we obtain

$$
\lim _{n \rightarrow \infty}\left\|z_{n}+w_{n}\right\|=\lim _{n \rightarrow \infty}\left\|z_{n}\right\|+\lim _{n \rightarrow \infty}\left\|w_{n}\right\|
$$

where $z_{n}=t_{0}\left(x_{n}+y_{n}\right)$ and $w_{n}=\left(1-t_{0}\right) x_{n}$.
Case 1. $\left\|z_{n}\right\| \nrightarrow 0$.
By Lemma 1.1,

$$
\lim _{n \rightarrow \infty}\left\|\frac{z_{n}}{\left\|z_{n}\right\|}+\frac{w_{n}}{\left\|w_{n}\right\|}\right\|=2
$$

Since X is uniformly convex, we have

$$
\lim _{n \rightarrow \infty}\left\|\frac{z_{n}}{\left\|z_{n}\right\|}-\frac{w_{n}}{\left\|w_{n}\right\|}\right\|=0
$$

that is,

$$
\lim _{n \rightarrow \infty}\left\|\frac{x_{n}+y_{n}}{\left\|x_{n}+y_{n}\right\|}-x_{n}\right\|=0
$$

By

$$
\begin{aligned}
\left\|\frac{x_{n}+y_{n}}{\left\|x_{n}+y_{n}\right\|}-x_{n}\right\| & =\left\|\left(\frac{1}{\left\|x_{n}+y_{n}\right\|}-1\right) x_{n}+\frac{1}{\left\|x_{n}+y_{n}\right\|} y_{n}\right\| \\
& \geq \| \frac{1}{\left\|x_{n}+y_{n}\right\|}-1\left|-\frac{1}{\left\|x_{n}+y_{n}\right\|}\right|
\end{aligned}
$$

we have

$$
\left|\left|\frac{1}{a}-1\right|-\frac{1}{a}\right|=0
$$

and hence $a=2$. Thus $\left\|x_{n}+y_{n}\right\| \rightarrow 2$. Since X is uniformly convex, we obtain $\left\|x_{n}-y_{n}\right\| \rightarrow 0$, that is, $b=0$.
Case 2. $\left\|z_{n}\right\| \rightarrow 0$.
Then we clearly have $a=0$. Moreover, it follows from the inequalities

$$
2 \geq\left\|x_{n}-y_{n}\right\|=\left\|x_{n}+y_{n}-2 y_{n}\right\| \geq\left|\left\|x_{n}+y_{n}\right\|-2\left\|y_{n}\right\|\right|
$$

that we get $\left\|x_{n}-y_{n}\right\| \rightarrow 2$, that is, $b=2$.
Thus $a+b=2$ is valid for any cases. By (2.3) we have $s(X)=0$, which is a contradiction.

Remark 2.4. (i) If X is not uniformly non-square, then by $s(X)=2$ and $\rho_{X}(1)=1$, we have $s(X)=2 \rho_{X}(1)$.
(ii) There is a uniformly non-square (not uniformly convex) Banach space X such that $s(X)=2 \rho_{X}(1)$. In fact, let $X_{0}=\mathbb{R}^{2}$ with the norm defined by

$$
\|x\|= \begin{cases}\|x\|_{\infty} & \text { if } x_{1} x_{2} \geq 0 \\ \|x\|_{1} & \text { if } x_{1} x_{2} \leq 0\end{cases}
$$

for $x=\left(x_{1}, x_{2}\right)$. It is clear that X_{0} is uniformly non-square and is not uniformly convex. By Example 4 in [4] we have $\rho_{X_{0}}(1)=1 / 2$. From Proposition 2.1 we obtain $s\left(X_{0}\right) \leq 2 \rho_{X_{0}}(1)=1$. We next show $s\left(X_{0}\right) \geq 1$. For $0<\varepsilon<1$ we put $x=(1,1)$ and $y=(-\varepsilon, 1-\varepsilon)$. Let $t>0$ be sufficiently small. It is clear that $x, y \in S_{X_{0}}$. Moreover $\|x+t y\|=1+t-t \varepsilon$ and $\|y+t x\|=1$. Hence

$$
s\left(X_{0}\right) \geq\langle x, y\rangle-\langle y, x\rangle=1-\varepsilon .
$$

