THE MAXIMAL IC-COLORINGS OF $K_{1,2, n}$

SHYH-NAN LEE AND LI-MIN LIU*

Abstract

The IC-index of a connected graph G is denoted by $M(G)$. In this paper, we prove that $M\left(K_{1,2, n}\right)=13 \cdot 2^{n-1}+1$, where $n \geq 2$ and give all the maximal IC-colorings of $K_{1,2, n}$.

1. Introduction

If f is a positive integer-valued function on the vertex set $V(G)$ of a connected graph G, if $S_{f}(H)$ denotes the sum $\sum_{u \in V(H)} f(u)$ for IC-subgraphs (induced connected subgraphs) H of G, and if for each integer α with $1 \leq \alpha \leq S_{f}(G)$ there is an IC-subgraph H of G such that $\alpha=S_{f}(H)$, then f is called an IC-coloring of G. An IC-coloring of a connected graph G is maximal if it maximizes $S_{f}(G)$. The IC-index of a connected graph G is the integer $M(G)=S_{f}(G)$ where f is any maximal IC-coloring of G.

The problem of finding IC-indices and IC-colorings of finite graphs was introduced by Salehi et al. in 2005 [8], and it can be considered as a derived problem of the postage stamp problem in number theory, which has been extensively studies $[1,2,3,4,6]$. Penrice proved that $M\left(K_{n}\right)=2^{n}-1$ and $M\left(K_{1, n}\right)=2^{n}+2$ for $n \geq 2$ [7]. Salehi et al. showed that $M\left(K_{2, n}\right)=3 \cdot n^{2}+1$ for $n \geq 2$ [8]. Shiue and Fu proved $M\left(K_{m, n}\right)=3 \cdot 2^{m+n-2}-2^{m-2}+2$ for $n \geq m \geq 2$ [9]. Liu and Lee showed that $M\left(K_{1,1, n}\right)=3 \cdot 2^{n}+1$ for $n \geq 1$ [5]. In this paper, we prove that $M\left(K_{1,2, n}\right)=13 \cdot 2^{n-1}+1$, where $n \geq 2$, and give all the maximal IC-colorings of $K_{1,2, n}$.

For convenience' sake, we shall restrict our discussion to the complete tripartite graphs $K_{1,2, n}$. It is useful to consider both concepts of sequences of numbers x_{1}, x_{2}, \ldots and partial sums $s_{0}, s_{1}, s_{2}, \ldots$, where $s_{0}=0, s_{i}=x_{1}+\cdots+x_{i}$ and $x_{i}=s_{i}-s_{i-1}$ for $i=1,2, \ldots$. Roughly speaking, finding $M\left(K_{1,2, n}\right)$ is equivalent to maximizing $s_{n+3}=x_{1}+\cdots+x_{n+3}$ subject to the sequences of positive integers x_{1}, \ldots, x_{3} with some constraints.

The rest of the paper is organized as follows. In section 2, we introduce the notations that reformulate our notions in terms of number theory as well as graph theory. This section also gives the lower bounds of s_{i}, in particular, of s_{n+3} by an example of IC-coloring of $K_{1,2, n}$. In section 3, we study some basic properties of colorings, which are also true for any one-to-one coloring of any finite connected graph (see 3.2 and 3.3). In section 4, we discuss the necessary conditions for maximal IC-colorings of $K_{1,2, n}$ and list all the possibilities. In section 5, we give the maximal IC-colorings of $K_{1,2, n}$ which shows that $M\left(K_{1,2, n}\right)=13 \cdot 2^{n-1}+1$ for $n \geq 2$.

[^0]
2. Notations and definitions

We shall fix the following notations and definitions throughout this paper.

Notations.

(a) f is a positive integer-valued function on G;
(b) $G=P \cup Q \cup R$ where P, Q and R are disjoint sets of cardinalities $|P|=1$, $|Q|=2$, and $|R|=n$ with $2 \leq n<\infty$;
(c) \mathcal{B} is the collection of all nonempty subsets H of G such that $H \nsubseteq P, H \nsubseteq Q$, and $H \nsubseteq R$ whenever $|H| \geq 2$;
(d) \sim is a relation on G such that $u \sim v$ if and only if $\{u, v\} \subseteq P$ or $\{u, v\} \subseteq Q$ or $\{u, v\} \subseteq R$;
(e) S_{f} is the function on \mathcal{B} defined by $S_{f}(H)=\sum_{u \in H} f(u)$ for all $H \in \mathcal{B}$.

When f is one-to-one, that is, $f(u) \neq f(v)$ if $u, v \in G$ and $u \neq v$, by identifying u with $f(u)$ for all $u \in G$, we shall write
(f) $f=\langle P, Q, R\rangle$ where P, Q and R are disjoint sets of positive integers;
(g) $G=\left\{x_{1}, x_{2}, \ldots, x_{n+3}\right\}$ where $G=P \cup Q \cup R$ and $0<x_{1}<x_{2}<\cdots<$ $x_{n+3}<\infty$;
(h) $S_{f}(H)=\sum_{x \in H} x$;
(i) $s_{0}=0, s_{i}=x_{1}+\cdots+x_{i}$ for $1 \leq i \leq n+3$;
(j) $x_{n+4}=\infty$;
(k) $f^{+}=\left\{x_{i} \in G \mid x_{i}=s_{i-1}+1\right\}=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{\mid f+} \mid}\right\}$ where $0<x_{i_{1}}<$ $x_{i_{2}}<\cdots<x_{i_{|f+|}}<\infty$.
Intuitively, f is a coloring on a complete tripartite graph $G=K_{1,2, n}$ which has three partite sets P, Q and R, \mathcal{B} is the collection of all IC-subgraphs (induced connected subgraphs) of $G,\{u, v\} \in \mathcal{B}$ means that u and v are adjacent, and $u \sim v$ if and only if u and v are in the same partite set. We shall use these terminologies freely.

Definitions.

(a) We say that f produces α if $\alpha=S_{f}(H)$ for some $H \in \mathcal{B}$;
(b) We call f an IC-coloring of G if f produces all the integers α with $1 \leq \alpha \leq$ $S_{f}(G)$;
(c) An IC-coloring f of G is maximal if it maximizes $S_{f}(G)$, that is, $S_{f}(G)=$ $\max \left\{S_{g}(G) \mid g\right.$ is an IC-coloring of $\left.G\right\}$;
(d) The IC-index of G is the integer $M(G)=S_{f}(G)$ where f is any maximal IC-coloring of G.
The following example illustrates some notations and definitions introduced above.
Example. Let $P=\left\{x_{2}\right\}, Q=\left\{x_{3}, x_{4}\right\}$, and $R=\left\{x_{1}, x_{5}, \ldots, x_{n+3}\right\}$, where $x_{1}=1, x_{2}=2, x_{3}=4, x_{4}=8, x_{5}=12, x_{i}=13 \cdot 2^{i-5}(6 \leq i \leq n+3)$. Then $f=\langle P, Q, R\rangle$ represents a one-to-one coloring on the complete tripartite graph $G=P \cup Q \cup R$, and $P \in \mathcal{B}, Q \notin \mathcal{B}, x_{1} \sim x_{i}(5 \leq i \leq n+3)$. We shall show that the following are true:
(a) $G=\left\{x_{1}, x_{2}, \ldots, x_{n+3}\right\}, 0<x_{1}<x_{2}<\cdots<x_{n+3}<x_{n+4}=\infty$.
(b) $s_{0}=0, s_{1}=1, s_{2}=3, s_{3}=7, s_{4}=15, s_{i}=13 \cdot 2^{i-4}+1(5 \leq i \leq n+3)$.
(c) $f^{+}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, i_{1}=1, i_{2}=2, i_{3}=3$, and $i_{4}=4$.
(d) $x_{i} \leq s_{i-1}+1(1 \leq i \leq n+3)$.
(e) $0=s_{0}<s_{1}<\cdots<s_{n+3}=S_{f}(G)=13 \cdot 2^{n-1}+1$.
(f) f produced α for all integer α with $1 \leq \alpha \leq S_{f}(G)$.
(g) f is an IC-coloring of G.

