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In 1978, Hiriart-Urruty [7] established necessary optimality conditions in a sin-
gle nonfractional objective function without differentiability or convexity assump-
tions. He used the concept of generalized gradient of a locally Lipschitz function
to consider local extremization problems in global case for objective functions. For
constraint case, it is considered by the way of cone adherent displacements, and
optimality conditions in Kuhn-Tuker form under constraint qualification. Further-
more, saddle point theory is developed for the subdifferentiable multiobjective frac-
tional programming problem by Bector et al. [3] in 1993 and the duality results
for multiobjective fractional optimization problems under convexity are presented.
Later in 1996, Liu [20] proved necessary and sufficient optimality conditions of mul-
tiobjective fractional programming problems containing nonsmooth (F, ρ)-convex
functions. For such optimaization problems, they proved necessary and sufficient
optimality conditions for minimization and duality theorems under generalized invex
functions. Chen and Lai [4] in 2003 established sufficient optimality conditions and
paramertic duality theorems for nondifferentiable fractional variational problems in-
volving generalized (F, ρ, θ)-invexity. They showed that generalized invex functions
diagrams with interesting inclusion relations. Lee and Lai [19] proved sufficient op-
timality conditions for nondifferentiable fractional variational programming under
certain specific structure of generalized invexity and employing the sufficient opti-
mality conditions constructed two kinds of parameter-free dual models, namely the
Mond-Wier dual type and Wolfe dual type are formulated. Lai [10] employed the
sufficient optimality conditions to construct a mixed type dual programming prob-
lem and several duality theorems involving generalized invexity are proved. Lai
and Huang [13] established the sufficient optimality conditions for a minimax pro-
gramming problem involving p fractional n-set functions under generalized invexity.
One of such a notion is a nondifferentiable V -r-invex for vector function, intro-
duced by Antczak [1]. He used a nondifferentiable V -r-invexity for a nonsmooth
nonfractional multiobjective programming problem to derive Karush-Kuhn-Tuker
necessary and sufficient optimality conditions. In [12], Lai and Chen established
necessary and sufficient optimality conditions on a nondifferentiable minimax frac-
tional programming problem. Applying the optimality conditions, they constituted
two dual models: Mond-Weir type and Wolf type. On these duality types, they
proved three duality theorems-weak, strong, and strict converse duality theorems.

Recently there are many authors interesting to establish sufficient optimality
conditions and duality results for multiobjective programming problems in differ-
ent representations. See for instance, in [5], Chinchuluun et al. obtained efficiency
conditions and duality theorems for multiobjective fractional programming under
(C,α, ρ, d)-convexity. Kim et al. [8] considered a class of nondifferentiable multi-
objective fractional programs in which each component of the objective function
contains a term of support function for a compact convex set. Nobakhtian [23]
established the necessary and sufficient optimality conditions under various gen-
eralized invexity assumptions. Lai and Ho [16] have established the theorems of
sufficient optimality conditions and duality thoerems of parametric dual model un-
der exponential (Exp. for brevity) V -r-invexity for Problem (FP ).

In this paper, we are motivated from the results of Antczak [1], Liu [20], and
Lai and Chen [12], to establish duality theorems for a system of multiobjective
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fractional programmings under nonsmooth Exp. V -r-invex Lipschitz functions. We
construct two kinds of parameter free dual models, the Mond-Wier type and Wolfe
type duality form. For convenience, we recall firstly the notations and known results
in the next section.

2. Definitions and Preliminaries

In Euclidean space Rm, we denote by Rm
+ the order cone. For cone partial order,

if x = (x1, x2, ..., xm), y = (y1, y2, ..., ym) in Rm, we denote

(1) x = y if and only if xi = yi for all i = 1, 2, . . . ,m;
(2) x > y if and only if xi > yi for all i = 1, 2, . . . ,m;
(3) x = y if and only if xi ≥ yi for all i = 1, 2, . . . ,m;
(4) x ≥ y if and only if x = y and xi ̸= yi for some i ∈ {1, 2, . . . ,m}.
We shall use the following definitions.

Definition 2.1. The function θ : X −→ R is said to be locally Lipschitz at x ∈ X
if there exists a positive constant K ∈ R and a neighborhood Γ of x ∈ X such that

|θ(y)− θ(z)| 5 K∥y − z∥ for all z, y ∈ Γ,

where ∥ · ∥ denotes any norm of X.

