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SKEWNESS AND JAMES CONSTANT OF BANACH SPACES

KEN-ICHI MITANI, KICHI-SUKE SAITO*, AND YASUJI TAKAHASHI

ABSTRACT. Let X be a real Banach space. The notion of skewness of X was
introduced by Fitzpatrick and Reznick. Also, the notion of James constant of X
was introduced by Gao and Lau. In this paper we give some relations between
these two constants of X.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper let X be a real Banach space with dim X > 2 and Sx =
{z € X :||z|| = 1}. Fitzpatrick and Reznick [2] introduced the skewness s(X) of
X, which describes the asymmetry of norm:

tyll — t
s(X) :sup{ lim |z + tyll — fly + t] : a:,yESX}
t—0+ t
:sup{<m,y>—<y,3:>: xayESX}v
vhee o+ tyll — [zl
. T+ ty|| — ||z
z,y) = ||lz]| lim ——FF——"—
(@0) = o] tim 121

for z,y € X. Asstated in [2], if X is smooth, then (-, -} is a generalized inner product
by Ritt [10]. It is clear that 0 < s(X) < 2 for any Banach space X. They showed
that s(X) = 0 if and only if X is a Hilbert space, and calculated the skewness for
L, spaces where 1 < p < oco. Moreover, the uniform non-squareness of X can be
described in terms of the skewness s(X). Indeed, they showed that s(X) < 2 if and
only if X is uniformly non-square, that is, there exists a ¢ > 0 such that for any
x,y € Sx, either [z +y|| <2(1 —0) or ||z —y| < 2(1 —6). A modified version of
skewness was introduced and studied by Baronti and Papini [1].
The James constant J(X) of X is defined by

J(X) = sup { min{[|lz + yl, |z — yll} : 2,y € Sx},

(Gao and Lau [3]). It is well-known that /2 < J(X) < 2 for any Banach space X.
If X is a Hilbert space, then J(X) = v/2, and the converse is not true. The James
constant for L, spaces where 1 < p < oo was calculated. Namely, if 1 < p < oo
and dim L, > 2, then J(L,) = max{2'/? 21/9} where 1/p+ 1/q = 1. Also, X is
uniformly non-square if and only if J(X) < 2 (see [3]). Moreover, some relations
between the James constant and other constants are discussed by several authors

(see [4, 8, 9]).
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Our aim in this paper is to give some relations between the skewness s(X) and
James constant J(X) of X. Namely, we show that for any Banach space X,

11 2+4(2- J(X) - 4/2 - TX)E - T(X) < s(X) <4{1 - J(lX)}

(see Theorems 2.6 and 2.9). From the inequalities (1.1) we can directly obtain the
result that s(X) < 2 if and only if X is uniformly non-square, given by [2]. To
show the second inequality of (1.1) we use some results in Baronti and Papini [1],
Takahashi and Kato [9].

We recall some definitions (cf. [6]). A Banach space X is called uniformly convex
if, for every ¢ > 0 there is a 6 > 0 such that for any xz,y € Sx, [[z+y|| >2 -6
implies ||z — y|| < e. It is well-known that X is uniformly convex if and only if, for
any sequences {n}, {yn} in Sx with ||z, + yn| — 2, we have ||z, — yn|| — 0.

The modulus of smoothness of X is defined by

{ |z + Tyl + |z — 7yl
P 2

px(T) = _13$7y€SX}-

It is known that X is uniformly non-square if and only if px (1) < 1([4]).
The following lemmas will be used later.

Lemma 1.1 ([5], Lemma 2). Let {z,},{yn} be sequences in a Banach space X
such that {||zn || }o2, and {||yn|l}02, are convergent to non-zero limits, respectively.
Then the following are equivalent.

(i) lim [z, +yoll = lim ({2 + [ly.])-

Lemma 1.2 ([7], Lemma 5.4.14). Let X be a Banach space and x € X with x # 0.
Then for each y in X, the function

(ii) lim H
n—oo

faall * Iynll

[ + tyl| — ]
t

t—

from R\{0} into R is non-decreasing.

