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2. Notations and definitions

We shall fix the following notations and definitions throughout this paper.

Notations.

(a) f is a positive integer-valued function on G;
(b) G = P ∪Q ∪R where P , Q and R are disjoint sets of cardinalities |P | = 1,

|Q| = 2, and |R| = n with 2 ≤ n < ∞;
(c) B is the collection of all nonempty subsets H of G such that H ̸⊆ P , H ̸⊆ Q,

and H ̸⊆ R whenever |H| ≥ 2;
(d) ∼ is a relation on G such that u ∼ v if and only if {u, v} ⊆ P or {u, v} ⊆ Q

or {u, v} ⊆ R;
(e) Sf is the function on B defined by Sf (H) =

∑
u∈H f(u) for all H ∈ B.

When f is one-to-one, that is, f(u) ̸= f(v) if u, v ∈ G and u ̸= v, by identifying u
with f(u) for all u ∈ G, we shall write

(f) f = ⟨P,Q,R⟩ where P , Q and R are disjoint sets of positive integers;
(g) G = {x1, x2, . . . , xn+3} where G = P ∪ Q ∪ R and 0 < x1 < x2 < · · · <

xn+3 < ∞;
(h) Sf (H) =

∑
x∈H x;

(i) s0 = 0, si = x1 + · · ·+ xi for 1 ≤ i ≤ n+ 3;
(j) xn+4 = ∞;
(k) f+ = {xi ∈ G | xi = si−1 + 1} = {xi1 , xi2 , . . . , xi|f+|

} where 0 < xi1 <
xi2 < · · · < xi|f+|

< ∞.

Intuitively, f is a coloring on a complete tripartite graph G = K1,2,n which has three
partite sets P , Q and R, B is the collection of all IC-subgraphs (induced connected
subgraphs) of G, {u, v} ∈ B means that u and v are adjacent, and u ∼ v if and only
if u and v are in the same partite set. We shall use these terminologies freely.
Definitions.

(a) We say that f produces α if α = Sf (H) for some H ∈ B;
(b) We call f an IC-coloring of G if f produces all the integers α with 1 ≤ α ≤

Sf (G);
(c) An IC-coloring f of G is maximal if it maximizes Sf (G), that is, Sf (G) =

max{Sg(G) | g is an IC-coloring of G};
(d) The IC-index of G is the integer M(G) = Sf (G) where f is any maximal

IC-coloring of G.

The following example illustrates some notations and definitions introduced above.

Example. Let P = {x2}, Q = {x3, x4}, and R = {x1, x5, . . . , xn+3}, where
x1 = 1, x2 = 2, x3 = 4, x4 = 8, x5 = 12, xi = 13 · 2i−5 (6 ≤ i ≤ n + 3). Then
f = ⟨P, Q, R⟩ represents a one-to-one coloring on the complete tripartite graph
G = P ∪ Q ∪ R, and P ∈ B, Q /∈ B, x1 ∼ xi (5 ≤ i ≤ n + 3). We shall show that
the following are true:

(a) G = {x1, x2, . . . , xn+3}, 0 < x1 < x2 < · · · < xn+3 < xn+4 = ∞.
(b) s0 = 0, s1 = 1, s2 = 3, s3 = 7, s4 = 15, si = 13 · 2i−4 + 1 (5 ≤ i ≤ n+ 3).
(c) f+ = {x1, x2, x3, x4}, i1 = 1, i2 = 2, i3 = 3, and i4 = 4.
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(d) xi ≤ si−1 + 1 (1 ≤ i ≤ n+ 3).
(e) 0 = s0 < s1 < · · · < sn+3 = Sf (G) = 13 · 2n−1 + 1.
(f) f produced α for all integer α with 1 ≤ α ≤ Sf (G).
(g) f is an IC-coloring of G.

It is clear that (a)-(e) are true, and that (f) implies (g), so we need only prove (f).
To see (f), let α be an integer such that 1 ≤ α ≤ Sf (G). Then by (e), there is a
unique j1 such that sj1−1+1 ≤ α ≤ sj1 , it follows from this and, by (d) with i = j1,
xj1 ≤ sj1−1 +1 that 0 ≤ α− xj1 ≤ sj1−1. If α− xj1 > 0, then, by (d) and (e) again,
there is a unique j2, j2 < j1, such that sj2−1+1 ≤ α−xj1 ≤ sj2 and xj2 ≤ sj2−1+1, so
that 0 ≤ α− xj1 − xj2 ≤ sj2−1. Since s0 = 0, by continuing in this way if necessary,
we obtain α = xj1 + · · · + xjr for some integer 1 ≤ jr < · · · < j2 < j1 ≤ n + 3
with r ≥ 1. Let H = {xj1 , . . . , xjr}. If r = 1 then H ∈ B and α = Sf (H), so
that f produced α and we are done. Now assume that r > 1. If H ⊆ Q then
α = x3 + x4 = x5 = Sf ({x5}) so that f produces α; if H ⊆ R and if xi is the
smallest integer in H other than x1, then i ≥ 5, so that, by x5 = x3 + x4 and
xi = si−1 − 1 = x2 + · · ·+ xi−1 for 6 ≤ i ≤ n+ 3, we have α = Sf (Q ∪ (H − {x5}))
if i = 5 and α = Sf ((H − {xi}) ∪ {x2, x3, . . . , xi−1}) if 6 ≤ i ≤ n + 3; finally, if
H ̸⊆ Q and H ̸⊆ R, then H ∈ B for H ̸⊆ P (|H| = r > 1 and |P | = 1), so that
α = Sf (H) can be produced by f .