Given a vector ν in X, the generalized directional derivative of function θ at
x ∈ X in the direction ν (Clarke sense, see [6]) is defined by

θ◦(x; ν) = lim sup
y−→x
λ−→0+

θ(y + λν)− θ(y)

λ
.

The generalized subdifferential of θ at x ∈ X is defined as the subset in the dual
space X∗ of X by

∂◦θ(x) = {ξ ∈ X∗ : θ◦(x; ν) ≥ ⟨ξ, ν⟩ for all ν ∈ X},

where ⟨ξ; ν⟩ stands for the dual pair for X and X∗.
Evidently, θ◦(x; ν) = max{⟨ξ; ν⟩ : ξ ∈ ∂◦θ(x)} for any x and ν in X.
Let h : X → Rm be a local Lipschitz function. For a point x0 ∈ X, we define a

subindex set at x0 by

J(x0) = {j ∈ J : hj(x0) = 0}, J = {1, 2, · · · ,m}.

Let Λ = {ν ∈ X : h◦j (x0, ν) < 0, j ∈ J(x0)}. If Λ ̸= ∅, we say that the problem (FP )

has constraint qualification at x0 (cf. [7]).
In order to approve the duality theorems hold with respect to (w.r.t. for bievity)

problem (FP ), we need the following definition in our framework.

Definition 2.2 (cf. Antczak [1]). Let r be a real number, η : X ×X −→ X with
property that η(x, u) = 0 only if x = u, θ : X −→ Rk a locally Lipschitz function on
X. The function θ is called an Exp. V -r-invex (strictly) function w.r.t. η at u ∈ X
if, for each component i = 1, 2 · · · , k, there exist functions αi : X ×X −→ R+\{0}
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and ξi ∈ ∂◦θi(u), such that the following inequality holds:
(2.1)

1

r
erθi(x) − 1

r
erθi(u) = erθi(u)αi(x, u)⟨ξi, η(x, u)⟩ for all x ∈ X r ̸= 0,

(>) (x ̸= u, r ̸= 0).

As r → 0+, the above limit reduces another generalized η-invexity:

(2.2)
θi(x)− θi(u) = αi(x, u)⟨ξi, η(x, u)⟩ i = 1, 2 · · · , k,

(>) (x ̸= u) i = 1, 2 · · · , k.
If each component θi satisfies inequality (2.2), the function θ is still called V -invex
at u in X w.r.t. η.

If the above inequalities hold for any point u ∈ X, then θ = (θ1, θ2, · · · , θn) is
called an Exp. V -r-invex (strictly) w.r.t. η on X.

It follows from definition 2, that the vector-valued function θ : X −→ Rk is a
locally Lipschitz Exp. V -r-invex function if each component θi, i = 1, 2 · · · , k, is a
locally Lipschitz Exp. r-invex function, that is, the relations (2.1) holds. If r = 0,
(2.2) is the special case of (2.1).

Remark 2.3. In this paper we will prove only in the case r ̸= 0. While the case
for r = 0 it is easily reduced.

A feasible solution x to (FP ) is said to be an efficient solution to (FP ) if there
is no x ∈ F such that ϕ(x) ≤ ϕ(x).

In order to establish duality theorems w.r.t. the primal problem (FP ), we need
the result of necessary optimality conditions for problem (FP ). The sufficient op-
timality conditions of (FP ) follows from the converse of necessary conditions by
extra assumptions. To approve the existence of solution for (FP ), at first, we tread
with the subproblems (SFPi) of (FP ) as the following lemma.

Lemma 2.4 (cf. [3]). The point x is an optimal solution to problem (FP ) if and
only if x solves for the subproblem (SFPi) which is given as the following:

(SFPi) Minimize
fi(x)

gi(x)
,

subject to

x ∈ Mi =

{
x ∈ X :

fp(x)

gp(x)
5 fp(x)

gp(x)
≡ ϕp(x), p ̸= i, p = 1, 2, · · · , k, h(x) ∈ −Rm

+

}
,

equivalently:
Mi = {x ∈ X : fp(x)− ϕp(x)gp(x) 5 0, p ̸= i, p = 1, 2, · · · , k, h(x) ∈ −Rm

+}.

