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In what follows, we recall the terminology about Chebyshev systems and the
induced generalized convexity.

De�nition 1.1. LetH be a subset of the reals of at least n elements, and ω1, . . . , ωn :
H → R be given functions. We say that ωωω := (ω1, . . . , ωn) is a (positive) Chebyshev
system over H, if, for all elements x1 < · · · < xn of H, the following inequality
holds:

∣∣ ωωω(x1) . . . ωωω(xn)
∣∣ :=

∣∣∣∣∣∣∣
ω1(x1) . . . ω1(xn)

...
. . .

...
ωn(x1) . . . ωn(xn)

∣∣∣∣∣∣∣ > 0.

Let ωωω be a �xed positive Chebyshev system on H. The linear hull of the com-
ponents of ωωω is called a Haar space or a linear interpolation family on H and is
denoted by Ωn(H). It is immediate to see, that if n points of the product H × R
are given with pairwise distinct �rst coordinates, then there exists exactly one mem-
ber of Ωn(H) passing trough the given points. Exactly this fact is re�ected in the
terminology �linear interpolation family�.

Keeping the notations and assumptions above, the de�nition of classical convexity
can be extended to the case when a linear interpolation family is given.

De�nition 1.2. Let H be a subset of the reals of at least n elements, and let ω be
a positive Chebyshev system on H. A function f : H → R is said to be generalized
convex with respect to ωωω (or brie�y: ωωω-convex ) if, for all elements x0 ≤ · · · ≤ xn of
H, the inequality

∣∣∣∣ ωωω(x1) . . . ωωω(xn)
f(x0) . . . f(xn)

∣∣∣∣ :=
∣∣∣∣∣∣∣∣∣
ω1(x0) . . . ω1(xn)

...
. . .

...
ωn(x0) . . . ωn(xn)

f(x0) . . . f(xn)

∣∣∣∣∣∣∣∣∣ ≥ 0

holds true.

If the reversed inequality is valid, then f is termed ωωω-concave. The members of
Ωn(H) can be considered as generalized a�ne functions that is, functions that are
simultaneously ωωω-convex and ωωω-concave. Substituting ωωω := (1, id), the de�nition
above reduces to the notion of classical convexity. Moreover, it involves also the
case of polynomial convexity introduced by Hopf [9] and Popoviciu [16]. For an
exhaustive summary of the theory of Chebyshev systems and the convexity induced
by Chebyshev systems, we refer to the book [10] by Karlin and Studden. Note also,
that if the set H has exactly n elements, then each function given on H belongs to
Ωn(H) and hence all functions are generalized a�ne on H.

2. The main results

In the sequel we assume that H is a subset of R of at least n elements and ωωω is
a positive Chebyshev system on H. We shall frequently apply the following simple
but useful observation.
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Lemma 2.1. For every system of �xed points x0 ≤ · · · ≤ xn of H, the function
F : Rn+1 → R de�ned by

F (u0, u1, . . . , un) :=

∣∣∣∣ ωωω(x0) ωωω(x1) . . . ωωω(xn)
u0 u1 . . . un

∣∣∣∣
is monotone nondecreasing (resp. nonincreasing) in its (n−k)th variable if k is even
(resp. odd).

Proof. The statement follows immediately from the fact that the coe�cient of the
term uk in the determinant expansion of F is nonnegative (resp. nonpositive) ac-
cording to the positivity of the system ωωω. �

We start with three propositions that are crucial tools in proving the main sepa-
ration theorem. The �rst proposition is trivial, therefore its proof is omitted.

Proposition 2.2. Let f, g : H → R. If there exists an ωωω-a�ne function ω : H → R
such that f ≤ ω ≤ g, then there exists an ωωω-concave function φ : H → R and an
ωωω-convex function ψ : H → R such that f ≤ φ ≤ g and f ≤ ψ ≤ g.

The next propositions give necessary conditions for the existence of generalized
concave and convex separation, respectively. Their proof are quite similar, therefore
we deal only with the concave case.

Proposition 2.3. Let f, g : H → R. If there exists an ωωω-concave function φ : H →
R such that f ≤ φ ≤ g, then, for all elements x0 ≤ · · · ≤ xn of H, the inequality

(2.1)

∣∣∣∣ . . . ωωω(xn−3) ωωω(xn−2) ωωω(xn−1) ωωω(xn)
. . . g(xn−3) f(xn−2) g(xn−1) f(xn)

∣∣∣∣ ≤ 0

holds true.