As $\varepsilon \rightarrow 0$ we have $s\left(X_{0}\right) \geq 1$. Thus $s\left(X_{0}\right)=2 \rho_{X_{0}}(1)=1$.
Recently, Takahashi and Kato in [9] estimated $\rho_{X}(1)$ from above by $J(X)$.
Proposition 2.5 ([9], Theorem 1). Let X be a Banach space. Then

$$
\rho_{X}(1) \leq 2\left\{1-\frac{1}{J(X)}\right\} .
$$

From Propositions 2.1 and 2.5, we obtain the following.
Theorem 2.6. Let X be a Banach space. Then

$$
\begin{equation*}
s(X) \leq 4\left\{1-\frac{1}{J(X)}\right\} . \tag{2.4}
\end{equation*}
$$

Remark 2.7. (i) Immediately from Proposition 2.3 we obtain that the inequality (2.4) in Theorem 2.6 is strict for all uniformly convex spaces.
(ii) If X is not uniformly non-square, then by $s(X)=2$ and $J(X)=2$ we have equality in (2.4).
(iii) We consider the space X_{0} in Remark 2.4 (ii). By Example 4 in [4] it follows that $J\left(X_{0}\right)=3 / 2$. We also have $s\left(X_{0}\right)=1$. Thus the inequality (2.4) is strict for the space X_{0}.
(iv) We do not know whether there is a uniformly non-square (not uniformly convex) Banach space X such that the inequality (2.4) becomes equality.

In the following, we shall present an estimate $s(X)$ from below by $J(X)$. To do this we need the following lemma.
Lemma 2.8. Let X be a Banach space. Then

$$
s(X)>\frac{2\left(J(X)-2+t-t^{2}\right)}{t(1+t)}
$$

for all t with $0<t \leq 1$.
Proof. Let $0<t_{0} \leq 1$. We first show that

$$
\begin{equation*}
s(X) \geq \frac{2\left(J(X)-2+t_{0}-t_{0}^{2}\right)}{t_{0}\left(1+t_{0}\right)} \tag{2.5}
\end{equation*}
$$

By $s(X) \geq 0$, we may assume that $J(X)-2+t_{0}-t_{0}^{2}>0$. Let $\varepsilon>0$ with $\varepsilon<\min \left(J(X)-2+t_{0}-t_{0}^{2}, \sqrt{2}-1\right)$. Then there exist $u, v \in S_{X}$ such that $J(X)-\varepsilon<$ $\min (\|u+v\|,\|u-v\|)$. Let $w=u+t_{0} v$ and $z=v-t_{0} u$. Using the triangle inequality we have

$$
\begin{equation*}
\|w\| \leq\|u\|+t_{0}\|v\|=1+t_{0} \tag{2.6}
\end{equation*}
$$

Also,
(2.7) $\quad\|w\|=\left\|u+v-\left(1-t_{0}\right) v\right\| \geq\|u+v\|-\left(1-t_{0}\right)>J(X)-\varepsilon-1+t_{0}$.

Similarly,

$$
\begin{equation*}
\|z\| \leq 1+t_{0} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\|z\| \geq\|v-u\|-1+t_{0}>J(X)-\varepsilon-1+t_{0} \tag{2.9}
\end{equation*}
$$

Note that w and z are non-zero elements, because

$$
J(X)-\varepsilon-1+t_{0} \geq \sqrt{2}-1-\varepsilon+t_{0}>t_{0}>0
$$

holds. Moreover,

$$
\begin{equation*}
\left\|w-t_{0} z\right\|=\left\|u+t_{0}^{2} u\right\|=1+t_{0}^{2} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|z+t_{0} w\right\|=\left\|v+t_{0}^{2} v\right\|=1+t_{0}^{2} \tag{2.11}
\end{equation*}
$$