It is clear that (a)-(e) are true, and that (f) implies (g), so we need only prove (f). To see (f), let α be an integer such that $1 \leq \alpha \leq S_{f}(G)$. Then by (e), there is a unique j_{1} such that $s_{j_{1}-1}+1 \leq \alpha \leq s_{j_{1}}$, it follows from this and, by (d) with $i=j_{1}$, $x_{j_{1}} \leq s_{j_{1}-1}+1$ that $0 \leq \alpha-x_{j_{1}} \leq s_{j_{1}-1}$. If $\alpha-x_{j_{1}}>0$, then, by (d) and (e) again, there is a unique $j_{2}, j_{2}<j_{1}$, such that $s_{j_{2}-1}+1 \leq \alpha-x_{j_{1}} \leq s_{j_{2}}$ and $x_{j_{2}} \leq s_{j_{2}-1}+1$, so that $0 \leq \alpha-x_{j_{1}}-x_{j_{2}} \leq s_{j_{2}-1}$. Since $s_{0}=0$, by continuing in this way if necessary, we obtain $\alpha=x_{j_{1}}+\cdots+x_{j_{r}}$ for some integer $1 \leq j_{r}<\cdots<j_{2}<j_{1} \leq n+3$ with $r \geq 1$. Let $H=\left\{x_{j_{1}}, \ldots, x_{j_{r}}\right\}$. If $r=1$ then $H \in \mathcal{B}$ and $\alpha=S_{f}(H)$, so that f produced α and we are done. Now assume that $r>1$. If $H \subseteq Q$ then $\alpha=x_{3}+x_{4}=x_{5}=S_{f}\left(\left\{x_{5}\right\}\right)$ so that f produces α; if $H \subseteq R$ and if x_{i} is the smallest integer in H other than x_{1}, then $i \geq 5$, so that, by $x_{5}=x_{3}+x_{4}$ and $x_{i}=s_{i-1}-1=x_{2}+\cdots+x_{i-1}$ for $6 \leq i \leq n+3$, we have $\alpha=S_{f}\left(Q \cup\left(H-\left\{x_{5}\right\}\right)\right)$ if $i=5$ and $\alpha=S_{f}\left(\left(H-\left\{x_{i}\right\}\right) \cup\left\{x_{2}, x_{3}, \ldots, x_{i-1}\right\}\right)$ if $6 \leq i \leq n+3$; finally, if $H \nsubseteq Q$ and $H \nsubseteq R$, then $H \in \mathcal{B}$ for $H \nsubseteq P(|H|=r>1$ and $|P|=1)$, so that $\alpha=S_{f}(H)$ can be produced by f.

Remark. The example shows that $M(G)=M\left(K_{1,2, n}\right) \geq 13 \cdot 2^{n-1}+1$.

3. One-to-one IC-COLORINGS

Proposition 3.1. Let f be a coloring of G. Then:
(a) $|\mathcal{B}|=2^{n+2}+2^{n+1}+2^{n}+n-1$.
(b) If $H_{1}, K_{1}, \ldots, H_{m}, K_{m}$ are $2 m$ distinct members of \mathcal{B} such that $S_{f}\left(H_{i}\right)=$ $S_{f}\left(K_{i}\right)$ for all $1 \leq i \leq m$, then
(i) $S_{f}\left(\mathcal{B}-\left\{K_{1}, \ldots, K_{m}\right\}\right)=S_{f}(\mathcal{B})$.
(ii) $|\mathcal{B}|-m \geq\left|S_{f}(\mathcal{B})\right|$.
(iii) $|\mathcal{B}|-m \geq S_{f}(G)$, if f is an IC-coloring.
(c) If $f(u)=f(v), u \neq v$, and if $\mathcal{A}=\{A \subseteq(G-\{u, v\}) \mid A \cup\{u\} \in \mathcal{B}$ and $A \cup$ $\{v\} \in \mathcal{B}\}$, then exactly one of the following five statements holds:
(i) $\{u, v\} \subseteq Q$ with $|\mathcal{A}|=2^{n+1}$.
(ii) $\{u, v\} \subseteq R$ with $|\mathcal{A}|=2^{n}+2^{n-1}+2^{n-2}+1$.
(iii) $P \cap\{u, v\} \neq \varnothing$ and $Q \cap\{u, v\} \neq \varnothing$ with $|\mathcal{A}|=2^{n}+2^{n-1}+\cdots+1$.
(iv) $P \cap\{u, v\} \neq \varnothing$ and $R \cap\{u, v\} \neq \varnothing$ with $|\mathcal{A}|=2^{n}+2^{n-1}+1$.
(v) $Q \cap\{u, v\} \neq \varnothing$ and $R \cap\{u, v\} \neq \varnothing$ with $|\mathcal{A}|=2^{n}+2^{n-1}$.
(d) If f is an IC-coloring of G and if $S_{f}(G) \geq 2^{n+2}+2^{n}+2^{n-1}+n$, then f is one-to-one.
(e) If f is a maximal IC-coloring of G then f is one-to-one.

Proof. (a) Let $\mathcal{B}_{1}=\{H \in \mathcal{B} \mid P \subseteq H\}$ and $\mathcal{B}_{2}=\{H \in \mathcal{B} \mid P \nsubseteq H\}$. Then $\left|\mathcal{B}_{1}\right|=2^{|Q \cup R|}=2^{n+2}$ and, according to whether $|H|=1$ or not, $\left|\mathcal{B}_{2}\right|=$ $(|Q|+|R|)+\left(2^{|Q|}-1\right) \cdot\left(2^{|R|}-1\right)=(2+n)+\left(2^{2}-1\right) \cdot\left(2^{n}-1\right)$. Now the desired identity follows from $|\mathcal{B}|=\left|\mathcal{B}_{1}\right|+\left|\mathcal{B}_{2}\right|$.
(b) By assumption, S_{f} maps $\mathcal{B}-\left\{K_{1}, \ldots, K_{m}\right\}$ onto its range $S_{f}(\mathcal{B})$, so that (i) holds. (ii) follows from (i) for S_{f} may not be one-to-one. If f is an ICcoloring, then $S_{f}(\mathcal{B})=\left\{1,2, \ldots, S_{f}(G)\right\}$, so that $\left|S_{f}(\mathcal{B})\right|=S_{f}(G)$, and, by (ii), (iii) is true.
(c) If $u \sim v$ then $\{u, v\} \subseteq Q$ or $\{u, v\} \subseteq R$ for $|P|=1$, and if $\{u, v\} \in \mathcal{B}$ (the negation of $u \sim v$) then u and v belong to different partite sets, so that we have five cases to discuss:

Case 1. $\{u, v\} \subseteq Q$.
Then $|\mathcal{A}|=2^{|P \cup R|}=2^{n+1}$ and (i) follows.
Case 2. $\{u, v\} \subseteq R$.
Then $|\overline{\mathcal{A}}|=\left(2^{|P \cup Q|}-1\right) \cdot 2^{|R-\{u, v\}|}+|\{\varnothing\}|=\left(2^{3}-1\right) \cdot 2^{n-2}+1$ and (ii) follows.
Case 3. $P \cap\{u, v\} \neq \varnothing$ and $Q \cap\{u, v\} \neq \varnothing$.
Then $|\mathcal{A}|=2^{|Q|-1} \cdot\left(2^{|R|}-1\right)+|\{\varnothing\}|=2^{1} \cdot\left(2^{n}-1\right)+1$ and (iii) follows.
Case 4. $P \cap\{u, v\} \neq \varnothing$ and $R \cap\{u, v\} \neq \varnothing$.
Then $|\mathcal{A}|=\left(2^{|Q|}-1\right) \cdot 2^{|R|-1}+|\{\varnothing\}|=\left(2^{2}-1\right) \cdot 2^{n-1}+1$ and (iv) follows.