Theorem 2.5 (Necessary Optimality Conditions cf. [20]). If x is an optimal so-
lution of (FP ) satisfying constraint qualification for (SFPi), i = 1, 2, ..., k. Then,
there exist α∗ ∈ Rk

+, z
∗ ∈ Rm such that

(2.3) 0 ∈
k∑

i=1

α∗
i [∂

◦fi(x) + ϕi(x)∂
◦(−gi)(x)] + ⟨z∗, ∂◦h(x)⟩m,

(2.4) z∗jhj(x) = 0 for all j = 1, 2, ...,m,

(2.5) fi(x)− ϕi(x)gi(x) = 0 for all i = 1, 2, ..., k,
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(2.6) α∗ ∈ I, z∗ ∈ Rm
+ if hj(x) < 0 for x ∈ X,

where I = {α∗ ∈ Rk |α∗ = (α∗
1, α

∗
2, . . . , α

∗
k) > 0, and

k∑
i=1

α∗
i = 1},

and ⟨z∗, ∂◦h(x)⟩m ≡
∑m

j=1 z
∗
j ∂

◦hj(x).

We will use the extra condition by Exp. V -r-invexity to show the following
sufficient optimality theorem:

Theorem 2.6 (Sufficient Optimality Conditions cf. [16]). Let x ∈ F and there exist
α∗, z∗ satisfying the conditions (2.3) ∼ (2.6) at the point x. Furthermore suppose
that any one of the following conditions (a) and (b) holds:

(a) A1(x) =

k∑
i=1

α∗
i [fi(x)− ϕi(x)gi(x)] +

m∑
j=1

z∗jhj(x) is an Exp. V -r-invex func-

tion at x in F w.r.t. η,

(b) A2(x) =
k∑

i=1

α∗
i [fi(x) − ϕi(x)gi(x)] and A3(x) =

m∑
j=1

z∗jhj(x) are Exp. V -r-

invex functions at x in F w.r.t. the same function η.

Then, x is an efficient solution to problem (FP ).

3. Wolfe type duality model

In order to propose Wolfe type dual model, it is convenient to restate the necessary
conditions in Theorem 2.5 as the following form. Mainly it is used the expressions
(2.3) and (2.5) to get

0 ∈
k∑

i=1

α∗
i [∂

◦fi(x) +
fi(x)

gi(x)
∂◦(−gi)(x)] + ⟨z∗, ∂◦h(x)⟩m.

Then putting α∗ = α∗g(x) ∈ I in the above expression, we obtain

0 ∈
k∑

i=1

α∗
i gi(x)[∂

◦fi(x) + ⟨z∗, ∂◦h(x)⟩m] +

k∑
i=1

α∗
i fi(x)∂

◦(−gi)(x).

Consequently, from inequality (2.4), it yields

0 ∈
k∑

i=1

α∗
i gi(x)[∂

◦fi(x) + ⟨z∗, ∂◦h(x)⟩m] +

k∑
i=1

α∗
i [fi(x) + ⟨z∗, h(x)⟩m]∂◦(−gi)(x),

where ⟨z∗, h(x)⟩m ≡
∑m

j=1 z
∗
jhj(x). For simplicity, we write α∗

i still by α∗
i . Then

the result of Theorem 2.5 can be restated as the following theorem.

Theorem 3.1 (Necessary Optimality Conditions). If x is an efficient solution to
(FP ) and satisfying constraint qualification in (SFPi), i = 1, 2, ..., k. Then, there
exist α∗ ∈ Rk

+, z
∗ ∈ Rm such that

(3.1)

0 ∈
k∑

i=1

α∗
i gi(x)[∂

◦fi(x) + ⟨z∗, ∂◦h(x)⟩m] +

k∑
i=1

α∗
i [fi(x) + ⟨z∗, h(x)⟩m]∂◦(−gi)(x),
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(3.2) z∗jhj(x) = 0 for all j = 1, 2, ...,m,

(3.3) α∗ ∈ I, z∗ ∈ Rm
+ if hj(x) < 0 for x ∈ X.

