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Around two decades ago, Tanino [25] (see also [26]), in a seminal work, proved
many interesting relationships among the first-order derivatives of the maps P and
G. Since then several authors have investigated the differentiability of set-valued
perturbation maps (see [7], [18],[19],[27],[28],[29] and cited references therein). In-
teresting results on sensitivity analysis for non-smooth optimization problems are
available in [22],[31],[32],[33], among others. Although there are important devel-
opments in sensitivity analysis for set-valued optimization problems, the studies
previously have been limited to the use of first-order derivatives.

The primary objective of the present work is to bring forth, in a unified frame-
work, second-order sensitivity analysis for set-valued perturbation maps. In recent
years, the second-order contingent derivatives have been used to give second-order
optimality conditions in set-valued optimization (see [14]). To obtain second-order
analogues of the known first-order sensitivity analysis results, we introduce several
new concepts. This includes a second-order analogue of S-derivatives of Shi [27] and
second-order directional compactness, among others.

Here is an outline of this paper. Section 2 collects some background material, in-
cluding various notion of minimality, tangent cones and tangent sets, and derivatives
and epiderivatves of set-valued maps. In Section 3, we prove various connections
among derivatives of a set-valued map, the derivatives of its profile map, and their
various minimal points. Section 4 presents second-order sensitivity analysis for the
set-valued perturbation maps. We employ second-order contingent derivatives and
epiderivatives for the differentiability of the set-valued perturbation maps.

2. Preliminaries

Let Z be a normed space being partially ordered by a proper, pointed, closed,
and convex cone C ⊂ Z. Let K be the set of all proper, pointed, closed, and convex
cones K ⊂ Z such that C\{0} ⊂ int(K) (“int” stands for interior). Let D ⊂ Z and
let y ∈ D be arbitrary.

◦ An element y is said to be a minimal point of D if D ∩ ({y} − C) = {y}.
◦ Assume that the ordering cone C is solid, that is, it has a nonempty interior
int(C). An element y is said to be a weakly minimal point of D if D∩({y}−
int(C)) = ∅.

◦ An element y is said to be a properly minimal point of D if, for some K ∈ K,
we have D ∩ ({y} −K) = {y}, that is, the element y is a minimal point of
D with respect to K.

The set of all minimal points, weakly minimal points and properly minimal points
of D with respect to C will be denoted by MinCD, WMinCD and PMinCD, respec-
tively. The following chain of inclusions is then known to hold: PMin(D,C) ⊂
Min(D,C) ⊂ WMin(D,C).

We now recall the concepts of tangent cones and tangent sets (see [2],[22] for
details).

Definition 2.1. Let Z be a normed space, let S ⊂ Z be nonempty, and let w ∈ Z.

1. The second-order contingent set T 2(S, z̄, w) of S at z̄ ∈ S in a direction
w ∈ Z is the set of all z ∈ Z such that there are a sequence (zn) ⊂ Z with
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zn → z and a sequence (λn) ⊂ P := {t ∈ R | t > 0} with λn ↓ 0 so that
z̄ + λnw + λ2

nzn ∈ S.
2. The contingent cone T (S, z̄) of S at z̄ ∈ S is the set of all z ∈ Z such that

there are a sequence (zn) ⊂ Z with zn → z and a sequence (λn) ⊂ P with
λn ↓ 0 so that z̄ + λnzn ∈ S.

Remark 2.2. Equivalently (see Cambini et al. [6]), the second-order contingent set
T 2(S, z̄, w) is the set of all z ∈ Z such that there are sequences (αn) ⊂ P, (βn) ⊂ P
and (zn) ⊂ S with αn → ∞, βn → ∞, (βn/αn) → 1, zn → z̄, αn(zn − z̄) → w and
βn(αn(zn − z̄)− w) → z.

Remark 2.3. It is known that the contingent cone T (S, z̄) is a nonempty closed
cone (cf. [2]). On the other hand, T 2(S, z̄, w) is only a closed set (possibly empty),
non-connected in general, and nonempty only if w ∈ T (S, z̄). For other details and
examples of these cones and sets, the reader is referred to [2],[6],[11],[22],[23] and
the references therein.

Let X and Y be normed spaces, and let F : X ⇒ Y be a set-valued map. The
effective domain of F is given by dom(F ) := {x ∈ X| F (x) ̸= ∅}, and the graph of
F is defined by gph(F ) := {(x, y) ∈ X × Y | y ∈ F (x)}. Given a proper, pointed,
and convex cone C ⊂ Y, we define the profile map F+(x) = (F +C)(x) = F (x)+C,
for every x ∈ dom(F ). The epigraph of F is then defined as the graph of F+. In
other words, epi(F ) = graph(F+).

We conclude this section by recalling two notions of second-order derivatives.

Definition 2.4. Let F : X ⇒ Y be set-valued, let (x̄, ȳ) ∈ gph(F ), and let (ū, v̄) ∈
X × Y.

(i) A set-valued map D2F (x̄, ȳ, ū, v̄) : X ⇒ Y defined by

D2F (x̄, ȳ, ū, v̄)(x) =
{
y ∈ Y | (x, y) ∈ T 2(gph(F ), (x̄, ȳ), (ū, v̄))

}
is called the second-order contingent derivative of F at (x̄, ȳ) in direction
(ū, v̄).

(ii) A set-valued map D2
gF (x̄, ȳ, ū, v̄) : X ⇒ Y defined by

D2
gF (x̄, ȳ, ū, v̄)(x) = MinCD

2(F + C)(x̄, ȳ, ū, v̄)(x), x ∈
dom(D2(F + C)(x̄, ȳ, ū, v̄))

is called the second-order generalized contingent epiderivative of F at (x̄, ȳ)
in direction (ū, v̄).

It is clear that if (ū, v̄) = (0, 0) in the above definition, we recover the contingent
derivative DF (x̄, ȳ), and the generalized contingent epiderivative of F at (x̄, ȳ),
respectively (cf. [2]). Moreover, if F : X → Y is a single valued map which is
twice continuously Fréchet differentiable around x̄ ∈ Ω ⊂ X, then the second-order
contingent derivative of the restriction FΩ of F to Ω at x̄ in a direction ū is given
by the formula (see [2, p. 215]):

D2FΩ(x̄, F (x̄), ū, F ′(x̄)(ū))(x) = F ′(x̄)(x) + F ′′(x̄)(ū, ū)/2 for x ∈ T 2(Ω, x̄, ū).

It is empty when x /∈ T 2(Ω, x̄, ū).
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3. Auxiliary results

Our primary objective is to study relationships among derivatives of various set-
valued perturbation maps. It turns out that some results that hold for general set-
valued maps render useful insight for the quantitative analysis of perturbation maps.
In the following, we collect a few auxiliary results that will play an instrumental
role for the rest of this paper.

