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THE MAXIMAL IC-COLORINGS OF K3,

SHYH-NAN LEE AND LI-MIN LIU*

ABSTRACT. The IC-index of a connected graph G is denoted by M (G). In this
paper, we prove that M(Kja,) = 13-2""" 4 1, where n > 2 and give all the
maximal IC-colorings of Kj 2 5.

1. INTRODUCTION

If f is a positive integer-valued function on the vertex set V(G) of a connected
graph G, if Sy(H) denotes the sum >, v ) f(u) for IC-subgraphs (induced con-
nected subgraphs) H of G, and if for each integer a with 1 < a < Sf(G) there
is an IC-subgraph H of G such that o = Sy(H), then f is called an IC-coloring
of G. An IC-coloring of a connected graph G is maximal if it maximizes S;(G).
The IC-index of a connected graph G is the integer M (G) = S;(G) where f is any
maximal IC-coloring of G.

The problem of finding IC-indices and IC-colorings of finite graphs was introduced
by Salehi et al. in 2005 [8], and it can be considered as a derived problem of
the postage stamp problem in number theory, which has been extensively studies
[1, 2, 3, 4, 6]. Penrice proved that M(K,) = 2" — 1 and M(K;,) = 2" + 2 for
n > 2 [7]. Salehi et al. showed that M(Kz,) = 3-n%+1 for n > 2 [8]. Shiue
and Fu proved M (K, ,) = 3-2mT"2 —2m=2 4 2 for n > m > 2 [9]. Liu and Lee
showed that M(K;1,) = 3-2"+ 1 for n > 1 [5]. In this paper, we prove that
M(Ki2,) =13 - 2n=1 4 1, where n > 2, and give all the maximal IC-colorings of
Ki2n-

For convenience’ sake, we shall restrict our discussion to the complete tripartite
graphs K 2 ,. It is useful to consider both concepts of sequences of numbers x1, 2,

. and partial sums sg, s1, S2, ..., where sp =0, s; = x1+---+x; and x; = s;—S;_1
fori =1, 2, .... Roughly speaking, finding M (K 2,) is equivalent to maximizing
Sp+s = &1+ -+ Tnpes subject to the sequences of positive integers x1, ..., x3 with

some constraints.

The rest of the paper is organized as follows. In section 2, we introduce the
notations that reformulate our notions in terms of number theory as well as graph
theory. This section also gives the lower bounds of s;, in particular, of s,.3 by
an example of IC-coloring of K2 ,. In section 3, we study some basic properties
of colorings, which are also true for any one-to-one coloring of any finite connected
graph (see 3.2 and 3.3). In section 4, we discuss the necessary conditions for maximal
IC-colorings of K7 2, and list all the possibilities. In section 5, we give the maximal
IC-colorings of K o, which shows that M (K;2,) = 132"t +1 for n > 2.
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2. NOTATIONS AND DEFINITIONS

We shall fix the following notations and definitions throughout this paper.

Notations.

(a) f is a positive integer-valued function on G;

(b) G =PUQU R where P, Q and R are disjoint sets of cardinalities |P| = 1,
|Q| = 2, and |R| = n with 2 < n < oo;

(¢) Bis the collection of all nonempty subsets H of G such that H € P, H  Q,
and H ¢ R whenever |H| > 2;

(d) ~ is arelation on G such that u ~ v if and only if {u,v} C P or {u,v} C Q
or {u,v} C R;

(e) Sy is the function on B defined by Sy(H) = >, cp f(u) for all H € B.
When f is one-to-one, that is, f(u) # f(v) if u, v € G and u # v, by identifying u
with f(u) for all u € G, we shall write

(f) f=(P,Q,R) where P, Q and R are disjoint sets of positive integers;

(g) G ={x1,z2, ..., Tpy3} where G = PUQUR and 0 < 21 < 29 < -+ <

Tpt3 < 005

(J Tn44 = 005
k) ff={x; € G|z =si-1+1} = {miy, Tig, -, xilfﬂ} where 0 < z;, <
iy <o <@y, <00,

Intuitively, f is a coloring on a complete tripartite graph G = K1 2, which has three
partite sets P, Q) and R, B is the collection of all IC-subgraphs (induced connected
subgraphs) of G, {u, v} € B means that u and v are adjacent, and u ~ v if and only
if u and v are in the same partite set. We shall use these terminologies freely.
Definitions.