2. SKEWNESS AND JAMES CONSTANT

We first consider a relation between skewness and the modulus of smoothness.
Baronti and Papini [1] estimated s(X) from above by px (1), as follows:

Proposition 2.1 ([1], Proposition 6.3). Let X be a Banach space. Then
(2.1) s(X) < 2px(1).

Remark 2.2. Let X be a Hilbert space. It is known that px (1) = v/2—1 (see [6]).
We also have s(X) = 0. Thus we obtain that the inequality (2.1) is strict in this
case.
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Proposition 2.3. If X is uniformly convez, then the inequality (2.1) in Proposition
2.1 is strict, that is, s(X) < 2px(1).

Proof. Suppose that X is uniformly convex but s(X) = 2px(1). By Remark 2.2 we
note that X is not a Hilbert space, that is, s(X) # 0. From the definition of skewness
we can find sequences {z,}, {yn} in Sx such that s(X) —1/n < (xn, yn) — (Yn, Tn).
Fix to with 0 < tgp < 1. Since {||z, + yn||} is bounded, without loss of generality,
we may assume that ||z, + y,|| — a for some a. Similarly, we may assume that
|zn — ynl| = b and ||z, + toyn|| — ¢ for some b,c. By Lemma 1.2,

() = Gy o) < L0 = ol o = 20l = e
<l +yn1H —leall e gl = gl
< 2px(1).

As n — o0, we get

(2.2) c—1=to(a—1)

and

(23) s(X) = a+b=2=20x(1).
From

[ + toynll = [[to(zn + yn) + (1 = to)znll < tollzn + ynll + (1 — to)||zn]]
and the equality (2.2), we obtain
lim ||z, +wy| = lim ||z,|| + Lm [Jw,]],
n—oo n—o0 n—oo

where z, = to(z, + yn) and w, = (1 — o)z,
Case 1. ||z,|| - 0.

By Lemma 1.1,
| * g | =
S [znll  [lwn]]
Since X is uniformly convex, we have
|~ g | =
"_”X’ 2]l [lwall 7
that is,
H Tn + Yn —0
—_— nll = 0.
=0 [l ||z + yn |
By
Tn + Yn 1
(————— =Dz + ———vy
HllfanrynH [Zn + || " syl
1
i~
[#n + yn [Zn + |l
we have

B-1]- 3
a a
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and hence a = 2. Thus ||z, + yn|| — 2. Since X is uniformly convex, we obtain
|xn — ynl|| — 0, that is, b = 0.

Case 2. ||z,]| — 0.

Then we clearly have a = 0. Moreover, it follows from the inequalities

22 [|en = ynll = llzn + Y0 = 2unll 2 [ll2n + yall — 2llynll]

that we get ||z, — yn| — 2, that is, b = 2.
Thus a + b = 2 is valid for any cases. By (2.3) we have s(X) = 0, which is a
contradiction. O

Remark 2.4. (i) If X is not uniformly non-square, then by s(X) = 2 and px (1) =1,
we have s(X) = 2px(1).

(ii) There is a uniformly non-square (not uniformly convex) Banach space X such
that s(X) = 2px(1). In fact, let Xo = R? with the norm defined by

]| = lz|loo if 2122 >0
n Hle if 12 S 0
for = (z1,22). It is clear that Xy is uniformly non-square and is not uniformly
convex. By Example 4 in [4] we have px,(1) = 1/2. From Proposition 2.1 we obtain
s(Xo0) < 2px,(1) = 1. We next show s(Xp) > 1. For 0 < ¢ < 1 we put z = (1,1)
and y = (—¢,1 —¢). Let ¢ > 0 be sufficiently small. It is clear that z,y € Sx,.
Moreover ||z +ty|| =1+t — te and ||y + tx| = 1. Hence
S(XO) 2 (xay> - (y,x) =l-e
As ¢ — 0 we have s(Xp) > 1. Thus s(Xo) = 2px,(1) = 1.

