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(i ∈ I) is nonempty, closed, and convex. Our objective is to

maximize
∑
i∈I

U (i)(x) subject to x ∈ C :=
∩
i∈I

C(i).

Problem 1.1 can be represented as a variational inequality problem [5, Subchapter
8.3], [21, Chapter III], [35, Chapters 54-57]:

Problem 1.2 (Variational inequality problem).

Find x∗ ∈ C :=
∩
i∈I

C(i) such that

⟨
y − x∗,

∑
i∈I

A(i)(x∗)

⟩
≥ 0 for all y ∈ C,

where ⟨·, ·⟩ is the inner product of H, A(i) := −∇U (i) (i ∈ I), and ∇U (i) : H → H

(i ∈ I) is the gradient of U (i).

Many iterative algorithms for solving Problem 1.2 have been presented. For
instance, the projection algorithm, xn+1 := PC(xn − λA(xn)) (n ∈ N), with an
adequate parameter λ > 0 strongly converges to a unique solution of Problem 1.2
when A :=

∑
i∈I A

(i) is strongly monotone and Lipschitz continuous and the metric
projection, PC , (see Subsection 2.2) onto C (⊂ H) can be calculated explicitly [11],
[35, Subsection 46.6]. The projection algorithm for the case that A is monotone
was presented in [7]. This method requires the mean, zn :=

∑n
k=1 λkxk/

∑n
k=1 λk,

of xn+1 := PC(xn − λnA(xn)) ((λn)n∈N ⊂ (0, 1)). The sequence, (zn)n∈N, converges
weakly to a solution of Problem 1.2. References [8, 12, 16, 33] presented iterative
algorithms that work when A is strongly monotone and Lipschitz continuous and C
(⊂ H) is a fixed point set of a nonexpansive mapping. These algorithms can be used
when PC cannot be calculated explicitly, and they converge strongly to the solution
of Problem 1.2 under standard assumptions [8, 12, 16, 33]. The method in [8] was
applied to signal recovery, and the method in [33] was applied to beamforming [28].
The methods in [16, 33] were applied to network bandwidth allocation problems
[15]. Iterative algorithms [8, 12, 16, 33] for solving Problem 1.2 with a fixed point
constrained set are referred to as fixed point optimization algorithms.

The projection algorithms presented in [7, 11] would not be a good choice for
solving Problem 1.2 because it is not easy to compute the projection onto the set,
C :=

∩
i∈I C

(i), even when C(i) (⊂ H) (i ∈ I) in Problem 1.1 is simple in the
sense that PC(i) can be explicitly calculated. Instead, we could try to use the fixed
point optimization algorithm in [33]. Here, we define a mapping, T : H → H, by
T (x) :=

∏
i∈I PC(i)(x) for all x ∈ H. T satisfies the nonexpansivity condition,

∥T (x) − T (y)∥ ≤ ∥x − y∥ (x, y ∈ H), and the fixed point set, Fix(T ) := {x ∈
H : T (x) = x}, has the same elements as C [33, Proposition 4.2]. We reach a
solution by iterating xn+1 := T (xn)− λnA(T (xn)) (n ∈ N), where (λn)n∈N ⊂ (0, 1).
The problem is that this method requires a centralized resource allocation; i.e.,
an operator who knows all the explicit forms of A(i)s and C(i)s. A centralized
operator (Fig.1) manages all the resource allocations in the network by executing a
centralized allocation algorithm (e.g., fixed point optimization algorithm) to solve a
centralized optimization problem (Problem 1.2). For example, the base station acts
as the centralized operator determining the power control for the uplink or downlink
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Figure 1. A network with a centralized operator

in a code-division multiple-access (CDMA) data network. It executes the allocation
algorithm and transmits the calculated powers to all users in the network.
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Figure 2. A network
without a centralized op-
erator in which each user
communicates with other
users directly and exe-
cutes a broadcast decen-
tralized algorithm.
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Figure 3. A network
without a centralized op-
erator in which each user
communicates only with
its neighbors and exe-
cutes a unicast decentral-
ized algorithm.

