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OPTIMALITY CONDITION FOR VECTOR-VALUED
DC PROGRAMMING PROBLEMS

MAYUMI HOJO, TAMAKI TANAKA, AND SYUUJI YAMADA

ABSTRACT. In this paper, we introduce a general concept of the difference of two
cone convex functions (DC function) in a different way from what Blanquero and
Carrizosa [1] did. Also we show a certain optimality condition for dc programming
by using some properties of DC functions.

1. INTRODUCTION

Horst, Pardalos and Thoai [4] introduced several mathematical methods in global
optimization including nonconvex quadratic programming, general concave mini-
mization, network optimization, Lipschitz and dc programming. Many multiex-
tremal problems can be transformed into equivalent problems where each objective
function is the sum of a convex and a concave function, that is, the difference
of two convex functions (dc function). Such optimization problems are called dc
programming, and there are several proposed algorithms for solving them, such as
outer approximation and branch-and-bound methods. On the other hand, for a
vector-valued function f : R™ — R" which consists of dc function components and
a gauge v : R™ — R associated with the unit ball in R"™, Blanquero and Carrizosa
[1] showed that the composition v o f : R” — R is also a dc¢ function, where R
is the set of real numbers. In general, there are many concepts of convexity for
vector-valued functions with respect to a convex cone in the range of function; see
[5]. Such convexities are referred to as cone-convexity, and its typical one is defined
by the convexity of the epigraph of function; see [7].

In this paper, we study vector-valued DC programming problems with multi-
objective which is represented as the difference of two cone-convex functions (DC
function). The main purpose of the paper is to give a certain optimality condition
for the problem above. This paper is organized as follows. In Section 2, we introduce
some properties of real-valued dc functions and verify that similar properties hold
for vector-valued DC functions. In Section 3, we explain the idea of Blanquero and
Carrizosa [1] which the composition yo f : R™ — R is also a dc function. Inspired
by [1], we show that the composite function of a DC function and Gerstewitz’s
(Tammer’s) sublinear scalarizing function [3] is also a dc function. In Section 4, we
show a certain optimality condition for dc programming by using some properties
of DC functions.
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2. PRELIMINARIES

Throughout the paper, let X and Y be two real vector spaces and let C' be a
convex cone in Y which induces the following ordering <¢: for x, y € X,
r<cy & y—xeC.

For a subset A of Y with 0 € A, A is said to be absorbing if for every x € Y, there
exists & > 0 such that tz € A for all ¢ € [0,d]. Moreover, when Y is a topological
vector space we denote the topological interior and topological closure of A C Y by
int A and cl A, respectively. We start with the following definitions.

Definition 2.1. Let E be a convex subset of X. A real-valued function f: E — R
is said to be a dc function on E if there exist two convex real-valued functions g
and h on E such that

(2.1) f(z) =g(x) — h(z), Vx € E.

When F = X, f is said to be a “dc function” simply. The representation (2.1)
is called a dc decomposition of f on E. When F = X, (2.1) is said to be a dc
decomposition.

Definition 2.2. A global optimization problem is called a dc programming problem
or a dc programming if it has the form:

minimize  fo(z)

(2.2) subject to x € F,
fz(.%') SO, 1= 1,...,m,
where FE is a closed convex subset of X, and all functions f; : X - R,¢=0,1,...,m,

are dc functions.

The class of dc functions contains convex functions, concave functions, and more
general ones like neither convex nor concave function. Moreover, it is invariant
under many operations frequently encountered in optimization.

Lemma 2.3 (Horst, Pardalos and Thoai [4]). Let X be a vector space. Let f, fi,. ..,
fm : X — R be real valued dc functions. Then the following functions are also dc

functions:
m

)

) x> _max fi(x) and z — ':I{Iin fi(x);
)
)

geeey

x — |f(x)|, z — max{0, f(x)}7 a7nd x — min{0, f(x)};

We give two definitions for vector-valued functions.
Definition 2.4. Let X and Y be two real vector spaces. Let f: X — Y. Then

epi(f) == {(z,y) € X x Y | f(2) <c y}
is called the epigraph of f.
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Definition 2.5 (Luc [7]). Let f: X — Y. We say that f is a C-convex function
on X if for every z1, x2 € X and X € [0, 1],

fOxy + (1= Naz) <o Mf(z1) + (1= A) f(22).
Equivalently, it means that the epi(f) is convex.

Now, we introduce a general concept of the difference of two cone-convex functions
(DC function).

Definition 2.6. Let X and Y be two real vector spaces. f: X — Y is said to be
a DC function if there exist two C-convex functions p and ¢ such that

f(z) = p(x) — q(x), Vo € X.
By Proposition 6.7 in [7], we can prove the following result easily.

Proposition 2.7. If fi,..., fm : X = Y are DC functions, then for any Ai,...,
Am € R,

z =Y Aifi(z)
i=1
is also a DC function.