(a) We say that f produces o if o = Sy(H) for some H € B;

(b) We call f an IC-coloring of G if f produces all the integers o with 1 < o <
St(G);

(c) A}; IC-coloring f of G is maximal if it maximizes S;(G), that is, S¢(G) =
max{Sy(G) | g is an IC-coloring of G'};

(d) The IC-index of G is the integer M(G) = S¢(G) where f is any maximal
IC-coloring of G.

The following example illustrates some notations and definitions introduced above.

Example. Let P = {x2}, Q@ = {z3, x4}, and R = {x1, =5, ..., Tn4+3}, where
vy =120 =2 23 =4, 24 =8, 5 = 12, ; = 13-27° (6 < i < n+3). Then
f = (P, Q, R) represents a one-to-one coloring on the complete tripartite graph
G=PUQUR,and P B, Q ¢ B, 1 ~ z; (5 <i<n+3). We shall show that
the following are true:

(a) G:{xl,xg,...,xn+3},0<x1<x2<---<xn+3<xn+4:oo.
(b) sp=0,51=1,8,=3,53=7,5,=15,8=13-2"44+1(5<i<n+3).
(C) f+:{.%'1,l'2, xs3, :U4}7 i1:17 i2:27 Z.3:37 and Z4:4
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(d) z; <s1+1(1<i<n+3).

() 0==s0 <81 < <8ppg=5;(G)=13-2""1 +1.
(f) f produced « for all integer o with 1 < o < S¢(G).
(g) f is an IC-coloring of G.

It is clear that (a)-(e) are true, and that (f) implies (g), so we need only prove (f).
To see (f), let & be an integer such that 1 < a < S¢(G). Then by (e), there is a
unique j; such that sj;;_1+1 < a < s;,, it follows from this and, by (d) with i = jy,
zj, <sj—1+1that 0 <a—xj <sj-1. If a—x; >0, then, by (d) and (e) again,
there is a unique jo, j2 < j1, such that s;, _1+1 < a—z;, < sj, and z;, < sj,—1+1, 50
that 0 < o — 2z, — xj, < sj,—1. Since sg = 0, by continuing in this way if necessary,
we obtain av = x;, + --- + x;, for some integer 1 < j, < --- < jo < j1 <n+3
with 7 > 1. Let H = {zj,, ..., z;}. If r =1 then H € B and a = Sf(H), so
that f produced « and we are done. Now assume that » > 1. If H C @ then
a =ax3+x4 = x5 = Sp({ws}) so that f produces o; if H C R and if z; is the
smallest integer in H other than x;, then ¢ > 5, so that, by x5 = =3 + x4 and
i =si—1—1=x2+ -+ xi_y for 6 <i<n+3, wehave a = Sy(Q U (H — {z5}))
if i =5and a = Sp((H — {z;}) U{x2, 3, ..., x—1}) if 6 < i < n+ 3; finally, if
HZ Qand H¢Z R, then H e Bfor HZ P (|JH| =r > 1 and |P| = 1), so that
a = Sy(H) can be produced by f.

Remark. The example shows that M(G) = M(K;2,) > 13-2"71 + 1.

3. ONE-TO-ONE IC-COLORINGS

Proposition 3.1. Let f be a coloring of G. Then:
(a) |B| =2"F2 4 2nFl 4 2n 4 — 1.
(b) If Hy, K1, ..., Hy,, Ky, are 2m distinct members of B such that Sy(H;) =
S(K;) for all1 <i < m, then
(i) S¢(B—{Ki, ..., Kn}) = S¢(B).
(i) 1B] - m > |5(5)].
(iii) |B| —=m > S§(G), if f is an IC-coloring.
() If flu)=f(w), u#v, and if A={AC (G—{u,v})|AU{u} € B and AU
{v} € B}, then exactly one of the following five statements holds:
(i) {u, v} C Q with |A| = 2"
(ii) {u, v} C R with |A] = 2" + 271 4272 4 1,
(iii) PN {u, v} # @ and Q N {u, v} # @ with |[A| =27 +2" "1 ... + 1.
(iv) PN {u, v} # @ and RN {u, v} # @ with |A] = 2" + 271 + 1.
(v) QN {u, v} # 3 and RN {u, v} # @ with |A| = 2" + 2771,
(d) If f is an IC-coloring of G and if S§(G) > 2"+2 + 2" + 2"~ 4 then f is
one-to-one.
(e) If f is a maximal I1C-coloring of G then f is one-to-one.

