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2. Preliminaries

Throughout the paper, let X and Y be two real vector spaces and let C be a
convex cone in Y which induces the following ordering ≤C : for x, y ∈ X,

x ≤C y ⇔ y − x ∈ C.

For a subset A of Y with 0 ∈ A, A is said to be absorbing if for every x ∈ Y , there
exists δ > 0 such that tx ∈ A for all t ∈ [0, δ]. Moreover, when Y is a topological
vector space we denote the topological interior and topological closure of A ⊂ Y by
intA and clA, respectively. We start with the following definitions.

Definition 2.1. Let E be a convex subset of X. A real-valued function f : E → R
is said to be a dc function on E if there exist two convex real-valued functions g
and h on E such that

(2.1) f(x) = g(x)− h(x), ∀x ∈ E.

When E = X, f is said to be a “dc function” simply. The representation (2.1)
is called a dc decomposition of f on E. When E = X, (2.1) is said to be a dc
decomposition.

Definition 2.2. A global optimization problem is called a dc programming problem
or a dc programming if it has the form:

(2.2)
minimize f0(x)
subject to x ∈ E,

fi(x) ≤ 0, i = 1, . . . ,m,

where E is a closed convex subset ofX, and all functions fi : X → R, i = 0, 1, . . . ,m,
are dc functions.

The class of dc functions contains convex functions, concave functions, and more
general ones like neither convex nor concave function. Moreover, it is invariant
under many operations frequently encountered in optimization.

Lemma 2.3 (Horst, Pardalos and Thoai [4]). Let X be a vector space. Let f, f1, . . . ,
fm : X → R be real valued dc functions. Then the following functions are also dc
functions:

(i) x 7→
m∑
i=1

λifi(x) for any {λi}mi=1 ⊂ R;

(ii) x 7→ max
i=1,...,m

fi(x) and x 7→ min
i=1,...,m

fi(x);

(iii) x 7→ |f(x)|, x 7→ max{0, f(x)} and x 7→ min{0, f(x)};

(iv) x 7→
m∏
i=1

fi(x).

We give two definitions for vector-valued functions.

Definition 2.4. Let X and Y be two real vector spaces. Let f : X → Y . Then

epi(f) :=
{
(x, y) ∈ X × Y

∣∣ f(x) ≤C y
}

is called the epigraph of f .
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Definition 2.5 (Luc [7]). Let f : X → Y . We say that f is a C-convex function
on X if for every x1, x2 ∈ X and λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≤C λf(x1) + (1− λ)f(x2).

Equivalently, it means that the epi(f) is convex.

Now, we introduce a general concept of the difference of two cone-convex functions
(DC function).

Definition 2.6. Let X and Y be two real vector spaces. f : X → Y is said to be
a DC function if there exist two C-convex functions p and q such that

f(x) = p(x)− q(x), ∀x ∈ X.

By Proposition 6.7 in [7], we can prove the following result easily.

Proposition 2.7. If f1, . . . , fm : X → Y are DC functions, then for any λ1, . . . ,
λm ∈ R,

x 7→
m∑
i=1

λifi(x)

is also a DC function.

3. Scaralization for DC functions

In this section, we introduce the composition of a gauge with a dc function by
using the way of Blanquero and Carrizosa [1, Prop.1.1]. We assume that Y = Rn

with the usual inner product ⟨·, ·⟩.

Definition 3.1. Let S ⊂ Rn be a set with 0 ∈ S. The gauge of S is the function
γS : Rn 7→ (−∞,+∞] defined by

γS(x) := inf
{
t > 0

∣∣ x ∈ tS
}
, ∀ x ∈ Rn.

When S is absorbing, γS is called the Minkowski functional associated with S.
By Theorem 14.5 in [8], we can prove the following lemma.

Lemma 3.2. Let S be a closed convex absorbing set in Y . Then the gauge γS can
be written as

γS(x) = max
{
⟨u′, x⟩

∣∣ u′ ∈ S◦}, ∀x ∈ Rn,

where S◦ is the polor set of S, i.e., S◦ :=
{
u ∈ Rn

∣∣ ⟨u, x⟩ ≤ 1, ∀x ∈ S
}
.

For a special DC function f with respect to Rn
+ =

{
x = (x1, x2, . . . , xn)

∣∣ xi ≥
0, i = 1, 2, . . . , n

}
, we have the following proposition.

Proposition 3.3 (Blanquero and Carrizosa [1]). Let Ω ⊂ Rn be a convex set,
and let γB : Rn → R be the gauge function of the closed unit ball B ⊂ Rn. Let
f : Ω → Rn, f = (f1, . . . , fn), and let each component fi be a real-valued dc
function with known dc decomposition

fi = f+
i − f−

i ,

where f+
i and f−

i are two Rn
+-convex functions. For any i = 1, . . . , n, let

Mi := max{γB(ei), γB(−ei)},
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where ei is the i-th unit vector of Rn. Then γB ◦ f : Ω → R is a dc function and a
dc decomposition of γB ◦ f is

γB ◦ f = g − h,

where g = γB ◦ f +

n∑
i=1

Mi(f
+
i − f−

i ) and h = γB ◦ f +

n∑
i=1

Mi(f
+
i + f−

i ).