Proof. To prove (2.1), �x elements x0 ≤ · · · ≤ xn ofH. Then, using the monotonicity
properties of the function F de�ned in Lemma 2.1, the inequalities f ≤ φ ≤ g, and
the ωωω-concavity of φ, we get

F
(
. . . , g(xn−3), f(xn−2), g(xn−1), f(xn)

)
≤ F

(
. . . , φ(xn−3), φ(xn−2), φ(xn−1), φ(xn)

)
≤ 0,

which veri�es (2.1). �
Proposition 2.4. Let f, g : H → R. If there exists an ωωω-convex function ψ : H → R
such that f ≤ ψ ≤ g, then, for all elements x0 ≤ · · · ≤ xn of H, the inequality

(2.2)

∣∣∣∣ . . . ωωω(xn−3) ωωω(xn−2) ωωω(xn−1) ωωω(xn)
. . . f(xn−3) g(xn−2) f(xn−1) g(xn)

∣∣∣∣ ≥ 0

holds true.

Our �rst main result provides a characterization for the existence of a generalized
a�ne functions separating two given ones in terms of determinant inequalities in
the previous two propositions. In the proof, a system of convex sets is constructed
such that the intersection of each n-member subsystem turns out to be compact.
This property is veri�ed via the characterization of compact sets in �nite dimension
spaces and the equivalence of the norms of �nite dimensional spaces. Finally, the
classical Helly theorem is applied.
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Theorem 2.5. Let f, g : H → R. Then, the following statements are equivalent:

(i) There exists an element ω of Ωn(H) such that f ≤ ω ≤ g;
(ii) there exists an ωωω-concave function φ : H → R and an ωωω-convex function ψ :

H → R satisfying the inequalities f ≤ φ ≤ g and f ≤ ψ ≤ g;
(iii) the inequalities (2.1) and (2.2) are ful�lled for all elements x0 ≤ · · · ≤ xn of

H.

Proof. Without loss of generality we may assume, that H contains at least (n+ 1)
elements (otherwise, every real valued function on H is ωωω-a�ne). Moreover, in view
of the previous propositions, it is su�cient to prove the implication (iii) ⇒ (i).

Let x ∈ H be arbitrary. Then there exists 0 ≤ k ≤ n−1 and elements x0, . . . , xn ∈
H such that xi < xi+1 if i ∈ {0, . . . , n} \ {k} and x = xk = xk+1. Substituting these
values into (2.1), and expanding the determinant by its last row, and applying the
positivity of ωωω, the inequality f(x) ≤ g(x) follows. This proves f ≤ g on H.

For a �xed element x of H, consider the sets K(x) ⊂ Ωn(H) de�ned by the
formula

K(x) := {ω ∈ Ωn(H) | f(x) ≤ ω(x) ≤ g(x)}.
Clearly, K(x) is a convex, closed subset of Ωn(H). Moreover, the intersection
K(x1)∩ . . .∩K(xn) is compact for any system of pairwise distinct points x1, . . . , xn
of H. To verify this latter statement, it su�ces to check that this intersection is
bounded in a speci�c norm since it is a subset of the �nite dimensional space Ωn(H),
and the norms of �nite dimensional spaces are equivalent. De�ne, for ω ∈ Ωn(H),

∥ω∥ := max{|ω(x1)|, . . . , |ω(xn)|}.
Then, ∥ · ∥ is a nonnegative valued, positive homogeneous, subadditive functional on
Ωn(H). Assume that ∥ω∥ = 0 for some ω ∈ Ωn(H). Then ω(xk) = 0 for all indices
k ∈ {1, . . . , n}, which implies that ω must be the zero element of Ωn(H). Therefore,
∥·∥ is a norm indeed. With respect to this norm, the intersectionK(x1)∩. . .∩K(xn)
is obviously bounded.

The next goal is to verify that each (n+1)-member subsystem of {K(x) |x ∈ H}
has a nonempty intersection. Let x0 < · · · < xn be arbitrary elements of H, and
consider the sets Φ,Ψ given by

Φ := {. . . ,
(
xn−3, g(xn−3)

)
,
(
x2, f(xn−2)

)
,
(
xn−1, g(xn−1)

)
},

Ψ := {. . . ,
(
xn−3, f(xn−3)

)
,
(
x2, g(xn−2)

)
,
(
xn−1, f(xn−1)

)
}.

