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on S has a left invariant mean and there exist x ∈ C with bounded orbit, then C
contains a common fixed point for ℑ.

In this paper, we shall study results of Lau in [10] on the continuous representation
of S as weakly nonexpansive mappings of C into itself. For more recent works on
fixed point properties for left reversible semigroups of nonexpansive mapping see
[11], [12], [17] and [18].

2. Preliminaries

Now, we introduce a new generalized mapping.

Definition 2.1. Let C be a nonempty bounded closed convex subset of H and let
ℑ = {Ts : s ∈ S} be a continuous representation of S on C.

(1) The mapping Ts is said to be nonexpansive if

∥Tsx− Tsy∥ ≤ ∥x− y∥
for x, y ∈ C and s ∈ S.

(2) The mapping Ts is said to be weakly nonexpansive if for each x in C, there
exist functions ϕ : S × [0,∞) → [0,∞) with lim sup

s∈S
ϕs(k) ≤ k, γ : S × C →

[0,∞) with lim
s∈S

γs(x) = 0 and u : S → [0,∞) with lim
s∈S

u(s) = 0 such that

∥Tsx− Tsy∥ ≤ ϕs(∥x− y∥) + γs(x) + u(s)

for all y ∈ C and s ∈ S, where ϕs(k) = ϕ(s, k) and γs(x) = γ(s, x).

Note that weakly nonexpansive mapping is the same almost asymptotically non-
expansive type mapping in [7].

Example 2.2. Let S = N (the set of all natural numbers with addition) and the
closed convex subset C = [0, 1]. Define Ts : [0, 1] → [0, 1] by

Ts(x) =


x+ 1

2s sinπx, if 0 ≤ x ≤ 1
2 ,

0, if 1
2 < x ≤ 1,

for all x ∈ [0, 1] and s ∈ S. Then Ts is weakly nonexpansive in the sense of (2).
Indeed, let ∥x− y∥ = k ∈ [0,∞), define ϕ : S × [0,∞) → [0,∞), γs(x) : S → [0,∞)
and u : S → [0,∞) by

ϕs(k) =


2
s(s+1)

2 −1 −1

2
s(s+1)

2 −1
k, if k ∈ [0, 12 ],

k −
(
1
2

) s(s+1)
2 , if k ∈ [12 ,∞),

γs(x) =
1

s
x

and

u(s) =
1

s
,

for all s ∈ S and k ∈ [0,∞).
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Throughout this paper, unless otherwise specified, S denotes a semitopological
semigroup and ℑ = {Ts : s ∈ S} a continuous representation of S as weakly
nonexpansive mappings from a nonempty closed convex subset C of a Hilbert space
H into C.

3. Weak convergence of {Ts(x) : s ∈ S}

If S is right reversible and S is directed, then for each x ∈ C, let ω(x) denote
the set of all weak limit points of subnets of the net {Ts(x) : s ∈ S}. We will need
in our proofs the following modification of Opial’s condition for bounded nets in a
Hilbert space.

Lemma 3.1 ([25]). Let H be a Hilbert space and let {xα} be a bounded net in H
converging weakly to x0. Then for any x ∈ H,x ̸= x0,

lim inf
α

∥xα − x∥ > lim inf
α

∥xα − x0∥.

Here lim inf
α

{sα} of a bounded net of real number {sα} is the limit of the increasing

net {tβ}, where tβ = inf
α≽β

sα.

Lemma 3.2. Assume that S is right reversible and x ∈ C.

(a) If F (ℑ) is nonempty and ω(x) ⊆ F (ℑ), then the net {Tt(x) : t ∈ S} con-
verges weakly to some y ∈ F (ℑ).

(b) Suppose the net {Tt(x) : t ∈ S} converges weakly to some y ∈ C. Then
y ∈ F (ℑ) if and only if {Tt(x) : t ∈ S} is bounded.

Proof. (a) If y ∈ F (ℑ), then the net {∥Tax − y∥ : a ∈ S} is bounded. Also if
b ≽ a, b ∈ Sa, let {sα} be a net in S such that sαa→ b. Then, for each α,

∥Tsαa(x)− y∥ = ∥Tsα(Tax)− Tsαy∥ ≤ ϕsα(∥Tax− y∥) + γsα(Tax) + u(sα).