Proof. (a) Let By = {H € B|P C H} and B, = {H € B|P € H}. Then
1By| = 21QUEl = 972 and, according to whether |H| = 1 or not, |Bs| =
Q| + |R]) + (219 — 1) - 2 — 1) = (2 +n) + (22 — 1) - (2" — 1). Now the
desired identity follows from |B| = |Bi| + |Ba.
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(b) By assumption, Sy maps B — {Kj, ..., K,,} onto its range S¢(B), so that
(i) holds. (ii) follows from (i) for Sy may not be one-to-one. If f is an IC-
coloring, then S¢(B) = {1, 2, ..., S¢(G)}, so that |S¢(B)| = Sf(G), and, by
(i), (iii) is true.

(c¢) If u ~ v then {u, v} C Q or {u, v} C R for |P| =1, and if {u, v} € B (the
negation of u ~ v) then u and v belong to different partite sets, so that we
have five cases to discuss:

Case 1. {u, v} C Q.
Then |A| = 2/PYEl = 27+1 and (i) follows.

Case 2. {u, v} C R.
Then |A] = (2/PVUQ1 — 1) . olfB~{wvl 4 {g}| = (28 —1)- 272+ 1
and (ii) follows.

Case 3. PN{u, v} # @ and Q N{u, v} # 2.
Then |A| = 21911 28 — 1) + |{@}| = 2" - (2" — 1) + 1 and (iii)
follows.

Case 4. PN{u, v} # @ and RN {u, v} # &.
Then |A] = (219 — 1) - 2lB-1 4 {2} = (22 -1)- 2" + 1 and
(iv) follows.

Case 5. Q@N{u, v} # @ and RN {u, v} # @.
Let Ay ={A € A|P C A} and Ay = {A € A|P ¢ A}. Then
|Ay| = 21QI=1 . olRI=1 — 92=1 . gn—1 apq |4y = (219171 — 1) .
2B 1)+ o} = (2271 —1)(2" ' —1) + 1. Thus |A| =
|A1| + |A2| = 2" + 2771 and (v) follows.

(d) If f is an IC-coloring of G such that f(u) = f(v) for some distinct v and
v in G, that is, we assume that f is not one-to-one. Then, by (c), |A| >
2 4 on L If A= {Aq, ..., Ay}, where m = |A|, and if H; = A; U {u} and
K; = A; U {v} for 1 < i < m, then, by (a) and (b), S¢(G) < [B| —m <
(2nt2ontlyonyp—1)—(2742771). Thus S¢(G) > 2" T2+ 2n+2n14p—1
is impossible.

(e) The example in the previous section shows that if f is maximal then S;(G) >
13-2n7 141 (= 2n 24 2ntlp on=l4 1) 5o that Sp(G)— (22427 +2" "1 4n) >
2" —n+1 >0, thus, by (d), f is one-to-one.

O

Remark. Our objective is to obtain the IC-index M(G) = M(Kj2,), thus we
want to find a maximal IC-coloring of G. Because of (e) in the above theorem, we
shall only consider those one-to-one coloring f = (P, @, R) of G in the rest of this

paper.
Proposition 3.2. Let f = (P, Q, R) be a coloring of G and « be an integer. Then:

(a) If sj—1 < a < xj41 for some 1 < j < n+ 3, then x; must be used in
producing o, that is, if « = S¢(H) then x; € H. (Note Ty 44 = 00.)
(b) If sj—1 <xij+x; <wjqp1 for some 1 <i<j<n+3, and Sy(H) = z; + xj,
then
(i) if x; > si—1 then H = {x;, x;};
(ii) if x; = sj—1 then H = {x;, x;} or H = {x1, ..., x;—1} U {x;}.
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(c) If sj <o for some 1 < j<n+3, and if j <k <n+3, then
(i) if x; < s5_1 for all j <i <k then s < o-2F77;

(ii) if i < si—1+ 1 for all j <i <k then s, < (a+1)-2F77 —1.

Proof. (a) sj—1 < a < zjy1 implies that H < {x1,...,z;_1} and H C
{{12‘1, ey J,‘j}.
(b) By (a), ; must be used in producing z; + x;. As S¢(H) = z; + x;, and as
Ty < Tig1 < -+ < xj_1, we see that H C {x1, ..., x;} U {x;}.