Let X and Y be real normed spaces, let C ⊂ Y be a proper, pointed, closed, and
convex cone, and let F : X ⇒ Y be a set-valued map. Our immediate objective is
to give connections among second-order derivatives of F, its profile map F +C, and
their various minimal points. In the following, we assume that (x̄, ȳ) ∈ gph(F ), and
(ū, v̄) ∈ X × Y is arbitrary.

We begin with the following lemma.

Lemma 3.1. For every x ∈ dom(D2F (x̄, ȳ, ū, v̄)), the following inclusion holds:

(3.1) D2F (x̄, ȳ, ū, v̄)(x) + C ⊂ D2(F + C)(x̄, ȳ, ū, v̄)(x).

Proof. Let y ∈ D2F (x̄, ȳ, ū, v̄)(x), and let c ∈ C be chosen arbitrarily. Then there
exist sequences (tn) ⊂ P and (xn, yn) ⊂ X × Y such that tn ↓ 0, (xn, yn) →
(x, y) and ȳ + tnv̄ + t2nyn ∈ F (x̄ + tnū + t2nxn). For ȳn = yn + c, we notice that
ȳ + tnv̄ + t2nȳn ∈ F (x̄ + tnū + t2nxn) + C. Since ȳn converges to y + c, we conclude
that y + c ∈ D2(F + C)(x̄, ȳ, ū, v̄)(x). This establishes (3.1). �

The following corollary is useful when working with the second-order epideriva-
tives (cf. [14],[15]).

Corollary 3.2. For every x ∈ dom(D2(F + C)(x̄, ȳ, ū, v̄)), the following identity
holds:

(3.2) D2(F + C)(x̄, ȳ, ū, v̄)(x) + C = D2(F + C)(x̄, ȳ, ū, v̄)(x).

Proof. The inclusion ⊃ holds trivially and the inclusion ⊂ follows from Lemma 3.1
and the identity (F + C)(·) + C = (F + C)(·). �

The converse inclusion of (3.1) does not hold in general. Moreover, the effective
domains of the two derivatives can be very different. We illustrate this in the context
of the first-order derivative (the case where (ū, v̄) = (0, 0)).

Example 3.3. Let X = Y = R and let C = R+. Define a map F : R ⇒ R as
follows:

F (x) =

{
0 if x ̸= 0

[1, 2] if x = 0.

Then dom(DF (0, 1)) = {0}, and

DF (0, 1)(0) = R+,

D(F + R+)(0, 1)(x) = R, for every x ∈ R.

Hence

D(F + R+)(0, 1)(x) ̸⊂ DF (0, 1)(x) + C.
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It is worth noticing that for every x ∈ R, we have MinR+D(F + R+)(0, 1)(x) = ∅.
Also notice that MinR+DF (0, 1)(0) = {0}. Therefore,

MinR+D(F + R+)(0, 1)(0) ̸= MinR+DF (0, 1)(0),

even though F is convex-valued. This reveals an error in Theorem 3.6.6 of [9], which
claims that these two sets will be equal whenever F (x) is convex for each x near 0.

To prove the converse inclusion of (3.1), we need to impose certain restrictions on
the map F and/or on the ordering cone C. It turns out that a second-order extension
of the S-derivative of Shi [27] has an important role to play. We recall that the S-
derivative of F at (x̄, ȳ) ∈ gph(F ) is a set-valued map DSF (x̄, ȳ) : X ⇒ Y such that
y ∈ DSF (x̄, ȳ)(x) if and only if there are sequences (tn) ⊂ P and (xn, yn) ∈ gph(F )
such that xn → x̄ and tn[(xn, yn)− (x̄, ȳ)] → (x, y).

The following definition proposes an extension of the above notion of S-derivative.

Definition 3.4. The second-order S-derivative D2
SF (x̄, ȳ, ū, v̄) of F at (x̄, ȳ) ∈

gph(F ) in direction (ū, v̄) ∈ X × Y is a set-valued map D2
SF (x̄, ȳ, ū, v̄) : X ⇒ Y

such that y ∈ D2
SF (x̄, ȳ, ū, v̄)(x) if and only if there are sequences (αn), (βn) ⊂ P

and (xn, yn) ∈ gph(F ) such that

xn → x̄,

αn[(xn, yn)− (x̄, ȳ)] → (ū, v̄)

βn[αn[(xn, yn)− (x̄, ȳ)]− (ū, v̄)] → (x, y).

We are now ready to prove the converse inclusion of (3.1).

Proposition 3.5. Assume that the set B = {z ∈ C| ∥z∥ = 1} is compact. Assume
that

(3.3) D2
SF (x̄, ȳ, ū, v̄)(0) ∩ (−C/{0}) = ∅.

Then for every x ∈ dom(D2(F + C)(x̄, ȳ, ū, v̄)), the following identity holds

(3.4) D2(F + C)(x̄, ȳ, ū, v̄)(x) = D2F (x̄, ȳ, ū, v̄)(x) + C.

Proof. In view of (3.1), it suffices to show that D2(F + C)(x̄, ȳ, ū, v̄)(x) ⊂
D2F (x̄, ȳ, ū, v̄)(x) + C. Assume that y ∈ D2(F + C)(x̄, ȳ, ū, v̄)(x). Therefore, there
are sequences (tn) ⊂ P, (cn) ⊂ C, and (xn, yn) ∈ X×Y, with tn ↓ 0, (xn, yn+ cn) →
(x, y) so that ȳ + tnv̄ + t2nyn ∈ F (x̄+ tnū+ t2nxn). Since the set B is compact, and
C = cone(B), we have cn = rnbn, for some rn > 0 and bn ∈ B. Without any loss of
generality, we assume that rn → r ∈ [0,∞] and bn → b for some b ∈ B. We claim
that r < ∞. For the sake of argument, we assume that rn → ∞. This, in view of
the convergence (yn + rnbn) → y, implies that r−1

n yn → −b, and hence

1

rntn

[
1

tn

[
(x̄+ tnū+ t2nxn, ȳ + tnv̄ + t2nyn)− (x̄, ȳ)

]
− (ū, v̄)

]
=

(
xn
rn

,
yn
rn

)
→ (0,−b).

Therefore −b ∈ D2
SF (x̄, ȳ, ū, v̄)(0) ∩ (−C/{0}) which is a contradiction to (3.3).

Hence r < ∞, implying that y ∈ D2F (x̄, ȳ, ū, v̄)(x) +C. The proof is complete. �
The following corollary is immediate.
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Corollary 3.6. If Y is finite dimensional and (3.3) remains valid, then (3.4) holds.

Proof. For finite dimensional Y, B = {z ∈ C| ∥z∥ = 1} is a compact base for C. �
By setting (ū, v̄) = (0, 0) in the above result, we deduce the following corollary.

Corollary 3.7. (Shi [27]) Assume that the set B = {z ∈ C| ∥z∥ = 1} is compact.
Assume that

DSF (x̄, ȳ)(0) ∩ (−C/{0}) = ∅.
Then for every x ∈ dom(D(F + C)(x̄, ȳ)), the following identity holds:

D(F + C)(x̄, ȳ)(x) = DF (x̄, ȳ)(x) + C.