Case 5. $Q \cap\{u, v\} \neq \varnothing$ and $R \cap\{u, v\} \neq \varnothing$.
Let $\mathcal{A}_{1}=\{A \in \mathcal{A} \mid P \subseteq A\}$ and $\mathcal{A}_{2}=\{A \in \mathcal{A} \mid P \nsubseteq A\}$. Then $\left|\mathcal{A}_{1}\right|=2^{|Q|-1} \cdot 2^{|R|-1}=2^{2-1} \cdot 2^{n-1}$ and $\left|\mathcal{A}_{2}\right|=\left(2^{|Q|-1}-1\right)$. $\left(2^{|R|-1}-1\right)+|\{\varnothing\}|=\left(2^{2-1}-1\right)\left(2^{n-1}-1\right)+1$. Thus $|\mathcal{A}|=$ $\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|=2^{n}+2^{n-1}$ and (v) follows.
(d) If f is an IC-coloring of G such that $f(u)=f(v)$ for some distinct u and v in G, that is, we assume that f is not one-to-one. Then, by (c), $|\mathcal{A}| \geq$ $2^{n}+2^{n-1}$. If $\mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\}$, where $m=|\mathcal{A}|$, and if $H_{i}=A_{i} \cup\{u\}$ and $K_{i}=A_{i} \cup\{v\}$ for $1 \leq i \leq m$, then, by (a) and (b), $S_{f}(G) \leq|\mathcal{B}|-m \leq$ $\left(2^{n+2}+2^{n+1}+2^{n}+n-1\right)-\left(2^{n}+2^{n-1}\right)$. Thus $S_{f}(G)>2^{n+2}+2^{n}+2^{n-1}+n-1$ is impossible.
(e) The example in the previous section shows that if f is maximal then $S_{f}(G) \geq$ $13 \cdot 2^{n-1}+1\left(=2^{n+2}+2^{n+1}+2^{n-1}+1\right)$, so that $S_{f}(G)-\left(2^{n+2}+2^{n}+2^{n-1}+n\right) \geq$ $2^{n}-n+1 \geq 0$, thus, by (d), f is one-to-one.

Remark. Our objective is to obtain the IC-index $M(G)=M\left(K_{1,2, n}\right)$, thus we want to find a maximal IC-coloring of G. Because of (e) in the above theorem, we shall only consider those one-to-one coloring $f=\langle P, Q, R\rangle$ of G in the rest of this paper.

Proposition 3.2. Let $f=\langle P, Q, R\rangle$ be a coloring of G and α be an integer. Then:
(a) If $s_{j-1}<\alpha<x_{j+1}$ for some $1 \leq j \leq n+3$, then x_{j} must be used in producing α, that is, if $\alpha=S_{f}(H)$ then $x_{j} \in H$. (Note $x_{n+4}=\infty$.)
(b) If $s_{j-1}<x_{i}+x_{j}<x_{j+1}$ for some $1 \leq i<j \leq n+3$, and $S_{f}(H)=x_{i}+x_{j}$, then
(i) if $x_{i}>s_{i-1}$ then $H=\left\{x_{i}, x_{j}\right\}$;
(ii) if $x_{i}=s_{j-1}$ then $H=\left\{x_{i}, x_{j}\right\}$ or $H=\left\{x_{1}, \ldots, x_{i-1}\right\} \cup\left\{x_{j}\right\}$.
(c) If $s_{j} \leq \alpha$ for some $1 \leq j \leq n+3$, and if $j \leq k \leq n+3$, then
(i) if $x_{i} \leq s_{i-1}$ for all $j \leq i \leq k$ then $s_{k} \leq \alpha \cdot 2^{k-j}$;
(ii) if $x_{i} \leq s_{i-1}+1$ for all $j \leq i \leq k$ then $s_{k} \leq(\alpha+1) \cdot 2^{k-j}-1$.

Proof. (a) $s_{j-1}<\alpha<x_{j+1}$ implies that $H \nsubseteq\left\{x_{1}, \ldots, x_{j-1}\right\}$ and $H \subseteq$ $\left\{x_{1}, \ldots, x_{j}\right\}$.
(b) By (a), x_{j} must be used in producing $x_{i}+x_{j}$. As $S_{f}(H)=x_{i}+x_{j}$, and as $x_{i}<x_{i+1}<\cdots<x_{j-1}$, we see that $H \subseteq\left\{x_{1}, \ldots, x_{i}\right\} \cup\left\{x_{j}\right\}$.
(i) If $x_{i}>s_{i-1}$ then $S_{f}(H)>s_{i-1}+x_{j}$ and we must have $H=\left\{x_{i}, x_{j}\right\}$;
(ii) $x_{i}=s_{i-1}$ then $S_{f}(H)=x_{i}+x_{j}=\left(x_{1}+\cdots+x_{i-1}\right)+x_{j}$, so that $H=\left\{x_{i}, x_{j}\right\}$ or $H=\left\{x_{1}, \ldots, x_{i-1}\right\} \cup\left\{x_{j}\right\}$.
(c) (i) If $x_{i} \leq s_{i-1}(j \leq i \leq k)$ then $s_{i}=s_{i-1}+x_{i} \leq 2 \cdot s_{i-1}(j \leq i \leq k)$ and $s_{j} \leq \alpha$, from this recursive relation, it follows that $s_{k} \leq \alpha \cdot 2^{k-j}$.
(ii) If $x_{i} \leq s_{i-1}+1(j \leq i \leq k)$ then $s_{i}+1=s_{i-1}+x_{i}+1 \leq 2 \cdot\left(s_{i-1}+1\right)$ $(j \leq i \leq k)$ and $s_{j}+1 \leq \alpha+1$, it follows that $s_{k}+1 \leq(\alpha+1) \cdot 2^{k-j}$ so that $s_{k}<(\alpha+1) \cdot 2^{k-j}$.

Proposition 3.3. Let $f=\langle P, Q, R\rangle$ be an $I C$-coloring of G. Then:
(a) $x_{i} \leq s_{i-1}+1$ for all $1 \leq i \leq n+3$.
(b) If $x_{i} \in f^{+}$, if $x_{j} \geq s_{j-1}$, and if $x_{i} \sim x_{j}$ for some $1 \leq i<j \leq n+3$, then $x_{j+1} \leq x_{i}+x_{j}$
(c) If $x_{i} \in f^{+}$and if $x_{i} \sim x_{j}$ for some $1 \leq i<j \leq n+3$, then either $s_{j} \leq$ $2 \cdot s_{j-1}-x_{i}$ or $s_{j+1} \leq 3 \cdot s_{j-1}+2+x_{i}$.
(d) If α is an integer and if $s_{j}<\alpha$ for some $1 \leq j \leq n+3$, then $S_{f}(G)<$ $\alpha \cdot 2^{n+3-j}$.