Hence
∥Tbx− y∥ = lim sup

α
∥Tsαa(x)− y∥

≤ lim sup
α

{ϕsα(∥Tax− y∥) + γsα(Tax) + u(sα)}

= ∥Tax− y∥.
Consequently, the lim

a
∥Tax − y∥ exists and is finite for each y ∈ F (ℑ). Since the

net {Tax : a ∈ S} is bounded, it must contain a subnet {Taα(x)} which converges
weakly to some z ∈ C. By assumption, z ∈ F (ℑ). Suppose {Tax : a ∈ S} does
not converge weakly to z, then there exists another subnet {Taβx} which converge
weakly to some u ∈ F (ℑ), z ̸= u. Now by Lemma 3.1,

lim
α

∥Taα(x)− z∥ < lim
α

∥Taα(x)− u∥

= lim
a

∥Tax− u∥ = lim
β

∥Taβ (x)− u∥

< lim
β

∥Taβ (x)− z∥,

which is impossible since

lim
α

∥Taα(x)− z∥ = lim
β

∥Taβ (x)− z∥



88 KYUNG SOO KIM

by convergence of the net {∥Tax− z∥ : a ∈ S}.
(b) If F (ℑ) is nonempty and z ∈ F (ℑ), then

∥Tsx− z∥ = ∥Tsx− Tsz∥ ≤ ϕs(∥x− z∥) + γs(x) + u(s)

for each s ∈ S, x ∈ C. So lim sup
s

∥Tsx − z∥ ≤ ∥x − z∥. Hence {Tsx : s ∈ S} is

bounded.
Conversely, if {Tsx : s ∈ S} is bounded, let a ∈ S. If Tay ̸= y, then by Lemma

3.1,

ρ = lim inf
s

∥Tsx− Tay∥ > lim inf
s

∥Tsx− y∥.

Given ε > 0, choose b ∈ S such that

inf
b≼s

∥Tsx− Tay∥ > ρ− ε.

In particular,

∥Tas(x)− Tay∥ > ρ− ε

for all s ≽ b. Since ε > 0 is arbitrary, we have

lim inf
s

∥Tas(x)− Tay∥ ≥ ρ.

On the other hand, for each x ∈ C,

∥Tas(x)− Tay∥ ≤ ϕa(∥Tsx− y∥) + γa(Tsx) + u(a)

for all a, s ∈ S. Fix s ∈ S, we have

∥Tas(x)− Tay∥ ≤ lim sup
a

∥Tas(x)− Tay∥

≤ lim sup
a

{ϕa(∥Tsx− y∥) + γa(Tsx) + u(a)}

≤ ∥Tsx− y∥.

Now, we conclude

lim inf
s

∥Tas(x)− Tay∥ ≤ lim inf
s

∥Tsx− y∥.

This is impossible. Hence Tay = y. �

A subset G of S is called a generating set if elements of the form g1g2g3 · · · gn,
where g1, g2, · · · , gn ∈ G is dense in S.

Theorem 3.3. Assume that S is right reversible and x ∈ C. If F (ℑ) is nonempty
and ∥Tax − Tga(x)∥ → 0 for all g in a generating set G of S, then the net {Tax :
a ∈ S} converges weakly to an element of F (ℑ).

Proof. By Lemma 3.2, it suffices to show that ω(x) ⊆ F (ℑ). Let {Taα(x)} be a
subnet of {Ta(x) : a ∈ S} converging weakly to some y ∈ C. Let g ∈ G. If Tgy ̸= y,
then by Lemma 3.1

(3.1) lim inf
α

∥Taα(x)− y∥ < lim inf
α

∥Taα(x)− Tgy∥.
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On the other hand,

∥Taα(x)− Tgy∥ ≤ ∥Taα(x)− Tgaα(x)∥+ ∥Tgaα(x)− Tg(y)∥
≤ ∥Taα(x)− Tgaα(x)∥+ ϕg(∥Taα(x)− y∥)
+ γg(Taα(x)) + u(g),

for all g ∈ G. Fix aα ∈ S, we have

∥Taα(x)− Tg(y)∥ ≤ lim sup
g

∥Taα(x)− Tg(y)∥

≤ lim sup
g

∥Taα(x)− Tgaα(x)∥+ ∥Taα(x)− y∥.

Moreover, we have

lim inf
α

∥Taα(x)− Tgy∥

≤ lim inf
α

(lim sup
g

∥Taα(x)− Tgaα(x)∥) + lim inf
α

∥Taα(x)− y∥.

