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converges weakly to z ∈ F (T ). Recently, Kocourek, Takahashi and Yao [14] defined
a broad class of generalized hybrid mappings containing the class of nonexpansive
mappings in a Hilbert space. A mapping T : C → H is called generalized hybrid
[14] if there exist α, β ∈ R such that

α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybridmapping. Then
Kocourek, Takahashi and Yao [14] proved a fixed point theorem for such mappings in
a Hilbert space. Furthermore, they proved a nonlinear mean convergence theorem of
Baillon’s type [2] in a Hilbert space. Maruyam, Takahashi and Yao [24] also defined
a more broad class of nonlinear mappings called 2-generalized hybrid containing
the class of generalized hybrid mappings. Kocourek, Takahashi and Yao [15] and
Takahashi, Wong and Yao [32] extended the classes of generalized hybrid mappings
and of 2-generalized hybrid mappings in a Hilbert space to classes of nonlinear
mappings in a Banach space, respectively. Kocourek, Takahashi and Yao [15] and
Takahashi, Wong and Yao [32] called such classes in a Banach space the classes of
generalized nonspreading mappings and of 2-generalized nonspreading mappings,
respectively and then proved fixed point theorems and nonlinear ergodic theorems
in a Banach space. Very recently, Takahashi and Takeuchi [31] proved the following
fixed point and mean convergence theorem without convexity in a Hilbert space.

Theorem 1.1. Let H be a real Hilbert space and let C be a nonempty subset of
H. Let T be a generalized hybrid mapping from C into itself. Let {vn} and {bn} be
sequences defined by

v0 ∈ C, vn+1 = Tvn, bn = 1
n

∑n−1
k=0 vk

for all n ∈ N ∪ {0}. If {vn} is bounded, then the following hold:

(i) A(T ) is nonempty, closed and convex;
(ii) {bn} converges weakly to u0 ∈ A(T ), where u0 = limn→∞ PA(T )vn and PA(T )

is the metric projection of H onto A(T ).

Such a theorem was also extended to Banach spaces by Lin and Takahashi [20]
in the case when the mappings are generalized nonspreading.

In this paper, using Banach limits, we study attractive points and fixed points of
general nonlinear mappings in Banach spaces. Then we obtain attractive point the-
orems and fixed point theorems for the nonlinear mappings in Banach spaces. Using
these results, we prove nonlinear ergodic theorems for 2-generalized nonspreading
mappings in Banach spaces.

2. Preliminaries

Let E be a real Banach space and let E∗ be the dual space of E. For a sequence
{xn} of E and a point x ∈ E, the weak convergence of {xn} to x and the strong
convergence of {xn} to x are denoted by xn ⇀ x and xn → x, respectively. A
Banach space E is said to satisfy Opial’s condition if {xn} is a sequence in E with
xn ⇀ x, then

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||, ∀y ∈ E, y ̸= x.
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The duality mapping J from E into E∗ is defined by

Jx := {x∗ ∈ E∗ : ⟨x, x∗⟩ = ||x||2 = ||x∗||2}, ∀x ∈ E.

Let S(E) be the unit sphere centered at the origin of E. Then the space E is said
to be smooth if the limit

lim
t→0

||x+ ty|| − ||x||
t

exists for all x, y ∈ S(E). It is also said to be uniformly smooth if the limit exists
uniformly in x, y ∈ S(E). A Banach space E is said to be strictly convex if ||x+y

2 || <
1 whenever x, y ∈ S(E) and x ̸= y. It is said to be uniformly convex if for each
ε ∈ (0, 2], there exists δ > 0 such that ||x+y

2 || < 1 − δ whenever x, y ∈ S(E) and
||x− y|| ≥ ε. Furthermore, we know from [28] that

(i) if E is smooth, then J is single-valued;
(ii) if E is reflexive, then J is onto;
(iii) if E is strictly convex, then J is one-to-one;
(iv) if E is strictly convex, then J is strictly monotone;
(v) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on

each bounded subset of E.

A Banach space E is said to have Kadec-Klee property if a sequence {xn} of E
satisfying that xn ⇀ x and ||xn|| → ||x||, then xn → x. It is known that if E
uniformly convex, then E has the Kadec-Klee property. Let E be a smooth Banach
space and let J be the duality mapping on E. Throughout this paper, define the
function ϕ : E × E → R by

ϕ(x, y) := ||x||2 − 2⟨x, Jy⟩+ ||y||2, ∀x, y ∈ E.

Observe that, in a Hilbert spaceH, ϕ(x, y) = ||x−y||2 for all x, y ∈ H. Furthermore,
we know that for each x, y, z, w ∈ E,

(2.1) (||x|| − ||y||)2 ≤ ϕ(x, y) ≤ (||x||+ ||y||)2;

(2.2) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩;

(2.3) 2⟨x− y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z)− ϕ(x, z)− ϕ(y, w).

If E is additionally assumed to be strictly convex, then

(2.4) ϕ(x, y) = 0 if and only if x = y.

If E is a smooth, strictly convex and reflexive Banach space, then for x, y ∈ E and
λ ∈ R with 0 ≤ λ ≤ 1,

(2.5) ϕ(x, J−1(λJy + (1− λ)Jz)) ≤ λϕ(x, y) + (1− λ)ϕ(x, z).

Let ϕ∗ : E
∗ × E∗ → R be the function defined by

ϕ∗(x
∗, y∗) := ||x∗||2 − 2⟨J−1y∗, x∗⟩+ ||y∗||2, ∀x∗, y∗ ∈ E∗.

We have that

(2.6) ϕ(x, y) = ϕ∗(Jy, Jx) quad∀x, y ∈ E.
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Lemma 2.1 (Xu [35]). Let E be a uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing, continuous, and convex function g : [0, 2r] →
[0,∞) such that g(0) = 0 and

||ax+ (1− a)y||2 ≤ a||x||2 + (1− a)||y||2 − a(1− a)g(||x− y||)

for all x, y ∈ Br and a ∈ [0, 1] , where Br := {z ∈ E : ||z|| ≤ r}.

Lemma 2.2 (Kamimura and Takahashi [13]). Let E be a uniformly convex Banach
space and let r > 0. Then there exists a strictly increasing, continuous, and convex
function g : [0, 2r] → [0,∞) such that g(0) = 0 and

g(∥x− y∥) ≤ ϕ(x, y)

for all x, y ∈ Br, where Br := {z ∈ E : ||z|| ≤ r}.