Denote by φ the unique element of Ωn(H) that interpolates the points of Φ; similarly,
let ψ be the unique element determined by Ψ. By their construction, the functions
φ and ψ belong to K(x0) ∩ . . . ∩K(xn−1). Assume now, that f(xn) > φ(xn) holds.
Applying the interpolation properties of φ and the monotonicity of F de�ned in
Lemma 2.1,

F
(
. . . , f(xn−2), g(xn−1), f(xn)

)
= F

(
. . . , φ(xn−2), φ(xn−1), f(xn)

)
> F

(
. . . , φ(xn−2), φ(xn−1), φ(xn)

)
= 0

follows, which contradicts inequality (2.1). That is, necessarily f(xn) ≤ φ(xn) is
valid. Due to inequality (2.2), a similar argument provides that g(xn) ≥ ψ(xn) also
holds. If either φ(xn) or ψ(xn) belongs to the interval [f(xn), g(xn)], then φ or ψ



SEPARATION BY LINEAR INTERPOLATION FAMILIES 53

is an element of the intersection K(x0) ∩ . . . ∩ K(xn), respectively. Assume that
neither φ(xn), nor ψ(xn) belongs to [f(xn), g(xn)]. Then, according to the previous
observation, [f(xn), g(xn)] ⊂ [ψ(xn), φ(xn)]; hence, with a suitable number λ ∈]0, 1[,

f(xn) ≤ λψ(xn) + (1− λ)φ(xn) ≤ g(xn).

With this λ, set ω := λψ + (1− λ)φ. It can immediately be seen that ω ∈ K(x0) ∩
. . . ∩K(xn), proving the nonemptiness.

In view of the above established properties, by Helly's theorem, it follows that
the intersection of the family {K(x) |x ∈ H} is nonempty, which is equivalent to
the �rst assertion (i) of the theorem. �

Let us mention that a similar construction to the sets K(x) and the norm ∥ · ∥
of the proof appears in [4]. In fact, the same norm was considered by Tornheim
[19] when the underlying structure is a nonlinear interpolation family. According to
Tornheim's results, the norm ∥ · ∥ is also equivalent to the supremum norm in the
more general setting.

When the underlying Chebyshev system is two dimensional, the reversed state-
ments of Proposition 2.1 and Proposition 2.2 also remain true (see below). A two-
dimensional Chebyshev system ωωω = (ω1, ω2) is said to be regular, if it is given on
an open interval I such that ω1 is positive and the function ω2/ω1 is strictly mono-
tone increasing. In this setting, there is a tight connection between the standard
and (ω1, ω2)-convexity. Namely, the convexity of a function χ is equivalent to the
(ω1, ω2)-convexity of the function ω1 ·χ ◦ (ω2/ω1) on a properly chosen domain. For
precise details, consult [5] or [6]. (In fact, similar statement holds under more gen-
eral circumstances, namely, when the underlying two parameter interpolation family
is not necessarily a linear one [14].)

Theorem 2.6. Let I be an open interval, ωωω = (ω1, ω2) be a two-dimensional regular
Chebyshev system on I, and f, g : I → R. Then, there exists an ωωω-concave function
φ : I → R ful�lling the inequalities f ≤ φ ≤ g if and only if, for all elements
x0 ≤ x1 ≤ x2 of I, the following inequality holds:∣∣∣∣ ωωω(x0) ωωω(x1) ωωω(x2)

f(x0) g(x1) f(x2)

∣∣∣∣ ≤ 0.

Analogously, there exists an ωωω-convex function ψ : I → R satisfying f ≤ ψ ≤ g if
and only if, for all elements x0 ≤ x1 ≤ x2 of I, the inequality∣∣∣∣ ωωω(x0) ωωω(x1) ωωω(x2)

g(x0) f(x1) g(x2)

∣∣∣∣ ≥ 0

is valid.

Proof. In view of Proposition 2.1 and Proposition 2.2 the necessity of the above
condition is obvious. We shall prove the su�ciency only in the convex case.

Set J := (ω2/ω1)(I). Since ω2/ω1 is a continuous, strictly monotone increasing
function, J is an open interval. Consider the identities∣∣∣∣∣∣

ω1(x0) ω1(x1) ω1(x2)
ω2(x0) ω2(x1) ω2(x2)
g(x0) f(x1) g(x2)

∣∣∣∣∣∣ =
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= ω1(x0)ω1(x1)ω1(x2)

∣∣∣∣∣∣
1 1 1

(ω2/ω1)(x0) (ω2/ω1)(x1) (ω2/ω1)(x2)
(g/ω1)(x0) (f/ω1)(x1) (g/ω1)(x2)

∣∣∣∣∣∣
= ω1(x0)ω1(x1)ω1(x2)

∣∣∣∣∣∣
1 1 1
u0 u1 u2

G(u0) F (u1) G(u2)

∣∣∣∣∣∣ ,
where

u0 := (ω2/ω1)(x0), u1 := (ω2/ω1)(x1), u2 := (ω2/ω1)(x2),

and

F :=
f

ω1
◦
(ω2

ω1

)−1
, G :=

g

ω1
◦
(ω2

ω1

)−1
.