We note that in Example 3.3, −y ∈ DSF (0, 1)(0) for all y > 0, consistent with
Corollary 3.7.

To derive several useful conclusions from (3.4), we need the following result.

Lemma 3.8. Let A and B be nonempty subsets of Y. If A+ C = B, then

(a) PMinCA = PMinCB.
(b) MinCA = MinCB.
(c) WMinCA ⊂ WMinCB.

Moreover, if C̃ is a proper, closed, and convex cone with C̃ ⊂ int(C) ∪ {0} and

A+ C̃ = B, then

(d) WMinCA = WMinCB,

Proof. (a) We will first prove that PMinCA ⊂ PMinCB. Let u ∈ PMinCA. Then
there exists a proper, pointed, closed, and convex cone K (that is, K ∈ K) such
that C\{0} ⊂ int(K) and u ∈ MinKA. Clearly, u ∈ A and since C is a cone, we
deduce that u ∈ A+C as well. Assume now that u ̸∈ PMinCB. Then u ̸∈ MinKB,
for every K ∈ K. Therefore, there exists v ∈ B such that u − v ∈ K\{0}. Since
A+C = B, there exists w ∈ A so that v−w ∈ C. Hence, u−w = (u−v)+(v−w) ∈
K\{0} + C ⊂ K\{0} +K = K\{0}, which contradicts the fact that u ∈ MinKA.
Therefore u ∈ PMinCB.

To prove the opposite inclusion PMinCB ⊂ PMinCA, assume that u ∈ PMinCB ⊂
B. Then there exists v ∈ A such that u − v = c ∈ C. We claim that c = 0.
To see this, assume that c ̸= 0. Then c ∈ C\{0} ⊂ K\{0}, contradicting that
u ∈ MinKB. Hence u = v ∈ A, and since A ⊂ B and B∩ ({u}−K) = {u}, we have
A ∩ ({u} −K) = {u} as well. Therefore u ∈ PMinCA.

The proofs of (b), (c) and (d) are based on similar arguments and hence are
omitted (see [11, Lemmas 4.7 and 4.13]). �

In view of Lemma 3.8, we obtain the following result.

Theorem 3.9. If (3.4) holds, then for every x ∈ dom(D2F (x̄, ȳ, ū, v̄)), we have

(a) PMinCD
2(F + C)(x̄, ȳ, ū, v̄)(x) = PMinCD

2F (x̄, ȳ, ū, v̄)(x).
(b) MinCD

2(F + C)(x̄, ȳ, ū, v̄)(x) = MinCD
2F (x̄, ȳ, ū, v̄)(x).

(c) WMinCD
2(F + C)(x̄, ȳ, ū, v̄)(x) ⊂ WMinCD

2F (x̄, ȳ, ū, v̄)(x).

Moreover, if (3.4) holds with C replaced by C̃, a closed, and convex cone with

C̃ ⊂ int(C) ∪ {0}, then
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(d) WMinCD
2(F + C̃)(x̄, ȳ, ū, v̄)(x) = WMinCD

2F (x̄, ȳ, ū, v̄)(x).

Proof. The proof follows directly from (3.4) and Lemma 3.8 by setting A =
D2F (x̄, ȳ, ū, v̄)(x), and B = D2(F + C)(x̄, ȳ, ū, v̄)(x). �

Noticing the importance of (3.4), we give two more conditions that would validate
it.

For various purposes a number of compactness assumptions have been introduced
in optimization. In the following we extend two notions of compactness and employ
them to prove (3.4).

Definition 3.10. A map F : X ⇒ Y is called second-order directionally compact
at (x̄, ȳ) ∈ gph(F ) with respect to (ū, v̄) ∈ X × Y in a direction x ∈ X, if for every
sequence tn ↓ 0 and every sequence xn → x, any sequence yn with ȳ + tnv̄ + t2nyn ∈
F (x̄+ tnū+ t2nxn) contains a convergent subsequence.

Remark 3.11. If (ū, v̄) = (0, 0), then the above concept reduces to the known
concept of directional compactness at (x̄, ȳ) in the direction x (see [3]). Second-order
directional compactness holds, in particular, in the case where F is single-valued,
the Hadamard directional derivative

v̄ := F ′(x̄; ū) := lim
t↓0,u→ū

(F (x̄+ tu)− F (x̄))/t

exists, and the parabolic second-order directional derivative

F ′′(x̄, ū;x) := lim
t↓0,w→x

(F (x̄+ tū+ t2w)− F (x̄)− tF ′(x̄; ū))/t2

exists. To see this, suppose that tn ↓ 0, xn → x, and ȳ + tnv̄ + t2nyn ∈ F (x̄+ tnū+
t2nxn). Then

yn = (F (x̄+ tnū+ t2nxn)− F (x̄)− tnF
′(x̄; ū))/tn

2,

so that yn → F ′′(x̄, ū;x).

With the concept of second-order directional compactness, we derive a general-
ization of Proposition 5 of Bednarczuk and Song [3].

Proposition 3.12. Assume that F is second-order directionally compact at (x̄, ȳ)
with respect to (ū, v̄) in any direction x ∈ X. Then (3.4) holds.

Proof. In view of (3.1), it suffices to show that

D2(F + C)(x̄, ȳ, ū, v̄)(x) ⊂ D2F (x̄, ȳ, ū, v̄)(x) + C.

Let y ∈ D2(F + C)(x̄, ȳ, ū, v̄)(x). Then there exist sequences (tn) ⊂ P, (xn, yn) ⊂
X × Y and cn ∈ C such that tn ↓ 0, (xn, yn) → (x, y) and

ȳ + tnv̄ + t2n(yn − cn/t
2
n) = ȳ + tnv̄ + t2nyn − cn ∈ F (x̄+ tnū+ t2nxn).

Since F is second-order directionally compact, we may assume that yn − cn/t
2
n

converges to some ỹ ∈ Y. Hence ỹ ∈ D2F (x̄, ȳ, ū, v̄)(x) and cn/t
2
n → (y − ỹ) ∈ C,

confirming that y ∈ D2F (x̄, ȳ, ū, v̄)(x) + C. The proof is complete. �
In the following definition we propose an extension of the notion of compactly

approximable multi-functions introduced by Amahroq and Thibault [1].
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Definition 3.13. Amap F : X ⇒ Y is called second-order compactly approximable
at (x̄, ȳ) ∈ gph (F ) with respect to (ū, v̄) ∈ X × Y, if for each x′ ∈ X, there exists
a set-valued map R from X into the set of all nonempty compact subsets of Y, a
neighborhood N (x̄) of x̄ in X, and a function r :]0, 1]×X →]0,∞] such that
1. lim

(t,x)→(0,x′)
r(t, x) = 0.