Let E be a smooth Banach space and let C be a nonempty subset of E. A
mapping T : C → E is called generalized nonexpansive [7] if F (T ) ̸= ∅ and

ϕ(Tx, y) ≤ ϕ(x, y)

for all x ∈ C and y ∈ F (T ). Let D be a nonempty subset of a Banach space E. A
mapping R : E → D is said to be sunny if

R(Rx+ t(x−Rx)) = Rx

for all x ∈ E and t ≥ 0. A mapping R : E → D is said to be a retraction or
a projection if Rx = x for all x ∈ D. A nonempty subset D of a smooth Banach
space E is said to be a generalized nonexpansive retract (resp. sunny generalized
nonexpansive retract) of E if there exists a generalized nonexpansive retraction
(resp. sunny generalized nonexpansive retraction) R from E onto D; see [6, 8, 7]
for more details. The following results are in Ibaraki and Takahashi [7].

Lemma 2.3 (Ibaraki and Takahashi [7]). Let C be a nonempty closed sunny general-
ized nonexpansive retract of a smooth and strictly convex Banach space E. Then the
sunny generalized nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.4 (Ibaraki and Takahashi [7]). Let C be a nonempty closed subset of a
smooth and strictly convex Banach space E such that there exists a sunny generalized
nonexpansive retraction R from E onto C and let (x, z) ∈ E×C. Then the following
hold:

(i) z = Rx if and only if ⟨x− z, Jy − Jz⟩ ≤ 0 for all y ∈ C;
(ii) ϕ(Rx, z) + ϕ(x,Rx) ≤ ϕ(x, z).

In 2007, Kohsaka and Takahashi [16] proved the following results:

Lemma 2.5 (Kohsaka and Takahashi [16]). Let E be a smooth, strictly convex
and reflexive Banach space and let C be a nonempty closed subset of E. Then the
following are equivalent:

(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;
(c) JC is closed and convex.
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Lemma 2.6 (Kohsaka and Takahashi [16]). Let E be a smooth, strictly convex and
reflexive Banach space and let C be a nonempty closed sunny generalized nonexpan-
sive retract of E. Let R be the sunny generalized nonexpansive retraction from E
onto C and let (x, z) ∈ E × C. Then the following are equivalent:

(i) z = Rx;
(ii) ϕ(x, z) = miny∈Cϕ(x, y).

Very recently, Inthakon, Dhompongsa and Takahashi [12] obtained the following
result concerning the set of fixed points of a generalized nonexpansive mapping in
a Banach space; see also Ibaraki and Takahashi [10].

Lemma 2.7 (Inthakon, Dhompongsa and Takahashi [12]). Let E be a smooth,
strictly convex and reflexive Banach space and let C be a closed subset of E such
that J(C) is closed and convex. Let T be a generalized nonexpansive mapping from
C into itself. Then, F (T ) is closed and JF (T ) is closed and convex.

The following is a direct consequence of Lemmas 2.5 and 2.7.

Lemma 2.8 (Inthakon, Dhompongsa and Takahashi [12]). Let E be a smooth,
strictly convex and reflexive Banach space and let C be a closed subset of E such
that J(C) is closed and convex. Let T be a generalized nonexpansive mapping from
C into itself. Then, F (T ) is a sunny generalized nonexpansive retract of E.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let
µ be an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the
value of µ at f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by µn(xn) the value
µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . . ). A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have µ(f) =
µn(xn) = a. For the proof of existence of a Banach limit and its other elementary
properties, see [28].

3. Attractive point theorems

Let E be a smooth Banach space and let C be a nonempty subset of E. Let T
be a mapping from C into E. We denote by A(T ) the set of attractive points [20]
of T , that is, A(T ) = {u ∈ E : ϕ(u, Tx) ≤ ϕ(u, x), ∀x ∈ C}. We know the following
lemma.

Lemma 3.1 (Lin and Takahashi [20]). Let E be a smooth Banach space and let C
be a nonempty subset of E. Let T be a mapping from C into E. Then, A(T ) is a
closed and convex subset of E.

Using the technique developed by Takahashi [26], we prove the following attrac-
tive point theorem for mappings in a Banach space.
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Theorem 3.2. Let E be a smooth and reflexive Banach space with the duality
mapping J and let C be a nonempty subset of E. Let T be a mapping of C into E.
Let {xn} be a bounded sequence of E and let µ be a mean on l∞. Suppose that

µnϕ(xn, Ty) ≤ µnϕ(xn, y)

for all y ∈ C. Then, A(T ) is nonempty. In particular, if E is strictly convex, T is
a mapping of C into itself, {xn} is a bounded sequence of C and C is closed and
convex, then F (T ) is nonempty.

Proof. Using a mean µ and a bounded sequence {xn}, we define a function g : E∗ →
R as follows:

g(x∗) = µn⟨xn, x∗⟩, ∀x∗ ∈ E∗.

Since µ is linear, g is also linear. Furthermore, putting K = supn∈N ∥xn∥, we have

|g(x∗)| = |µn⟨xn, x∗⟩|
≤ ∥µ∥ sup

n∈N
|⟨xn, x∗⟩|

≤ ∥µ∥ sup
n∈N

∥xn∥∥x∗∥

= sup
n∈N

∥xn∥∥x∗∥

= K∥x∗∥
for all x∗ ∈ E∗. Then g is a linear and continuous real-valued function on E∗. Since
E is reflexive, there exists a unique element z of E such that

g(x∗) = µn⟨xn, x∗⟩ = ⟨z, x∗⟩
for all x∗ ∈ E∗. Such an element z is in D = co{xn : n ∈ N}, where coA is the
closure of the convex hull of A. In fact, if z /∈ D, then there exists y∗ ∈ E∗ by the
separation theorem [28] such that

⟨z, y∗⟩ < inf
y∈D

⟨y, y∗⟩.

Since {xn} ⊂ D and µ is a mean, we have

⟨z, y∗⟩ < inf
y∈D

⟨y, y∗⟩ ≤ inf
n∈N

⟨xn, y∗⟩ ≤ µn⟨xn, y∗⟩ = ⟨z, y∗⟩.

This is a contradiction. Then we have z ∈ D. From (2.2) we have that for y ∈ C
and n ∈ N,

ϕ(xn, y) = ϕ(xn, T y) + ϕ(Ty, y) + 2⟨xn − Ty, JTy − Jy⟩.
Thus we have that for y ∈ C,

µnϕ(xn, y) = µnϕ(xn, T y) + µnϕ(Ty, y) + 2µn⟨xn − Ty, JTy − Jy⟩
= µnϕ(xn, T y) + ϕ(Ty, y) + 2⟨z − Ty, JTy − Jy⟩.