Proof. (a) Suppose, to get a contradiction, that $x_{j}>s_{j-1}+1$ for some $1 \leq j \leq$ $n+3$, then $s_{j-1}<s_{j-1}+1<x_{j+1}$, so that, by $3.2(\mathrm{a}), x_{j}$ should be used in producing $s_{j-1}+1$, which contradicts $x_{j}>s_{j-1}+1$.
(b) Suppose not, we would have, $x_{i}=s_{i-1}+1, x_{j} \geq s_{j-1}, x_{i} \sim x_{j}$, and $x_{j+1}>x_{i}+x_{j}$, so that $x_{i}>s_{i-1}$ and $s_{j-1}<x_{i}+x_{j}<x_{j+1}$, thus, by $3.2(\mathrm{~b})(\mathrm{i}),\left\{x_{i}, x_{j}\right\} \in \mathcal{B}$ should hold for f is an IC-coloring, which would violate $x_{i} \sim x_{j}$.
(c) The contrapositive of $3.2(\mathrm{~b})$ (i) shows that either $x_{i}+x_{j} \leq s_{j-1}$ or $x_{j+1} \leq$ $x_{i}+x_{j}$. The first inequality implies that $s_{j}=s_{j-1}+x_{j} \leq s_{j-1}+\left(s_{j-1}-x_{i}\right)=$ $2 \cdot s_{j-1}-x_{i}$. The second inequality and (a) imply that $s_{j+1}=s_{j-1}+x_{j}+$ $x_{j+1} \leq s_{j-1}+x_{j}+\left(x_{i}+x_{j}\right) \leq s_{j-1}+\left(s_{j-1}+1\right)+x_{i}+\left(s_{j-1}+1\right)=3 \cdot s_{j-1}+2+x_{i}$.
(d) If α is an integer, $s_{j}<\alpha$ if and only if $s_{j} \leq \alpha-1$, so that, by (a) and 3.2(c)(ii) with $k=n+3$ and replacing α by $\alpha-1, S_{f}(G)=s_{n+3} \leq \alpha \cdot 2^{n+3-j}-1<$ $\alpha \cdot 2^{n+3-j}$ 。

4. Necessary conditions for maximal IC-COLORINGS

Proposition 3.3 (a) shows that, for each $1 \leq i \leq n+3, s_{i-1}+1$ is an upper bound for x_{i} if f is an IC-coloring. An integer $x_{i} \in G$ with the property that $x_{i}=s_{j-1}+1$ if and only if $x_{i} \in f^{+}$. In the following, we shall sometimes denote
the members of f^{+}by boldfaced integers. Recall that $f^{+}=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{\left|f^{+}\right|}\right\}$, where $0<x_{i_{1}}<x_{i_{2}}<\cdots<x_{|f+|}<\infty$.
Proposition 4.1. Let f be a maximal IC-coloring. Then:
(a) $s_{i} \geq 13 \cdot 2^{i-4}$ for all $4 \leq i \leq n+3$.
(b) $\left(x_{1}, x_{2}\right)=(\mathbf{1}, \mathbf{2})$ and $x_{3}=3$ or 4 .
(c) (i) If $\left(x_{1}, x_{2}, x_{3}\right)=(\mathbf{1}, \mathbf{2}, 3)$ then $x_{4}=\mathbf{7}$ and $13 \leq x_{5} \leq \mathbf{1 4}$.
(ii) If $\left(x_{1}, x_{2}, x_{3}\right)=(\mathbf{1}, \mathbf{2}, \mathbf{4})$ then $6 \leq x_{4} \leq \mathbf{8}$.
(d) (i) If $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(\mathbf{1}, \mathbf{2}, 3, \mathbf{7})$ then $\left\{x_{1}, x_{3}\right\} \in \mathcal{B},\left\{x_{2}, x_{3}\right\} \in \mathcal{B},\left\{x_{1}, x_{4}\right\}$ $\in \mathcal{B}$ and $\left\{x_{2}, x_{4}\right\} \in \mathcal{B}$.
(ii) If $\left(x_{1}, x_{2}, x_{3}\right)=(\mathbf{1}, \mathbf{2}, \mathbf{4})$ then $\left\{x_{1}, x_{2}\right\} \in \mathcal{B}$ and $\left\{x_{1}, x_{3}\right\} \in \mathcal{B}$.

Proof. (a) If not, then $s_{i}<13 \cdot 2^{j-4}$ for some $4 \leq j \leq n+3$, by 3.3 (d), we would have $S_{f}(G)<13 \cdot 2^{n-1}<M\left(K_{1,2, n}\right)$.
(b) follows from $s_{0}=0,0<x_{1}<x_{2}<x_{3}$ and $x_{i} \leq s_{i-1}+1$ for $i=1,2,3$ (3.3(a)).
(c) (i) We have $s_{3}=6$ and, by (a), $s_{4} \geq 13$. As $x_{4}=s_{4}-s_{3}$ and $x_{4} \leq s_{3}+1$, $x_{4}=7$. Similarly, $s_{4}=13, s_{5} \geq 26, x_{5}=s_{5}-s_{4}$ and $x_{5} \leq s_{4}+1$ imply $13 \leq x_{5} \leq \mathbf{1 4}$.
(ii) We have $s_{3}=7$. Again, from $s_{4} \geq 13, x_{4}=s_{4}-s_{3}$ and $x_{4} \leq s_{3}+1$, we have $6 \leq x_{4} \leq \mathbf{8}$.
(d) We observe that $x_{i}>s_{i-1}$ for $i=1,2$.
(i) As $s_{2}<x_{i}+x_{3}<x_{4}$ and as $s_{3}<x_{i}+x_{4}<x_{5}$ for $i=1$, 2 , we have, by 3.2 (b)(i), $\left\{x_{i}, x_{j}\right\} \in \mathcal{B}$ for $1 \leq i \leq 2$ and $3 \leq j \leq 4$.
(ii) As $s_{1}<x_{1}+x_{2}<x_{3}$ and $s_{2}<x_{1}+x_{3}<x_{4}$, we have, $\left\{x_{1}, x_{k}\right\} \in \mathcal{B}$ for $2 \leq k \leq 3$.

Proposition 4.2. Let f be a maximal IC-coloring. Then $\left|f^{+}\right| \geq 4$.
Proof. To get a contradiction, we assume $\left|f^{+}\right| \leq 3$. According to 4.1, we have two cases to discuss.

Case 1. $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(\mathbf{1}, \mathbf{2}, 3, \mathbf{7})$.
Then $s_{4}=13$. As $\left|f^{+}\right| \leq 3$, by $3.2(\mathrm{c})(\mathrm{i})$ with $j=4$ and $k=n+3$, we would have $S_{f}(G)=s_{n+3} \leq 13 \cdot 2^{n-1}<M\left(K_{1,2, n}\right)$, and f could not be maximal.
Case 2. $\left(x_{1}, x_{2}, x_{3}\right)=(\mathbf{1}, \mathbf{2}, \mathbf{4})$ and $6 \leq x_{4} \leq \mathbf{8}$.
If $x_{4}=6$ then $s_{4}=13$, as discussed above, f could not be maximal. If $x_{4}=8$ then $\left|f^{+}\right| \geq 4$ violating our assumption. Thus $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $(\mathbf{1}, \mathbf{2}, 4,7)$ should be true. We claim that $x_{5} \leq 11$. If not, we would have $s_{3}<x_{i}+x_{4}<x_{5}$, so that, by $3.2(\mathrm{~b})(\mathrm{i}),\left\{x_{i}, x_{4}\right\} \in \mathcal{B}$ for all $1 \leq i \leq 3$, and there would be at least two distinct members of x_{1}, x_{2}, x_{3} in the same partite set; on the other hand, $s_{1}<x_{1}+x_{2}<x_{3}$, $s_{2}<x_{k}+x_{3}<x_{4}(1 \leq k \leq 2)$ would imply $\left\{x_{i}, x_{j}\right\} \in \mathcal{B}$ for all $1 \leq i<j \leq 3$, so that x_{1}, x_{2}, x_{3} should be in different partite sets. Thus $x_{5} \leq 11$ should be true. But then $s_{5}<26$ and, by 4.1(a), f could not be maximal.