2. For each x ∈ X and t ∈]0, 1], we have F (x̄+tū+t2x) ⊂ ȳ+tv̄+t2(R(x′)+r(t, x)BY ).

The following generalization of Proposition 2.2 of Taa [30] is obtained by the
concept of second-order compactly approximable maps.

Proposition 3.14. If F is second-order compactly approximable at (x̄, ȳ) with re-
spect to (ū, v̄), then (3.4) holds.

Proof. Assume y ∈ D2(F + C)(x̄, ȳ, ū, v̄)(x). Hence there exist sequences (tn) ⊂ P
and (xn, yn) ⊂ X × Y such that tn ↓ 0, (xn, yn) → (x, y) and

ȳ + tnv̄ + t2nyn ∈ F (x̄+ tnū+ t2nxn) + C.

Then

ȳ + tnv̄ + t2nyn = zn + cn with zn ∈ F (x̄+ tnū+ t2nxn) and cn ∈ C.

Since F is second-order compactly approximable, there exist {kn} ⊂ R(x), rn :=
r(tn, xn), bn ∈ BY and n0 ∈ N such that rn → 0, and

zn = ȳ + tnv̄ + t2n(kn + rnbn), for all n > n0.

This implies
ȳ + tnv̄ + t2n(kn + rnbn) ∈ F (x̄+ tnū+ t2nxn)

for all n > n0. In view of the compactness of R(x), we may assume that kn → k ∈
R(x). Because of the fact that (kn+rnbn) → k, we deduce that k ∈ D2F (x̄, ȳ, ū, v̄)(x).
Since

ȳ + tnv̄ + t2nyn = ȳ + tnv̄ + t2n(kn + rnbn) + cn

for sufficiently large n, we have yn−kn− rnbn = t−2
n cn ∈ C. By passing to the limit,

we have y − k ∈ C and hence y ∈ k + C ⊂ D2F (x̄, ȳ, ū, v̄)(x) + C. The proof is
complete. �

A variant of Theorem 3.9 can be proved without (3.4), as shown in the following
result.

Theorem 3.15. Assume that the set B = {z ∈ C| ∥z∥ = 1} is compact. Then for
every x ∈ dom(D2(F + C)(x̄, ȳ, ū, v̄)), the following inclusion holds

(3.5) MinCD
2(F + C)(x̄, ȳ, ū, v̄)(x) ⊂ D2F (x̄, ȳ, ū, v̄)(x).

Proof. Let y ∈ MinCD
2(F + C)(x̄, ȳ, ū, v̄)(x). Then y ∈ D2(F + C)(x̄, ȳ, ū, v̄)(x),

and hence there exist sequences (tn) ⊂ P, (xn, yn) ⊂ X × Y, and cn ∈ C such that
tn ↓ 0, (xn, yn) → (x, y) and

ȳ + tnv̄ + t2n(yn − cn) ∈ F (x̄+ tnū+ t2nxn).

Since C = cone(B), we have cn = rnbn for some rn > 0 and bn ∈ B. Moreover,
because B is compact, we may assume that bn → b ∈ B. We will show that rn → 0.
If not we may assume, taking a subsequence if necessary, that there exists ϵ > 0
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such that rn > ϵ. Set c̄n = ϵcn/rn. Notice that cn − c̄n ∈ C, from which it follows
that

ȳ + tnv̄ + t2n(yn − c̄n) ∈ F (x̄+ tnū+ t2nxn) + C.

Since c̄n → ϵb, we have that

y − ϵb ∈ D2(F + C)(x̄, ȳ, ū, v̄)(x)

contradicting the C-minimality of y. Therefore rn → 0, and this implies that (yn −
cn) → y. Consequently, y ∈ D2F (x̄, ȳ, ū, v̄)(x). The proof is complete. �

By setting (ū, v̄) = (0, 0) in the above result, we recover the following result.

Corollary 3.16 ([25, Theorem 2.1]). Assume that the set B = {z ∈ C| ∥z∥ = 1}
is compact. Then for every x ∈ dom(D(F +C)(x̄, ȳ)), the following inclusion holds

MinCD(F + C)(x̄, ȳ)(x) ⊂ DF (x̄, ȳ)(x).

Example 3.17. As an illustration of Theorem 3.15 and Corollary 3.16, let F : R ⇒
R2 be defined by

F (x) := {(y1, y2) ∈ R2
+ | y1y2 = x},

and let C = R2
+, x̄ = 1, and ȳ = (1, 1). Then for all x ∈ R,

DF (x̄, ȳ)(x) = {(y1, y2) | x = y1 + y2}
and

D(F + C)(x̄, ȳ)(x) = {(y1, y2) | x ≤ y1 + y2},
so that

MinCD(F + C)(x̄, ȳ)(x) = DF (x̄, ȳ)(x),

consistent with Corollary 3.16.
For v̄ = (v1, v2) and ū = v1 + v2, one obtains (e.g., by Proposition 2.3 of [31])

D2F (x̄, ȳ, ū, v̄)(x) = {(y1, y2) | x = y1 + y2 + v1v2}
and

D2(F + C)(x̄, ȳ, ū, v̄)(x) = {(y1, y2) | x ≤ y1 + y2 + v1v2},
so that equality holds in (3.5).

4. Sensitivity analysis

Throughout this section, unless stated otherwise, we assume that X and Y are
normed spaces and C ⊂ Y is a proper, pointed, closed, and convex cone. When deal-
ing with weak minimality, we will assume that int(C) is non-empty. Let G : X ⇒ Y
be a given set-valued map. We are interested in the assessment of differentiability
properties of the set-valued perturbation maps P,Q, and R, defined for x ∈ X, by

P (x) = PMinCG(x)(4.1a)

Q(x) = MinCG(x)(4.1b)

R(x) = WMinCG(x).(4.1c)

The perturbation maps P,Q, and R will be termed the proper perturbation map,
the perturbation map, and the weak perturbation map, respectively. Our overall
goal here is to investigate the relationships among the second-order derivatives of
the perturbation maps P , Q, and R, the second-order derivative of the map G, and
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various minimal points of these derivatives. A detailed study of such relationships,
involving only the first derivatives of the set-valued perturbation maps, was initiated
by Tanino [25] and later developed in [18],[19], among others.

We will need the following concept of function dominance.

Definition 4.1. Let K,L : X ⇒ Y be two set-valued maps. The map L is said to
be C-dominated by K near ū ∈ X, if there exists a neighborhood N (ū) of ū such
that

L(u) ⊂ K(u) + C, for every u ∈ N (ū).

For the set-valued map G : X ⇒ Y, assume that (x̄, ȳ) ∈ gph(G), and (ū, v̄) ∈
X × Y is arbitrary. Moreover, for x ∈ X, N (x) will stand for a neighborhood of x.

We have the following implication of (3.5).