For convenience we change the elements (x;α∗, z∗) in the necessary optimality
conditions (3.1) ∼ (3.3) by using (u;α, z) as new elements in the relative expressions,
where u ∈ F is a feasible solution of problem (FP ) and (α, z) are the multipliers in
the necessary conditions (3.1) ∼ (3.3) which are applied as the constraints of the
new duality problems.

Since the constraint function h(u) ∈ −Rm
+ in problem (FP ) and the multiplier z ∈

Rm
+ , thus ⟨z, h(u)⟩m =

∑m
j=1 zjhj(u) ≤ 0. By adding ⟨z, h(u)⟩m into the numerator

of the fractional component in the multiobjective of (FP ). Consequently, it becomes
the following new systems of multiobjective fractional functions in a maximization
problem (WD), namely Wolfe type dual problem. Precisely, we introduce the Wolfe
type dual (WD) with w.r.t. the primal problem (FP ) as follows

(WD) Maximize Ψ(u, z) ≡
(
f1(u) + ⟨z, h(u)⟩m

g1(u)
, ... ,

fk(u) + ⟨z, h(u)⟩m
gk(u)

)
≡ (Ψ1(u, z),Ψ2(u, z), ...,Ψk(u, z))

subject to

(3.4) 0 ∈
k∑

i=1

αigi(u)[∂
◦fi(u)+⟨z, ∂◦h(u)⟩m]+

k∑
i=1

αi[fi(u)+⟨z, h(u)⟩m]∂◦(−gi)(u),

(3.5) u ∈ X, α ∈ I, z ∈ Rm
+ .

Here we may assume that fi(u) + ⟨z, h(u)⟩m = 0 and gi(u) > 0, for all i =
1, 2, ..., k.

In order to show problem (WD) is surely a dual problem w.r.t. the problem
(FP ), we denote D1 by the set of feasible points (u;α, z) ∈ X × Rk

+ × Rm of
(WD) satisfying the expressions (3.4) and (3.5) of (WD). Moreover, denote by
elements satisfying the necessary optimality conditions of (FP ) which is defined by
the projective-like of the feasible solutions of problem (FP ):

prXD1 = {u ∈ X| (u;α, z) ∈ D1}.

Theorem 3.2 (Weak Duality). Let x and (u;α, z) be (FP )-feasible and (WD)-
feasible, respectively. Denote a function A4 : X → R, by

A4(·) =
k∑

i=1

αigi(u)[fi(·) + ⟨z, h(·)⟩m]−
k∑

i=1

αigi(·)[fi(u) + ⟨z, h(u)⟩m]

with A4(u) = 0. Suppose that A4(·) is an Exp. V -r-invex function at u ∈ F∩prXD1

w.r.t. η.
Then ϕ(x) � Ψ(u, z).

Proof. Let x and (u;α, z) be (FP ) and (WD)-feasible solutions, respectively. Ac-
cording to expression (3.4), there exist ξi ∈ ∂◦fi(u), ζi ∈ ∂◦(−gi)(u), i = 1, 2, ..., k,
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and ρj ∈ ∂◦hj(u), j = 1, 2, ...,m, such that

⟨a4⟩ ≡
k∑

i=1

αigi(u)[ξi + ⟨z, ρ⟩m] +

k∑
i=1

αi[fi(u) + ⟨z, h(u)⟩m]ζi = 0 in X∗,

that is, ⟨a4⟩ is a zero vector ofX∗, where ⟨z, ρ⟩m ≡
m∑
j=1

zjρj and ρ = (ρ1, ρ2, . . . , ρm).

Since η(x, u) ∈ X and ⟨a4⟩ ∈ X∗, the dual pair ⟨a4⟩ and η(x, u) of ⟨X∗, X⟩
reduces

(3.6) ⟨⟨a4⟩, η(x, u)⟩ = 0.

Since A4 is an Exp. V -r-invex function w.r.t. η at u ∈ F ∩ prXD1, there exists a
function a4 : (F ∩ prXD1)× (F ∩ prXD1) −→ R+ \ {0} such that

1

r
erA4(x) − 1

r
erA4(u) = erA4(u)a4(x, u) · ⟨⟨a4⟩, η(x, u)⟩ = 0 (by (3.6)),

that is,

1

r
erA4(x) − 1

r
erA4(u) = 0.

This deduces to

(3.7) A4(x) ≥ A4(u) = 0.