For general DC functions, we take a similar approach to the idea in Proposi-
tion 3.3, i.e., the scalarizing method by using the composition of a sublinear func-
tion with a DC function. For this purpose, we consider a polyhedral convex cone
as C in the rest of the paper; that is,

C :=
{
z ∈ Rn

∣∣ ⟨ci, z⟩ ≥ 0, ∀i = 1, . . . ,m
}
,

where ci ̸= θ for each i = 1, . . . ,m.

Lemma 3.4. Let X be a real vector space. For a C-convex function p : X → Rn,
and i ∈ {1, . . . ,m}, define g(i) : X → R by

g(i)(x) := ⟨ci, p(x)⟩, ∀x ∈ X.

Then g(i) is a convex function for each i = 1, . . . ,m.

Proof. Take x1, x2 ∈ X, λ ∈ [0, 1]. Then we have that

λg(i)(x1) + (1− λ)g(i)(x2)− g(i)
(
λx1 + (1− λ)x2

)
=

⟨
ci, λp(x1) + (1− λ)p(x2)− p

(
λx1 + (1− λ)x2

)⟩
.

Since the function p is a C-convex function, we have that

λp(x1) + (1− λ)p(x2)− p
(
λx1 + (1− λ)x2

)
∈ C.

For each i = 1, . . . ,m, we have that⟨
ci, λp(x1) + (1− λ)p(x2)− p

(
λx1 + (1− λ)x2

)⟩
≥ 0.

Thus
g(i)

(
λx1 + (1− λ)x2

)
≤ λg(i)(x1) + (1− λ)g(i)(x2).

This implies that g(i) is a convex function for each i = 1, . . . ,m. �
Assume that there exists k ∈ intC, and define ci(k) ∈ Rn as follows:

ci(k) :=
1

⟨ci, k⟩
ci, i = 1, . . . ,m.

As in the proof of Lemma 3.4, we have from ⟨ci, k⟩ > 0 that the mapping x 7→
⟨ci(k), p(x)⟩ is convex for any C-convex function p : X → Rn. The following propo-
sition is used in the proof of Theorem 4.4.

Proposition 3.5. Consider the following sublinear function

φk(y) := inf
{
t ∈ R

∣∣ y ∈ tk − C
}
, ∀y ∈ Rn

which was defined by Gerstewitz (Tammer) in [3]. Then

φk(y) = max
i=1,...,m

⟨ci(k), y⟩, ∀y ∈ Rn.
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Proof. For any y ∈ Rn and ε > 0, by the definition of φk there exists tε ∈ R such
that tεk−y ∈ C and tε < φk(y)+ε. We obtain from tεk−y ∈ C that ⟨ci, tεk−y⟩ ≥ 0
for all i = 1, 2, . . . ,m. Then we have that

tε⟨ci, k⟩ ≥ ⟨ci, y⟩

and

tε ≥
1

⟨ci, k⟩
⟨ci, y⟩ = ⟨ci(k), y⟩.

Thus we have that

tε ≥ max
i=1,...,m

⟨ci(k), y⟩.

From tε < φk(y) + ε, we have that

φk(y) + ε > tε ≥ max
i=1,...,m

⟨ci(k), y⟩.

Since ε > 0 is arbitrary, we have

φk(y) ≥ max
i=1,...,m

⟨ci(k), y⟩.

Conversely, fix y ∈ Rn and let t̂ = max
i=1,...,m

⟨ci(k), y⟩. For any i = 1, . . . ,m, we

have that

t̂ ≥ ⟨ci(k), y⟩ = 1

⟨ci, k⟩
⟨ci, y⟩

and hence

⟨ci, t̂k − y⟩ ≥ 0.

Then

t̂k − y ∈ C.

From the definition of φk we get

φk(y) ≤ t̂ = max
i=1,...,m

⟨ci(k), y⟩.

This completes the proof. �

Using Proposition 3.5, and Lemmas 3.4 and 2.3, we have the following proposi-
tion.

Proposition 3.6. Let X be a real vector space. Let f : X → Rn be a DC function
which a DC decomposition of f is as follows:

f(x) = p(x)− q(x), ∀x ∈ X,

where p and q are C-convex functions. Then

(φk ◦ f)(x) = max
i=1,...,m

⟨ci(k), f(x)⟩, ∀x ∈ X.

Furthermore φk ◦ f is a dc function.
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Proof. We have from Proposition 3.5 that for any x ∈ X,

(φk ◦ f)(x) = φk(f(x))

= max
i=1,...,m

⟨ci(k), f(x)⟩

= max
i=1,...,m

{⟨ci(k), p(x)⟩ − ⟨ci(k), q(x)⟩}.

By Lemma 3.4, we obtain that ⟨ci(k), p(x)⟩ and ⟨ci(k), q(x)⟩ are convex functions.
Then ⟨ci(k), p(x)⟩ − ⟨ci(k), q(x)⟩ is a dc function. By Lemma 2.3, we have φk ◦ f is
also a dc function. �

4. Optimality condition

In this section, we show a certain optimality condition for dc programming by
using properties of DC functions.