Theorem 4.2. Assume that the set B = {z ∈ C| ∥z∥ = 1} is compact. Assume
that G is C-dominated by Q near x̄. Then

(4.2) MinCD
2(G+ C)(x̄, ȳ, ū, v̄)(x) ⊂ D2Q(x̄, ȳ, ū, v̄)(x), for every x ∈ N (x̄)

Proof. Since Q(x) ⊂ G(x) and G is C-dominated by Q near x̄, we have G(x)+C =
Q(x) + C for every x ∈ N (x̄). Consequently

D2(G+ C)(x̄, ȳ, ū, v̄)(x) = D2(Q+ C)(x̄, ȳ, ū, v̄)(x), for every x ∈ N (x̄),

which implies that
(4.3)
MinCD

2(G+C)(x̄, ȳ, ū, v̄)(x) = MinCD
2(Q+C)(x̄, ȳ, ū, v̄)(x), for every x ∈ N (x̄).

Because B is compact, Theorem 3.15 ensures that

MinCD
2(Q+ C)(x̄, ȳ, ū, v̄)(x) ⊂ D2Q(x̄, ȳ, ū, v̄)(x), for every x ∈ N (x̄).

Therefore, (4.2) follows from the above inclusion and (4.3). The proof is complete.
�

Remark 4.3. Notice that (4.3) implies thatD2
gG(x̄, ȳ, ū, v̄)(x) = D2

gQ(x̄, ȳ, ū, v̄)(x).

Example 4.4. For the mapping F defined in Example 3.17, let G = F , and let
C = R2

+, x̄ = 1, and ȳ = (1, 1). Since Q(x) = G(x) for x > 0, G is C-dominated by
Q near x̄. As in Example 3.17, for v̄ = (v1, v2) and ū = v1 + v2, we have

D2Q(x̄, ȳ, ū, v̄)(x) = {(y1, y2) | x = y1 + y2 + v1v2}
and

D2(G+ C)(x̄, ȳ, ū, v̄)(x) = {(y1, y2) | x ≤ y1 + y2 + v1v2},
so that both sides of (4.2) are equal.

In our next result we exploit analogues of (3.4).

Theorem 4.5. Assume that one of the following conditions holds.

(a) D2
SG(x̄, ȳ, ū, v̄)(0) ∩ (−C/{0}) = ∅.

(b) Q is second-order directionally compact at (x̄, ȳ) with respect to (ū, v̄) in any
direction x ∈ X.

(c) Q is second-order compactly approximable at (x̄, ȳ) with respect to (ū, v̄).

Then the following are valid:
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(1) If G is dominated by Q near x̄, then for every x ∈ N (x̄), we have

(4.4) MinCD
2G(x̄, ȳ, ū, v̄)(x) ⊂ D2Q(x̄, ȳ, ū, v̄)(x).

(2) If G is C̃-dominated by R near x̄, then for every x ∈ N (x̄), we have

(4.5) WMinCD
2G(x̄, ȳ, ū, v̄)(x) ⊂ D2R(x̄, ȳ, ū, v̄)(x).

(3) If G is C-bounded and C-closed, Y is finite dimensional (see [26]), and G
is dominated by Q near x̄, then for every x ∈ N (x̄), we have

(4.6) PMinCD
2G(x̄, ȳ, ū, v̄)(x) ⊂ D2P (x̄, ȳ, ū, v̄)(x).

Proof. We begin by deducing some simple implications of (a)-(c). Due to the chain
of inclusions

D2
SQ(x̄, ȳ, ū, v̄)(0) ⊂ D2

SR(x̄, ȳ, ū, v̄)(0) ⊂ D2
SG(x̄, ȳ, ū, v̄)(0),

we obtain

D2
SG(x̄, ȳ, ū, v̄)(0) ∩ (−C/{0}) = ∅ ⇒ D2

SR(x̄, ȳ, ū, v̄)(0) ∩ (−C/{0}) = ∅
⇒ D2

SQ(x̄, ȳ, ū, v̄)(0) ∩ (−C/{0}) = ∅.

Therefore, the following formula holds for F = G,Q,R.

D2(F + C)(x̄, ȳ, ū, v̄)(x) = D2F (x̄, ȳ, ū, v̄)(x) + C,

for all x ∈ dom(D2(F + C)(x̄, ȳ, ū, v̄)).

In fact, the above formula also remains valid under (b) and (c), because when Q is
either second-order directionally compact or second-order compactly approximable,
then so are the maps Q and R.

Since G is C-dominated by Q near x̄, for each x ∈ N (x̄), we have

MinCD
2G(x̄, ȳ, ū, v̄)(x) = MinCD

2(G+ C)(x̄, ȳ, ū, v̄)(x)

= MinCD
2(Q+ C)(x̄, ȳ, ū, v̄)(x)

= MinCD
2Q(x̄, ȳ, ū, v̄)(x)

⊂ D2Q(x̄, ȳ, ū, v̄)(x),

establishing (4.4). Analogously, since G is C̃-dominated by R near x̄, for each
x ∈ N (x̄), we have

WMinCD
2G(x̄, ȳ, ū, v̄)(x) = WMinCD

2(G+ C̃)(x̄, ȳ, ū, v̄)(x)

= WMinCD
2(R+ C̃)(x̄, ȳ, ū, v̄)(x)

= WMinCD
2R(x̄, ȳ, ū, v̄)(x)

⊂ D2R(x̄, ȳ, ū, v̄)(x),

proving (4.5). Finally, for (4.6), we begin by noticing that D2P (x̄, ȳ, ū, v̄)(x) ⊂
D2Q(x̄, ȳ, ū, v̄)(x). Moreover, due to a known relationship between minimal and
properly minimal points we also have that Q(x) ⊂ cl(P (x)) for every x ∈ N (x̄),
which implies that D2Q(x̄, ȳ, ū, v̄)(x) ⊂ D2P (x̄, ȳ, ū, v̄)(x). Therefore,

D2Q(x̄, ȳ, ū, v̄)(x) = D2P (x̄, ȳ, ū, v̄)(x).
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Consequently

PMinCD
2G(x̄, ȳ, ū, v̄)(x) = PMinCD

2(G+ C)(x̄, ȳ, ū, v̄)(x)

= PMinCD
2(Q+ C)(x̄, ȳ, ū, v̄)(x)

= PMinCD
2Q(x̄, ȳ, ū, v̄)(x)

= PMinCD
2P (x̄, ȳ, ū, v̄)(x)

⊂ D2P (x̄, ȳ, ū, v̄)(x),

confirming (4.6). The proof is complete. �

We now present conditions under which the opposite inclusion in (4.4) is satisfied.
We begin by recalling that for a given normed space X, the (negative) polar M◦ of
M ⊂ X is a subset of X∗ defined by

M◦ = {l ∈ X∗ : l(x) ≤ 0 for every x ∈ M}.

The following notion of normally minimal points will be used in the sequel.