We want to prove that ϕ(x) � Ψ(u, z).
Suppose on the contrary that ϕ(x) ≤ Ψ(u, z). Then

fi(x)

gi(x)
≤ fi(u) + ⟨z, h(u)⟩m

gi(u)
for all i = 1, 2, ..., k,

but hj(u) ≤ 0 for any j ∈ {1, 2, · · · ,m}, thus

ft(x)

gt(x)
<

ft(u) + ⟨z, h(u)⟩m
gt(u)

for some t ∈ k = {1, 2, . . . , k}.

It follows that

k∑
i=1

αi[fi(x)gi(u)] <
k∑

i=1

αigi(x)[fi(u) + ⟨z, h(u)⟩m].

That is, (Remove the right hand side to left hand side in the above inequality, it
becomes to the form as the following expression.)

(3.8)

k∑
i=1

αigi(u)[fi(x) + ⟨z, h(x)⟩m]−
k∑

i=1

αigi(x)[fi(u) + ⟨z, h(u)⟩m] = A4(x)

< 0 +

k∑
i=1

αigi(u)⟨z, h(x)⟩m.
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Since gi(u) > 0 and hj(x) ≤ 0, it yields
k∑

i=1

αigi(u)⟨z, h(x)⟩m ≤ 0.

Therefore, from (3.8),

A4(x) =

k∑
i=1

αigi(u)[fi(x) + ⟨z, h(x)⟩m]−
k∑

i=1

αigi(x)[fi(u) + ⟨z, h(u)⟩m] < 0.

This contradicts the inequality (3.7). Hence the proof is complete. �

Theorem 3.3 (Strong Duality). Let x be the efficient solution of problem (FP )
satisfying the constraint qualification at x. Then there exist α∗ ∈ Rk, and z∗ ∈ Rm

such that (x;α∗, z∗) ∈ (WD)-feasible. If the hypotheses of Theorem 3.2 are fulfilled,
then (x;α∗, z∗) is an efficient solution to problem (WD).

Proof. Let x be an efficient solution to problem (FP ). Then there exist α∗, z∗ such
that (x;α∗, z∗) satisfies (3.1) ∼ (3.3), and so (x;α∗, z∗) is a feasible point of (WD).
Actually (x;α∗, z∗) is also an efficient solution of (WD).

If (x;α∗, z∗) is not an efficient solution to (WD), then there must have some
feasible solution (x;α, z) of (WD), such that

fi(x) + ⟨z∗, h(x)⟩m
gi(x)

5 fi(x) + ⟨z, h(x)⟩m
gi(x)

for all i = 1, 2, ..., k,

and by the constraint qualification of (FP ), there is some index t ∈ k to satisfy:

ft(x) + ⟨z∗, h(x)⟩m
gt(x)

<
ft(x) + ⟨z, h(x)⟩m

gt(x)
.

It follows from the above inequalities and equality 0 of (3.2) that ϕ(x) ≤ Ψ(x, z)
which is a contradiction with Theorem 3.2. Hence (x;α∗, z∗) is an efficient solution
of (WD). �

Theorem 3.4 (Strict Converse Duality). Let x and (u∗;α∗, z∗) be the efficient
solutions to (PF ) and (WD), respectively. Denote a function A5 : X → R, by

A5(·) =
k∑

i=1

α∗
i gi(u

∗)[fi(·) + ⟨z∗, h(·)⟩m]−
k∑

i=1

α∗
i gi(·)[fi(u∗) + ⟨z∗, h(u∗)⟩m]

with A5(u
∗) = 0. Assume that A5(·) is a strictly Exp. V -r-invex function at u∗ ∈

F ∩ prXD1 w.r.t. η for all optimal vectors x for (FP ) and (u∗;α∗, z∗) for (WD),
respectively. Then x = u∗, and the efficient values of (FP ) and (WD) are equal.