However, pure peer-to-peer networks, sensor networks, mesh networks, and ad
hoc networks (Figs.2 and 3) that do not have centralized operators and that can
change size at any time require a different kind of allocation algorithm. Decentralized
allocation enables individual users to adjust their own resource allocations without
using other users’ utility functions and feasible sets. For example, reference [14]
presents a broadcast type of decentralized algorithm which can be implemented
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through cooperation, whereby all users communicate with each other (see Fig.2).
Given that all users initially have a point, x0 ∈ H and a step size, (αn)n∈N ⊂ (0, 1],
the algorithm in [14] works as follows:

Algorithm 1.3 (Broadcast decentralized algorithm [14]).
Step 0. Set n := 0.

Step 1. Given xn ∈ H, user i computes x
(i)
n+1 ∈ H as x

(i)
n+1 = PC(i)(xn −

αn+1A
(i)(x

(i)
n+1)) (i ∈ I)1. Each point, x

(i)
n+1 (i ∈ I), is broadcast to all users in

the system.
Step 2. The users compute xn+1 ∈ H by calculating

xn+1 :=
1

K

∑
i∈I

x
(i)
n+1.

User i computes the following mean:

z
(i)
n+1 :=

1∑n+1
k=1 αk

n+1∑
k=1

αkx
(i)
k .

Put n := n+ 1, and go to Step 1.

The sequence, (z
(i)
n+1) (i ∈ I), converges weakly to the solution to Problem 1.2

under the standard assumptions [14, Theorem 3.1]. Algorithm 1.3 can be used when
each user can directly communicate with other users, as shown in Fig.2. However,
Algorithm 1.3 encounters a problem when it is used to solve to Problem 1.2 when
each user directly communicates with only neighbor users, as shown in Fig.3. When

user i transmits the value it computed, x
(i)
n , for each n ∈ N to all users, its value

must be transmitted via other users, which implies that all users assume the burden

of transmitting all the x
(i)
n s (i = 1, 2, . . . ,K). Hence, Step 1 in Algorithm 1.3 would

be inefficient to implement in the case of Fig.3. Moreover, it would not be easy to
compute xn (n ∈ N) in Step 2 because each user cannot directly get all other users’

computed values, x
(i)
n s (i = 1, 2, . . . ,K).

This paper presents a unicast type of decentralized allocation algorithm, which
can be applied to the case that each user directly communicates with only one of its
neighbor users. The algorithm is based on the ergodic algorithm in [7] and the ideas
of the resolvents [2, 4, 9] of bifunctions and monotone operators, which are used
to solve important problems in image processing [10] and network flows [2]. Our
algorithm enables each user to determine its own optimal resource allocation without
using other users’ private information such as their utility functions and feasible sets.
We also prove that the algorithm weakly converges to the solution to the centralized
optimization problem. Although there are many decentralized algorithms being
used in the network field, few of them have been proven mathematically to converge
to the desired solutions. The analyses presented in the literature tend to rely on
computational simulations. Although certain methods exist to solve Problem 1.1
in specific networks and Euclidean spaces [27, 36], the literature does not seem to
have any unicast type of decentralized algorithm for solving a centralized variational

1x
(i)
n+1 is referred to as a resolvent of αn+1A

(i) at xn. For more details, see Subsection 2.3.



UNICAST DECENTRALIZED ALGORITHM 35

inequality problem in a real Hilbert space and applying it to a general network
resource allocation problem. The proposed algorithm can be modified to work in
large-scale and complex networks that have the properties of incompleteness and
asymmetry.

This paper is organized as follows. Section 2 briefly gives mathematical prelim-
inaries. Section 3 describes the centralized optimization problem and the decen-
tralized allocation algorithm for solving it. It also presents a convergence analysis
on the algorithm. Section 4 applies the algorithm to a network resource allocation
problem. Section 5 concludes the paper.