Since, by assumption, µnϕ(xn, T y) ≤ µnϕ(xn, y) for all y ∈ C, we have

µnϕ(xn, y) ≤ µnϕ(xn, y) + ϕ(Ty, y) + 2⟨z − Ty, JTy − Jy⟩.
This implies that

(3.1) 0 ≤ ϕ(Ty, y) + 2⟨z − Ty, JTy − Jy⟩



ATTRACTIVE POINT THEOREMS AND ERGODIC THEOREMS 7

for all y ∈ C. Then we have from (2.3) that

0 ≤ ϕ(Ty, y) + ϕ(z, y) + ϕ(Ty, Ty)− ϕ(z, Ty)− ϕ(Ty, y)

= ϕ(z, y)− ϕ(z, Ty).

This implies that ϕ(z, Ty) ≤ ϕ(z, y) for all y ∈ C. Therefore z ∈ A(T ).
In particular, if E is strictly convex, T is a mapping of C into itself, {xn} is a

bounded sequence of C and C is closed and convex, then we have from D = co{xn :
n ∈ N} ⊂ C that z is an element of C. Putting y = z in (3.1), we have that

0 ≤ ϕ(Tz, z) + 2⟨z − Tz, JTz − Jz⟩.

Then we have from (2.3) that

0 ≤ ϕ(Tz, z) + ϕ(z, z) + ϕ(Tz, Tz)− ϕ(z, Tz)− ϕ(Tz, z).

Thus we have 0 ≤ −ϕ(z, Tz) and hence 0 = ϕ(z, Tz). Since E is strictly convex, we
have Tz = z. This completes the proof. �

Let E be a refrexive Banach space. Then for a bounded sequence {xn} in E and
a mean µ on l∞, as in the proof of Theorem 3.2, there exists a unique element z of
E such that

µn⟨xn, x∗⟩ = ⟨z, x∗⟩
for all x∗ ∈ E∗; see also [26] and [4]. We call such a point z the mean vector [21]
of {xn} for µ. Let E be a smooth Banach space, let C be a nonempty subset of
E and let J be the duality mapping from E into E∗. A mapping T : C → E is
called 2-generalized nonspreading [32] if there exist α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R
such that

α1ϕ(T
2x, Ty) + α2ϕ(Tx, Ty) + (1− α1 − α2)ϕ(x, Ty)

+ γ1
{
ϕ(Ty, T 2x)− ϕ(Ty, x)

}
+ γ2

{
ϕ(Ty, Tx)− ϕ(Ty, x)

}
(3.2)

≤ β1ϕ(T
2x, y) + β2ϕ(Tx, y) + (1− β1 − β2)ϕ(x, y)

+ δ1
{
ϕ(y, T 2x)− ϕ(y, x)

}
+ δ2

{
ϕ(y, Tx)− ϕ(y, x)

}
for all x, y ∈ C. Observe that if F (T ) ̸= ∅, then ϕ(u, Ty) ≤ ϕ(u, y) for all u ∈ F (T )
and y ∈ C. Thus we have F (T ) ⊆ A(T ). Furthermore, if α1 = 0, β1 = 0, γ1 = 0 and
δ1 = 0, from (3.2) we obtain the following:

α2ϕ(Tx,Ty) + (1− α2)ϕ(x, Ty) + γ2(ϕ(Ty, Tx)− ϕ(Ty, x))

≤ β2ϕ(Tx, y) + (1− β2)ϕ(x, y) + δ2(ϕ(y, Tx)− ϕ(y, x))

for all x, y ∈ C. That is, T is a generalized nonspreading mapping [15] in a Banach
space. If E is a Hilbert space, then we have ϕ(x, y) = ∥x − y∥2 for all x, y ∈ E.
Thus from (3.2), we obtain the following:

α1 ∥T 2x− Ty ∥2 +α2 ∥ Tx− Ty ∥2 +(1− α1 − α2) ∥ x− Ty ∥2

+ γ1(∥Ty − T 2x∥2 − ∥Ty − x∥2) + γ2(∥Ty − Tx∥2 − ∥Ty − x∥2)
≤ β1∥T 2x− y∥+ β2 ∥ Tx− y ∥2 +(1− β1 − β2) ∥ x− y ∥2

+ δ1(∥y − T 2x∥2 − ∥y − x∥2) + δ2(∥y − Tx∥2 − ∥y − x∥2)
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for all x, y ∈ C. This implies that

(α1+γ1) ∥ T 2x− Ty ∥2

+ (α2 + γ2) ∥ Tx− Ty ∥2 +[1− (α1 + γ1)− (α2 + γ2)] ∥ x− Ty ∥2

≤ (β1 + δ1)∥T 2x− y∥
+ (β2 + δ2) ∥ Tx− y ∥2 +[1− (β1 + δ1)− (β2 + δ2)] ∥ x− y ∥2

for all x, y ∈ C. That is, T is a 2-generalized hybrid mappings [24] in a Hilbert
space. Now, we prove an attractive point theorem for 2-generalized nonspreading
mappings in a Banach space.

Theorem 3.3. Let E be a smooth and reflexive Banach space and let C be a
nonempty subset of E. Let T be a 2-generalized nonspreading mapping of C into
itself. Then the following are equivalent:

(1) A(T ) ̸= ∅;
(2) {Tnv0} is bounded for some v0 ∈ C.

Additionally, if E is strictly convex and C is closed and convex, then the following
are equivalent:

(1) F (T ) ̸= ∅;
(2) {Tnv0} is bounded for some v0 ∈ C.

Proof. If A(T ) ̸= ∅, then ϕ(u, Tx) ≤ ϕ(u, x) for all u ∈ A(T ) and x ∈ C. So,
ϕ(u, Tnx) ≤ ϕ(u, x) for all n ∈ N and x ∈ C and hence {Tnx} is bounded. We
show the reverse. Since T : C → C is a 2-generalized nonspreading, there exist
α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R such that

α1ϕ(T
2x, Ty) + α2ϕ(Tx, Ty) + (1− α1 − α2)ϕ(x, Ty)

+ γ1(ϕ(Ty, T
2x)− ϕ(Ty, x)) + γ2(ϕ(Ty, Tx)− ϕ(Ty, x))(3.3)

≤ β1ϕ(T
2x, y) + β2ϕ(Tx, y) + (1− β1 − β2)ϕ(x, y)

+ δ1(ϕ(y, T
2x)− ϕ(y, x)) + δ2(ϕ(y, Tx)− ϕ(y, x))

for all x, y ∈ C. Replacing x by Tnv0 in the inequality (3.3), we have that

α1ϕ(T
n+2v0, T y) + α2ϕ(T

n+1v0, T y) + (1− α1 − α2)ϕ(T
nv0, T y)

+ γ1(ϕ(Ty, T
n+2v0)− ϕ(Ty, Tnv0)) + γ2(ϕ(Ty, T

n+1v0)− ϕ(Ty, Tnv0))

≤ β1ϕ(T
n+2v0, y) + β2ϕ(T

n+1v0, y) + (1− β1 − β2)ϕ(T
nv0, y)

+ δ1(ϕ(y, T
n+2v0)− ϕ(y, Tnv0)) + δ2(ϕ(y, T

n+1v0)− ϕ(y, Tnv0)).