(i) If z; > s;—1 then S¢(H) > s;—1 + x; and we must have H = {z;, z;};
(i) z; = s;-1 then Sp(H) = x; +x; = (v1 + -+ + x;—1) + x;, so that
H = {517@'7 $j} or H= {33‘1, ceey xz;l} U {QS‘J}
(¢) (1) Ife;<si—1 (j<i<k)thens;=s;1+x; <2 5.1 (j<i<k)and
sj < a, from this recursive relation, it follows that s, < o - 2k=J,
(i) fo; <si1+1(j<i<k)thensj+1=si1+az;+1<2 (si.1+1)
(j <i<k)and s; +1 < a+1, it follows that s, + 1 < (a+1)-2k7
so that s < (a+ 1) - 2877,
Il

Proposition 3.3. Let f = (P, Q, R) be an IC-coloring of G. Then:

(a) ; < sj—1+1 foralll <i<n+3.

(b) If z; € fT, if xj > sj_1, and if x; ~ xj for some 1 < i < j < n+ 3, then
Tj+1 < x; + Zj-

(¢) If z; € T and if x; ~ x; for some 1 < i < j < n+ 3, then either s; <
2-8j_1—x; or Sj41 <381+ 2+ ;.

(d) If o is an integer and if s; < a for some 1 < j < n+ 3, then S¢(G) <
- 2n+37j‘

Proof. (a) Suppose, to get a contradiction, that z; > s;_1 + 1 for some 1 < j <
n+3, then s;_; < sj_1 +1 < xj41, so that, by 3.2(a), x; should be used in
producing s;_1 + 1, which contradicts z; > s;_1 + 1.

(b) Suppose not, we would have, z; = s,-1 + 1, ; > sj—1, ; ~ zj, and
Tjy1 > x; + xj, so that ; > s;—1 and s;_1 < x; +x; < w41, thus, by
3.2(b)(i), {z, x;} € B should hold for f is an IC-coloring, which would
violate x; ~ x;.

(c) The contrapositive of 3.2(b)(i) shows that either z; + 2; < sj_1 or z;41 <
x;+x;. The first inequality implies that s; = s;_1+2; < sj_14+(sj1—x;) =
2-sj_1 — x;. The second inequality and (a) imply that s;11 = sj—1 +z; +
Tjp1 < sjoitxjH(xita;) < sjoi+(sj—1+1)+ai+(sj—1+1) = 3-sj_14+2+;.

(d) If s an integer, s; < a if and only if s; < a—1, so that, by (a) and 3.2(c)(ii)
with k = n + 3 and replacing o by o — 1, S§(G) = spy3 < - 27377 — 1 <
- on+3—j

[l

4. NECESSARY CONDITIONS FOR MAXIMAL IC-COLORINGS

Proposition 3.3(a) shows that, for each 1 < ¢ < n+ 3, s;_; + 1 is an upper
bound for x; if f is an IC-coloring. An integer z; € G with the property that
z; = sj_1 + 1 if and only if z; € f*. In the following, we shall sometimes denote
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the members of f* by boldfaced integers. Recall that f* = {z;, i, ..., 254},
where 0 < z;;, <y, < -+ < Z|p+) < 00.

Proposition 4.1. Let f be a mazimal I1C-coloring. Then:
(a) s; >13-2"% forall4 <i<n+3.
(b) (z1,22) = (1,2) and z3 = 3 or 4.

© ()
(i)
@ (@)

(i)

If (x1,m9,23) = (1,2,3) then x4 =7 and 13 < x5 < 14.

If (x1,m9,23) = (1,2,4) then 6 < x4y < 8.

If (x1, 9, x3,24) = (1,2,3,7) then {z1, z3} € B, {x2, 3} € B, {x1, x4}
€ B and {z2, x4} € B.

If (z1,29,23) = (1,2,4) then {x1, x2} € B and {z1, 23} € B.

Proof. (a) If not, then s; < 13-2974 for some 4 < j < n+3, by 3.3(d), we would
have S¢(G) < 13-2"1 < M(Ki2.).
(b) follows from sp = 0, 0 < z; < 9 < z3 and z; < s;_1 + 1 for ¢ =1, 2, 3

(3.3(a)).

(© (1)

(if)

We have s3 = 6 and, by (a), s4 > 13. As x4 = s4 — s3 and x4 < s3+ 1,
xq4 = 7. Similarly, s4 = 13, s5 > 26, x5 = s5 — s4 and x5 < s4+ 1 imply
13 < 25 < 14.