Proposition 4.3. Let f be a maximal IC-coloring such that $s_{4}=13$. Then:
(a) $x_{j}=13 \cdot 2^{j-5}\left(5 \leq j \leq i_{4}-1\right)$ and $x_{i_{4}}=\mathbf{1 3} \cdot \mathbf{2}^{\mathbf{i}_{4}-\mathbf{5}}+\mathbf{1}$.
(b) $s_{j}=13 \cdot 2^{j-4}\left(4 \leq j \leq i_{4}-1\right)$ and $s_{i_{4}}=13 \cdot 2^{i_{4}-4}+1$.
(c) $\left\{x, x_{j}\right\} \in \mathcal{B}$ for all $x \in\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right\}$ and all $5 \leq j \leq i_{4}$.

Proof. The existence of i_{4} follows from 4.2. We observe that $s_{4}=13$ implies $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(\mathbf{1}, \mathbf{2}, 3, \mathbf{7})$ or $(\mathbf{1}, \mathbf{2}, \mathbf{4}, 6)$ so that $i_{4} \geq 5$. Now, (a) follows from $s_{4}=13, x_{j}=s_{j}-s_{j-1}, s_{j} \geq 13 \cdot 2^{j-4}(4.1(\mathrm{a})), x_{j} \leq s_{j-1}$ if $5 \leq j \leq i_{4}-1$ and $x_{i_{4}} \in$ f^{+}. (b) follows from $s_{4}=13$ and (a). We prove (c) by a contradiction. If $x \sim x_{j}$ for some $x \in\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right\}$ and some $5 \leq j \leq i_{4}$, then, by (a), (b) and $3.3(\mathrm{~b})$, we would have $x_{j+1} \leq x+x_{j} \leq 7+\left(13 \cdot 2^{j-5}+1\right) \leq 13 \cdot 2^{j-5}+13 \cdot 2^{j-5}-5=13 \cdot 2^{j-4}-5$, and, by (b) and 4.1(a), $x_{j+1}=s_{j+1}-s_{j} \geq 13 \cdot 2^{j-3}-\left(13 \cdot 2^{j-4}+1\right)=13 \cdot 2^{j-4}-1>13 \cdot 2^{j-4}-5$ (note that $x_{j+1}=\infty$ if $j=i_{4}=n+3$).

Proposition 4.4. Let f be a maximal with $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(\mathbf{1}, \mathbf{2}, 3, \mathbf{7})$. Then:
(a) If $n=2$, then the partite sets, if they exist, are
(i) $\{\mathbf{7}\},\{\mathbf{1}, \mathbf{2}\},\{3, \mathbf{1 4}\}$, or
(ii) $\{\mathbf{1 4}\},\{\mathbf{1}, \mathbf{2}\},\{3, \mathbf{7}\}$.
(b) If $n \geq 3$, then the partite sets, if they exist, are $\{\mathbf{7}\},\{\mathbf{1}, \mathbf{2}\},\{3,13, \ldots, \mathbf{1 3}$. $\left.2^{\mathbf{n}-2}+1\right\}$.

Proof. By 4.1(d)(i), we have four cases to discuss depending on whether $\left\{x_{1}, x_{2}\right\} \in$ $\mathcal{B},\left\{x_{3}, x_{4}\right\} \in \mathcal{B}$ or not.

Case 1. $\left\{x_{1}, x_{2}\right\} \in \mathcal{B}$ and $\left\{x_{3}, x_{4}\right\} \in \mathcal{B}$.
Then, by $4.1(\mathrm{~d})(\mathrm{i}),\left\{x_{i}, x_{j}\right\} \in \mathcal{B}$ for all $1 \leq i<j \leq 4$, there would be more than three partite sets. Thus, this case can not occur.
Case 2. $\left\{x_{1}, x_{2}\right\} \in \mathcal{B}$ and $x_{3} \sim x_{4}$.
Then, by $4.1(\mathrm{~d})(\mathrm{i}), \mathbf{1}, \mathbf{2}, 3$ are in different partite sets, so are $\mathbf{1}, \mathbf{2}, \mathbf{7}$ for $x_{3} \sim x_{4}$. As $s_{4}=13$, by $4.3,\left\{x, x_{5}\right\} \in \mathcal{B}$ for all $x \in\{\mathbf{1}, \mathbf{2}, \mathbf{7}\}$, which is impossible for we have only three partite sets.
Case 3. $x_{1} \sim x_{2}$ and $\left\{x_{3}, x_{4}\right\} \in \mathcal{B}$.
Then by $4.1(\mathrm{~d})(\mathrm{i}), x_{1}, x_{3}, x_{4}$ are in different partite sets, so that P, Q,
R partition $\{\mathbf{1}, \mathbf{2}, 3, \mathbf{7}\}$ into

$$
\{\mathbf{7}\},\{\mathbf{1}, \mathbf{2}\},\{3\} .
$$

By 4.3(c), we have $3 \sim x_{5} \sim x_{6} \sim \cdots \sim x_{i_{4}}$.
Case $3.1\left\{3, x_{5}, x_{6}, \ldots, x_{i_{4}}\right\} \subseteq Q$.
Then $P=\{\mathbf{7}\}, Q=\{3, \mathbf{1 4}\}, R=\left\{\mathbf{1}, \mathbf{2}, x_{6}, \ldots, x_{n+3}\right\}$. We claim that $n=2$ and (i) will be obtained. If $n>2$, we would have $x_{2} \sim x_{6}$, so that, by 3.3 (c), either $s_{6} \leq 2 \cdot s_{5}-x_{2}=2 \cdot 27-\mathbf{2}=$ $52=13 \cdot 2^{2}$ or $s_{7} \leq 3 \cdot s_{5}+2+x_{2}=3 \cdot 27+2+\mathbf{2}=85<13 \cdot 2^{3}$, thus, by 4.1(a), we would have $s_{6}=13 \cdot 2^{2}$ and $x_{6}=s_{6}-s_{5}=25$. As $s_{6}<13 \cdot 2^{2}+1 \leq M\left(K_{1,2,3}\right), x_{7}$ should exist, and, by $3.3(\mathrm{c})$ again, we would have either $s_{7} \leq 2 \cdot s_{6}-x_{2}=2 \cdot 13 \cdot 2^{2}-\mathbf{2}<13 \cdot 2^{3}$ or $s_{8} \leq 3 \cdot s_{6}+2+x_{2}=3 \cdot 13 \cdot 2^{2}+2+2<13 \cdot 2^{4}$, which would violate $4.1(\mathrm{a})$. Hence (i) is obtained.