Since {Tnv0} is bounded, we can apply a Banach limit µ to both sides of the
inequality. We have that

µnϕ(T
nv0, Ty) ≤ µnϕ(T

nv0, y)

for all y ∈ C. Therefore we have Theorem 3.3 from Theorem 3.2. �
Using Theorem 3.3, we have following attractive point theorem for generalized

nonspreading mappings in a Banach space which was proved by Lin and Takahashi
[20].
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Theorem 3.4. Let E be a smooth and reflexive Banach space. Let C be a nonempty
subset of E and let T be a generalized nonspreading mapping of C into itselt. Then,
the following are equivalent:

(a) A(T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Additionally, if E is strictly convex and C is closed and convex, then the following
are equivalent:

(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. Putting α1 = β1 = γ1 = δ1 = 0 in (3.1), we obtain that

α2ϕ(Tx, Ty) + (1− α2)ϕ(x, Ty) + γ2
{
ϕ(Ty, Tx)− ϕ(Ty, x)

}
(3.4)

≤ β2ϕ(Tx, y) + (1− β2)ϕ(x, y) + δ2
{
ϕ(y, Tx)− ϕ(y, x)

}
for all x, y ∈ C. Such a mapping is a generalized nonspreading mapping. So, we
have the desired result from Theorem 3.3. �

4. Skew-attractive point theorem

Let E be a smooth Banach space and let C be a nonempty subset of E. Let T
be a mapping from C into E. We denote by B(T ) the set of skew-attractive points
[20] of T , i.e., B(T ) = {z ∈ E : ϕ(Tx, z) ≤ ϕ(x, z), ∀x ∈ C}. The following lemma
was by Lin and Takahashi [20].

Lemma 4.1 (Lin and Takahashi[20]). Let E be a smooth Banach space and let C
be a nonempty subset of H. Let T be a mapping from C into E. Then, B(T ) is a
closed.

Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty subset of E. Let T be a mapping from C into E. Define a mapping T ∗

as follows:
T ∗x∗ = JTJ−1x∗, ∀x∗ ∈ JC,

where J is the duality mapping on E and J−1 is the duality mapping on E∗. A
mapping T ∗ is called the duality mapping of T ; see [33] and [5]. If T is a mapping
of C into itself, then T ∗ is a mapping of JC into JC; see [33].

Lemma 4.2 (Lin and Takahashi [20]). Let E be a smooth, strictly convex and
reflexive Banach space and let C be a nonempty subset of E. Let T be a mapping
from C into E and let T ∗ be the duality mapping of T . Then the following hold:

(1) JB(T ) = A(T ∗);
(2) JA(T ) = B(T ∗).

In particular, JB(T ) is closed and convex.

Let E be a smooth Banach space and let J be the duality mapping from E
into E∗. Let C be a nonempty subset of E. A mapping T : C → E is called 2-
skew-generalized nonspreading [32] if there exist α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R such
that

α1ϕ(Ty, T
2x) + α2ϕ(Ty, Tx) + (1− α1 − α2)ϕ(Ty, x)
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+ γ1(ϕ(T
2x, Ty)− ϕ(x, Ty)) + γ2(ϕ(Tx, Ty)− ϕ(x, Ty))(4.1)

≤ β1ϕ(y, T
2x) + β2ϕ(y, Tx) + (1− β1 − β2)ϕ(y, x)

+ δ1(ϕ(T
2x, y)− ϕ(x, y)) + δ2(ϕ(Tx, y)− ϕ(x, y))

for all x, y ∈ C.

Theorem 4.3. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty subset of E. Let T be a 2-skew-generalized nonspreading
mapping of C into itself. Then the following are equivalent:

(1) B(T ) ̸= ∅;
(2) {Tnv0} is bounded for some v0 ∈ C.

Additionally, if C is closed and JC is closed and convex, then the following are
equivalent:

(1) F (T ) ̸= ∅;
(2) {Tnv0} is bounded for some v0 ∈ C.

Proof. If B(T ) ̸= ∅, then ϕ(Ty, u) ≤ ϕ(y, u) for all u ∈ B(T ) and y ∈ C. So,
ϕ(Tny, u) ≤ ϕ(y, u) for all n ∈ N and y ∈ C and then {Tny} is bounded for all
y ∈ C. We show the reverse. As in the proof of Theorem 4.3 in [20], we obtain that

α1ϕ∗(T
∗2x∗, T ∗y∗) + α2ϕ∗(T

∗x∗, T ∗y∗) + (1− α1 − α2)ϕ∗(x
∗, T ∗y∗)

+ γ1(ϕ∗(T
∗y∗, T ∗2x∗)− ϕ∗(T

∗y∗, x∗)) + γ2(ϕ∗(T
∗y∗, T ∗x∗)− ϕ∗(T

∗y∗, x∗))

≤ β1ϕ∗(T
∗2x∗, y∗) + β2ϕ∗(T

∗x∗, y∗) + (1− β1 − β2)ϕ∗(x
∗, y∗)

+ δ1(ϕ∗(y
∗, T ∗2x∗)− ϕ∗(y

∗, x∗)) + δ2(ϕ∗(y
∗, T ∗x∗)− ϕ∗(y

∗, x∗))

for all x∗, y∗ ∈ JC. This implies that T ∗ is a 2-generalized nonspreading mapping
of JC into itself. Since ∥Tnx∥ = ∥JTnx∥ = ∥(JTJ−1)nJx∥ = ∥(T ∗)nJx∥. Thus
if {Tnx} is bounded for some x ∈ C, then {(T ∗)nJx} is bounded. By Theorem
3.3, we obtain that A(T ∗) is nonempty. From Lemma 4.2, we also know that
A(T ∗) = JB(T ). Therefore B(T ) is nonempty. Additionally, assume that C is
closed and JC is closed and convex. If {Tnx} is bounded for some x ∈ C, then
{(T ∗)nx} is bounded. By Theorem 3.3, we obtain that F (T ∗) is nonempty. Hence
F (T ) is nonempty. It is obvious that if F (T ) ̸= ∅, then {Tnu} = {u} for u ∈ F (T ),
that is, {Tnv0} is bounded for some v0 ∈ C. This completes the proof. �

Using Theorem 4.3, we have the following attractive point theorem for skew-
generalized nonspreading mappings in a Banach space which was proved by Lin
and Takahashi [20].