Remark. The example shows that M(G) = M(K1,2,n) ≥ 13 · 2n−1 + 1.

3. One-to-one IC-colorings

Proposition 3.1. Let f be a coloring of G. Then:

(a) |B| = 2n+2 + 2n+1 + 2n + n− 1.
(b) If H1, K1, . . . , Hm, Km are 2m distinct members of B such that Sf (Hi) =

Sf (Ki) for all 1 ≤ i ≤ m, then
(i) Sf (B − {K1, . . . , Km}) = Sf (B).
(ii) |B| −m ≥ |Sf (B)|.
(iii) |B| −m ≥ Sf (G), if f is an IC-coloring.

(c) If f(u) = f(v), u ̸= v, and if A = {A ⊆ (G− {u, v}) |A∪ {u} ∈ B and A∪
{v} ∈ B}, then exactly one of the following five statements holds:
(i) {u, v} ⊆ Q with |A| = 2n+1.
(ii) {u, v} ⊆ R with |A| = 2n + 2n−1 + 2n−2 + 1.
(iii) P ∩ {u, v} ̸= ∅ and Q ∩ {u, v} ̸= ∅ with |A| = 2n + 2n−1 + · · ·+ 1.
(iv) P ∩ {u, v} ̸= ∅ and R ∩ {u, v} ̸= ∅ with |A| = 2n + 2n−1 + 1.
(v) Q ∩ {u, v} ̸= ∅ and R ∩ {u, v} ̸= ∅ with |A| = 2n + 2n−1.

(d) If f is an IC-coloring of G and if Sf (G) ≥ 2n+2 + 2n + 2n−1 + n, then f is
one-to-one.

(e) If f is a maximal IC-coloring of G then f is one-to-one.

Proof. (a) Let B1 = {H ∈ B |P ⊆ H} and B2 = {H ∈ B |P ̸⊆ H}. Then

|B1| = 2|Q∪R| = 2n+2 and, according to whether |H| = 1 or not, |B2| =
(|Q| + |R|) + (2|Q| − 1) · (2|R| − 1) = (2 + n) + (22 − 1) · (2n − 1). Now the
desired identity follows from |B| = |B1|+ |B2|.
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(b) By assumption, Sf maps B − {K1, . . . , Km} onto its range Sf (B), so that
(i) holds. (ii) follows from (i) for Sf may not be one-to-one. If f is an IC-
coloring, then Sf (B) = {1, 2, . . . , Sf (G)}, so that |Sf (B)| = Sf (G), and, by
(ii), (iii) is true.

(c) If u ∼ v then {u, v} ⊆ Q or {u, v} ⊆ R for |P | = 1, and if {u, v} ∈ B (the
negation of u ∼ v) then u and v belong to different partite sets, so that we
have five cases to discuss:

Case 1. {u, v} ⊆ Q.

Then |A| = 2|P∪R| = 2n+1 and (i) follows.
Case 2. {u, v} ⊆ R.

Then |A| = (2|P∪Q| − 1) · 2|R−{u, v}| + |{∅}| = (23 − 1) · 2n−2 + 1
and (ii) follows.

Case 3. P ∩ {u, v} ̸= ∅ and Q ∩ {u, v} ̸= ∅.

Then |A| = 2|Q|−1 · (2|R| − 1) + |{∅}| = 21 · (2n − 1) + 1 and (iii)
follows.

Case 4. P ∩ {u, v} ̸= ∅ and R ∩ {u, v} ̸= ∅.

Then |A| = (2|Q| − 1) · 2|R|−1 + |{∅}| = (22 − 1) · 2n−1 + 1 and
(iv) follows.