Recently, Takahashi and Kato in [9] estimated px (1) from above by J(X).
Proposition 2.5 ([9], Theorem 1). Let X be a Banach space. Then

px(1) < 2{1 - J(lX)}

From Propositions 2.1 and 2.5, we obtain the following.

Theorem 2.6. Let X be a Banach space. Then

(2.4) s(x) <41 - J(IX)}

Remark 2.7. (i) Immediately from Proposition 2.3 we obtain that the inequality
(2.4) in Theorem 2.6 is strict for all uniformly convex spaces.

(ii) If X is not uniformly non-square, then by s(X) = 2 and J(X) = 2 we have
equality in (2.4).

(iii) We consider the space Xy in Remark 2.4 (ii). By Example 4 in [4] it follows
that J(Xo) = 3/2. We also have s(X() = 1. Thus the inequality (2.4) is strict for
the space Xj.
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(iv) We do not know whether there is a uniformly non-square (not uniformly convex)
Banach space X such that the inequality (2.4) becomes equality.

In the following, we shall present an estimate s(X) from below by J(X). To do
this we need the following lemma.

Lemma 2.8. Let X be a Banach space. Then
2(J(X) —2+t—1?)
t(1+1t)

s(X) >

for allt with 0 <t <1.
Proof. Let 0 < tg < 1. We first show that
2(J(X) =2+ to — 3
to(1 + to)
By s(X) > 0, we may assume that J(X) — 2 +ty —t2 > 0. Let ¢ > 0 with
e < min(J(X)—2+to—t2,v/2—1). Then there exist u,v € Sx such that J(X)—e <
|

min(|ju+v|, [Ju—v]|). Let w = u+tov and z = v —tou. Using the triangle inequality
we have

(2.6) [w]| < flull + tollv]l = 1+ to.

Also,

27wl =llu+v—-Q0Q—=to)vll = [lu+ o] = (1—to) > J(X) —e =1+ to.
Similarly,

(2.8) lz]] <1+t

and

(2.9) Izl > llv—u|| =14ty > J(X) —e—1+to.

Note that w and z are non-zero elements, because
JX)—e—14tg>V2—1—ec+ty >ty >0

holds. Moreover,

(2.10) |lw —toz|| = ||lu+ tu| = 1 +
and
(2.11) |2 + tow| = |lv + t3v|| = 1 + 2.

It follows by Lemma 1.2 and from the inequalities (2.7) and (2.10) that for ¢ with
0<t<ty,

Jw+tz|| = Jlw|l _ Jlw—toz|| = [Jw]| _ [Jw]| — [Jw —toz]
> =
t - —to to
- J(X)—e—1+ty— (1+1t})
to
and so
tz|| — J(X)—2—¢c+ty—t2
(2.12) |w + tz]| — |lwl| S (X) etto—ty

t to
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We define

Ac=J(X)—2—e+tg—t2
for e > 0. Note that A. > 0. Put x = ﬁ and y = ﬁ From the inequalities (2.8)
and (2.12),

wllllzl - llzll -0+ t tollzll ~ to(1 + o)
By Lemma 1.2, (2.9) and (2.11) we have for ¢t with 0 < ¢ < to,
Iz + twl| = [[=]] _ Iz + tow]| — [|=]]
t - to
_ L+t2 — (J(X) —e—1+1)
to
— _Aa
=
and hence
(2.14) Ly = B A o A