Theorem 4.4. Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty subset of E and let T be a skew-generalized nonspreading
mapping of C into itselt. Then, the following are equivalent:

(a) B(T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Additionally, if C is closed and JC is closed and convex, then the following are
equivalent:

(a) F (T ) ̸= ∅;
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(b) {Tnx} is bounded for some x ∈ C.

Proof. Putting α1 = β1 = γ1 = δ1 = 0 in (4.1), we obtain that

α2ϕ(Ty, Tx) + (1− α2)ϕ(Ty, Tx) + γ2
{
ϕ(Tx, Ty)− ϕ(x, Ty)

}
(4.2)

≤ β2ϕ(y, Tx) + (1− β2)ϕ(y, x) + δ2
{
ϕ(Tx, y)− ϕ(x, y)

}
for all x, y ∈ C. Such a mapping is a skew-generalized nonspreading mapping. So,
we have the desired result from Theorem 4.3. �

5. Nonlinear ergodic theorems

In the section, we prove a nonlinear ergodic theorem of Baillon,s type [2] with-
out convexity for 2-generalized nonspreading mappings in a Banach space. Before
proving it, we need the following four lemmas.

Lemma 5.1. Let E be a smooth, strictly convex and reflexive Banach space with
the duality mapping J and let D be a nonempty, closed and convex subset of E.
Let {xn} be a bounded sequence in D and let µ be a mean on l∞. If g : D → R is
defined by

g(z) = µnϕ(xn, z), ∀z ∈ D,

then the mean vector z0 of {xn} for µ is a unique minimizer in D such that

g(z0) = min{g(z) : z ∈ D}.

Proof. For a bounded sequence {xn} ⊂ D and a mean µ on l∞, we know that a
function g : D → R defined by

g(z) = µnϕ(xn, z), ∀z ∈ D

is well-defined. We also know from the proof of Theorem 3.2 that there exists the
mean vector z0 of {xn} for µ, that is, there exists z0 ∈ co{xn : n ∈ N} such that

µn⟨xn, y∗⟩ = ⟨z0, y∗⟩, ∀y∗ ∈ E∗.

Since D is closed and convex and {xn} ⊂ D, we have z0 ∈ D. Furthermore we have
from (2.2) and (2.3) that for any z ∈ D,

g(z)− g(z0) = µnϕ(xn, z)− µnϕ(xn, z0)

= µn

(
ϕ(xn, z)− ϕ(xn, z0)

)
= µn

(
ϕ(xn, z)− ϕ(xn, z)− ϕ(z, z0)− 2⟨xn − z, Jz − Jz0⟩

)
= µn

(
− ϕ(z, z0)− 2⟨xn − z, Jz − Jz0⟩

)
= −ϕ(z, z0)− 2⟨z0 − z, Jz − Jz0⟩
= −ϕ(z, z0)− ϕ(z0, z0)− ϕ(z, z) + ϕ(z0, z) + ϕ(z, z0)

= ϕ(z0, z).

Then we have that

(5.1) g(z) = g(z0) + ϕ(z0, z), ∀z ∈ D.

This implies that z0 ∈ D is a minimizer in D such that g(z0) = min{g(z) : z ∈
D}. Furthermore, if u ∈ D satisfies g(u) = g(z0), then we have from (5.1) that
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ϕ(z0, u) = 0. Since E is strictly convex, we have that z0 = u and hence z0 is a
unique minimizer in D such that

g(z0) = min{g(z) : z ∈ D}.
This completes the proof. �

Using Lemma 5.1, we obtain the following result.

Lemma 5.2. Let E be a smooth, strictly convex and reflexive Banach space with
the duality mapping J , let C be a nonempty subset of E and let T be a mapping of
C into itself. Suppose that A(T ) = B(T ) is nonempty. Then for any x ∈ C, the
sequence {Tnx} is bounded and the set

∩∞
k=1co{T k+nx : n ∈ N} ∩A(T )

consists of one point z0, where z0 is a unique minimizer of A(T ) such that

lim
n→∞

ϕ(Tnx, z0) = min{ lim
n→∞

ϕ(Tnx, z) : z ∈ A(T )}.

Additionally, if C is closed and convex, then the set

∩∞
k=1co{T k+nx : n ∈ N} ∩ F (T )

consists of one point z0.

Proof. Since A(T ) = B(T ) is nonempty, we have that for any z ∈ A(T ) = B(T )
and x ∈ C,

ϕ(Tn+1x, z) ≤ ϕ(Tnx, z) ≤ · · · ≤ ϕ(x, z), ∀n ∈ N.
Thus {Tnx} is bounded. Let µ be a Banach limit on l∞. From Lemma 5.1, a unique
minimizer z0 ∈ E such that

µnϕ(T
nx, z0) = min{µnϕ(T

nx, y) : y ∈ E}
is the mean vector z0 ∈ E of {Tnx} for µ, that is, a point z0 ∈ E such that
z0 ∈ co{Tnx : n ∈ N} and

µn⟨Tnx, y∗⟩ = ⟨z0, y∗⟩, ∀y∗ ∈ E∗.

We also know from the proof of Theorem 3.2 that z0 ∈ A(T ). Furthermore, this
z0 ∈ A(T ) satisfies that

µnϕ(T
nx, z0) = min{µnϕ(T

nx, y) : y ∈ A(T )}.
Let us show that z0 ∈ ∩∞

k=1co{T k+nx : n ∈ N}. If not, there exists some k ∈ N such

that z0 /∈ co{T k+nx : n ∈ N}. By the separation theorem, there exists y∗0 ∈ E∗ such
that

⟨z0, y∗0⟩ < inf
{
⟨z, y∗0⟩ : z ∈ co{T k+nx : n ∈ N}

}
.

Using the property of the Banach limit µ, we have that

⟨z0, y∗0⟩ < inf
{
⟨z, y∗0⟩ : z ∈ co{T k+nx : n ∈ N}

}
≤ inf{⟨T k+nx, y∗0⟩ : n ∈ N}

≤ µn⟨T k+nx, y∗0⟩
= µn⟨Tnx, y∗0⟩
= ⟨z0, y∗0⟩.