Case $3.2\left\{3, x_{5}, x_{6}, \ldots, x_{i_{4}}\right\} \nsubseteq Q$.
Then $P=\{\mathbf{7}\}, Q=\{\mathbf{1}, \mathbf{2}\}, R=\left\{3, x_{5}, x_{6}, \ldots, x_{n+3}\right\}$. We claim that $i_{4}=n+3$. If not, we would have $x_{i_{4}} \sim x_{i_{4}+1}$, so that, by $3.3(\mathrm{c})$ with $i=i_{4}$ and $j=i_{4}+1$ and by 4.3, either $s_{i_{4}+1} \leq 2 \cdot s_{i_{4}}-x_{i_{4}}=2 \cdot\left(13 \cdot 2^{i_{4}-4}+1\right)-\left(\mathbf{1 3} \cdot \mathbf{2}^{i_{4}-5}+\mathbf{1}\right)=$ $13 \cdot 2^{i_{4}-3}-13 \cdot 2^{i_{4}-5}+1<13 \cdot 2^{i_{4}-3}$ or $s_{i_{4}+2} \leq 3 \cdot s_{i_{4}}+2+x_{i_{4}}=$ $3 \cdot\left(13 \cdot 2^{i_{4}-4}+1\right)+2+\left(\mathbf{1 3} \cdot \mathbf{2}^{i_{4}-5}+\mathbf{1}\right)=3 \cdot 13 \cdot 2^{i_{4}-4}+13 \cdot 2^{i_{4}-5}+6<$ $13 \cdot 2^{i_{4}-2}$, thus, by $4.1(\mathrm{a}), f$ could not be maximal. Hence (b) is obtained. (We observe that (i) is also obtained in this case if $n=2$.)
Case 4. $x_{1} \sim x_{2}$ and $x_{3} \sim x_{4}$.
Then by 4.3 (c) P must be $\left\{x_{i_{4}}\right\}$, so we have the following two cases: $P=\{\mathbf{1 4}\}, Q=\{\mathbf{1}, \mathbf{2}\}, R=\left\{3, \mathbf{7}, x_{6}, \ldots, x_{n+3}\right\}$ or $P=\{\mathbf{1 4}\}, Q=$ $\{3, \mathbf{7}\}, R=\left\{\mathbf{1}, \mathbf{2}, x_{6}, \ldots, x_{n+3}\right\}$. A similar argument in Case 3.1 shows that, in each case, $n=2$, so that (ii) is the only possibility.

Proposition 4.5. Let f be maximal and $\left(x_{1}, x_{2}, x_{3}\right)=(\mathbf{1}, \mathbf{2}, 4)$. Then:
(a) If $x_{2} \sim x_{3}$, then $x_{4}=6$ and
(i) $x_{5}=13$ if $i_{4}>5$,
(ii) $x_{5}=14$, if $i_{4}=5$,
(iii) $\left\{x_{2}, x_{4}\right\} \in \mathcal{B}$.
(b) If $\left\{x_{2}, x_{3}\right\} \in \mathcal{B}$ then
(i) x_{1}, x_{2}, x_{3} are in different partite sets,
(ii) $x_{4}=8$,
(iii) $x_{3} \sim x_{4}$,
(iv) $x_{5}=12$,
(v) $\left\{x_{3}, x_{5}\right\} \in \mathcal{B}$.

Proof. (a) If $x_{2} \sim x_{3}$, by 3.3(b) and 4.1(c)(ii), $x_{4} \leq x_{2}+x_{3}=6$ and $6 \leq x_{4} \leq \mathbf{8}$, so that $x_{4}=6$. From 4.3, (i) and (ii) follow. (iii) follows from $3.2(\mathrm{~b})(\mathrm{i})$ for $x_{2} \in f^{+}$and $s_{3}<x_{2}+x_{4}<x_{5}$.
(b) (i) follows from $\left\{x_{2}, x_{3}\right\} \in \mathcal{B}$ and 4.1(d)(ii).
(ii) By 4.1(c)(ii), it suffices to prove that $x_{4} \neq 6$ and $x_{4} \neq 7$. If $x_{4}=6$, then, by $4.3(\mathrm{c}),\left\{x, x_{5}\right\} \in \mathcal{B}$ for all $x \in\{\mathbf{1}, \mathbf{2}, \mathbf{4}\}$ which contradicts (i). If $x_{4}=7$, then, by $3.3(\mathrm{~b})$ with $1 \leq i \leq 3$ and $j=4, x_{5} \leq x_{3}+x_{4}=11$, so that $s_{5}<26$ violating 4.1(a).
(iii) By (i), it suffices to prove that $\left\{x_{1}, x_{4}\right\} \in \mathcal{B}$ and $\left\{x_{2}, x_{4}\right\} \in \mathcal{B}$. Suppose, to the contrary, that $x_{1} \sim x_{4}$ or $x_{2} \sim x_{4}$, then, by $3.3(\mathrm{~b})$ again, $x_{5} \leq$ $x_{2}+x_{4}=10$, so that $s_{5}<26$, again, violating 4.1(a).
(iv) By (iii) and $3.3(\mathrm{~b})$, we have $x_{5} \leq x_{3}+x_{4}=12$. By 4.1 (a) with $i=5$, we have $x_{5}=s_{5}-s_{4} \geq 26-15=11$. It follows that $11 \leq x_{5} \leq 12$. To prove $x_{5}=12$, let us assume $x_{5}=11$, namely, $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=$ $(\mathbf{1}, \mathbf{2}, \mathbf{4}, \mathbf{8}, \mathbf{1 1})$. Then $x_{6} \in G$ for otherwise we would have $S_{f}(G)=$ $s_{5}=26<M\left(K_{1,2,2}\right)$. By (i), $x_{i} \sim x_{6}$ for some $1 \leq i \leq 3$, so that, by $3.3(\mathrm{c})$ with $j=6$, either $s_{6} \leq 2 \cdot s_{5}-x_{i}<2 \cdot s_{5}=13 \cdot 2^{2}$ or
$s_{7} \leq 3 \cdot s_{5}+2+x_{i} \leq 3 \cdot 26+2+4<13 \cdot 2^{3}$, thus f could not be maximal by 4.1 (a). Hence $x_{5}=12$.
(v) By 4.1(a), we have $x_{6}=s_{5}-s_{5} \geq 13 \cdot 2^{2}-27=25$, so that $s_{4}<$ $x_{3}+x_{5}<x_{6}$, thus, by $3.2(\mathrm{~b})(\mathrm{i}),\left\{x_{3}, x_{5}\right\} \in \mathcal{B}$.

Proposition 4.6. Let f be maximal, $\left(x_{1}, x_{2}, x_{3}\right)=(\mathbf{1}, \mathbf{2}, 4)$ and $x_{1} \in R$. Then:
(a) $4 \leq i_{4} \leq 5$.
(b) $P=\{\mathbf{2}\}, Q=\{\mathbf{4}, \mathbf{8}\},\{\mathbf{1}, 12\} \subseteq R$ if $i_{4}=4$.
(c) $P=\{\mathbf{1 4}\}, Q=\{\mathbf{2}, \mathbf{4}\},\{\mathbf{1}, 6\} \subseteq R$ if $i_{4}=5$.
(d) $x_{1} \sim x_{j}(6 \leq j \leq n+3)$.
(e) $s_{j}=13 \cdot 2^{j-4}+1(5 \leq j \leq n+3)$.
(f) $x_{j}=13 \cdot 2^{j-5}(6 \leq j \leq n+3)$.