The positivity of ω1 forces that the �rst and the last term have the same sign. In
particular, if the �rst one is nonnegative, then so is the last one. Hence, according
to the convex separation theorem of [3], there exists a convex function χ : J → R
satisfying F ≤ χ ≤ G. De�ne the function h : I → R by

ψ := ω1 · χ ◦
(ω2

ω1

)
.

The inequalities F ≤ χ ≤ G and the monotone increasing property of ω2/ω1 implies
f ≤ ψ ≤ g; on the other hand, applying the connection between the standard and
the ωωω-convexity (consult [6]), the ωωω-convexity of ψ follows. �

3. Applications

Not claiming completeness, we list up here some consequences of the main result
Theorem 2.5. The �rst one states that a generalized concave function majorized
by a generalized convex one can be separated by a generalized a�ne function. In
particular, if an ordinary convex function majorizes an ordinary concave function,
then there exists an ordinary a�ne separation between them. Moreover, the role of
concavity and convexity can also be interchanged.

In the subsequent results, condition (ii) of Theorem 2.5 trivially holds, and hence
(i), that is, the existence of an a�ne separation follows.

Corollary 3.1. If f, g : H → R are such that f ≤ g, and f is ωωω-concave, g is
ωωω-convex, then there exists a ωωω-a�ne function ω ∈ Ωn(H) with f ≤ ω ≤ g.

Corollary 3.2. If f, g : H → R are such that f ≤ g, and f is ωωω-convex, g is
ωωω-concave, then there exists a ωωω-a�ne function ω ∈ Ωn(H) with f ≤ ω ≤ g.

In the standard setting (i.e., when ωωω = (1, id)), the main result reduces to a
characterization of functions having a�ne separation [15]. To prove this, one should
substitute x0 = x and x2 = y; then, x1 can be expressed as a convex combination
of x and y. The expansion of the determinants involved gives the inequalities of the
corollary.

Corollary 3.3. Let I be an interval and f, g : I → R. Then, the following conditions
are equivalent:

(i) There exists an a�ne function ω : I → R such that f ≤ ω ≤ g;
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(ii) there exist a concave function φ : I → R and a convex function ψ : I → R
satisfying f ≤ φ ≤ g and f ≤ ψ ≤ g;

(iii) for all λ ∈ [0, 1] and x, y ∈ I,

λf(x) + (1− λ)f(y) ≤ g
(
λx+ (1− λ)y

)
,

λg(x) + (1− λ)g(y) ≥ f
(
λx+ (1− λ)y

)
.

At last, we consider the case when the underlying interpolation family is generated
by polynomials (up to a �xed degree). For technical convenience, �rst we need the
next concepts: if points x0 ≤ · · · ≤ xn are �xed elements of an interval I, then
denote the Vandermonde determinants built on the system {x0, . . . , xn} \ {xk} by
Vk(x0, . . . , xn). Further, denote the sets (2Z) ∩ [0, n] and (2Z+ 1) ∩ [0, n] by N0(n)
and N1(n), respectively. Then, we can formulate the following corollary, which is
equivalent to the main result of the paper [20]. The last assertion of the corollary can
be derived directly from that of Theorem 2.5, expanding the determinants therein
with respect to the last rows, and then arranging the inequalities obtained.

Corollary 3.4. Let I be an interval and f, g : I → R. Then, the following conditions
are equivalent:

(i) There exists a polynomial ω of degree at most (n− 1) such that f ≤ ω ≤ g;
(ii) there exists an n-concave function φ : H → R and an n-convex function ψ :

H → R satisfying the inequalities f ≤ φ ≤ g and f ≤ ψ ≤ g;
(iii) for all elements x0 ≤ · · · ≤ xn of I, the following inequalities hold:∑

k∈N0(n)

f(xn−k)Vn−k(x0, . . . , xn) ≤
∑

k∈N1(n)

g(xn−k)Vn−k(x0, . . . , xn),

∑
k∈N0(n)

g(xn−k)Vn−k(x0, . . . , xn) ≤
∑

k∈N1(n)

f(xn−k)Vn−k(x0, . . . , xn).

Let us �nish this note with some historical remarks and open problems. As the
works [7] and [13] point out, Helly obtained his result in 1913, but, he did not
published it until 1923 [8]. By this time, two alternative proofs had appeared: the
�rst one was due to Radon [17] from 1921, while the second one was obtained by
K®nig [11] in 1923.

In view of Theorem 2.6 (and also in its corresponding cited result of [14]), an
evident question arises, whether the reversed statements of Proposition 2.1 and
Proposition 2.2 also remain true or not (under some reasonable restrictions) as in
the two-dimensional case. Till now, neither an a�rmative nor negative answer has
been obtained, and this problem may be the subject of further research.
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