2. Mathematical preliminaries

2.1. Variational Inequality Problems for Monotone Operators. Let H be
a real Hilbert space with inner product ⟨·, ·⟩ and its induced norm ∥ · ∥, and let N
be the set of zero and all positive integers; that is, N := {0, 1, 2, . . .}. A set-valued
operator, A : H → 2H , is said to be monotone [34, Definition 32.2 (c)] if, for all
(x, u), (y, v) ∈ G(A) := {(z, w) ∈ H ×H : w ∈ A(z)}, ⟨x− y, u− v⟩ ≥ 0. A : H → H
is referred to as a strictly monotone operator [34, Definition 25.2 (ii)] if, for all
x, y ∈ H with x ̸= y, ⟨x − y,A(x) − A(y)⟩ > 0. A monotone operator, A : H →
2H , is said to be maximal [34, Definition 32.2 (b), (d)] if G(A) is not properly
contained in G(B) of any monotone operator B : H → 2H . A : H → H is said to be
hemicontinuous [32, p.204], [34, Definition 27.14] if, for any x, y ∈ H, a mapping,
g : [0, 1] → H, defined by g(t) := A(tx + (1 − t)y) (t ∈ [0, 1]) is continuous, where
H has a weak topology. Any single-valued, monotone, hemicontinuous operator
satisfies the maximality condition [34, Proposition 32.7].

The variational inequality problem [21, Chapter III], [5, Subchapter 8.3], [35,
Chapters 54-57] for a monotone operator, A : H → H, over a nonempty, closed
convex set, D (⊂ H), is to

find x∗ ∈ VI(D,A) := {x∗ ∈ D : ⟨y − x∗, A(x∗)⟩ ≥ 0 for all y ∈ D} .

The following theorem characterizes the solution set of the variational inequality
problem and proves the existence of a point in the set:

Proposition 2.1. Let D (⊂ H) be a nonempty, closed convex set, and let A : H →
H be monotone and hemicontinuous. Then,

(i) [32, Lemma 7.1.7] VI(D,A) = {x∗ ∈ D : ⟨y − x∗, A(y)⟩ ≥ 0 for all y ∈ D};
(ii) [5, Theorem 8.3.6], [32, Theorem 7.1.8] VI(D,A) ̸= ∅ if D is compact;
(iii) there exists a unique point in VI(D,A) if A : H → H is strictly monotone

and if VI(D,A) ̸= ∅.

Proof. (iii) Let x∗1, x
∗
2 ∈ VI(D,A). Since x∗1, x

∗
2 ∈ D, ⟨x∗1 − x∗2, A(x∗1)⟩ ≤ 0 and

⟨x∗2−x∗1, A(x∗2)⟩ ≤ 0. Assume that x∗1 ̸= x∗2. Then, the strict monotonicity condition
of A implies that 0 < ⟨x∗1−x∗2, A(x∗1)−A(x∗2)⟩ = ⟨x∗1−x∗2, A(x∗1)⟩+⟨x∗2−x∗1, A(x∗2)⟩ ≤
0, which is a contradiction. Therefore, x∗1 = x∗2; that is, the uniqueness of the point
in VI(D,A) is guaranteed. �

2.2. Metric Projections onto Closed Convex Sets. LetD (⊂ H) be nonempty,
closed, and convex. A mapping that assigns every point, x ∈ H, to its unique
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nearest point in D is called a metric projection [3, Facts 1.5], [30, Equation (2.3-
13)], [32, p.56] onto D and is denoted by PD; that is, PD(x) ∈ D and ∥x−PD(x)∥ =
infy∈D ∥x− y∥. The metric projection, PD, satisfies the following conditions:

Proposition 2.2.
(i) [3, Facts 1.5 (ii)], [32, Lemma 3.1.3] Let x ∈ H. Then, x̄ = PD(x) if and only

if x̄ ∈ D and ⟨x̄− x, y − x̄⟩ ≥ 0 for all y ∈ D.
(ii) The fixed point set of PD is coincident with D; that is, Fix(PD) := {x ∈

H : PD(x) = x} = D.
(iii) [3, Facts 1.5 (i)], [30, Theorem 2.4-1 (ii)], [32, Proof (i) of Theorem 3.1.4]

PD satisfies the firm nonexpansivity condition; that is, ∥PD(x) − PD(y)∥2 ≤ ⟨x −
y, PD(x)− PD(y)⟩ for all x, y ∈ H.