In particular, since lim
α

∥Taα(x)− Tgaα(x)∥ = 0, we have

lim inf
α

∥Taα(x)− Tgy∥ ≤ lim inf
α

∥Taα(x)− y∥.

This contradicts to (3.1). Hence Tg(y) = y. Since g ∈ G is arbitrary, it follows that
y ∈ F (ℑ). �
Theorem 3.4. Assume that S is right reversible and F (ℑ) is nonempty. Let P be
the metric projection of H onto F (ℑ). Then for each x ∈ C, the net {PTa(x) : a ∈
S} converges in norm to some z ∈ F (ℑ). Furthermore, if the net {PTa(x) : a ∈ S}
converges weakly to some y ∈ F (ℑ), then y = z.

Proof. Observe that

(3.2) ∥P (Tax)− Tax∥ ≤ ∥P (Tbx)− Tax∥
for any a, b ∈ S. If a ≽ b and a ̸= b, let sαb be a net converging to a. Then for each
α,

∥P (Tbx)− Tsαb(x)∥ = ∥TsαP (Tbx)− Tsα(Tbx)∥
≤ ϕsα(∥P (Tbx)− Tbx∥) + γsα(PTbx) + u(sα).

It follows that

lim sup
α

∥P (Tbx)− Tsαb(x)∥

≤ lim sup
α

{ϕsα(∥P (Tbx)− Tbx∥) + γsα(PTbx) + u(sα)}

≤ ∥P (Tbx)− Tbx∥,
i.e.,

(3.3) ∥P (Tbx)− Tax∥ ≤ ∥P (Tbx)− Tbx∥
for a ≽ b. Hence if a ≽ b, by (3.2) and (3.3), then

(3.4) ∥P (Tax)− Tax∥ ≤ ∥P (Tbx)− Tbx∥.
Let u ∈ F (ℑ) and v ∈ H. By property of P, we have

∥Pv − u∥2 ≤ ∥v − u∥2 − ∥Pv − v∥2.
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Put v = Tax and u = PTbx. For a ≽ b, since (3.3), we obtain

∥P (Tax)− P (Tbx)∥2 ≤ ∥Tax− P (Tbx)∥2 − ∥P (Tax)− Tax∥2

≤ ∥P (Tbx)− Tbx∥2 − ∥P (Tax)− Tax∥2.

It follows from (3.4) that {P (Tax) : x ∈ S} is a norm Cauchy net in H. Hence
it must converge to some z ∈ F (ℑ). If {Tax : a ∈ S} converges weakly to some
y ∈ F (ℑ), then, by property of P, we have

Re⟨Tax− P (Tax), u− PTax⟩ ≤ 0

for all u ∈ F (ℑ), a ∈ S. Hence

⟨y − z, u− z⟩ ≤ 0

for all u ∈ F (ℑ). In particular y = z. This completes the proof. �

Remark 3.5. Theorem 3.3 and Theorem 3.4 are generalization or improvement of
Belluce and Kirk ([2]), Lau ([10]) and Pazy ([26]) for Hilbert spaces.

4. Semigroup of weakly nonexpansive mappings

Given a nonempty set S, we denoted by l∞(S) the Banach space of all bounded
real valued functions on S with supremum norm. Let S be a semigroup. Then a
subspace X of l∞(S) is left (respectively right) translation invariant if la(X) ⊆ X
(respectively ra(X) ⊆ X) for all a ∈ S, where (laf)(s) = f(as) and (raf)(s) =
f(sa), s ∈ S.

We denote by CB(S) the closed subalgebra of l∞(S) consisting of continuous
functions.

Let AP (S) denote the space of almost periodic functions f in CB(S), i.e., all
f ∈ CB(S) such that {laf : a ∈ S} is relatively compact in the norm topology of
CB(S), or equivalently {raf : a ∈ S} is relatively compact in the norm topology of
CB(S).

Let LUC(S) (respectively RUC(S)) be the space of left (respectively right) uni-
formly continuous functions on S, i.e., all f ∈ CB(S) such that the mapping from
S into CB(S) defined by s→ lsf (respectively s→ rsf) is continuous when CB(S)
has the sup norm topology.
Remark 4.1 ([1], [23]). The followings are well-known.
(1) AP (S) ⊆ LUC(S) ∩RUC(S).
(2) LUC(S) and RUC(S) are left and right translation invariant closed subalgebras
of CB(S), respectively, containing constants.