Case 5. Q ∩ {u, v} ̸= ∅ and R ∩ {u, v} ̸= ∅.
Let A1 = {A ∈ A |P ⊆ A} and A2 = {A ∈ A |P ̸⊆ A}. Then

|A1| = 2|Q|−1 · 2|R|−1 = 22−1 · 2n−1 and |A2| = (2|Q|−1 − 1) ·
(2|R|−1 − 1) + |{∅}| = (22−1 − 1)(2n−1 − 1) + 1. Thus |A| =
|A1|+ |A2| = 2n + 2n−1 and (v) follows.

(d) If f is an IC-coloring of G such that f(u) = f(v) for some distinct u and
v in G, that is, we assume that f is not one-to-one. Then, by (c), |A| ≥
2n + 2n−1. If A = {A1, . . . , Am}, where m = |A|, and if Hi = Ai ∪ {u} and
Ki = Ai ∪ {v} for 1 ≤ i ≤ m, then, by (a) and (b), Sf (G) ≤ |B| − m ≤
(2n+2+2n+1+2n+n−1)−(2n+2n−1). Thus Sf (G) > 2n+2+2n+2n−1+n−1
is impossible.

(e) The example in the previous section shows that if f is maximal then Sf (G) ≥
13·2n−1+1(= 2n+2+2n+1+2n−1+1), so that Sf (G)−(2n+2+2n+2n−1+n) ≥
2n − n+ 1 ≥ 0, thus, by (d), f is one-to-one.

�

Remark. Our objective is to obtain the IC-index M(G) = M(K1,2,n), thus we
want to find a maximal IC-coloring of G. Because of (e) in the above theorem, we
shall only consider those one-to-one coloring f = ⟨P, Q, R⟩ of G in the rest of this
paper.

Proposition 3.2. Let f = ⟨P, Q, R⟩ be a coloring of G and α be an integer. Then:

(a) If sj−1 < α < xj+1 for some 1 ≤ j ≤ n + 3, then xj must be used in
producing α, that is, if α = Sf (H) then xj ∈ H. (Note xn+4 = ∞.)

(b) If sj−1 < xi + xj < xj+1 for some 1 ≤ i < j ≤ n+ 3, and Sf (H) = xi + xj,
then
(i) if xi > si−1 then H = {xi, xj};
(ii) if xi = sj−1 then H = {xi, xj} or H = {x1, . . . , xi−1} ∪ {xj}.
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(c) If sj ≤ α for some 1 ≤ j ≤ n+ 3, and if j ≤ k ≤ n+ 3, then

(i) if xi ≤ si−1 for all j ≤ i ≤ k then sk ≤ α · 2k−j;
(ii) if xi ≤ si−1 + 1 for all j ≤ i ≤ k then sk ≤ (α+ 1) · 2k−j − 1.

Proof. (a) sj−1 < α < xj+1 implies that H ̸⊆ {x1, . . . , xj−1} and H ⊆
{x1, . . . , xj}.

(b) By (a), xj must be used in producing xi + xj . As Sf (H) = xi + xj , and as
xi < xi+1 < · · · < xj−1, we see that H ⊆ {x1, . . . , xi} ∪ {xj}.
(i) If xi > si−1 then Sf (H) > si−1 + xj and we must have H = {xi, xj};
(ii) xi = si−1 then Sf (H) = xi + xj = (x1 + · · · + xi−1) + xj , so that

H = {xi, xj} or H = {x1, . . . , xi−1} ∪ {xj}.
(c) (i) If xi ≤ si−1 (j ≤ i ≤ k) then si = si−1 + xi ≤ 2 · si−1 (j ≤ i ≤ k) and

sj ≤ α, from this recursive relation, it follows that sk ≤ α · 2k−j .
(ii) If xi ≤ si−1 + 1 (j ≤ i ≤ k) then si + 1 = si−1 + xi + 1 ≤ 2 · (si−1 + 1)

(j ≤ i ≤ k) and sj + 1 ≤ α + 1, it follows that sk + 1 ≤ (α + 1) · 2k−j

so that sk < (α+ 1) · 2k−j .
�

Proposition 3.3. Let f = ⟨P, Q, R⟩ be an IC-coloring of G. Then:

(a) xi ≤ si−1 + 1 for all 1 ≤ i ≤ n+ 3.
(b) If xi ∈ f+, if xj ≥ sj−1, and if xi ∼ xj for some 1 ≤ i < j ≤ n + 3, then

xj+1 ≤ xi + xj.
(c) If xi ∈ f+ and if xi ∼ xj for some 1 ≤ i < j ≤ n + 3, then either sj ≤

2 · sj−1 − xi or sj+1 ≤ 3 · sj−1 + 2 + xi.
(d) If α is an integer and if sj < α for some 1 ≤ j ≤ n + 3, then Sf (G) <

α · 2n+3−j.