3. SCARALIZATION FOR DC FUNCTIONS

In this section, we introduce the composition of a gauge with a dc function by
using the way of Blanquero and Carrizosa [1, Prop.1.1]. We assume that ¥ = R"
with the usual inner product (-, -).

Definition 3.1. Let S C R” be a set with 0 € S. The gauge of S is the function
vs : R" = (—o00, +00] defined by
vs(z) :=inf{t > 0 ’ retS}, Vo eR"

When S is absorbing, g is called the Minkowski functional associated with S.
By Theorem 14.5 in [8], we can prove the following lemma.

Lemma 3.2. Let S be a closed conver absorbing set in Y. Then the gauge vs can
be written as
vs(x) = max{(v',z) | v’ € 5°}, V& € R",

where S° is the polor set of S, i.e., S° := {u e R ‘ (u,zy <1, Vo € S}.

For a special DC function f with respect to R} = {ac = (x1,22,...,2p) ‘ T >
0, :=1,2,... ,n}, we have the following proposition.
Proposition 3.3 (Blanquero and Carrizosa [1]). Let Q@ C R™ be a conver set,
and let yg : R® — R be the gauge function of the closed unit ball B C R™. Let

f:Q =R f = (fi,...,fn), and let each component f; be a real-valued dc
function with known dc decomposition

fi = f1+ - i_’
where f;r and f; are two R -convex functions. For anyi=1,...,n, let

M, = max{’}’B(ei)> ’YB(_ei)},
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where e; is the i-th unit vector of R™. Then vpo f: Q) — R is a dc function and a
dc decomposition of yg o f is
B © f =9 — h,

n n
where g =g o f+ Y Mi(fi = f7) andh=~po f+) M(f +f).

i=1 i=1

For general DC functions, we take a similar approach to the idea in Proposi-

tion 3.3, i.e., the scalarizing method by using the composition of a sublinear func-

tion with a DC function. For this purpose, we consider a polyhedral convex cone
as C in the rest of the paper; that is,

C:={zeR"|(c,2) >20,Vi=1,...,m},
where ¢; # 0 for each i = 1,...,m.

Lemma 3.4. Let X be a reql vector space. For a C-conver function p : X — R,
andi € {1,...,m}, define g : X - R by

9" (z) = (ci,p(x)), Yz € X.
Then ¢\ is a convex function for eachi=1,...,m.
Proof. Take 1,29 € X, XA € [0,1]. Then we have that
A9 (1) + (1= N)gW () — g (A1 + (1 = N)a2)
= (ci, Ap(z1) + (1 = N)p(z2) — p(Az1 + (1 — N)ag) ).
Since the function p is a C-convex function, we have that
Ap(z1) + (1 = Np(z2) — p(Az1 + (1 — N)ag) € C.
For each 1 = 1,...,m, we have that
{ci, Ap(z1) + (1 = N)p(z2) — p(Az1 + (1 = N)z2)) > 0.

Thus ‘ ‘ '
g% (Az1 4+ (1= N)ag) < gD (z1) + (1 = N) gD (zy).

This implies that ¢( is a convex function for each i = 1,...,m. O

Assume that there exists k € int C, and define c'(k) € R" as follows:
’ 1

k) = —

c'(k) k)

As in the proof of Lemma 3.4, we have from (c;, k) > 0 that the mapping z

(c"(k), p(z)) is convex for any C-convex function p : X — R™. The following propo-
sition is used in the proof of Theorem 4.4.

c, 1=1,...,m.

Proposition 3.5. Consider the following sublinear function
or(y) == inf{t eR ’ y €tk — C’}, Yy € R"
which was defined by Gerstewitz (Tammer) in [3]. Then
pr(y) = max (c'(k),y), Yy € R".

i=1,..., m
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Proof. For any y € R™ and € > 0, by the definition of ¢ there exists t. € R such
that t.k—y € C and t. < i (y)+e. We obtain from t.k—y € C that {(¢;, t-k—y) >0
for all t = 1,2,...,m. Then we have that

telci k) > {ci,y)

and

Thus we have that

From t. < ¢i(y) + €, we have that

or(y) + &>t > max (c¢'(k),y).

=1,....m

Since € > 0 is arbitrary, we have

pr(y) = max (c'(k),y).

=1,...,

Conversely, fix y € R” and let ¢ = _max (d(k),y). Forany i = 1,...,m, we

i=1,....m

have that

R 4 1

£> (cl(k),y) = ——(ci,

> (e (K).0) = (o)
and hence
(i th —y) > 0.

Then

th—yeC.

From the definition of ¢ we get

er(y) <t= max (c'(k),y).

i=1,....,m

This completes the proof. O

Using Proposition 3.5, and Lemmas 3.4 and 2.3, we have the following proposi-
tion.