We have s3 = 7. Again, from s4 > 13, 4 = s4 — s3 and x4 < s3 + 1,
we have 6 < x4 < 8.

(d) We observe that z; > s;_1 for i =1, 2.

(i)
(i)

As so < xj+x3 < x4 and as s3 < x; + x4 < x5 for i = 1, 2, we have, by
3.2(b)(i), {zs, zj} e Bfor 1 <i<2and 3 <j <4,
As s1 < 1 + 9 < x3 and s < x1 + x3 < x4, we have, {x1, z} € B for
2<k<3.

]

Proposition 4.2. Let f be a maximal IC-coloring. Then |f| > 4.

Proof. To get a contradiction, we assume |f*| < 3. According to 4.1, we have two
cases to discuss.

Case 1.

Case 2.

(-rla L2, T3, 1'4) = <1a 2,3, 7)

Then s4 = 13. As |fT| < 3, by 3.2(c)(i) with j =4 and k = n + 3, we
would have S;(G) = sp43 < 13- 21 < M(K12,), and f could not be
maximal.

(21, w2, 3) = (1, 2, 4) and 6 < x4 < 8.

If 4 = 6 then s4 = 13, as discussed above, f could not be maximal. If
x4 = 8 then |fT| > 4 violating our assumption. Thus (z1, x2, T3, T4) =
(1, 2, 4, 7) should be true. We claim that x5 < 11. If not, we would
have s3 < x; + x4 < x5, so that, by 3.2(b)(i), {z;, z4} € B for all
1 < i < 3, and there would be at least two distinct members of x1,
T9, T3 in the same partite set; on the other hand, s1 < x1 + z9 < z3,
s < xp+ a3 < xq4 (1 <k < 2) would imply {x;, z;} € B for all
1 <i < j <3, so that x1, x9, x3 should be in different partite sets.
Thus x5 < 11 should be true. But then s5 < 26 and, by 4.1(a), f could
not be maximal.

g
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Proposition 4.3. Let f be a mazimal I1C-coloring such that s4 = 13. Then:
(a) 2; =13-207° (5<j <iy—1) and x;, = 13- 21475 4 1.
(b) s;=13-27"% (4 <j <ig—1) and s;, = 13- 20474 4 1.
(c) {z, zj} € B for all x € {x;,, ©i,, iy} and all 5 < j <y,

Proof. The existence of 74 follows from 4.2. We observe that s; = 13 implies
(z1, x2, 3, x4) = (1, 2, 3, 7) or (1, 2, 4, 6) so that iy > 5. Now, (a) follows from
sa =13, z; =sj—sj_1,8; > 13-277% (4.1(a)), z; < sj1if5 < j<iy—land z;, €
. (b) follows from s4 = 13 and (a). We prove (c) by a contradiction. If z ~ z; for
some = € {x;,, Ti,, Ti, } and some 5 < j < iy, then, by (a), (b) and 3.3(b), we would
have zj11 < x+x; < 7T+(13-2075+1) < 13-27°413.2/75 -5 = 13.2/74 -5, and, by
(b) and 4.1(a), zj41 = sj41—8; > 13-2073—(13.29744+1) = 13.2774 -1 > 13.2074 -5
(note that zj11 =00 if j =iy =n + 3). O

Proposition 4.4. Let f be a maximal with (x1, x2, x3, x4) = (1, 2, 3, 7). Then:
(a) If n =2, then the partite sets, if they exist, are

(1) {7} {1, 2}, {3, 14}, or
(ii) {14}, {1, 2}, {3, 7}.
(b) Ifn > 3, then the partite sets, if they exist, are {7}, {1, 2}, {3, 13, ..., 13-
2772 11},

Proof. By 4.1(d)(i), we have four cases to discuss depending on whether {z;, z2} €
B, {x3, x4} € B or not.

Case 1. {z1, 22} € B and {x3, 24} € B.
Then, by 4.1(d)(i), {zi, z;} € B for all 1 <1i < j < 4, there would be
more than three partite sets. Thus, this case can not occur.

Case 2. {z1, 2} € B and x3 ~ 4.
Then, by 4.1(d)(i), 1, 2, 3 are in different partite sets, so are 1, 2, 7 for
x3 ~ xyq. As s4 = 13, by 4.3, {z, x5} € B for all x € {1, 2, 7}, which is
impossible for we have only three partite sets.