Let X be a subspace of l∞(S) containing constants. Then µ ∈ X∗ is called a
mean on X if ∥µ∥ = µ(1) = 1. As is well known, µ is a mean on X if and only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s) for all f ∈ X.

Let X be ls-invariant then, a mean µ on X is left invariant if µ(lsf) = µ(f) for
all s ∈ S and f ∈ X. Similarly we can define right invariant mean. µ is called an
invariant mean if it is left and right invariant mean. The value of a mean µ at
f ∈ X will be denoted by µ(f), ⟨µ, f⟩ or µtf(t).
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A semigroup S which has a left (respectively right) invariant mean on l∞(S) is
called left (respectively right) amenable. A semigroup which has an invariant mean
is called amenable.

Lemma 4.2. If x ∈ C with relatively compact orbit and y ∈ H, the the following
functions are in AP (S) :

(a) gx(s) = ⟨y, Tsx⟩,
(b) fx(s) = ∥Tsx− y∥.

Proof. (a) It follows from [9].
(b) It is clear that f ∈ CB(S). To see that f is almost periodic, for each z ∈ C, let

fz(s) = ∥y − Tsz∥.

Then

rafx(s) = fx(sa) = ∥y − Tsa(x)∥ = ∥y − TsTax∥ = fw(s),

where w = Tax. Let τ : z → fz, z ∈ S. If we can show that τ is continuous when
CB(S) has the sup norm topology, then τ(O(x)) is a compact subset of CB(S)
containing {raf : a ∈ S}. In particular, f ∈ AP (S). To see that τ is continuous, let
{zn} be a sequence in C, zn → z, then

|τ(zn)(s)− τ(z)(s)| = |fzn(s)− fz(s)|
= |∥y − Ts(zn)∥ − ∥y − Tsz∥|
≤ |∥Tszn − Tsz∥| = ∥Tszn − Tsz∥
≤ ϕs(∥zn − z∥) + γs(zn) + u(s),

by weakly nonexpansive of Ts, s ∈ S. Hence

lim sup
s

|τ(zn)(s)− τ(z)(s)| ≤ lim sup
s

{ϕs(∥zn − z∥) + γs(zn) + u(s)}

≤ ∥zn − z∥.

Since zn → z, we have ∥zn − z∥ → 0. Therefore ∥τ(zn)− τ(z)∥ → 0. �

Let x ∈ C with relatively compact orbit, and µ ∈ AP (S)∗ be a mean. Then
ψ(y) = µ(gx), where gx(s) = ⟨y, Tsx⟩ defines a bounded linear functional on
H. Hence, by the Riesz representation theorem, there exists z ∈ H such that
ψ(y) = ⟨y, z⟩ for all y ∈ H. Since µ is the weak∗ limit of finite means of the

form
n∑

i=1
λiδai , λi ≥ 0,

n∑
i=1

λi = 1, ai ∈ S, where δa(h) = h(a), h ∈ AP (S), and C is

weakly closed, it follows that z ∈ C. Write Tµ(x) = z. Then Tµ is a nonexpansive
mapping from C into C and F (Tµ) ⊇ F (ℑ) as readily checked.

Lemma 4.3. If µ is a left invariant mean on AP (S), then Tµ(x) is a common fixed
point for {Tt : t ∈ S}.

Proof. Let a ∈ S and z = Tµ(x). For each s ∈ S,

∥Taz − Tas(x)∥ = ∥Taz − TaTsx∥
≤ ϕa(∥z − Tsx∥) + γa(z) + u(a).
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Hence

(4.1)
∥Taz − Tas(x)∥2 ≤ {ϕa(∥z − Tsx∥)}2 + (γa(z) + u(a))2

+ 2ϕa(∥z − Tsx∥)(γa(z) + u(a)),

for a, s ∈ S. Fix s ∈ S, we apply lim sup
a

to the inequality (4.1),

(4.2)

lim sup
a

∥Taz − Tas(x)∥2

≤ lim sup
a

{ϕa(∥z − Tsx∥)}2 + lim sup
a

(γa(z) + u(a))2

+ 2 lim sup
a

ϕa(∥z − Tsx∥)(γa(z) + u(a))

≤ ∥z − Tsx∥2

≤ ∥z − Taz∥2 + ∥Taz − Tsx∥2 + 2Re⟨z − Taz, Taz − Tsx⟩.