Proof. (a) By 4.5, it suffices to show that $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \neq(\mathbf{1}, \mathbf{2}, \mathbf{4}, 6,13)$. If not, then $s_{4}=13$, so that, by 4.1 and $4.5,\left\{x_{1}, x_{2}\right\} \in \mathcal{B}$ and $x_{2} \sim x_{3}$, and, by 4.3 and $4.5,\left\{x_{1}, x_{i_{4}}\right\} \in \mathcal{B},\left\{x_{2}, x_{i_{4}}\right\} \in \mathcal{B}$ and $x_{5} \sim x_{6} \sim \cdots \sim x_{i_{4}}$ with $i_{4} \geq 6$, we would have
(i) $x_{1}, x_{2}, x_{i_{4}}$ are in different partite sets,
(ii) $x_{2} \sim x_{3}$ and $x_{5} \sim x_{i_{4}}$,
thus $P=\left\{x_{1}\right\}$, which contradicts $x_{1} \in R$.
(b) If $i_{4}=4$, then, by $4.5,\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(\mathbf{1}, \mathbf{2}, \mathbf{4}, \mathbf{8}, 12)$, so that, by $4.5(\mathrm{~b})$ and $x_{1} \in R, P=\{\mathbf{2}\}, Q=\{\mathbf{4}, \mathbf{8}\}$ and $\{\mathbf{1}, 12\} \subseteq R$.
(c) If $i_{4}=5$, then, by $4.5,\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(\mathbf{1}, \mathbf{2}, \mathbf{4}, 6, \mathbf{1 4})$, so that, by 4.1 (d)(ii), 4.3(c), 4.5(a) and $x_{1} \in R, P=\{\mathbf{1 4}\}, Q=\{\mathbf{2}, \mathbf{4}\}$ and $\{\mathbf{1}, 6\} \subseteq R$.
(d) follows from (a)-(c).
(e) By (a)-(c), $s_{5}=27$. Suppose we have $s_{j-1} \leq 13 \cdot 2^{j-5}+1$ for some $6 \leq j \leq$ $n+3$, then, by (d) and 3.3 (c), either $s_{j} \leq 2 \cdot s_{j-1}-x_{1} \leq 2 \cdot\left(13 \cdot 2^{j-5}+1\right)-\mathbf{1}=$ $13 \cdot 2^{j-4}+1$ or $s_{j+1} \leq 3 \cdot s_{j-1}+2+x_{1} \leq 13 \cdot 2^{j-4}+13 \cdot 2^{j-5}+6<13 \cdot 2^{j-3}$, so that, by 4.1 (a) with $i=j+1$, we have $s_{j} \leq 13 \cdot 2^{j-4}+1$ and the equality holds only if $s_{j-1}=13 \cdot 2^{j-5}+1$. As f is maximal, $s_{n+3}=M\left(K_{1,2, n}\right) \geq 13 \cdot 2^{n-1}+1$, we must have $s_{n+3}=13 \cdot 2^{n-1}+1$ and each $s_{j}=13 \cdot 2^{n-4}+1(5 \leq j \leq n+3)$.
(f) follows from (e) and $x_{j}=s_{j}-s_{j-1}$.

Proposition 4.7. Let f be a maximal $I C$-coloring and $\left(x_{1}, x_{2}, x_{3}\right)=(\mathbf{1}, \mathbf{2}, \mathbf{4})$. Then the partite sets, if they exist, are in the following list.
(a) If $n=2$, then there are four possibilities:
(i) $\{\mathbf{1}\},\{\mathbf{2}, \mathbf{4}\},\{6, \mathbf{1 4}\}$.
(ii) $\{\mathbf{1 4}\},\{\mathbf{2}, \mathbf{4}\},\{\mathbf{1}, 6\}$.
(iii) $\{\mathbf{1}\},\{\mathbf{4}, \mathbf{8}\},\{\mathbf{2}, 12\}$.
(iv) $\{\mathbf{2}\},\{\mathbf{4}, \mathbf{8}\},\{\mathbf{1}, 12\}$.
(b) If $n \geq 3$, then there are three possibilities:
(i) $\{\mathbf{1}\},\{\mathbf{2}, \mathbf{4}\},\left\{6,13,13 \cdot 2, \ldots, 13 \cdot 2^{n-3}, \mathbf{1 3} \cdot \mathbf{2}^{\mathbf{n}-\mathbf{2}}+\mathbf{1}\right\}$.
(ii) $\{\mathbf{1 4}\},\{\mathbf{2}, \mathbf{4}\},\left\{\mathbf{1}, 6,13 \cdot 2, \ldots, 13 \cdot 2^{n-2}\right\}$.
(iii) $\{\mathbf{2}\},\{\mathbf{4}, \mathbf{8}\},\left\{\mathbf{1}, 12,13 \cdot 2, \ldots, 13 \cdot 2^{n-2}\right\}$.

Consequently, $S_{f}(G)=13 \cdot 2^{n-1}+1$.

Proof. By 4.5, we have two cases to discuss.
Case 1. $x_{2} \sim x_{3}$.
Then $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(\mathbf{1}, \mathbf{2}, 4,6)$ and $s_{4}=13$. By 4.1(d)(ii), 4.2 and 4.3(c), $\left\{x_{1}, x_{2}\right\} \in \mathcal{B},\left\{x_{1}, x_{i_{4}}\right\} \in \mathcal{B}$ and $\left\{x_{2}, x_{i_{4}}\right\} \in \mathcal{B}$, so that x_{1}, x_{2}, $x_{i_{4}}$ are in different partite sets and, by $4.5(\mathrm{a})(\mathrm{iii}),\left\{x_{2}, x_{4}\right\} \in \mathcal{B}$, thus P, Q, R partition the set $\left\{\mathbf{1}, \mathbf{2}, \mathbf{4}, 6, x_{i_{4}}\right\}$ into (note that we are now in the case $\mathbf{2 \sim 4}$)

$$
\{\mathbf{1}\},\{\mathbf{2}, \mathbf{4}\},\left\{6, x_{i_{4}}\right\} \text { or }\left\{x_{i_{4}}\right\},\{\mathbf{1}, 6\},\{\mathbf{2}, \mathbf{4}\} .
$$

It follows that $P=\{\mathbf{1}\}$ or $P=\left\{x_{i_{4}}\right\}$.
Case 1.1 $P=\{1\}$, and $n=2$.
Then, by $4.5(\mathrm{a})(\mathrm{ii})$, we obtain (a)(i).
Case 1.2 $P=\{1\}$, and $n \geq 3$.
Then, by 4.3 and $i_{4}=n+3$, we obtain (b)(i). (The proof of $Q=\{\mathbf{2}, \mathbf{4}\}$ and $i_{4}=n+3$ is similar to the proof of $i_{4}=n+3$ in the case 3 contained in the proof of 4.4.)
Case 1.3 $P=\left\{x_{i_{4}}\right\}$, and $n=2$.
Then, by 4.5(a)(ii), we obtain (a)(ii).
Case 1.4 $P=\left\{x_{i_{4}}\right\}$, and $n \geq 3$.
Then, by 4.3(c), $x_{i_{4}}=x_{5}$, so that, $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(\mathbf{1}, \mathbf{2}, \mathbf{4}$, $6, \mathbf{1 4})$. We claim that $\mathbf{1} \sim x_{6}$. If not, then $\mathbf{4} \sim x_{6}$, so that, by $3.3(\mathrm{c})$, either $s_{6} \leq 2 \cdot s_{5}-4=2 \cdot 27-4<13 \cdot 2^{2}$ or $s_{7} \leq$ $3 \cdot s_{5}+2+\mathbf{4}=3 \cdot 27+6<13 \cdot 2^{3}$, which contradicts 4.1(a). Thus $\mathbf{1} \in R$, and, by $4.6(\mathrm{f})$, we obtain (b)(ii).
Case 2. $\left\{x_{2}, x_{3}\right\} \in \mathcal{B}$.
Then, by $4.5(\mathrm{~b}),\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(\mathbf{1}, \mathbf{2}, \mathbf{4}, \mathbf{8}, 12), x_{1}, x_{2}, x_{3}$ are in different partite sets, and $x_{3} \sim x_{4}$ and $\left\{x_{3}, x_{5}\right\} \in \mathcal{B}$, so that P, Q, R partition $\{\mathbf{1}, \mathbf{2}, \mathbf{4}, \mathbf{8}, 12\}$ into

$$
\{1\},\{\mathbf{4}, \mathbf{8}\},\{\mathbf{2}, 12\} \text { or }\{\mathbf{2}\},\{\mathbf{4}, \mathbf{8}\},\{\mathbf{1}, 12\}
$$