Proof. (a) Suppose, to get a contradiction, that xj > sj−1+1 for some 1 ≤ j ≤
n+ 3, then sj−1 < sj−1 + 1 < xj+1, so that, by 3.2(a), xj should be used in
producing sj−1 + 1, which contradicts xj > sj−1 + 1.

(b) Suppose not, we would have, xi = si−1 + 1, xj ≥ sj−1, xi ∼ xj , and
xj+1 > xi + xj , so that xi > si−1 and sj−1 < xi + xj < xj+1, thus, by
3.2(b)(i), {xi, xj} ∈ B should hold for f is an IC-coloring, which would
violate xi ∼ xj .

(c) The contrapositive of 3.2(b)(i) shows that either xi + xj ≤ sj−1 or xj+1 ≤
xi+xj . The first inequality implies that sj = sj−1+xj ≤ sj−1+(sj−1−xi) =
2 · sj−1 − xi. The second inequality and (a) imply that sj+1 = sj−1 + xj +
xj+1 ≤ sj−1+xj+(xi+xj) ≤ sj−1+(sj−1+1)+xi+(sj−1+1) = 3·sj−1+2+xi.

(d) If α is an integer, sj < α if and only if sj ≤ α−1, so that, by (a) and 3.2(c)(ii)
with k = n+ 3 and replacing α by α− 1, Sf (G) = sn+3 ≤ α · 2n+3−j − 1 <
α · 2n+3−j .

�

4. Necessary conditions for maximal IC-colorings

Proposition 3.3(a) shows that, for each 1 ≤ i ≤ n + 3, si−1 + 1 is an upper
bound for xi if f is an IC-coloring. An integer xi ∈ G with the property that
xi = sj−1 + 1 if and only if xi ∈ f+. In the following, we shall sometimes denote
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the members of f+ by boldfaced integers. Recall that f+ = {xi1 , xi2 , . . . , x|f+|},
where 0 < xi1 < xi2 < · · · < x|f+| < ∞.

Proposition 4.1. Let f be a maximal IC-coloring. Then:

(a) si ≥ 13 · 2i−4 for all 4 ≤ i ≤ n+ 3.
(b) (x1, x2) = (1,2) and x3 = 3 or 4.
(c) (i) If (x1, x2, x3) = (1,2, 3) then x4 = 7 and 13 ≤ x5 ≤ 14.

(ii) If (x1, x2, x3) = (1,2,4) then 6 ≤ x4 ≤ 8.
(d) (i) If (x1, x2, x3, x4) = (1,2, 3,7) then {x1, x3} ∈ B, {x2, x3} ∈ B, {x1, x4}

∈ B and {x2, x4} ∈ B.
(ii) If (x1, x2, x3) = (1,2,4) then {x1, x2} ∈ B and {x1, x3} ∈ B.

Proof. (a) If not, then si < 13 ·2j−4 for some 4 ≤ j ≤ n+3, by 3.3(d), we would
have Sf (G) < 13 · 2n−1 < M(K1,2,n).

(b) follows from s0 = 0, 0 < x1 < x2 < x3 and xi ≤ si−1 + 1 for i =1, 2, 3
(3.3(a)).

(c) (i) We have s3 = 6 and, by (a), s4 ≥ 13. As x4 = s4 − s3 and x4 ≤ s3 + 1,
x4 = 7. Similarly, s4 = 13, s5 ≥ 26, x5 = s5− s4 and x5 ≤ s4+1 imply
13 ≤ x5 ≤ 14.

(ii) We have s3 = 7. Again, from s4 ≥ 13, x4 = s4 − s3 and x4 ≤ s3 + 1,
we have 6 ≤ x4 ≤ 8.

(d) We observe that xi > si−1 for i = 1, 2.
(i) As s2 < xi+x3 < x4 and as s3 < xi+x4 < x5 for i = 1, 2, we have, by

3.2(b)(i), {xi, xj} ∈ B for 1 ≤ i ≤ 2 and 3 ≤ j ≤ 4.
(ii) As s1 < x1 + x2 < x3 and s2 < x1 + x3 < x4, we have, {x1, xk} ∈ B for

2 ≤ k ≤ 3.
�

Proposition 4.2. Let f be a maximal IC-coloring. Then |f+| ≥ 4.

Proof. To get a contradiction, we assume |f+| ≤ 3. According to 4.1, we have two
cases to discuss.

Case 1. (x1, x2, x3, x4) = (1, 2, 3, 7).
Then s4 = 13. As |f+| ≤ 3, by 3.2(c)(i) with j = 4 and k = n+ 3, we
would have Sf (G) = sn+3 ≤ 13 · 2n−1 < M(K1,2,n), and f could not be
maximal.