It follows by Lemma 1.2 and from the inequalities (2.7) and (2.10) that for t with $0<t<t_{0}$,

$$
\begin{aligned}
\frac{\|w+t z\|-\|w\|}{t} & \geq \frac{\left\|w-t_{0} z\right\|-\|w\|}{-t_{0}}=\frac{\|w\|-\left\|w-t_{0} z\right\|}{t_{0}} \\
& >\frac{J(X)-\varepsilon-1+t_{0}-\left(1+t_{0}^{2}\right)}{t_{0}}
\end{aligned}
$$

and so

$$
\begin{equation*}
\frac{\|w+t z\|-\|w\|}{t}>\frac{J(X)-2-\varepsilon+t_{0}-t_{0}^{2}}{t_{0}} \tag{2.12}
\end{equation*}
$$

We define

$$
A_{\varepsilon}=J(X)-2-\varepsilon+t_{0}-t_{0}^{2}
$$

for $\varepsilon>0$. Note that $A_{\varepsilon}>0$. Put $x=\frac{w}{\|w\|}$ and $y=\frac{z}{\|z\|}$. From the inequalities (2.8) and (2.12),

$$
\begin{equation*}
\langle x, y\rangle=\frac{\langle w, z\rangle}{\|w\|\|z\|}=\frac{1}{\|z\|} \lim _{t \rightarrow 0^{+}} \frac{\|w+t z\|-\|w\|}{t} \geq \frac{A_{\varepsilon}}{t_{0}\|z\|} \geq \frac{A_{\varepsilon}}{t_{0}\left(1+t_{0}\right)} \tag{2.13}
\end{equation*}
$$

By Lemma 1.2, (2.9) and (2.11) we have for t with $0<t<t_{0}$,

$$
\begin{aligned}
\frac{\|z+t w\|-\|z\|}{t} & \leq \frac{\left\|z+t_{0} w\right\|-\|z\|}{t_{0}} \\
& <\frac{1+t_{0}^{2}-\left(J(X)-\varepsilon-1+t_{0}\right)}{t_{0}} \\
& =\frac{-A_{\varepsilon}}{t_{0}}
\end{aligned}
$$

and hence

$$
\begin{equation*}
-\langle y, x\rangle=-\frac{\langle z, w\rangle}{\|z\|\|w\|} \geq \frac{A_{\varepsilon}}{t_{0}\|w\|} \geq \frac{A_{\varepsilon}}{t_{0}\left(1+t_{0}\right)} \tag{2.14}
\end{equation*}
$$

Consequently we have

$$
\begin{equation*}
s(X) \geq\langle x, y\rangle-\langle y, x\rangle \geq \frac{2 A_{\varepsilon}}{t_{0}\left(1+t_{0}\right)} \tag{2.15}
\end{equation*}
$$

As $\varepsilon \rightarrow 0$, we obtain (2.5).
We next prove that the inequality (2.5) is strict. Suppose that

$$
\begin{equation*}
s(X)=\frac{2\left(J(X)-2+t_{0}-t_{0}^{2}\right)}{t_{0}\left(1+t_{0}\right)} \tag{2.16}
\end{equation*}
$$

for some t_{0} with $0<t_{0} \leq 1$. By $s(X) \geq 0$ it follows that $J(X)-2+t_{0}-t_{0}^{2} \geq 0$. From $J(X)-7 / 4 \geq\left(t_{0}-1 / 2\right)^{2} \geq 0$, we obtain $J(X) \geq 7 / 4$. This inequality implies that X is not a Hilbert space. Hence $s(X)>0$. By $(2.16), J(X)-2+t_{0}-t_{0}^{2}>0$ holds. Take a number n_{0} such that $n \geq n_{0}$ imples

$$
\frac{1}{n}<\min \left(J(X)-2+t_{0}-t_{0}^{2}, \sqrt{2}-1\right)
$$

For each n with $n \geq n_{0}$ we take u_{n}, v_{n} in S_{X} with

$$
J(X)-1 / n<\min \left(\left\|u_{n}+v_{n}\right\|,\left\|u_{n}-v_{n}\right\|\right)
$$