ATTRACTIVE POINT THEOREMS AND ERGODIC THEOREMS 13

This is a contradiction. Thus we have that z0 ∈ ∩∞
k=1co{T k+nx : n ∈ N}. Next we

show that ∩∞
k=1co{T k+nx : n ∈ N} ∩ A(T ) consists of one point z0. Assume that

z1 ∈ ∩∞
k=1co{T k+nx : n ∈ N} ∩A(T ). Since z1 ∈ A(T ) = B(T ), we have that

ϕ(Tn+1x, z1) ≤ ϕ(Tnx, z1), ∀n ∈ N.

Then limn→∞ ϕ(Tnx, z1) exists. Furthermore, we know from the property of a
Banach limit µ that

µnϕ(T
nx, z1) = lim

n→∞
ϕ(Tnx, z1).

In general, since limn→∞ ϕ(Tnx, z) exists for every z ∈ A(T ), we define a function
g : A(T ) → R as follows:

g(z) = lim
n→∞

ϕ(Tnx, z), ∀z ∈ A(T ).

Since

ϕ(z0, z1) = ϕ(Tnx, z1)− ϕ(Tnx, z0)− 2⟨Tnx− z0, Jz0 − Jz1⟩
for every n ∈ N, we have

ϕ(z0, z1) + 2 lim
n→∞

⟨Tnx− z0, Jz0 − Jz1⟩

= lim
n→∞

ϕ(Tnx, z1)− lim
n→∞

ϕ(Tnx, z0)

≥ 0.

Let ϵ > 0. Then we have that

2 lim
n→∞

⟨Tnx− z0, Jz0 − Jz1⟩ > −ϕ(z0, z1)− ϵ.

Hence there exists n0 ∈ N such that

2⟨Tnx− z0, Jz0 − Jz1⟩ > −ϕ(z0, z1)− ϵ

for every n ∈ N with n ≥ n0. Since z1 ∈ ∩∞
k=1co{T k+nx : n ∈ N}, we have

2⟨z1 − z0, Jz0 − Jz1⟩ ≥ −ϕ(z0, z1)− ϵ.

We have from (2.3) that

ϕ(z1, z1) + ϕ(z0, z0)− ϕ(z1, z0)− ϕ(z0, z1) ≥ −ϕ(z0, z1)− ϵ

and hence ϕ(z1, z0) ≤ ϵ. Since ϵ > 0 is arbitrary, we have ϕ(z1, z0) = 0. Since E is
strictly convex, we have z0 = z1. Therefore

{z0} = ∩∞
k=1co{T k+nx : n ∈ N} ∩A(T ).

Additionally, if C is closed and convex, then we have that

z0 ∈ ∩∞
k=1co{T k+nx : n ∈ N} ∩ F (T ).

Since ∩∞
k=1co{T k+nx : n ∈ N} ∩A(T ) consists of one point z0, we have that

∩∞
k=1co{T k+nx : n ∈ N} ∩ F (T ) = {z0}.

This completes the proof. �
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Lemma 5.3. Let E be a smooth and reflexive Banach space and let C be a nonempty
subset of E. Let T be a 2-generalized nonspreading mapping of C into itself. Suppose
that {Tnx} is bounded for some x ∈ C. Define

Snx =
1

n

n−1∑
k=0

T kx, ∀n ∈ N.

If a subsequence {Snix} of {Snx} converges weakly to a point u, then u ∈ A(T ).
Additionally, if E is strictly convex and C is closed and convex, then u ∈ F (T ).

Proof. Let T be a 2-generalized nonspreading mapping of C into itself. Then, there
exist α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R such that

α1ϕ(T
2z, Ty) + α2ϕ(Tz, Ty) + (1− α1 − α2)ϕ(x, Ty)

+ γ1{ϕ(Ty, T 2z)− ϕ(Ty, z)}+ γ2{ϕ(Ty, Tz)− ϕ(Ty, z)}(5.2)

≤ β1ϕ(T
2z, y) + β2ϕ(Tz, y) + (1− β1 − β2)ϕ(z, y)

+ δ1{ϕ(y, T 2z)− ϕ(y, z)}+ δ2{ϕ(y, Tz)− ϕ(y, z)}

for all z, y ∈ C. Let {Tnx} be a bounded sequence. Replacing z by T kx in (5.2),
we have that for any y ∈ C and k ∈ N ∪ {0},

α1ϕ(T
k+2x, Ty) + α2ϕ(T

k+1x, Ty) + (1− α1 − α2)ϕ(T
kx, Ty)

+ γ1{ϕ(Ty, T k+2x)− ϕ(Ty, T kx)}+ γ2{ϕ(Ty, T k+1x)− ϕ(Ty, T kx)}

≤ β1ϕ(T
k+2x, y) + β2ϕ(T

k+1x, y) + (1− β1 − β2)ϕ(T
kx, y)

+ δ1{ϕ(y, T k+2x)− ϕ(y, T kx)}+ δ2{ϕ(y, T k+1x)− ϕ(y, T kx)}(5.3)

= β1{ϕ(T k+2x, Ty) + ϕ(Ty, y) + 2⟨T k+2x− Ty, JTy − Jy⟩}

+ β2{ϕ(T k+1x, Ty) + ϕ(Ty, y) + 2⟨T k+1x− Ty, JTy − Jy⟩}

+ (1− β1 − β2){ϕ(T kx, Ty) + ϕ(Ty, y) + 2⟨T kx− Ty, JTy − Jy⟩}

+ δ1{ϕ(y, T k+2x)− ϕ(y, T kx)}+ δ2{ϕ(y, T k+1x)− ϕ(y, T kx)}.
This implies that

0 ≤ (β1 − α1){ϕ(T k+2x, Ty)− ϕ(T kx, Ty)}

+ (β2 − α2){ϕ(T k+1x, Ty)− ϕ(T kx, Ty)}+ ϕ(Ty, y)

+ 2⟨β1T k+2x+ β2T
k+1x+ (1− β1 − β2)T

kx− Ty, JTy − Jy⟩

− γ1{ϕ(Ty, T k+2x)− ϕ(Ty, T kx)} − γ2{ϕ(Ty, T k+1x)− ϕ(Ty, T kx)}

+ δ1{ϕ(y, T k+2x)− ϕ(y, T kx)}+ δ2{ϕ(y, T k+1x)− ϕ(y, T kx)}(5.4)