Now for w ∈ H, the function fx(s) = ∥w−Tsx∥2 is in AP (S) by Lemma 4.2. Hence
if w = Taz, then lafx(s) = fx(as) = ∥Taz − Tasx∥2 is in AP (S). We apply the left
invariant mean µ to the inequality (4.2),

µs(lim sup
a

∥Taz − Tas(x)∥2) ≤ ∥z − Taz∥2 + µs(∥Taz − Tsx∥2)

+ µs(2Re⟨z − Taz, Taz − Tsx⟩).
This implies

lim sup
a

∥Taz − z∥2 ≤ ∥z − Taz∥2 + ∥Taz − z∥2 + 2Re⟨z − Taz, Taz − z⟩

= 0.

Hence Taz = z. Since a ∈ S is arbitrary, z ∈ F (ℑ). �
Theorem 4.4. If AP (S) has a left invariant mean, x ∈ C such that {Tsx : s ∈ S}
is relatively compact, then C contains a common fixed point for ℑ. Furthermore, if
µ is a left invariant mean on AP (S), then F (ℑ) = F (Tµ).

Proof. This follows easily from Lemma 4.3. �
Remark 4.5. If S is a left reversible semitopological semigroup, then AP (S) has a
left invariant mean. However there exists semitopological semigroup S which is not
left reversible but CB(S) has a left invariant mean(see [4], [5], [6], [8], [9]).

Remark 4.6. Theorem 4.4 should be compared with Corollary 3.3 in [13].

Similarly, we can obtain the following results(see [13], p.1213).

Lemma 4.7. If x ∈ C with bounded orbit and y ∈ H, then the following functions
are in RUC(S) :

(a) gx(s) = ⟨y, Tsx⟩,
(b) fx(s) = ∥Tsx− y∥.

Theorem 4.8. If RUC(S) has a left invariant mean and there exist x ∈ C such
that {Tsx : s ∈ S} is bounded, then ℑ has a common fixed point in C. Furthermore,
if µ is a left invariant mean on RUC(S), then F (ℑ) = F (Tµ).
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Remark 4.9. Theorem 4.4 and Theorem 4.8 are generalization or improvement of
Belluce and Kirk ([3]), Holmes and Lau ([4]) and Lim ([19], [20]) for Hilbert spaces.

5. Some open problems

Definition 5.1. (1) Let WAP (S) denote the space of weakly almost periodic func-
tions f in CB(S), i.e., all f ∈ CB(S) such that {laf : a ∈ S} is relatively compact
in the weak topology of CB(S), or equivalently {raf : a ∈ S} is relatively compact
in the weak topology of CB(S).
(2) A function f ∈ CB(S) is called asymptotically left uniformly continuous if for
any s ∈ S, ε > 0, there exist a neighbourhood U of s and a right ideal J of S such
that

∥luf − lsf∥J = sup{|f(ut)− f(st)| : t ∈ J} < ε

for all u ∈ U. The closed linear span of the set of asymptotically left uniformly
continuous functions on S is denoted by ALUC(S). Similarly we define the closed
subspace ARUC(S) of CB(S) with left and right interchanged.

Remark 5.2. ([21], [22]) The following are well-known:
(1) AP (S) ⊆WAP (S).
(2) WAP (S) ̸⊂ RUC(S) and RUC(S) ̸⊂WAP (S).

When S is a group, then WAP (S) ⊆ LUC(S) ∩RUC(S).

Remark 5.3. ([14]) ALUC(S) ⊇ LUC(S) and ARUC(S) ⊇ RUC(S).

Definition 5.4 ([24]). A real valued function µ on X is called a submean on X if
the following conditions are satisfies:

(i) µ(f + g) ≤ µ(f) + µ(g) for every f, g ∈ X.
(ii) µ(αf) = αµ(f) for every f ∈ X and α ≥ 0.
(iii) for f, g ∈ X, f ≤ g implies µ(f) ≤ µ(g).
(iv) µ(c) = c for every constant function c.

Remark 5.5. Clearly every mean is a submean(see also [15] and [16]).

Open Problems:
1. Are the functions g and f defined in Lemma 4.7 in WAP (S)?
2. Is Theorem 4.8 true with mean replaced by submean?
3. Is Theorem 4.8 true with RUC(S) replaced by WAP (S) or ARUC(S)?
4. Is Theorem 4.8 true for weakly compact convex subset of a Banach space? (see
[18]).
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