Proposition 3.6. Let X be a real vector space. Let f: X — R™ be a DC function
which a DC decomposition of f is as follows:

f(z) =p(z) —q(z), Vo € X,

where p and q are C-convex functions. Then

(pro f)(z) = _max (cH(k), f(x)), Yz € X.

=1,...

Furthermore @i o f is a dc function.
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Proof. We have from Proposition 3.5 that for any =z € X,
(pr o f)(@) = pr(f(z))
= max (di(k), f(2))

= max {(¢'(k).p(@)) ~ (¢! (1), g(@)).

By Lemma 3.4, we obtain that (ci(k),p(x)) and (c¢'(k),q(x)) are convex functions.
Then (c'(k),p(z)) — (c¢'(k), q(x)) is a dc function. By Lemma 2.3, we have ¢ o f is
also a dc function. O

4. OPTIMALITY CONDITION

In this section, we show a certain optimality condition for dc programming by
using properties of DC functions.

Let E be a closed convex subset of R". An important dc optimization problem
is the following:
(4.1) wo := inf{g(z) — h(z) | z € E},
where g and h are two convex functions on R™.

Problem (4.1) is solvable if there exist 2* € E and wy € R" such that

wo := g(a*) — h(z*) = inf{g(z) — h(z) | z € E}.
The following result gives an optimality condition for Problem (4.1).

Theorem 4.1 (Horst, Pardalos and Thoai [4]). If Problem (4.1) is solvable then a
point x* € E is an optimal solution to it if and only if there exists t* € R such that

inf{—h(z)+t |z € E, teR, g(z)—t < g(a*)—t"} =0.

Next, we give the concept of infimal point with respect to int C'; which is regarded
as an approximately efficient point.

Definition 4.2 (Tanaka [6]). Let A be a nonempty subset of R". A point w* € R"
is said to be an infimal point of A with respect to int C if it satisfies the following
two conditions:
(i) w* € cl 4;
(ii) for any a € A with a # w*, w* —a ¢ int C.
The set of all infimal points of A with respect to int C' is denoted by Inf A.
Before proving our main theorems, we recall that Gerstewitz’s (Tammer’s) sub-

linear scalarizing function ¢ in Proposition 3.5 satisfies the following convenient
properties.

Lemma 4.3 (Gopfert, Tammer, Riahi and Zalinescu [2]). Let Y be a real vector
space, C' be a proper, closed and convex cone in' Y and k € int C. Then @i is a
continuous function such that for every A € R,

{y eR" ‘ or(y) <A} =Xk —int C.

Now, we prove our main theorems.
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Theorem 4.4. Let A be a nonempty subset of R", w* € clA and k € int C. Then
w* € InfA < inf{op(y) |ye A—w"} =0.
Proof. Let B := inf{gok(y) ! y e A— w*}. At first, we assume that w* € Inf A.

Since w* € cl A, there is {a,}12 C A such that a,, — w* as n — +oo. Then we
have from the continuity of ¢ (Lemma 4.3) and Proposition 3.5 that

B =nft{pp(y) |y e A—w'}
< inf{py(an — w*) } n € N}
= ngriloo SDk:(an B ’LU*)
= ¢1(0) = 0.

Therefore < 0. We shall show g = 0. If 8 < 0, then from the definition of 5 there
is ap € A such that ¢x(ap —w*) < 0. Hence by Lemma 4.3, ag — w* € —int C'. This
is a contradiction to the infimality of w*, i.e., (ii) in Definition 4.2. Thus 5 = 0.

Conversely, we assume that § = 0. If w* ¢ InfA, then there exists a € A with
a # w* such that a — w* € —int C'. Since

0-k—intC =—-intC 3 a—w",

we have from Lemma 4.3 that ¢i(a — w*) < 0. On the other hands, from 5 =0 we
have that pp(a — w*) > 0 for all @ € A. This is a contradiction. Then we obtain
that w* € InfA. O

Let f: X — R” be a DC function. Let us consider the following problem:
(4.2) w € Inf{f(z) | z € X}.
Problem (4) is called solvable if there exist 2* € X and w* € R" such that
w* e Inf{f(z) |z € X} and f[f(z*)=w"
Theorem 4.5. If Problem (4) is solvable then there exists t* € R such that
inf{—hy(2) +t |z € X, t € R, gur(x) — t < gor (a*) = t*} =0,
where gy« and hy are two convex functions as decomposition of i (f(x) — w*).

Proof. Since f is a DC function, it follows from Proposition 3.6 that ¢k (f(x) —w*)
is a dc function. By Theorem 4.1,

w* € Inf{f(z) |z € X} & inf{op(f(z) —w") |z € X} =0.
Hence
0 =inf{p(f(z) —w*) |z € X}
= inf{gu+(2) — hy+(z) |z € X }.
From Theorem 4.1, there exists t* € R™ such that
inf{—hy(z) +t |z € X, t €R, gur(x) —t < gy () —t*} = 0.

This completes the proof. O
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