Definition 4.6 (Tanino [26]). Assume that S is a nonempty subset of Y such that
S + C is convex. A point z ∈ MinCS is called a normally C-minimal point of S if
T (S + C, z)◦ ⊂ int(C◦) ∪ {0}.

We also need to recall the notion of derivable sets.

Definition 4.7. Let Z be a normed space. The second-order adjacent setA2(S, z̄, w)
of S ⊂ Z at z̄ ∈ S in a direction w ∈ Z is the set of all z ∈ Z such that for ev-
ery sequence (λn) ⊂ P with λn ↓ 0 there exists (zn) ⊂ Z with zn → z so that
z̄+λnw+λ2

nzn ∈ S. The set S is said to be second-order derivable at z̄ in direction
w if A2(S, z̄, w) = T 2(S, z̄, w). S is said to be derivable at z̄ if S is second-order
derivable at z̄ in the direction w = 0.

Example 4.8. To illustrate these definitions, let S = {(x1, x2) ∈ R2
+ | x1x2 = 1}

and z̄ = (1, 1). Then

T (S, z̄) = {(z1, z2) ∈ R2 | z2 = −z1},

and for w = (w1,−w1),

T 2(S, z̄, w) = A2(S, z̄, w) = {(z1, z2) ∈ R2 | z2 = −z1 + w1
2},

which means that S is second-order derivable at z̄ in direction w. For C = R2
+,

T (S + C, z̄) = {(z1, z2) ∈ R2 | z2 ≥ −z1},

so that

T (S + C, z̄)◦ = {(z1, z1) | z1 ≤ 0}.
Hence z̄ is a normally C-minimal point of S.

Theorem 4.9. Assume that X and Y are finite dimensional. Assume that x̄ ∈
int(dom(G)) and gph(G+ C) is convex. Assume that gph(G) is derivable at (x̄, ȳ)
in direction (ū, v̄). If ȳ is a normally C-minimal point of G(x̄), then

(4.7) D2Q(x̄, ȳ, ū, v̄)(x) ⊂ MinCD
2G(x̄, ȳ, ū, v̄)(x).
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Proof. Assume that y ∈ D2Q(x̄, ȳ, ū, v̄)(x) which implies that y ∈ D2G(x̄, ȳ, ū, v̄)(x).
Now suppose y ̸∈ MinCD

2G(x̄, ȳ, ū, v̄)(x), and consequently there exists ỹ ∈
D2G(x̄, ȳ, ū, v̄)(x) such that y − ỹ ∈ C\{0}. Since ỹ ∈ D2G(x̄, ȳ, ū, v̄)(x), there are
sequences (sn) ⊂ P and (x̃n, ỹn) ⊂ X × Y such that sn ↓ 0, (x̃n, ỹn) → (x, ỹ), and

(4.8) ȳ + snv̄ + s2nỹn ∈ G(x̄+ snū+ s2nx̃n).

Analogously, because y ∈ D2Q(x̄, ȳ, ū, v̄)(x), there are sequences (tn) ⊂ P and
(xn, yn) ⊂ X × Y such that tn ↓ 0, (xn, yn) → (x, y), and

ȳ + tnv̄ + t2nyn ∈ Q(x̄+ tnū+ t2nxn) = MinCG(x̄+ tnū+ t2nxn).

Therefore, (x̄ + tnū + t2nxn, ȳ + tnv̄ + t2nyn) is a boundary point of the convex
set gph(G + C). By a standard separation argument, there are nonzero vectors
(λn, µn) ∈ X × Y such that
(4.9)
⟨λn, x̄+tnū+t2nxn⟩+⟨µn, ȳ+tnv̄+t2nyn⟩ ≥ ⟨λn, x̂⟩+⟨µn, ŷ⟩ for all (x̂, ŷ) ∈ gph(G+C).

We normalize these vectors so that ∥(λn, µn)∥ = 1, and assume that (λn, µn) →
(λ, µ). Passing to the limit as n → ∞ in (4.9), we obtain

(4.10) ⟨λ, x̄⟩+ ⟨µ, ȳ⟩ ≥ ⟨λ, x̂⟩+ ⟨µ, ŷ⟩ for all (x̂, ŷ) ∈ gph(G+ C).

Let z ∈ G(x̄)+C be arbitrary. The mapG+C being convex is lower-semicontinuous
at x̄ (see [26]). Therefore, there exists a sequence (zn) ⊂ Y such that zn → z and
zn ∈ G(x̄ + tnū + t2nxn) + C. By setting (x̂, ŷ) = (x̄ + tnū + t2nxn, zn) in (4.9), we
obtain

⟨λn, x̄+ tnū+ t2nxn⟩+ ⟨µn, ȳ + tnv̄ + t2nyn⟩ ≥ ⟨λn, x̄+ tnū+ t2nxn⟩+ ⟨µn, zn⟩.

Passing to the limit as n → ∞ in the above inequality, we obtain

⟨µ, ȳ⟩ ≥ ⟨µ, z⟩.

Because z ∈ G(x̄) + C was chosen arbitrarily, the above inequality confirms that
µ ∈ T (G(x̄) + C, ȳ)◦. Since ȳ is a normally C-minimal point, we deduce that µ ∈
(int(C◦) ∪ {0}). However, due to the assumption that x̄ ∈ int(dom(G)), we have
µ ̸= 0, ensuring that µ ∈ int(C◦). This, in view of the fact that y − ỹ ∈ C\{0},
confirms that

(4.11) ⟨µ, y⟩ < ⟨µ, ỹ⟩.

Due to the assumption that G is derivable, we can set tn = sn. Then using (4.8) in
(4.9), we have

⟨λn, x̄+tnū+t2nxn⟩+⟨µn, ȳ+tnv̄+t2nyn⟩ ≥ ⟨λn, x̄+tnū+t2nx̃n⟩+⟨µn, ȳ+tnv̄+t2nỹn⟩,

which after simplifying yields

⟨λn, xn⟩+ ⟨µn, yn⟩ ≥ ⟨λn, x̃n⟩+ ⟨µn, ỹn⟩.

Passing to the limit as n → ∞ in the above inequality, we obtain ⟨µ, y⟩ ≥ ⟨µ, ỹ⟩.
This, however, is a contradiction to (4.11). Consequently y ∈ MinCD

2G(x̄, ȳ, ū, v̄)(x),
and the proof is complete. �

By setting (ū, v̄) = (0, 0), we obtain the following result.
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Corollary 4.10. [26, Theorem 5.2]. Assume that x̄ ∈ int(dom(G)) and gph(G+C)
is convex. If ȳ is a normally C-minimal point of G(x̄), then

DQ(x̄, ȳ)(x) ⊂ MinCDG(x̄, ȳ)(x).

Remark 4.11. We observe that the hypotheses of Theorem 4.9 are satisfied in the
case of Example 4.4.

The following results show that when dealing with weak-perturbation maps, we
may dispense with the requirement that ȳ is a normally C-minimal point of G(x̄).