Proof. Suppose that x ̸= u∗. From the relation (3.4), there exist ξi ∈ ∂◦fi(u
∗),

ζi ∈ ∂◦(−gi)(u
∗), i = 1, 2, ..., k, and ρj ∈ ∂◦hj(u

∗), j = 1, 2, ...,m, such that

⟨a5⟩ ≡
k∑

i=1

α∗
i gi(u

∗)[ξi + ⟨z∗, ρ⟩m] +

k∑
i=1

α∗
i [fi(u

∗) + ⟨z∗, h(u∗)⟩m]ζi = 0 ∈ X∗,

where ρ = (ρ1, ρ2, . . . , ρm). It follows that the dual pair:

(3.9) ⟨⟨a5⟩, η(x, u∗)⟩ = 0.
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By Theorem 3.3, there exist α and z so that (x;α, z) becomes an efficient solution
of (WD) and

(3.10)
fi(x) + ⟨z, h(x)⟩m

gi(x)
=

fi(u
∗) + ⟨z∗, h(u∗)⟩m

gi(u∗)
.

On the other hand, from (3.2) and (3.10), we obtain

fi(x)

gi(x)
=

fi(u
∗) + ⟨z∗, h(u∗)⟩m

gi(u∗)
.

Hence

fi(x)gi(u
∗) = [fi(u

∗) + ⟨z∗, h(u∗)⟩m]gi(x).

That is,

(3.11) fi(x)gi(u
∗)− [fi(u

∗) + ⟨z∗, h(u∗)⟩m]gi(x) = 0.

From (3.2), (3.5), and (3.11), we obtain

k∑
i=1

α∗
i gi(u

∗)[fi(x) + ⟨z∗, h(x)⟩m]−
k∑

i=1

α∗
i gi(x)[fi(u

∗) + ⟨z∗, h(u∗)⟩m] = A5(x)

=

k∑
i=1

α∗
i gi(u

∗)⟨z∗, h(x)⟩m.

Since h(x) ∈ −Rm
+ , (3.5) and gi(u

∗) > 0, we see that

A5(x) 5 0

and A5 at the point u∗ is 0, thus

(3.12) A5(x) 5 0 = A5(u
∗).

Since A5 is a strictly Exp. V -r-invex function w.r.t. η at u∗ ∈ F ∩ prXD1, there
exists a function a5 : (F ∩ prXD1)× (F ∩ prXD1) −→ R+ \ {0} such that

(3.13)
1

r
erA5(x) − 1

r
erA5(u∗) > erA5(u∗)a5(x, u

∗) · ⟨⟨a5⟩, η(x, u∗)⟩ .

Therefore, the inequalities (3.12) and (3.13) yield

⟨⟨a5⟩, η(x, u∗)⟩ < 0,

which contradicts the equality (3.9). Hence, the proof is complete. �

4. Mond-Weir type duality model

For any u ∈ F, if use (α, z) ∈ Rk × Rm instead of (α∗, z∗) ∈ Rk × Rm satisfying
the necessary conditions (3.1) ∼ (3.3) as the constraints of a new dual problem.
Namely, Mond-Weir type dual (MWD), then it constitutes by a maximization
programming problem with the same objective function as the problem (FP ), and
use the necessary optimality conditions of (FP ) as the constraint of the new problem
(MWD). Precisely, we can state this dual problem as the maximization problem
in the following form:
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(MWD) Maximize Φ(u) ≡
(
f1(u)

g1(u)
,
f2(u)

g2(u)
, ...,

fk(u)

gk(u)

)
≡ (Ψ1(u), Ψ2(u), ..., Φk(u))

subject to u ∈ X and

(4.1) 0 ∈
k∑

i=1

αigi(u)[∂
◦fi(u)+⟨z, ∂◦h(u)⟩m]+

k∑
i=1

αi∂
◦(−gi)(u)[fi(u)+⟨z, h(u)⟩m],

(4.2) ⟨z, h(u)⟩m = 0,

(4.3) u ∈ X,α ∈ I, z ∈ Rm
+ .

Let D2 be the constraint set {u;α, z} of (MWD) satisfying (4.1) ∼ (4.3) which
are the necessary optimality conditions of (FP ). For convenience we denote the
projective-like set by:

prXD2 = {u ∈ X| (u;α, z) ∈ D2}.

Theorem 4.1 (Weak Duality). Let x and (u;α, z) be (FP )-feasible and (MWD)-
feasible,respectively. Denote a function A6 : X → R, by

A6(·) =
k∑

i=1

αigi(u)[fi(·) + ⟨z, h(·)⟩m]−
k∑

i=1

αigi(·)[fi(u) + ⟨z, h(u)⟩m]

with A6(u) = 0. Suppose that A6(·) is an Exp. V -r-invex function at u ∈ F∩prXD2

w.r.t. η.
Then ϕ(x) � Φ(u).