Case 3. x1 ~ x9 and {z3, 24} € B.
Then by 4.1(d)(i), x1, 3, x4 are in different partite sets, so that P, @,
R partition {1, 2, 3, 7} into

{7}, {1, 2}, {3}

By 4.3(c), we have 3 ~ x5 ~ xg ~ -+ ~ x;,.
Case 3.1 {3, =5, ¢, ..., xi, } C Q.

Then P = {7}, Q = {3,14}, R = {1, 2, x4, ..., Tpy3}. We
claim that n = 2 and (i) will be obtained. If n > 2, we would
have x9 ~ g, so that, by 3.3(c), either s < 2-s5—x9 = 2-27—2 =
52=13-220rs7 <3-s5+2+13=3-27+2+2 =285 < 1323,
thus, by 4.1(a), we would have sg = 13-2% and z = s — 55 = 25.
Assg < 13-22+1< M (K 23), x7 should exist, and, by 3.3(c)
again, we would have either s7 < 2-s6—x9 = 2-13-22 -2 < 13-23
or sg <3-564+2+w0=3-13-224+2+2 < 13-2% which would
violate 4.1(a). Hence (i) is obtained.
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Case 3.2 {3, =5, 6, ..., Ti, } £ Q.
Then P = {7}, Q@ = {1,2}, R = {3, x5, s, ..., Tnt+3}. We
claim that ¢4 = n + 3. If not, we would have x;, ~ z;,11, so
that, by 3.3(c) with ¢ = i4 and j = iy + 1 and by 4.3, either
Sigp1 < 208, —xyy = 2+ (1320474 4 1) — (1832475 + 1) =
13-20473 —13.20475 41 < 13.243 or 55,40 < 3-8;, +2+ 1), =
3-(13-21474 4 1) +24+(13-247541) = 3.13.20474413.2475 4 6 <
13 - 2472 thus, by 4.1(a), f could not be maximal. Hence (b)
is obtained. (We observe that (i) is also obtained in this case if
n=2.)
Case 4. 1 ~ x9 and x3 ~ 24.

Then by 4.3(c) P must be {z;,}, so we have the following two cases:

P={14}, Q ={1,2}, R={3,7, z6, ..., Tpy3} or P = {14}, Q =

{3, 7}, R = {1, 2, x, ..., Tpt+3}. A similar argument in Case 3.1

shows that, in each case, n = 2, so that (ii) is the only possibility.

g

Proposition 4.5. Let f be mazimal and (x1, x2, x3) = (1, 2, 4). Then:

(a) If x9 ~ x3, then x4 =6 and
(i) o5 = 13 if ia > 5,
(i) x5 = 14, if i = 5,
(iii) {.TUQ, $4} € B.
(b) If {z2, x3} € B then
(i) x1, x2, x3 are in different partite sets,
(ii) x4 = 8,
(i)
(iv) @5 =12,
)
(

v) {z3, x5} € B.

a) If x9 ~ x3, by 3.3(b) and 4.1(c)(ii), z4 < x9+x3 =6 and 6 < x4 < 8,
so that z4 = 6. From 4.3, (i) and (ii) follow. (iii) follows from 3.2(b)(i) for
9 € fT and s3 < w9 + 24 < 5.

(b) (i) follows from {z2, 23} € B and 4.1(d)(ii).

(ii) By 4.1(c)(ii), it suffices to prove that x4 # 6 and x4 # 7. If 24 = 6,
then, by 4.3(c), {z, x5} € B for all x € {1, 2, 4} which contradicts (i).
If x4 = 7, then, by 3.3(b) with 1 <i <3 and j =4, x5 < x3+ 24 = 11,
so that s5 < 26 violating 4.1(a).

(iii) By (i), it suffices to prove that {x1, 4} € B and {x2, x4} € B. Suppose,
to the contrary, that z1 ~ x4 or e ~ x4, then, by 3.3(b) again, x5 <
x9 + x4 = 10, so that s; < 26, again, violating 4.1(a).