Put

$$
w_{n}=u_{n}+t_{0} v_{n}, z_{n}=v_{n}-t_{0} u_{n}, x_{n}=\frac{w_{n}}{\left\|w_{n}\right\|}, y_{n}=\frac{z_{n}}{\left\|z_{n}\right\|}
$$

As in the inequalities $(2.13),(2.14)$ and (2.15), we have for each $n \geq n_{0}$,

$$
\begin{equation*}
\left\langle x_{n}, y_{n}\right\rangle \geq \frac{B_{n}}{t_{0}\left\|z_{n}\right\|} \geq \frac{B_{n}}{t_{0}\left(1+t_{0}\right)},-\left\langle y_{n}, x_{n}\right\rangle \geq \frac{B_{n}}{t_{0}\left\|w_{n}\right\|} \geq \frac{B_{n}}{t_{0}\left(1+t_{0}\right)} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
s(X) \geq\left\langle x_{n}, y_{n}\right\rangle-\left\langle y_{n}, x_{n}\right\rangle \geq \frac{2 B_{n}}{t_{0}\left(1+t_{0}\right)} \tag{2.18}
\end{equation*}
$$

where $B_{n}=A_{1 / n}=J(X)-2-1 / n+t_{0}-t_{0}^{2}$. Since $\left\{\left\|z_{n}\right\|\right\}_{n=1}^{\infty}$ and $\left\{\left\|w_{n}\right\|\right\}_{n=1}^{\infty}$ are bounded, we may assume that these sequences have limits. As $n \rightarrow \infty$, the inequalities (2.17) and (2.18) imply

$$
\lim _{n \rightarrow \infty}\left\|w_{n}\right\|=\lim _{n \rightarrow \infty}\left\|u_{n}+t_{0} v_{n}\right\|=1+t_{0}
$$

and

$$
\lim _{n \rightarrow \infty}\left\|z_{n}\right\|=\lim _{n \rightarrow \infty}\left\|v_{n}-t_{0} u_{n}\right\|=1+t_{0}
$$

By Lemma 1.1,

$$
\lim _{n \rightarrow \infty}\left\|u_{n}+v_{n}\right\|=\lim _{n \rightarrow \infty}\left\|u_{n}-v_{n}\right\|=2
$$

Hence X is not uniformly non-square and so $s(X)=J(X)=2$. Thus it follows from (2.16) that

$$
2=2 \frac{t_{0}-t_{0}^{2}}{t_{0}\left(1+t_{0}\right)}
$$

By $t_{0}>0$, this is a contradiction. Thus the inequality (2.5) is strict.

Theorem 2.9. Let X be a Banach space. Then

$$
\begin{equation*}
s(X) \geq 2+4(2-J(X))-4 \sqrt{(2-J(X))(4-J(X))} \tag{2.19}
\end{equation*}
$$

where equality holds only when X is not uniformly non-square.
Proof. We define a function f on $(0,1]$ as

$$
f(t)=\frac{2\left(J(X)-2+t-t^{2}\right)}{t(1+t)}
$$

To prove the inequality (2.19) we calculate the supremum of $f(t)$ on $(0,1]$. If X is not uniformly non-square, that is, $J(X)=2$, then

$$
f(t)=\frac{2(1-t)}{1+t}
$$

for all t with $0<t \leq 1$ and so the function f is decreasing on $(0,1]$. Hence, by Lemma 2.8 we have

$$
s(X) \geq \lim _{t \rightarrow 0^{+}} f(t)=2
$$

By $s(X) \leq 2$ we obtain $s(X)=2$. Thus (2.19) is valid for this case and then (2.19) becomes equality. Let X be uniformly non-square, that is, $J(X)<2$. By

$$
\begin{equation*}
f(t)=-2+\frac{2(2 t+J(X)-2)}{t^{2}+t} \tag{2.20}
\end{equation*}
$$

the derivative of f is

$$
f^{\prime}(t)=2 \cdot \frac{2\left(t^{2}+t\right)-(2 t+J(X)-2)(2 t+1)}{\left(t^{2}+t\right)^{2}}
$$