Case 2. (x1, x2, x3) = (1, 2, 4) and 6 ≤ x4 ≤ 8.
If x4 = 6 then s4 = 13, as discussed above, f could not be maximal. If
x4 = 8 then |f+| ≥ 4 violating our assumption. Thus (x1, x2, x3, x4) =
(1, 2, 4, 7) should be true. We claim that x5 ≤ 11. If not, we would
have s3 < xi + x4 < x5, so that, by 3.2(b)(i), {xi, x4} ∈ B for all
1 ≤ i ≤ 3, and there would be at least two distinct members of x1,
x2, x3 in the same partite set ; on the other hand, s1 < x1 + x2 < x3,
s2 < xk + x3 < x4 (1 ≤ k ≤ 2) would imply {xi, xj} ∈ B for all
1 ≤ i < j ≤ 3, so that x1, x2, x3 should be in different partite sets.
Thus x5 ≤ 11 should be true. But then s5 < 26 and, by 4.1(a), f could
not be maximal.

�
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Proposition 4.3. Let f be a maximal IC-coloring such that s4 = 13. Then:

(a) xj = 13 · 2j−5 (5 ≤ j ≤ i4 − 1) and xi4 = 13 · 2i4−5 + 1.
(b) sj = 13 · 2j−4 (4 ≤ j ≤ i4 − 1) and si4 = 13 · 2i4−4 + 1.
(c) {x, xj} ∈ B for all x ∈ {xi1 , xi2 , xi3} and all 5 ≤ j ≤ i4.

Proof. The existence of i4 follows from 4.2. We observe that s4 = 13 implies
(x1, x2, x3, x4) = (1, 2, 3, 7) or (1, 2, 4, 6) so that i4 ≥ 5. Now, (a) follows from
s4 = 13, xj = sj − sj−1, sj ≥ 13 · 2j−4 (4.1(a)), xj ≤ sj−1 if 5 ≤ j ≤ i4− 1 and xi4 ∈
f+. (b) follows from s4 = 13 and (a). We prove (c) by a contradiction. If x ∼ xj for
some x ∈ {xi1 , xi2 , xi3} and some 5 ≤ j ≤ i4, then, by (a), (b) and 3.3(b), we would
have xj+1 ≤ x+xj ≤ 7+(13·2j−5+1) ≤ 13·2j−5+13·2j−5−5 = 13·2j−4−5, and, by
(b) and 4.1(a), xj+1 = sj+1−sj ≥ 13·2j−3−(13·2j−4+1) = 13·2j−4−1 > 13·2j−4−5
(note that xj+1 = ∞ if j = i4 = n+ 3). �

Proposition 4.4. Let f be a maximal with (x1, x2, x3, x4) = (1, 2, 3, 7). Then:

(a) If n = 2, then the partite sets, if they exist, are
(i) {7}, {1, 2}, {3, 14}, or
(ii) {14}, {1, 2}, {3, 7}.

(b) If n ≥ 3, then the partite sets, if they exist, are {7}, {1, 2}, {3, 13, . . . , 13 ·
2n−2 + 1}.

Proof. By 4.1(d)(i), we have four cases to discuss depending on whether {x1, x2} ∈
B, {x3, x4} ∈ B or not.

Case 1. {x1, x2} ∈ B and {x3, x4} ∈ B.
Then, by 4.1(d)(i), {xi, xj} ∈ B for all 1 ≤ i < j ≤ 4, there would be
more than three partite sets. Thus, this case can not occur.

Case 2. {x1, x2} ∈ B and x3 ∼ x4.
Then, by 4.1(d)(i), 1, 2, 3 are in different partite sets, so are 1, 2, 7 for
x3 ∼ x4. As s4 = 13, by 4.3, {x, x5} ∈ B for all x ∈ {1, 2, 7}, which is
impossible for we have only three partite sets.

Case 3. x1 ∼ x2 and {x3, x4} ∈ B.
Then by 4.1(d)(i), x1, x3, x4 are in different partite sets, so that P , Q,
R partition {1, 2, 3, 7} into

{7}, {1, 2}, {3}.

By 4.3(c), we have 3 ∼ x5 ∼ x6 ∼ · · · ∼ xi4 .
Case 3.1 {3, x5, x6, . . . , xi4} ⊆ Q.