Theorem 4.12. Assume that X and Y are finite dimensional. Assume that x̄ ∈
int(dom(G)) and gph(G+ C) is convex. Assume that gph(G) is derivable at (x̄, ȳ)
in direction (ū, v̄).Then

(4.12) D2R(x̄, ȳ, ū, v̄)(x) ⊂ WMinCD
2G(x̄, ȳ, ū, v̄)(x).

Proof. Assume that y ∈ D2R(x̄, ȳ, ū, v̄)(x) but y ̸∈ WMinCD
2G(x̄, ȳ, ū, v̄)(x). There-

fore, there exists ỹ ∈ D2G(x̄, ȳ, ū, v̄)(x) such that y− ỹ ∈ int(C). As in the proof of
(4.10), we prove that

⟨λ, x̄⟩+ ⟨µ, ȳ⟩ ≥ ⟨λ, x̂⟩+ ⟨µ, ŷ⟩ for all (x̂, ŷ) ∈ gph(G+ C),

which, as above, will confirm that µ ∈ C◦\{0}. However, now we have y−ỹ ∈ int(C),
which implies ⟨µ, y − ỹ⟩ < 0. (In fact, the normality assumption was required for
this inequality). By the same approach as used in the proof of (4.7), we obtain a
contradiction to ⟨µ, y − ỹ⟩ < 0. The proof is complete. �

For another proof of (4.12), we recall the notion of second-order lower Dini de-
rivative.

Definition 4.13. The second-order lower Dini derivative of F : X ⇒ Y at (x̄, ȳ) ∈
gph(F ) in the direction (ū, v̄) ∈ X × Y is the set-valued map D2

ℓF (x̄, ȳ, ū, v̄) such
that y ∈ D2

ℓF (x̄, ȳ, ū, v̄)(x), if and only if for every (tn) ⊂ P and for every (xn) ⊂ X
with tn ↓ 0 and xn → x there are a sequence (yn) ⊂ Y with yn → y and an integer
m ∈ N such that ȳ + tnv̄ + t2nyn ∈ F (x̄+ tnū+ t2nxn) for every n ≥ m.

Remark 4.14. The above notion is inspired by the lower Dini derivative introduced
by Penot [22] and used to study sensitivity analysis. In fact, if (ū, v̄) = (0, 0), then
the above notion recovers the lower Dini derivative of Penot [22]. The second-order
analogue, given above, was used in [16] to give some necessary optimality conditions
in set-valued optimization.

We now formulate the notion of second-order semidifferentiable maps.

Definition 4.15. A set-valued map F : X ⇒ Y is called second-order semidiffer-
entiable at (x̄, ȳ) ∈ gph(F ) in direction (ū, v̄) ∈ X × Y, if and only if the second
order lower Dini derivative D2

ℓF (x̄, ȳ, ū, v̄) and the second-order contingent deriva-
tive D2F (x̄, ȳ, ū, v̄) coincide.

Remark 4.16. The mapping F defined in Example 3.17 is second-order semidif-
ferentiable at (1, (1, 1)) in the direction (v1 + v2, (v1, v2)).

The following result makes good use of the above notions.
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Theorem 4.17. If G is second-order semidifferentiable at (x̄, ȳ) in direction (ū, v̄),
then (4.12) holds.

Proof. Let y ∈ D2R(x̄, ȳ, ū, v̄)(x). Then there exist sequences (tn) ⊂ P, (xn, yn) ⊂
X × Y such that tn ↓ 0, (xn, yn) → (x, y) and

(4.13) an := ȳ + tnv̄ + t2nyn ∈ R(x̄+ tnū+ t2nxn).

Assume that y ̸∈ WMinCD
2G(x̄, ȳ, ū, v̄)(x). Then there exists ỹ ∈ D2G(x̄, ȳ, ū, v̄)(x)

= D2
ℓG(x̄, ȳ, ū, v̄)(x) such that y − ỹ ∈ int(C). Since tn ↓ 0 and xn → x, there exist

n0 ∈ N and ỹn → ỹ such that

bn := ȳ + tnv̄ + t2nỹn ∈ G(x̄+ tnū+ t2nxn) for n > n0.

Since y − ỹ ∈ int(C), we have yn − ỹn ∈ int(C) for sufficiently large n. Moreover,
because C is a cone, we obtain that

an − bn = (ȳ + tnv̄ + t2nyn)− (ȳ + tnv̄ + t2nỹn) = t2n(yn − ỹn) ∈ int(C).

This however is a contradiction to (4.13). The proof is complete. �
We will give another proof of (4.12) under Aubin’s property defined as follows.

Definition 4.18. Let BY be the unit ball of the space Y. The map F : X ⇒ Y
is said to have the Aubin property around (u, v) ∈ gph(F ), if there are a constant
L ≥ 0 and neighborhoods U of u and V of v so that

F (x1) ∩ V ⊂ F (x2) + L ∥ x1 − x2 ∥ BY for all x1, x2 ∈ U ∩ dom(F ).

This concept is due to J. P. Aubin. For several useful features of this notion, see
[2], [21], [23].

The following result is an analogue of Theorem 4.17.

Theorem 4.19. If G has the Aubin property around (x̄, ȳ) and Y is finite dimen-
sional, then (4.12) holds.

Proof. The proof is similar to that of Theorem 4.17 (See also the proof of Theo-
rem 4.22). �

For our next result we consider the following parameter dependent vector-
optimization problem

(4.14) MinCf(w, x) subject to w ∈ H(x),

where H is a given set-valued map, and confine our discussion to the case when the
set-valued map G is given by

(4.15) G(x) := {y ∈ Y | y = f(w, x) for some w ∈ H(x)},
where X is the parameter space, f : W × X → Y is a single-valued map, and
H : X ⇒ W is a set-valued map.

For this situation, we have the following result (see [26]).

Theorem 4.20. Assume that X and Y are finite dimensional. Assume that f is
continuous and C-convex. If H is convex and G is C-dominated by Q near x̄, then

MinCD
2G(x̄, ȳ, ū, v̄)(x) ⊂ D2Q(x̄, ȳ, ū, v̄)(x).
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Proof. Assume that y ∈ MinCD
2G(x̄, ȳ, ū, v̄)(x) which implies that y ∈

D2G(x̄, ȳ, ū, v̄)(x) and hence there are sequences (tn) ⊂ P and (xn, yn) ⊂ X × Y
such that tn ↓ 0, (xn, yn) → (x, y), and

ȳ + tnv̄ + t2nyn ∈ G(x̄+ tnū+ t2nxn).

Since G is C-dominated by Q near x̄, for sufficiently large n, we have

ȳ + tnv̄ + t2nyn ∈ Q(x̄+ tnū+ t2nxn) + C,

Consequently, we ensure the existence of a sequence (ỹn) ⊂ Y such that

ȳ + tnv̄ + t2nỹn ∈ Q(x̄+ tnū+ t2nxn)

yn − ỹn ∈ C.(4.16)

Assume that (ỹn) is bounded. Since Y is finite dimensional, we may assume that
ỹn → ỹ which implies

ỹ ∈ D2Q(x̄, ȳ, ū, v̄)(x) ⊂ D2G(x̄, ȳ, ū, v̄)(x).