Proof. Let x and (u;α, z) be (FP ) and (MWD)-feasibles, respectively. From the
expression (4.1), there exist ξi ∈ ∂◦fi(u), ζi ∈ ∂◦(−gi)(u), i = 1, 2, ..., k, and ρj ∈
∂◦hj(u), j = 1, 2, ...,m, to satisfy

⟨a6⟩ ≡
k∑

i=1

αigi(u)[ξi + ⟨z, ρ⟩m] +
k∑

i=1

αi[fi(u) + ⟨z, h(u)⟩m]ζi = 0 ∈ X∗,

where ρ = (ρ1, ρ2, . . . , ρm).
It follows from η(x, u) ∈ X that the dual pair of ⟨X∗, X⟩ yields
(4.4) ⟨⟨a6⟩, η(x, u)⟩ = 0.

Since A6 is an Exp. V -r-invex function w.r.t. η at u ∈ F ∩ prXD2, there exists a
function
a6 : (F ∩ prXD2)× (F ∩ prXD2) −→ R+ \ {0} such that

1

r
erA6(x) − 1

r
erA6(u) ≥ erA6(u)a6(x, u) · ⟨⟨a6⟩, η(x, u)⟩ = 0. (by (4.4))

Hence we obtain
1

r
erA6(x) − 1

r
erA6(u) ≥ 0.

It follows that

(4.5) A6(x) ≥ A6(u) = 0.

We want to prove that ϕ(x) � Φ(u).
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Suppose on the contrary that ϕ(x) ≤ Φ(u). Then

fi(x)

gi(x)
≤ fi(u)

gi(u)
for all i = 1, 2, ..., k,

and there is some index t ∈ k, such that

ft(x)

gt(x)
<

ft(u)

gt(u)
.

Then, by α = (α1, α2, . . . , α) ∈ I, we have

(4.6)

k∑
i=1

αifi(x)gi(u) <

k∑
i=1

αigi(x)fi(u).

Since h(x) ∈ −Rm
+ , it follows from (4.2), (4.3), and (4.6) that

k∑
i=1

αigi(u)[fi(x) + ⟨z, h(x)⟩m] <

k∑
i=1

αigi(x)[fi(u) + ⟨z, h(u)⟩m].

This implies

A6(x) =
k∑

i=1

αigi(u)[fi(x) + ⟨z, h(x)⟩m]−
k∑

i=1

αigi(x)[fi(u) + ⟨z, h(u)⟩m] < 0,

which contradicts the inequality (4.5) and the proof of theorem is complete. �

Theorem 4.2 (Strong Duality). Let x be the efficient solution of problem (FP )
satisfying the constraint qualification at x. Then there exist α∗ ∈ Rk, and z∗ ∈
Rm such that (x;α∗, z∗) ∈ (MWD)-feasible. If the hypotheses of Theorem 4.1 are
fulfilled, then (x;α∗, z∗) is an efficient solution to problem (MWD). Furthermore
the efficient values of (FP ) and (MWD) are equal.

Proof. Let x be an efficient solution to problem (FP ). Then there exist α∗,z∗

such that (x;α∗, z∗) satisfies (4.1) ∼ (4.3), that is, (x;α∗, z∗) ∈ D2 is a feasible
solution for the problem (MWD). Actually (x;α∗, z∗) is also an efficient solution
of (MWD).
Suppose on the contrary that if (x;α∗, z∗) were not an efficient solution to (MWD).
Then there exists a feasible solution (x;α, z) of (MWD) such that

fi(x)

gi(x)
5 fi(x)

gi(x)
for all i = 1, 2, ..., k,

and there is a t ∈ k,

ft(x)

gt(x)
<

ft(x)

gt(x)
.