Then P = {7}, Q = {3, 14}, R = {1, 2, x6, . . . , xn+3}. We
claim that n = 2 and (i) will be obtained. If n > 2, we would
have x2 ∼ x6, so that, by 3.3(c), either s6 ≤ 2·s5−x2 = 2·27−2 =
52 = 13 · 22 or s7 ≤ 3 · s5 + 2+ x2 = 3 · 27 + 2+ 2 = 85 < 13 · 23,
thus, by 4.1(a), we would have s6 = 13 ·22 and x6 = s6−s5 = 25.
As s6 < 13 · 22 + 1 ≤ M(K1,2,3), x7 should exist, and, by 3.3(c)
again, we would have either s7 ≤ 2 ·s6−x2 = 2 ·13 ·22−2 < 13 ·23
or s8 ≤ 3 · s6 + 2 + x2 = 3 · 13 · 22 + 2 + 2 < 13 · 24, which would
violate 4.1(a). Hence (i) is obtained.
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Case 3.2 {3, x5, x6, . . . , xi4} ̸⊆ Q.
Then P = {7}, Q = {1, 2}, R = {3, x5, x6, . . . , xn+3}. We
claim that i4 = n + 3. If not, we would have xi4 ∼ xi4+1, so
that, by 3.3(c) with i = i4 and j = i4 + 1 and by 4.3, either
si4+1 ≤ 2 · si4 − xi4 = 2 · (13 · 2i4−4 + 1) − (13 · 2i4−5 + 1) =
13 · 2i4−3 − 13 · 2i4−5 + 1 < 13 · 2i4−3 or si4+2 ≤ 3 · si4 + 2+ xi4 =
3·(13·2i4−4+1)+2+(13·2i4−5+1) = 3·13·2i4−4+13·2i4−5+6 <
13 · 2i4−2, thus, by 4.1(a), f could not be maximal. Hence (b)
is obtained. (We observe that (i) is also obtained in this case if
n = 2.)

Case 4. x1 ∼ x2 and x3 ∼ x4.
Then by 4.3(c) P must be {xi4}, so we have the following two cases:
P = {14}, Q = {1, 2}, R = {3, 7, x6, . . . , xn+3} or P = {14}, Q =
{3, 7}, R = {1, 2, x6, . . . , xn+3}. A similar argument in Case 3.1
shows that, in each case, n = 2, so that (ii) is the only possibility.

�

Proposition 4.5. Let f be maximal and (x1, x2, x3) = (1, 2, 4). Then:

(a) If x2 ∼ x3, then x4 = 6 and
(i) x5 = 13 if i4 > 5,
(ii) x5 = 14, if i4 = 5,
(iii) {x2, x4} ∈ B.

(b) If {x2, x3} ∈ B then
(i) x1, x2, x3 are in different partite sets,
(ii) x4 = 8,
(iii) x3 ∼ x4,
(iv) x5 = 12,
(v) {x3, x5} ∈ B.

Proof. (a) If x2 ∼ x3, by 3.3(b) and 4.1(c)(ii), x4 ≤ x2+x3 = 6 and 6 ≤ x4 ≤ 8,
so that x4 = 6. From 4.3, (i) and (ii) follow. (iii) follows from 3.2(b)(i) for
x2 ∈ f+ and s3 < x2 + x4 < x5.

(b) (i) follows from {x2, x3} ∈ B and 4.1(d)(ii).
(ii) By 4.1(c)(ii), it suffices to prove that x4 ̸= 6 and x4 ̸= 7. If x4 = 6,

then, by 4.3(c), {x, x5} ∈ B for all x ∈ {1, 2, 4} which contradicts (i).
If x4 = 7, then, by 3.3(b) with 1 ≤ i ≤ 3 and j = 4, x5 ≤ x3 + x4 = 11,
so that s5 < 26 violating 4.1(a).

(iii) By (i), it suffices to prove that {x1, x4} ∈ B and {x2, x4} ∈ B. Suppose,
to the contrary, that x1 ∼ x4 or x2 ∼ x4, then, by 3.3(b) again, x5 ≤
x2 + x4 = 10, so that s5 < 26, again, violating 4.1(a).

(iv) By (iii) and 3.3(b), we have x5 ≤ x3 + x4 = 12. By 4.1(a) with i = 5,
we have x5 = s5 − s4 ≥ 26− 15 = 11. It follows that 11 ≤ x5 ≤ 12. To
prove x5 = 12, let us assume x5 = 11, namely, (x1, x2, x3, x4, x5) =
(1, 2, 4, 8, 11). Then x6 ∈ G for otherwise we would have Sf (G) =
s5 = 26 < M(K1,2,2). By (i), xi ∼ x6 for some 1 ≤ i ≤ 3, so that,
by 3.3(c) with j = 6, either s6 ≤ 2 · s5 − xi < 2 · s5 = 13 · 22 or
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s7 ≤ 3 ·s5+2+xi ≤ 3 ·26+2+4 < 13 ·23, thus f could not be maximal
by 4.1(a). Hence x5 = 12.

(v) By 4.1(a), we have x6 = s5 − s5 ≥ 13 · 22 − 27 = 25, so that s4 <
x3 + x5 < x6, thus, by 3.2(b)(i), {x3, x5} ∈ B.