(iv) By (iii) and 3.3(b), we have z5 < x3 + x4 = 12. By 4.1(a) with i = 5,
we have x5 = s5 — s4 > 26 — 15 = 11. It follows that 11 < x5 < 12. To
prove x5 = 12, let us assume z5 = 11, namely, (z1, x2, x3, T4, T5) =
(1,2, 4,8,11). Then z¢ € G for otherwise we would have S¢(G) =
s5 = 26 < M(Ki122). By (i), ; ~ x¢ for some 1 < ¢ < 3, so that,
by 3.3(c) with j = 6, either s < 2 -85 —2; < 2-85 = 13-22 or
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s7<3-s54+2+x; <3-26+24+4 < 13-23, thus f could not be maximal
by 4.1(a). Hence x5 = 12.
(v) By 4.1(a), we have xg = s5 — s5 > 13- 22 — 27 = 25, so that s4 <
x3 + x5 < xg, thus, by 3.2(b)(i), {z3, x5} € B.
U

Proposition 4.6. Let f be maximal, (x1, x2, x3) = (1, 2, 4) and 1 € R. Then:
( ) 4 <y <5,

(b) P={2}, Q=1{4, 8}, {1,12} C R ifiy = 4.
(c) P={14}, Q ={2,4}, {1,6} C R ifiy = 5.
(d) 21~z (6<7<n+3).

(e) s, =13-2714+1 (5 <j<n+3).

(f) 2; =13-277° (6 <j <n+3).

Proof. (a) By 4.5, it suffices to show that (z1, x2, x3, 24, x5) # (1, 2, 4, 6, 13).
If not, then s4 = 13, so that, by 4.1 and 4.5, {x1, x2} € B and x2 ~ z3, and,
by 4.3 and 4.5, {x1, x;,} € B, {x2, x;,} € B and x5 ~ x5 ~ -+ ~ x;, with
14 > 6, we would have

(i) 21, we, x;, are in different partite sets,
(ii) o ~ x3 and x5 ~ x;,,
thus P = {1}, which contradicts z; € R.

(b) If iy = 4, then, by 4.5, (21, x2, 3, x4, v5) = (1, 2, 4, 8, 12), so that, by
4.5(b) and =1 € R, P = {2}, Q = {4, 8} and {1, 12} C R.

(c) If iy = 5, then, by 4.5, (z1, 2, x3, 24, x5) = (1, 2, 4, 6, 14), so that, by
4.1(d)(ii), 4.3(c), 4.5(a) and z; € R, P = {14}, Q = {2, 4} and {1, 6} C R.

(d) follows from (a)-(c).

(e) By (a)-(c), s5 = 27. Suppose we have s;_; < 132775 41 for some 6 < j <
n+3, then, by (d) and 3.3(c), either s; < 2-sj_1 —z1 < 2-(13-297°4+1) -
1327744 1orsjp1 <3-sj_1+2+x; <13:-274413.207546 < 13-2773, 50
that, by 4.1(a) with i = j+1, we have s; < 13-277%41 and the equality holds
onlyif s;_1 = 13-27°5+1. As f is maximal, s,43 = M (K12,) > 13-2"71+1,
we must have s, 43 = 13-2"71+1 and each s; = 13-2""4+1 (5 < j < n+3).

(f) follows from (e) and x; = s; — s;_1.

O

Proposition 4.7. Let f be a mazimal IC-coloring and (z1, x2, x3) = (1, 2, 4).
Then the partite sets, if they exist, are in the following list.
(a) If n =2, then there are four possibilities:
() {1}, {2, 4}, {6, 14}.
(i) {14), {2, 4}, {1, 6}.
(i) {1}, {4, 8}, {2, 12},
(v) {2}, {4, 8}, {1, 12},
(b) If n > 3, then there are three possibilities:
(i) {1}, {2, 4}, {6,13,13-2,...,13-2"73 13.27"2 1 1},
(i) {14}, {2, 4}, {1,6,13-2, ..., 132" 2},
(iii) {2}, {4, 8}, {1,12,13-2, ..., 132772},
Consequently, Sy(G) =13-2""1 +1.
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Proof. By 4.5, we have two cases to discuss.

Case 1. x9 ~ x3.
Then (z1, 2, z3, z4) = (1, 2, 4, 6) and s4 = 13. By 4.1(d)(ii), 4.2 and
4.3(c), {z1, 2} € B, {x1, x5, } € B and {x2, x;,} € B, so that x1, z2,
x;, are in different partite sets and, by 4.5(a)(iii), {z2, x4} € B, thus
P, @Q, R partition the set {1, 2, 4, 6, x;,} into (note that we are now
in the case 2 ~ 4)

{1}7 {27 4}’ {67 .732'4} or {l’u}, {17 6}7 {2) 4}'