Let E be a closed convex subset of Rn. An important dc optimization problem
is the following:

(4.1) ω0 := inf
{
g(x)− h(x)

∣∣ x ∈ E
}
,

where g and h are two convex functions on Rn.
Problem (4.1) is solvable if there exist x∗ ∈ E and ω0 ∈ Rn such that

ω0 := g(x∗)− h(x∗) = inf
{
g(x)− h(x)

∣∣ x ∈ E
}
.

The following result gives an optimality condition for Problem (4.1).

Theorem 4.1 (Horst, Pardalos and Thoai [4]). If Problem (4.1) is solvable then a
point x∗ ∈ E is an optimal solution to it if and only if there exists t∗ ∈ R such that

inf
{
−h(x) + t

∣∣ x ∈ E, t ∈ R, g(x)− t ≤ g(x∗)− t∗
}
= 0.

Next, we give the concept of infimal point with respect to intC, which is regarded
as an approximately efficient point.

Definition 4.2 (Tanaka [6]). Let A be a nonempty subset of Rn. A point w∗ ∈ Rn

is said to be an infimal point of A with respect to intC if it satisfies the following
two conditions:

(i) w∗ ∈ clA;
(ii) for any a ∈ A with a ̸= w∗, w∗ − a /∈ intC.

The set of all infimal points of A with respect to intC is denoted by InfA.

Before proving our main theorems, we recall that Gerstewitz’s (Tammer’s) sub-
linear scalarizing function φk in Proposition 3.5 satisfies the following convenient
properties.

Lemma 4.3 (Göpfert, Tammer, Riahi and Zălinescu [2]). Let Y be a real vector
space, C be a proper, closed and convex cone in Y and k ∈ intC. Then φk is a
continuous function such that for every λ ∈ R,{

y ∈ Rn
∣∣ φk(y) < λ

}
= λk − intC.

Now, we prove our main theorems.
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Theorem 4.4. Let A be a nonempty subset of Rn, w∗ ∈ clA and k ∈ intC. Then

w∗ ∈ InfA ⇔ inf
{
φk(y)

∣∣ y ∈ A− w∗} = 0.

Proof. Let β := inf
{
φk(y)

∣∣ y ∈ A − w∗}. At first, we assume that w∗ ∈ InfA.

Since w∗ ∈ clA, there is {an}+∞
n=1 ⊂ A such that an → w∗ as n → +∞. Then we

have from the continuity of φk (Lemma 4.3) and Proposition 3.5 that

β = inf
{
φk(y)

∣∣ y ∈ A− w∗}
≤ inf

{
φk(an − w∗)

∣∣ n ∈ N
}

≤ lim
n→+∞

φk(an − w∗)

= φk(0) = 0.

Therefore β ≤ 0. We shall show β = 0. If β < 0, then from the definition of β there
is a0 ∈ A such that φk(a0 −w∗) < 0. Hence by Lemma 4.3, a0 −w∗ ∈ −intC. This
is a contradiction to the infimality of w∗, i.e., (ii) in Definition 4.2. Thus β = 0.

Conversely, we assume that β = 0. If w∗ /∈ InfA, then there exists a ∈ A with
a ̸= w∗ such that a− w∗ ∈ −intC. Since

0 · k − intC = −intC ∋ a− w∗,

we have from Lemma 4.3 that φk(a−w∗) < 0. On the other hands, from β = 0 we
have that φk(a − w∗) ≥ 0 for all a ∈ A. This is a contradiction. Then we obtain
that w∗ ∈ InfA. �

Let f : X → Rn be a DC function. Let us consider the following problem:

(4.2) w ∈ Inf
{
f(x)

∣∣ x ∈ X
}
.

Problem (4) is called solvable if there exist x∗ ∈ X and w∗ ∈ Rn such that

w∗ ∈ Inf
{
f(x)

∣∣ x ∈ X
}

and f(x∗) = w∗.

Theorem 4.5. If Problem (4) is solvable then there exists t∗ ∈ R such that

inf
{
−hw∗(x) + t

∣∣ x ∈ X, t ∈ R, gw∗(x)− t ≤ gw∗(x∗)− t∗
}
= 0,

where gw∗ and hw∗ are two convex functions as decomposition of φk(f(x)− w∗).

Proof. Since f is a DC function, it follows from Proposition 3.6 that φk(f(x)−w∗)
is a dc function. By Theorem 4.1,

w∗ ∈ Inf
{
f(x)

∣∣ x ∈ X
}
⇔ inf

{
φk(f(x)− w∗)

∣∣ x ∈ X
}
= 0.

Hence

0 = inf
{
φk(f(x)− w∗)

∣∣ x ∈ X
}

= inf
{
gw∗(x)− hw∗(x)

∣∣ x ∈ X
}
.

From Theorem 4.1, there exists t∗ ∈ Rn such that

inf
{
−hw∗(x) + t

∣∣ x ∈ X, t ∈ R, gw∗(x)− t ≤ gw∗(x∗)− t∗
}
= 0.

This completes the proof. �
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