Put

$$
t_{0}=\frac{2-J(X)+\sqrt{J(X)^{2}-6 J(X)+8}}{2}
$$

Note that $0<t_{0}<1$ by $\sqrt{2} \leq J(X)<2$. Then $f^{\prime}\left(t_{0}\right)=0$ and f has the maximum at $t=t_{0}$. From (2.20) and the equality $2\left(t_{0}^{2}+t_{0}\right)-\left(2 t_{0}+J(X)-2\right)\left(2 t_{0}+1\right)=0$, we have

$$
\begin{aligned}
f\left(t_{0}\right) & =-2+\frac{4}{2 t_{0}+1} \\
& =-2+\frac{4}{3-J(X)+\sqrt{J(X)^{2}-6 J(X)+8}} \\
& =2+4(2-J(X))-4 \sqrt{(2-J(X))(4-J(X))}
\end{aligned}
$$

By Lemma 2.8 it holds that $s(X)>f\left(t_{0}\right)$ and thus this completes the proof.

From Theorems 2.6 and 2.9 we direct have the following.
Corollary 2.10 ([2], Theorem 3.1). Let X be a Banach space. Then X is uniformly non-square if and only if $s(X)<2$.

References

[1] M. Baronti and P. L. Papini, Projections, skewness and related constants in real normed spaces, Math. Pannonica 3 (1992), 31-47.
[2] S. Fitzpatrick and B. Reznick, Skewness in Banach spaces, Trans. Amer. Math. Soc. 275 (1983), 587-597.
[3] J. Gao and K. S. Lau, On the geometry of spheres in normed linear spaces, J. Aust. Math. Soc. A 48 (1990), 101-112.
[4] M. Kato, L. Maligranda and Y. Takahashi, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Stud. Math. 144 (2001), 275-295.
[5] M. Kato, K.-S. Saito and T. Tamura, Uniform non-squareness of ψ-direct sums of Banach spaces $X \oplus_{\psi} Y$, Math. Inequal. Appl. 7 (2004), 429-437.
[6] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II : Function spaces, Springer, Berlin. 1979.
[7] R. E. Megginson, An introduction to Banach space theory, Graduate Texts in Mathematics, 183, New York, Springer, 1998.
[8] Y. Takahashi, Some geometric constants of Banach spaces -a unified approach, Banach and function spaces II, Yokohama Publ., Yokohama, 2007, pp. 191-220.
[9] Y. Takahashi and M. Kato, A simple inequality for the von Neumann-Jordan and James constants of a Banach space, J. Math. Anal. Appl. 359 (2009), 602-609.
[10] R. K. Ritt, A generalization of inner product, Michigan Math. J. 3 (1955), 23-26.

Manuscript received October 11, 2011
revised July 27, 2012
Ken-Ichi Mitani
Department of Systems Engineering, Okayama Prefectural University, Soja 719-1197, Japan E-mail address: mitani@cse.oka-pu.ac.jp

Kichi-Suke Saito
Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan E-mail address: saito@math.sc.niigata-u.ac.jp

Yasuji Takahashi
Department of Systems Engineering, Okayama Prefectural University, Soja 719-1197, Japan E-mail address: ym-takahashi@clear.ocn.ne.jp

[^0]: 2010 Mathematics Subject Classification. 46B20.
 Key words and phrases. Skewness, James constant, modulus of smoothness.
 *The second author was supported in part by Grants-in-Aid for Scientific Research (No. 23540189), Japan Society for the Promotion of Science.