It follows that P = {1} or P = {x;, }.
Case 1.1 P = {1}, and n = 2.
Then, by 4.5(a)(ii), we obtain (a)(i).
Case 1.2 P = {1}, and n > 3.
Then, by 4.3 and iy = n + 3, we obtain (b)(i). (The proof of
Q = {2, 4} and iy = n + 3 is similar to the proof of iy = n+ 3 in
the case 3 contained in the proof of 4.4.)
Case 1.3 P = {x;,}, and n = 2.
Then, by 4.5(a)(ii), we obtain (a)(ii).
Case 1.4 P = {x;,}, and n > 3.
Then, by 4.3(c), z;, = x5, so that, (x1, z2, 3, x4, z5) = (1, 2, 4,
6, 14). We claim that 1 ~ xg. If not, then 4 ~ xg, so that, by
3.3(c), either s6 < 2-85 —4 = 2-27 -4 < 13-22 or s7 <
3-s5+2+4=3-27+6 < 13-23 which contradicts 4.1(a). Thus
1 € R, and, by 4.6(f), we obtain (b)(ii).
Case 2. {z3, z3} € B.
Then, by 4.5(b), (x1, x2, 3, x4, x5) = (1, 2, 4, 8, 12), x1, x9, 3 are
in different partite sets, and x5 ~ x4 and {x3, x5} € B, so that P, Q,
R partition {1, 2, 4, 8, 12} into

{1}, {4, 8}, {2, 12} or {2}, {4, 8}, {1, 12}

It follows that P = {1} or P = {2}.

Case 2.1 P = {1}, and n = 2.
Then (a)(iii) is obtained.

Case 2.2 P = {1}, and n > 3.
Then, x ~ z¢ for some = € {2, 4, 8} so that, by 3.3(c), either
$6<2-85—2<2:21—2=13-220r sy < 3-s5+2+x <
3-27+ 2+ 8 < 13-23 thus, by 4.1(a), we have sg = 13 - 22.
As M(Ki23) > 13- 22 + 1, we see that n > 4, otherwise we
would have S;(G) = s¢ < M(Kj323), and that x ~ x7 for some
x € {2, 4, 8} for P = {1}. By 3.3(c) again, either s; < 2-sg—x <
2.13-22-2 < 13-2% or 53 < 3-s56+24+2 < 3-13-2242+8 < 13-24,
which contradicts 4.1(a). Therefore, this case can not occur.

Case 2.3 P = {2}, and n = 2.
Then, (a)(iv) is obtained.
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Case 2.4 P = {2}, and n > 3.
By the same argument in case 1.4, we have 1 ~ xg and 1 € R, so
that, by 4.6(f), we get (b)(iii).
O

5. IC-INDICES WITH THEIR MAXIMAL IC-COLORINGS

If n =2, that is, |Q| = |R| = 2, it is clear that if (P, @, R) is a maximal IC-
coloring then so is (P, R, Q) and conversely, thus we shall identify (P, @, R) with
(P, R, Q) if |Q| = |R|. The following theorem is our main result.

Theorem 5.1.

(a) The IC-index M (K1 2y) of the complete tripartite graph Ki 2, (n > 2) is

M(Kign)=13-2""1 4+ 1.
(b) When n > 3, there are exactly four mazimal IC-colorings of K1 2p:
(1) {7}, {1,2}, {3,13,...,13-2773,13 .22 1 1}),

(ii) ({1}, {2, 4}, {6,13,...,13-2"73 13.27"2 4 1}),
(iii) ({14}, {2, 4}, {1,6,13-2,...,13-2"72}),
(iv) ({2}, {4, 8}, {1,12,13-2, ..., 13-2n72})
and, there are exactly six mazimal IC-colorings of K122:

(i) ({7}, {1, 2}, {3, 14}),
(ii) ({1}, {2, 4}, {6, 14}),
(iii) ({14}, {2, 4}, {1, 6}),
(iv) ({2}, {4, 8}, {1, 12}),
(v) ({14}, {1, 2}, {3, 7}),
(vi) ({1}, {2, 12}, {4, 8}).

Proof. (a) It follows from 4.4 and 4.7 that Sy(G) = 13-2"71 +1if fisa
maximal IC-coloring. The existence of maximal IC-colorings may follow
from our example in section 2.
(b) A similar argument in our example can be used to prove that each partite
sets listed in 4.4 and 4.7 is an IC-coloring and hence maximal. They are the
maximal IC-colorings of K1 g,,.

O
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