Iz[[[lw]] ~ tollwl| ~ to(1+t0)
Consequently we have
2A.
2.15 s(X) > (x,y) — (y,x) > ————.
(2.15) (X) = (z,y) — (y >_t0(1+t0)
As e — 0, we obtain (2.5).
We next prove that the inequality (2.5) is strict. Suppose that
2(J(X) =2+ to —t3)
to(1 + o)
for some tg with 0 < tgp < 1. By s(X) > 0 it follows that J(X) — 2 + ¢ty — t% > 0.
From J(X) —7/4 > (to—1/2)? > 0, we obtain J(X) > 7/4. This inequality implies
that X is not a Hilbert space. Hence s(X) > 0. By (2.16), J(X) —2+tg—t3 >0
holds. Take a number ng such that n > ng imples

(2.16) s(X) =

1 min(J(X) — 2 +to — t3, V2 — 1).

n
For each n with n > ng we take u,, v, in Sx with

J(X) = 1/n < min(||uy, + vp||, |un — vnl])-

Put
W, Zn
Wy = Up + toUn, 2Zn = Un —LoUn, Tn = 17—, Yn = — .
As in the inequalities (2.13), (2.14) and (2.15), we have for each n > ny,
B, By, By B,
2.17 T, > > , — , Tp) 2> >
(2.17) (n, n) tollznll = to(1 + to) (s ) tollwnll = to(1 + to)
and
2B,
2.18 X) > — > "
( ) S( ) - <xnayn> <yn7‘r’l’b> - to(]_ _l_to)?
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where B, = Ay, = J(X)—=2—-1/n+ty— t%. Since {[|zn|[}o2; and {[|wy| }22,
are bounded, we may assume that these sequences have limits. As n — oo, the
inequalities (2.17) and (2.18) imply

lim ||wy| = Hm ||u, +tove| =1+t
n—oo n—oo

and
lim ||z,]| = lim |jv, — touy| = 1 + to.
n—oo n—oo

By Lemma 1.1,
lm ||uy, +v,| = lim |Ju, — v, = 2.
n—o0 n—oo

Hence X is not uniformly non-square and so s(X) = J(X) = 2. Thus it follows
from (2.16) that
to — t3
to(1+to)
By tg > 0, this is a contradiction. Thus the inequality (2.5) is strict.

Theorem 2.9. Let X be a Banach space. Then

(2.19) S(X) = 24 42— J(X)) — 4/ 2 = J(X))(d — J(X)),

where equality holds only when X is not uniformly non-square.

Proof. We define a function f on (0,1] as

£(t) = 2(J(Xi(;i—t|—)t —12)

To prove the inequality (2.19) we calculate the supremum of f(t) on (0,1]. If X is

not uniformly non-square, that is, J(X) = 2, then

2(1—1t)
t) =
U 14¢
for all ¢ with 0 < ¢t < 1 and so the function f is decreasing on (0, 1]. Hence, by
Lemma 2.8 we have

s(X) > lim f(t) =2.
t—0+
By s(X) < 2 we obtain s(X) = 2. Thus (2.19) is valid for this case and then (2.19)
becomes equality. Let X be uniformly non-square, that is, J(X) < 2. By
202t 4+ J(X) —2)
2+t

(2.20) Flt)=—2+

the derivative of f is

pon o 24— (2t + J(X) —2)(2t+1)
f=2 (2 +1)2 '

Put

2—J(X)+/J(X)?2-6J(X)+38
5 :

to =
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Note that 0 < g < 1 by v/2 < J(X) < 2. Then f/(ty) = 0 and f has the maximum
at t = to. From (2.20) and the equality 2(t3 + to) — (2tg + J(X) — 2)(2to + 1) = 0,
we have

4

to) = —24 ——
f(to) +2t0+1

4
* 3—JX)++/J(X)2-6J(X)+8

=24+4(2-J(X)) -4/ (2— J(X))(4 - J(X)).
By Lemma 2.8 it holds that s(X) > f(t9) and thus this completes the proof. [

From Theorems 2.6 and 2.9 we direct have the following.

Corollary 2.10 ([2], Theorem 3.1). Let X be a Banach space. Then X is uniformly
non-square if and only if s(X) < 2.
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