= (β1 − α1){ϕ(T k+2x, Ty)− ϕ(T kx, Ty)}

+ (β2 − α2){ϕ(T k+1x, Ty)− ϕ(T kx, Ty)}+ ϕ(Ty, y)

+ 2⟨T kx− Ty + β1(T
k+2x− T kx) + β2(T

k+1x− T kx), JTy − Jy⟩

− γ1{ϕ(Ty, T k+2x)− ϕ(Ty, T kx)} − γ2{ϕ(Ty, T k+1x)− ϕ(Ty, T kx)}

+ δ1{ϕ(y, T k+2x)− ϕ(y, T kx)}+ δ2{ϕ(y, T k+1x)− ϕ(y, T kx)}.
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Summing up these inequalities (5.4) with respect to k = 0, 1, . . . , n−1 and deviding
by n, we have that

0 ≤ 1

n
(β1 − α1){ϕ(Tn+1x, Ty) + ϕ(Tnx, Ty)− ϕ(Tx, Ty)− ϕ(x, Ty)}

+
1

n
(β2 − α2){ϕ(Tnx, Ty)− ϕ(x, Ty)}+ ϕ(Ty, y)

+ 2⟨Snx− Ty, JTy − Jy⟩

+
2

n
⟨β1(Tn+1x+ Tnx− Tx− x) + β2(T

nx− x), JTy − Jy⟩(5.5)

− γ1
n
{ϕ(Ty, Tn+1x) + ϕ(Ty, Tnx)− ϕ(Ty, Tx)− ϕ(Ty, x)}

− γ2
n
{ϕ(Ty, Tnx)− ϕ(Ty, x)}

+
δ1
n
{ϕ(y, Tn+1x) + ϕ(y, Tnx)− ϕ(y, Tx)− ϕ(y, x)}

+
δ2
n
{ϕ(y, Tnx)− ϕ(y, x)},

where Snx = 1
n

∑n−1
k=0 T

kx. Since {Snix} converges weakly to a point u, we obtain
that

(5.6) 0 ≤ ϕ(Ty, y) + 2⟨u− Ty, JTy − Jy⟩,
as ni → ∞ in (5.5). Using (2.3), we obtain

0 ≤ ϕ(Ty, y) + 2⟨u− Ty, JTy − Jy⟩
= ϕ(Ty, y) + ϕ(u, y) + ϕ(Ty, Ty)− ϕ(u, Ty)− ϕ(Ty, y)(5.7)

= ϕ(u, y)− ϕ(u, Ty).

Hence ϕ(u, Ty) ≤ ϕ(u, y) and then u ∈ A(T ). Additionally, assume that E is strictly
convex and C is closed and convex. Since {Snix} ⊂ C and {Snix} converges weakly
to a point u, then u ∈ C because C is weakly closed. Putting y = u in (5.6), we
obtain

0 ≤ ϕ(Tu, u) + 2⟨u− Tu, JTu− Ju⟩
= ϕ(Tu, u) + ϕ(u, u) + ϕ(Tu, Tu)− ϕ(u, Tu)− ϕ(Tu, u)(5.8)

= −ϕ(u, Tu).

Hence ϕ(u, Tu) = 0. Since E is strictly convex, we have u ∈ F (T ). This completes
the proof. �
Lemma 5.4. Let E be a uniformly convex and smooth Banach space. Let C be a
nonempty subset of E and let T : C → C be a mapping such that B(T ) ̸= ∅. Then,
there exists a unique sunny generalized nonexpansive retraction R of E onto B(T ).
Furthermore, for any x ∈ C, limn→∞RTnx exists in B(T ).

Proof. We have from Lemmas 4.1 and 4.2 that B(T ) is closed and JB(T ) is closed
and convex. Then from Lemmas 2.5 and 2.3 , there exists a unique sunny generalized
nonexpansive retraction R of E onto B(T ). From Lemma 2.4, we know that

(5.9) 0 ≤ ⟨v −Rv, JRv − Ju⟩, ∀u ∈ B(T ), v ∈ C.
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We have from (5.9) and (2.3) that

0 ≤ 2⟨v −Rv, JRv − Ju⟩
= ϕ(v, u) + ϕ(Rv,Rv)− ϕ(v,Rv)− ϕ(Rv, u)

= ϕ(v, u)− ϕ(v,Rv)− ϕ(Rv, u).

Hence we have that

(5.10) ϕ(Rv, u) ≤ ϕ(v, u)− ϕ(v,Rv), ∀u ∈ B(T ), v ∈ C.

Since ϕ(Tz, u) ≤ ϕ(z, u) for any u ∈ B(T ) and z ∈ C, it follows that

ϕ(Tnx,RTnx) ≤ ϕ(Tnx,RTn−1x)

≤ ϕ(Tn−1x,RTn−1x).

Hence the sequence ϕ(Tnx,RTnx) is nonincreasing. Putting u = RTnx and v =
Tmx with n ≤ m in (5.10), we have from Lemma 2.2 that

g(∥RTmx−RTnx∥) ≤ ϕ(RTmx,RTnx)

≤ ϕ(Tmx,RTnx)− ϕ(Tmx,RTmx)

≤ ϕ(Tnx,RTnx)− ϕ(Tmx,RTmx),

where g is a strictly increasing, continuous and convex real-valued function with
g(0) = 0. From the properties of g, {RTnx} is a Cauchy sequence. Therefore
{RTnx} converges strongly to a point q ∈ B(T ). This completes the proof. �

Using Lemmas 5.2, 5.3 and 5.4, we prove the following nonlinear ergodic theorem
for 2-generalized nonspreading mappings in a Banach space.

Theorem 5.5. Let E be a uniformly convex Banach space with a Fréchet differen-
tiable norm and let C be a nonempty subset of E. Let T : C → C be a 2-generalized
nonspreading mapping such that A(T ) = B(T ) ̸= ∅ and let RB(T ) be the sunny
generalized nonexpansive retraction of E onto B(T ). Then for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to z0 ∈ A(T ), where z0 = limn→∞RB(T )T
nx. Additionally, if C is

closed and convex, then {Snx} converges weakly to z0 ∈ F (T ).

Proof. Let x ∈ C. Since A(T ) is nonempty, the sequence {Tnx} is bounded. So,
{Snx} is bounded. We know from Theorem 5.2 that the set

∩∞
k=1co{T k+nx : n ∈ N} ∩A(T )

consists of one point. To prove that {Snx} converges weakly to a point z0 in A(T ),
it is sufficient to show that if Snix ⇀ v, then v ∈ A(T ) and

v ∈ ∩∞
k=1co{T k+nx : n ∈ N}.