It follows that ϕ(x) ≤ Φ(x) which contradicts the weak duality Theorem 4.1. Hence
(x;α∗, z∗) is an efficient solution of (MWD) and the efficient values of (FP ) and
(MWD) are clearly equal. �
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Theorem 4.3 (Strict Converse Duality). Let x and (u∗;α∗, z∗) be the efficient
solutions of (FP ) and (MWD), respectively. Denote a function A7 : X → R, by

A7(·) =
k∑

i=1

α∗
i gi(u

∗)[fi(·) + ⟨z∗, h(·)⟩m]−
k∑

i=1

α∗
i gi(·)[fi(u∗) + ⟨z∗, h(u∗)⟩m].

with A7(u
∗) = 0. If A7(·) is a strictly Exp. V -r-invex function at u∗ ∈ F ∩ prXD2

w.r.t. η for all optimal vectors x in (FP ) and (u∗;α∗, z∗) in (MWD), respectively.
Then x = u∗, and the efficient values of (FP ) and (MWD) are equal.

Proof. Suppose that x ̸= u∗. From the expression (4.1), there exist ξi ∈ ∂◦fi(u
∗),

ζi ∈ ∂◦(−gi)(u
∗), i = 1, 2, ..., k, and ρj ∈ ∂◦hj(u

∗), j = 1, 2, ...,m, such that

⟨a7⟩ ≡
k∑

i=1

α∗
i gi(u

∗)[ξi + ⟨z∗, ρ⟩m] +
k∑

i=1

α∗
i [fi(u

∗) + ⟨z∗, h(u∗)⟩m]ζi = 0 ∈ X∗,

where ρ = (ρ1, ρ2, . . . , ρm).
It follows that the dual pair in ⟨X∗, X⟩ becomes

(4.7) ⟨⟨a7⟩, η(x, u∗)⟩ = 0.

From Theorem 4.2, we see that there exist α and z such that (x;α, z) is the efficient
solution of (MWD) and

(4.8)
fi(x)

gi(x)
=

fi(u
∗)

gi(u∗)
for all i = 1, 2, . . . , k.

By inequality (4.2) and equality (4.8), it becomes

(4.9)
fi(x)

gi(x)
=

fi(u
∗) + ⟨z∗, h(u∗)⟩m

gi(u∗)
.

Eliminate the dominators in (4.9), we get

fi(x)gi(u
∗) = [fi(u

∗) + ⟨z∗, h(u∗)⟩m]gi(x).

or

fi(x)gi(u
∗)− [fi(u

∗) + ⟨z∗, h(u∗)⟩m]gi(x) = 0.

According to the above equality and by the property (4.3), A7(x) reduces to
(4.10)

k∑
i=1

α∗
i gi(u

∗)[fi(x) + ⟨z∗, h(x)⟩m]−
k∑

i=1

α∗
i gi(x)[fi(u

∗) + ⟨z∗, h(u∗)⟩m] = A7(x)

=

k∑
i=1

α∗
i gi(u

∗)⟨z∗, h(x)⟩m.

From relations h(x) ∈ −Rm
+ , (4.3), (4.10), and gi(u

∗) > 0, we obtain

A7(x) 5 0 = A7(u
∗).

Hence

(4.11)
1

r
erA7(x) − 1

r
erA7(u∗) 5 0 for any r ̸= 0.
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Since A7 is a strictly Exp. V -r-invex function w.r.t. η at u∗ ∈ F ∩ prXD2, there
exists a mapping a7 : (F ∩ prXD2)× (F ∩ prXD2) −→ R+ \ {0} such that

(4.12)
1

r
erA7(x) − 1

r
erA7(u∗) > erA7(u∗)a7(x, u

∗) · ⟨⟨a7⟩, η(x, u∗)⟩ .

From (4.11) and (4.12), we obtain

⟨⟨a7⟩, η(x∗, u∗)⟩ < 0.

This contradicts the equality (4.7). Hence, the proof of theorem is complete. �

Remark 4.4. Finally, it is remarkable that one can easily see that the feasible sets
of D1 of (WD) and D2 of (MWD) are essentially equivalent.

Remark 4.5. There is a plausible problem can be derived for minimax program-
ming problem. For example, if the finite index set k in (FP ) is replaced by a compact
Banach space Y , then problem (FP ) could formate to be a minimax programming
problem with objective function ϕ(x, y). Thus problem becomes

min
x∈X

max
y∈Y

ϕ(x, y) =
f(x, y)

g(x, y)

such that a cone constraint set in another Banach space Z with
order cone C, and h : X → (Z,C) satisfying −h(x) ∈ C,

where f and g need some reasonable conditions.
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