�
Proposition 4.6. Let f be maximal, (x1, x2, x3) = (1, 2, 4) and x1 ∈ R. Then:

(a) 4 ≤ i4 ≤ 5.
(b) P = {2}, Q = {4, 8}, {1, 12} ⊆ R if i4 = 4.
(c) P = {14}, Q = {2, 4}, {1, 6} ⊆ R if i4 = 5.
(d) x1 ∼ xj (6 ≤ j ≤ n+ 3).
(e) sj = 13 · 2j−4 + 1 (5 ≤ j ≤ n+ 3).
(f) xj = 13 · 2j−5 (6 ≤ j ≤ n+ 3).

Proof. (a) By 4.5, it suffices to show that (x1, x2, x3, x4, x5) ̸= (1, 2, 4, 6, 13).
If not, then s4 = 13, so that, by 4.1 and 4.5, {x1, x2} ∈ B and x2 ∼ x3, and,
by 4.3 and 4.5, {x1, xi4} ∈ B, {x2, xi4} ∈ B and x5 ∼ x6 ∼ · · · ∼ xi4 with
i4 ≥ 6, we would have
(i) x1, x2, xi4 are in different partite sets,
(ii) x2 ∼ x3 and x5 ∼ xi4 ,
thus P = {x1}, which contradicts x1 ∈ R.

(b) If i4 = 4, then, by 4.5, (x1, x2, x3, x4, x5) = (1, 2, 4, 8, 12), so that, by
4.5(b) and x1 ∈ R, P = {2}, Q = {4, 8} and {1, 12} ⊆ R.

(c) If i4 = 5, then, by 4.5, (x1, x2, x3, x4, x5) = (1, 2, 4, 6, 14), so that, by
4.1(d)(ii), 4.3(c), 4.5(a) and x1 ∈ R, P = {14}, Q = {2, 4} and {1, 6} ⊆ R.

(d) follows from (a)-(c).
(e) By (a)-(c), s5 = 27. Suppose we have sj−1 ≤ 13 · 2j−5 + 1 for some 6 ≤ j ≤

n+3, then, by (d) and 3.3(c), either sj ≤ 2·sj−1−x1 ≤ 2·(13·2j−5+1)−1 =
13 ·2j−4+1 or sj+1 ≤ 3 ·sj−1+2+x1 ≤ 13 ·2j−4+13 ·2j−5+6 < 13 ·2j−3, so
that, by 4.1(a) with i = j+1, we have sj ≤ 13·2j−4+1 and the equality holds
only if sj−1 = 13·2j−5+1. As f is maximal, sn+3 = M(K1,2,n) ≥ 13·2n−1+1,
we must have sn+3 = 13 ·2n−1+1 and each sj = 13 ·2n−4+1 (5 ≤ j ≤ n+3).

(f) follows from (e) and xj = sj − sj−1.
�

Proposition 4.7. Let f be a maximal IC-coloring and (x1, x2, x3) = (1, 2, 4).
Then the partite sets, if they exist, are in the following list.

(a) If n = 2, then there are four possibilities:
(i) {1}, {2, 4}, {6, 14}.
(ii) {14}, {2, 4}, {1, 6}.
(iii) {1}, {4, 8}, {2, 12}.
(iv) {2}, {4, 8}, {1, 12}.

(b) If n ≥ 3, then there are three possibilities:
(i) {1}, {2, 4}, {6, 13, 13 · 2, . . . , 13 · 2n−3, 13 · 2n−2 + 1}.
(ii) {14}, {2, 4}, {1, 6, 13 · 2, . . . , 13 · 2n−2}.
(iii) {2}, {4, 8}, {1, 12, 13 · 2, . . . , 13 · 2n−2}.

Consequently, Sf (G) = 13 · 2n−1 + 1.
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Proof. By 4.5, we have two cases to discuss.

Case 1. x2 ∼ x3.
Then (x1, x2, x3, x4) = (1, 2, 4, 6) and s4 = 13. By 4.1(d)(ii), 4.2 and
4.3(c), {x1, x2} ∈ B, {x1, xi4} ∈ B and {x2, xi4} ∈ B, so that x1, x2,
xi4 are in different partite sets and, by 4.5(a)(iii), {x2, x4} ∈ B, thus
P , Q, R partition the set {1, 2, 4, 6, xi4} into (note that we are now
in the case 2 ∼ 4)

{1}, {2, 4}, {6, xi4} or {xi4}, {1, 6}, {2, 4}.

It follows that P = {1} or P = {xi4}.
Case 1.1 P = {1}, and n = 2.

Then, by 4.5(a)(ii), we obtain (a)(i).
Case 1.2 P = {1}, and n ≥ 3.

Then, by 4.3 and i4 = n + 3, we obtain (b)(i). (The proof of
Q = {2, 4} and i4 = n+3 is similar to the proof of i4 = n+3 in
the case 3 contained in the proof of 4.4.)