It follows that $P=\{\mathbf{1}\}$ or $P=\{\mathbf{2}\}$.
Case 2.1 $P=\{1\}$, and $n=2$.
Then (a)(iii) is obtained.
Case 2.2 $P=\{1\}$, and $n \geq 3$.
Then, $x \sim x_{6}$ for some $x \in\{\mathbf{2}, \mathbf{4}, \mathbf{8}\}$ so that, by 3.3(c), either $s_{6} \leq 2 \cdot s_{5}-x \leq 2 \cdot 27-\mathbf{2}=13 \cdot 2^{2}$ or $s_{7} \leq 3 \cdot s_{5}+2+x \leq$ $3 \cdot 27+2+8<13 \cdot 2^{3}$, thus, by 4.1(a), we have $s_{6}=13 \cdot 2^{2}$. As $M\left(K_{1,2,3}\right) \geq 13 \cdot 2^{2}+1$, we see that $n \geq 4$, otherwise we would have $S_{f}(G)=s_{6}<M\left(K_{1,2,3}\right)$, and that $x \sim x_{7}$ for some $x \in\{\mathbf{2}, \mathbf{4}, \mathbf{8}\}$ for $P=\{\mathbf{1}\}$. By 3.3 (c) again, either $s_{7} \leq 2 \cdot s_{6}-x \leq$ $2 \cdot 13 \cdot 2^{2}-\mathbf{2}<13 \cdot 2^{3}$ or $s_{8} \leq 3 \cdot s_{6}+2+x \leq 3 \cdot 13 \cdot 2^{2}+2+\mathbf{8}<13 \cdot 2^{4}$, which contradicts 4.1(a). Therefore, this case can not occur.
Case 2.3 $P=\{\mathbf{2}\}$, and $n=2$.
Then, (a)(iv) is obtained.

Case 2.4 $P=\{\mathbf{2}\}$, and $n \geq 3$.
By the same argument in case 1.4 , we have $\mathbf{1} \sim x_{6}$ and $\mathbf{1} \in R$, so that, by 4.6(f), we get (b)(iii).

5. IC-INDICES WITH THEIR MAXIMAL IC-COLORINGS

If $n=2$, that is, $|Q|=|R|=2$, it is clear that if $\langle P, Q, R\rangle$ is a maximal ICcoloring then so is (P, R, Q) and conversely, thus we shall identify $\langle P, Q, R\rangle$ with (P, R, Q) if $|Q|=|R|$. The following theorem is our main result.

Theorem 5.1.

(a) The IC-index $M\left(K_{1,2, n}\right)$ of the complete tripartite graph $K_{1,2, n}(n \geq 2)$ is $M\left(K_{1,2, n}\right)=13 \cdot 2^{n-1}+1$.
(b) When $n \geq 3$, there are exactly four maximal IC-colorings of $K_{1,2, n}$:
(i) $\left\langle\{\mathbf{7}\},\{\mathbf{1}, \mathbf{2}\},\left\{3,13, \ldots, 13 \cdot 2^{n-3}, \mathbf{1 3} \cdot \mathbf{2}^{\mathbf{n}-\mathbf{2}}+\mathbf{1}\right\}\right\rangle$,
(ii) $\left\langle\{\mathbf{1}\},\{\mathbf{2}, \mathbf{4}\},\left\{6,13, \ldots, 13 \cdot 2^{n-3}, \mathbf{1 3} \cdot \mathbf{2}^{\mathbf{n}-\mathbf{2}}+\mathbf{1}\right\}\right\rangle$,
(iii) $\left\langle\{\mathbf{1 4}\},\{\mathbf{2}, \mathbf{4}\},\left\{\mathbf{1}, 6,13 \cdot 2, \ldots, 13 \cdot 2^{n-2}\right\}\right\rangle$,
(iv) $\left\langle\{\mathbf{2}\},\{\mathbf{4}, \mathbf{8}\},\left\{\mathbf{1}, 12,13 \cdot 2, \ldots, 13 \cdot 2^{n-2}\right\}\right\rangle$,
and, there are exactly six maximal IC-colorings of $K_{1,2,2}$:
(i) $\langle\{\mathbf{7}\},\{\mathbf{1}, \mathbf{2}\},\{3, \mathbf{1 4}\}\rangle$,
(ii) $\langle\{\mathbf{1}\},\{\mathbf{2}, \mathbf{4}\},\{6, \mathbf{1 4}\}\rangle$,
(iii) $\langle\{\mathbf{1 4}\},\{\mathbf{2}, \mathbf{4}\},\{\mathbf{1}, 6\}\rangle$,
(iv) $\langle\{\mathbf{2}\},\{\mathbf{4}, \mathbf{8}\},\{\mathbf{1}, 12\}\rangle$,
(v) $\langle\{\mathbf{1 4}\},\{\mathbf{1}, \mathbf{2}\},\{3, \mathbf{7}\}\rangle$,
(vi) $\langle\{\mathbf{1}\},\{\mathbf{2}, 12\},\{\mathbf{4}, \mathbf{8}\}\rangle$.

Proof. (a) It follows from 4.4 and 4.7 that $S_{f}(G)=13 \cdot 2^{n-1}+1$ if f is a maximal IC-coloring. The existence of maximal IC-colorings may follow from our example in section 2.
(b) A similar argument in our example can be used to prove that each partite sets listed in 4.4 and 4.7 is an IC-coloring and hence maximal. They are the maximal IC-colorings of $K_{1,2, n}$.

References

[1] R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly 87 (1980), 206210.
[2] J. A. Gallian, A survey: recent results, conjectures, and open problems in labeling graphs, J. Graph Theory 13 (1989), 491-504.
[3] R. Guy, The postage stamp problem, Unsolved Problems in Number Theory, second ed., Springer, New York, 1994, pp. 123-127.
[4] R. L. Heimer and H. Langenbach, The stamp problem, J. Recreational Math. 7 (1974), 235-250.
[5] L. M. Liu and S. N. Lee, On IC-Colorings for Complete partite graphs, J. Nonlinear Convex Anal. 12 (2011), 103-111.
[6] W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969), 377-380.
[7] S. G. Penrice, Some new graph labeling problems: a preliminary report, DIMACS Tech. Rep. 95-26 (1995), 1-9.
[8] E. Salehi, S. M. Lee and M. Khatirinejad, IC-Colorings and IC-Indices of graphs, Discrete Mathematics 299 (2005), 297-310.
[9] C. L. Shiue and H. L. Fu, The IC-Indices of complete bipartite graphs, The Electronic Journal of Combinatorics 15 (2008), \#R43.

Manuscript received July 21, 2012
revised October 11, 2012
Shyh-Nan Lee
Department of Applied Mathematics Chung Yuan Christian University, Taiwan (R.O.C.)
E-mail address: nan@math.cycu.edu.tw
Li-Min Liu
Department of Applied Mathematics Chung Yuan Christian University, Taiwan (R.O.C.)
E-mail address: lmliu@math.cycu.edu.tw

[^0]: 2010 Mathematics Subject Classification. 05C78.
 Key words and phrases. IC-coloring, IC-index, complete tripartite graph.

 * Corresponding Author. This research was supported by NSC grant 100-2115-M-033-003.