From Lemma 5.3, we have that v ∈ A(T ). Next, we show that

v ∈ ∩∞
k=1co{T k+nx : n ∈ N}.
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Fix k ∈ N. We have that for any ni ∈ N with ni > k + 1,

Snix =
1

ni
(x+ Tx+ · · ·+ T kx) +

ni − (k + 1)

ni
· 1

ni − (k + 1)
(T k+1x+ · · ·+ Tni−1).

Thus from Snix ⇀ v, we have

1

ni − (k + 1)
(T k+1x+ · · ·+ Tni−1) ⇀ v

and hence v ∈ co{T k+nx : n ∈ N}. Since k ∈ N is arbitrary, we have that v ∈
∩∞
k=1co{T k+nx : n ∈ N}. Therefore {Snx} converges weakly to a point z0 of A(T ).

Additionally, assume that E is strictly convex and C is closed and convex. Then
z0 ∈ C because C is weakly closed. From ϕ(Tz0, z0) ≤ ϕ(z0, z0) = 0, we have
ϕ(Tz0, z0) = 0 and hence z0 ∈ F (T ). Therefore {Snx} converges weakly to z0 ∈
F (T ).

We have from Lemma 5.4 that there exists the sunny generalized nonexpansive
retraction R = RB(T ) of E onto B(T ) and {RTnx} converges strongly to a point
q ∈ B(T ). Rewriting the characterization of the retraction R, we have that

0 ≤
⟨
T kx−RT kx, JRT kx− Ju

⟩
, ∀u ∈ B(T )

and hence ⟨
T kx−RT kx, Ju− Jq

⟩
≤

⟨
T kx−RT kx, JRT kx− Jq

⟩
≤ ∥T kx−RT kx∥ · ∥JRT kx− Jq∥

≤ K∥JRT kx− Jq∥,

where K is an upper bound for ∥T kx−RT kx∥. Summing up these inequalities for
k = 0, 1, . . . , n− 1 and deviding by n, we arrive to⟨

Snx− 1

n

n−1∑
k=0

RT kx, Ju− Jq

⟩
≤ K

n

n−1∑
k=0

∥JRT kx− Jq∥,

where Snx = 1
n

∑n−1
k=0 T

kx. Letting n → ∞ and remembering that J is continuous,
we get that

⟨z0 − q, Ju− Jq⟩ ≤ 0.

This holds for any u ∈ B(T ). Putting u = z0, we have ⟨z0 − q, Jz0 − Jq⟩ ≤ 0. Since
J is monotone, we have ⟨z0 − q, Jz0 − Jq⟩ = 0. Since E is strictly convex, we have
Z0 = q. Thus z0 = limn→∞RB(T )T

nx. �

Since a generalized nonspreading mapping is a 2-generalized nonspreading map-
ping, from Theorem 5.5 we can obtain the following nonlinear ergodic theorem
obtained by Lin and Takahashi [20] in a Banach space.

Theorem 5.6. Let E be a uniformly convex Banach space with a Fréchet differen-
tiable norm and let C be a nonempty subset of E. Let T : C → C be a generalized
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nonspreading mapping such that A(T ) = B(T ) ̸= ∅. Let R be the sunny generalized
nonexpansive retraction of E onto B(T ). Then, for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to z0 ∈ A(T ), where z0 = limn→∞RTnx. Additionally, if C is
closed and convex, then {Snx} converges weakly to z0 ∈ F (T ).

Furthermore, using Theorem 5.5, we have the nonlinear ergodic theorem obtained
by Lin and Takahashi [21] in a Hilbert space.

Theorem 5.7 (Lin and Takahashi [21]). Let H be a real Hilbert space and let C
be a nonempty subset of H. Let T be a 2-generalized hybrid mapping from C into
itself. Let {vn} and {bn} be sequences defined by

v1 ∈ C, vn+1 = Tvn, bn =
1

n

n∑
k=1

vk

for all n ∈ N. If A(T ) ̸= ∅ , then {bn} converges weakly to u0 ∈ A(T ), where
u0 = lim

n→∞
PA(T )vn.

Proof. Putting γ1 = γ2 = 0, δ1 = δ2 = 0 and ϕ(x, y) = ∥x− y∥2 in (3.2), we obtain
that for any x, y ∈ C,

α1∥T 2x−Ty∥2 + α2∥Tx− Ty∥2 + (1− α1 − α2)∥x− Ty∥2

≤ β1∥T 2x− y∥2 + β2∥Tx− y∥2 + (1− β1 − β2)∥x− y∥2.
So, a 2-generalized nonspreading mappings is a 2-generalized hybrid mappings in
the sense of Maruyama, Takahashi and Yao [24]. Furthermore, it is obvious that
A(T ) = B(T ). It follows from Lemma 3.1 that A(T ) is nonempty, closed and convex.
Hence, there exists the metric projection of H onto A(T ). In a Hilbert, the metric
projection of H onto A(T ) is equivalent to the sunny generalized nonexpansive
retraction of E onto B(T ). So, we have the desired result from Theorem 5.5. �

As in the proof of Theorem 5.5, we have the nonlinear ergodic theorem obtained
by Takahashi, Wong and Yao [32].

Theorem 5.8. Let E be a uniformly convex Banach space with a Fréchet differ-
entiable norm and let C be a nonempty closed convex sunny generalized nonexpan-
sive retract of E. Let T : C → C be a 2-generalized nonspreading mapping with
F (T ) ̸= ∅ such that ϕ(Tx, u) ≤ ϕ(x, u) for all x ∈ C and u ∈ F (T ). Let R be the
sunny generalized nonexpansive retraction of E onto F (T ). Then, for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to z0 ∈ F (T ), where z0 = limn→∞RTnx.

Proof. Since there exists a sunny generalized nonexpansive retraction of E onto C,
we have from Lemma 2.5 that JC is closed and convex. Since E is a smooth, strictly
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convex and reflexive and C is closed and convex, we have from Lemma 5.2 that for
any x ∈ C,

∩∞
k=1co{T k+nx : n ∈ N} ∩ F (T )

consists of one point z0, where z0 is the mean vector of {Tnx} for any Banach limit
µ. Thus {Snx} converges weakly to z0 ∈ F (T ). Furthermore, we know from Lemma
2.8 that there exists a sunny generalized nonexpansive retraction of E onto F (T ).
Thus as in the proof of Lemma 5.4, we have that z0 = limn→∞RTnx. �
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