Case 1.3 P = {xi4}, and n = 2.
Then, by 4.5(a)(ii), we obtain (a)(ii).

Case 1.4 P = {xi4}, and n ≥ 3.
Then, by 4.3(c), xi4 = x5, so that, (x1, x2, x3, x4, x5) = (1, 2, 4,
6, 14). We claim that 1 ∼ x6. If not, then 4 ∼ x6, so that, by
3.3(c), either s6 ≤ 2 · s5 − 4 = 2 · 27 − 4 < 13 · 22 or s7 ≤
3 · s5+2+4 = 3 · 27+6 < 13 · 23, which contradicts 4.1(a). Thus
1 ∈ R, and, by 4.6(f), we obtain (b)(ii).

Case 2. {x2, x3} ∈ B.
Then, by 4.5(b), (x1, x2, x3, x4, x5) = (1, 2, 4, 8, 12), x1, x2, x3 are
in different partite sets, and x3 ∼ x4 and {x3, x5} ∈ B, so that P , Q,
R partition {1, 2, 4, 8, 12} into

{1}, {4, 8}, {2, 12} or {2}, {4, 8}, {1, 12}

It follows that P = {1} or P = {2}.
Case 2.1 P = {1}, and n = 2.

Then (a)(iii) is obtained.
Case 2.2 P = {1}, and n ≥ 3.

Then, x ∼ x6 for some x ∈ {2, 4, 8} so that, by 3.3(c), either
s6 ≤ 2 · s5 − x ≤ 2 · 27 − 2 = 13 · 22 or s7 ≤ 3 · s5 + 2 + x ≤
3 · 27 + 2 + 8 < 13 · 23, thus, by 4.1(a), we have s6 = 13 · 22.
As M(K1,2,3) ≥ 13 · 22 + 1, we see that n ≥ 4, otherwise we
would have Sf (G) = s6 < M(K1,2,3), and that x ∼ x7 for some
x ∈ {2, 4, 8} for P = {1}. By 3.3(c) again, either s7 ≤ 2·s6−x ≤
2·13·22−2 < 13·23 or s8 ≤ 3·s6+2+x ≤ 3·13·22+2+8 < 13·24,
which contradicts 4.1(a). Therefore, this case can not occur.

Case 2.3 P = {2}, and n = 2.
Then, (a)(iv) is obtained.
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Case 2.4 P = {2}, and n ≥ 3.
By the same argument in case 1.4, we have 1 ∼ x6 and 1 ∈ R, so
that, by 4.6(f), we get (b)(iii).

�

5. IC-indices with their maximal IC-colorings

If n = 2, that is, |Q| = |R| = 2, it is clear that if ⟨P, Q, R⟩ is a maximal IC-
coloring then so is (P, R, Q) and conversely, thus we shall identify ⟨P, Q, R⟩ with
(P, R, Q) if |Q| = |R|. The following theorem is our main result.

Theorem 5.1.

(a) The IC-index M(K1,2,n) of the complete tripartite graph K1,2,n (n ≥ 2) is
M(K1,2,n) = 13 · 2n−1 + 1.

(b) When n ≥ 3, there are exactly four maximal IC-colorings of K1,2,n:
(i) ⟨{7}, {1, 2}, {3, 13, . . . , 13 · 2n−3, 13 · 2n−2 + 1}⟩,
(ii) ⟨{1}, {2, 4}, {6, 13, . . . , 13 · 2n−3, 13 · 2n−2 + 1}⟩,
(iii) ⟨{14}, {2, 4}, {1, 6, 13 · 2, . . . , 13 · 2n−2}⟩,
(iv) ⟨{2}, {4, 8}, {1, 12, 13 · 2, . . . , 13 · 2n−2}⟩,
and, there are exactly six maximal IC-colorings of K1,2,2:
(i) ⟨{7}, {1, 2}, {3, 14}⟩,
(ii) ⟨{1}, {2, 4}, {6, 14}⟩,
(iii) ⟨{14}, {2, 4}, {1, 6}⟩,
(iv) ⟨{2}, {4, 8}, {1, 12}⟩,
(v) ⟨{14}, {1, 2}, {3, 7}⟩,
(vi) ⟨{1}, {2, 12}, {4, 8}⟩.

Proof. (a) It follows from 4.4 and 4.7 that Sf (G) = 13 · 2n−1 + 1 if f is a
maximal IC-coloring. The existence of maximal IC-colorings may follow
from our example in section 2.

(b) A similar argument in our example can be used to prove that each partite
sets listed in 4.4 and 4.7 is an IC-coloring and hence maximal. They are the
maximal IC-colorings of K1,2,n.

�
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