In view of (4.16), we have y − ỹ ∈ C, and because y ∈ MinCD
2G(x̄, ȳ, ū, v̄)(x), we

must have y = ỹ. This implies that y ∈ D2Q(x̄, ȳ, ū, v̄)(x).
Therefore, to complete the proof it suffices to show that (ỹn) remains bounded.

If possible, assume that this is not the case and ∥ỹn∥ → ∞. In view of (4.15), there
are sequences (wn) and (w̃n) such that

w̄ + tnū+ t2nwn ∈ H(x̄+ tnū+ t2nxn)

ȳ + tnv̄ + t2nyn = f(w̄ + tnū+ t2nwn, x̄+ tnū+ t2nxn)

w̄ + tnū+ t2nw̄n ∈ H(x̄+ tnū+ t2nxn)

ȳ + tnv̄ + t2nỹn = f(w̄ + tnū+ t2nw̃n, x̄+ tnū+ t2nxn).

Due to the convexity of H, for some 0 ≤ α ≤ 1, we have

α(w̄ + tnū+ t2nwn) + (1− α)(w̄ + tnū+ t2nw̃n) = w̄ + tnū+ t2n(αwn + (1− α)w̃n)

∈ H(x̄+ tnū+ t2nxn).

Moreover, due to the assumption that f is C-convex, we obtain

ȳ + tnv̄ + t2nyn(α) := f(w̄ + tnū+ t2n(αwn + (1− α)w̃n), x̄+ tnū+ t2nxn)

≤C ȳ + tnv̄ + t2n(αyn + (1− α)ỹn)

≤C ȳ + tnv̄ + t2nyn,

where we used the fact that

(ȳ + tnv̄ + t2nyn)− (ȳ + tnv̄ + t2n(αyn + (1− α)ỹn)) = t2n(1− α)(yn − ỹn) ∈ C.

Since f is continuous, we have

ȳ + tnv̄ + t2nyn(α) → ȳ + tnv̄ + t2nỹn as α → 0

ȳ + tnv̄ + t2nyn(α) → ȳ + tnv̄ + t2nyn as α → 1.

Since ∥ỹn∥ → ∞ and yn → y, by taking αn appropriately close to 1, we have

ϵt2n ≤ ∥ȳ + tnv̄ + t2nyn − (ȳ + tnv̄ + t2nyn(αn))∥ ≤ t2n,
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where ϵ ∈ (0, 1). Setting yn(αn) = zn we see that ϵ ≤ ∥yn − zn∥ ≤ 1. Because
yn → y, we deduce that (zn) is bounded. Assume that zn → z, which implies
z ∈ D2G(x̄, ȳ, ū, v̄)(x). Since ϵ ≤ ∥yn − zn∥, we have ϵ ≤ ∥y − z∥, and hence y ̸= z.

From the inequality ȳ+ tnv̄+ t2nzn ≤C ȳ+ tnv̄+ t2nyn, we infer that yn − zn ∈ C,
which implies y − z ∈ C. This, however, is a contradiction to the assumption that
y ∈ MinCD

2G(x̄, ȳ, ū, v̄)(x). Therefore, (ỹn) has to be a bounded sequence. The
proof is complete. �
Example 4.21. As an illustration of Theorem 4.20, letX = W = (0,+∞), Y = R2,
C = R2

+, and define H : X ⇒ W by H(x) = [x,+∞) and f : W × X → Y by
f(w, x) = (w, 1/w + x2). In this example, the hypotheses of Theorem 4.20 are
satisfied for any x̄ > 0. One can also see directly that the conclusion of Theorem
4.20 holds, since for each x > 0, we have

Q(x) = G(x) = {(w, 1/w + x2) | w ≥ x}.
To see what DG and D2G look like in this example, consider the case where x̄ = 1
and ȳ = (2, 3/2). Then

DG(1, (2, 3/2))(x) = {(y, 2x− y/4) | y ∈ R}
and

D2G(1, (2, 3/2), v1, (v2, 2v1 − v2/4))(x) = {(y, 2x− y/4 + v1
2 + v2

2/8) | y ∈ R}.

The main focus of this work is on the second-order sensitivity analysis, and
consequently issues related to second-order stability analysis have been ignored.
In the following we briefly touch upon the subject by proving an upper-continuity
result for the second-order contingent derivative.

Theorem 4.22. Let F : X ⇒ Y be set-valued, let (x̄, ȳ) ∈ gph(F ), and let (ū, v̄) ∈
X × Y. Assume that the set-valued map F : X ⇒ Y possesses the Aubin property
and Y is finite dimensional. Then D2F (x̄, ȳ, ū, v̄)(x) is upper-semicontinuous.

Proof. Let x0 ∈ dom(D2F (x̄, ȳ, ū, v̄)). To show that the map is upper-semicontinuous
at x0, we prove that for every ϵ > 0, there exists a neighborhood N (x0) of x0 such
that

D2F (x̄, ȳ, ū, v̄)(x) ⊂ D2F (x̄, ȳ, ū, v̄)(x0) + ϵBY for all x ∈ N (x0).

For an arbitrary ϵ > 0, we define N (x0) = x0 + ϵ−1BY . Let x ∈ N (x0) and let
y ∈ D2F (x̄, ȳ, ū, v̄)(x). Hence there exists sequences (tn) ⊂ P, (xn, yn) ⊂ X × Y
such that tn ↓ 0, (xn, yn) → (x, y) and ȳ + tnv̄ + t2nyn ∈ F (x̄ + tnū + t2nxn). Let
zn ∈ X be a sequence such that zn → x0. Therefore, there exist n0 ∈ N, and
neighborhoods U of x̄ and V of ȳ such that

ȳ + tnv̄ + t2nyn ∈ F (x̄+ tnū+ t2nxn) ∩ V ⊂ F (x̄+ tnū+ t2nzn) + Lt2n∥xn − zn∥BY .

Therefore,
ȳ + tnv̄ + t2nwn ∈ F (x̄+ tnū+ t2nzn),

where wn = yn + Lbn∥xn − zn∥ for some bn ∈ BY . Since Y is finite-dimensional,
we may assume that bn → b ∈ BY , and consequently, wn → y + Lb∥x − x0∥,
confirming that y ∈ D2F (x̄, ȳ, ū, v̄)(x) + ϵBY . This establishes that D

2F (x̄, ȳ, ū, v̄)
is upper-semicontinuous. �
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5. Conclusion

In this paper we have presented a wide variety of basic results from which it
should be possible to build a more comprehensive second-order theory of sensitivity
analysis in set-valued optimization. We hope in future work to develop such a theory
further.
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