By using Proposition 2.2 (iii) and the equality, ⟨x, y⟩ = (1/2){∥x∥2+ ∥y∥2−∥x−
y∥2} (x, y ∈ H), we can show that, for all x, y ∈ H,

∥PD(x)− PD(y)∥2 ≤ ⟨x− y, PD(x)− PD(y)⟩

=
1

2

{
∥x− y∥2 + ∥PD(x)− PD(y)∥2 − ∥(x− y)− (PD(x)− PD(y))∥2

}
,

and hence,

∥PD(x)− PD(y)∥2 ≤ ∥x− y∥2 − ∥(x− y)− (PD(x)− PD(y))∥2 (x, y ∈ H).(2.1)

Note that Inequality (2.1) is used in the proof of Lemma 3.7.

2.3. Resolvents of Bifunctions. Suppose thatD (⊂ H) is a simple, closed convex
set and that a bifunction, F : D×D → R, satisfies the following standard conditions
[9, Condition 1.1]:

(I) F (x, x) = 0 for all x ∈ D;
(II) F (x, y) + F (y, x) ≤ 0 for all x, y ∈ D;
(III) for every x ∈ D, F (x, ·) : D → R is lower semi-continuous and convex;
(IV) lim supt→0+ F ((1− t)x+ tz, y) ≤ F (x, y) for all x, y, z ∈ D.

The resolvent, JF : H → 2H , of F : D × D → R is defined as follows [4, Corollary
1], [9, Definition 2.11] for all x ∈ H:

JF (x) := {z ∈ D : F (z, y) + ⟨z − x, y − z⟩ ≥ 0 for all y ∈ D} .
Given a monotone, hemicontinuous operator A : H → H, which satisfies the max-
imality condition [34, Proposition 32.7], the mapping, FA : D × D → R, defined
by

FA(x, y) := ⟨y − x,A(x)⟩ (x, y ∈ D)(2.2)

will have the properties listed below:

Proposition 2.3. Let FA : D × D → R be the function defined by Equation (2.2)
and let x ∈ H. Then, FA has the following properties:

(i) [9, Lemma 2.15 (i)] FA satisfies Conditions (I)-(IV);
(ii) [4, Corollay 1], [9, Lemma 2.12 (i)] JFA

(x) ̸= ∅;
(iii) [9, Lemma 2.12 (ii)] JFA

is single-valued;
(iv) [9, Lemma 2.15 (i)] x̄ := JFA

(x) if and only if ⟨y− x̄, x̄− (x−A(x̄))⟩ ≥ 0 for
all y ∈ D.
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We can use Proposition 2.2 (i) and Proposition 2.3 (iv) to represent x̄ := JFrA
(x)

(r > 0) as

x̄ = PD(x− rA(x̄)).(2.3)

Reference [10, Subsection 2.6] contains examples of the resolvents of monotone op-
erators that can be explicitly calculated. When A is the gradient, ∇f , of a convex,
Fréchet differentiable function, f : H → R, we can represent x̄ in Equation (2.3) as

{x̄} = Argmin
y∈D

[
f(y) +

1

2r
∥y − x∥2

]
.(2.4)

Since x̄ ∈ D in Equation (2.4) is a minimizer of the convex function, g(·) := f(·) +
∥ · −x∥2/(2r), over D (⊂ H), x̄ ∈ D satisfies Equation (2.4) if and only if, for all
y ∈ D, 0 ≤ ⟨y − x̄,∇g(x̄)⟩ = ⟨y − x̄,∇f(x̄) + (x̄ − x)/r⟩. This is equivalent to
0 ≤ ⟨y − x̄, x̄ − (x − r∇f(x̄))⟩ (y ∈ D). Proposition 2.2 (i) guarantees that x̄ ∈ D
satisfies Equation (2.3) when A := ∇f .

3. Unicast decentralized algorithm for solving variational
inequality problem

3.1. System Model, Assumptions, and Problem Formulation. Let I :=
{1, 2, . . . ,K} be the set of users who must compete for the network resource. We
need to make the following assumptions about the network structure:

Assumption 3.1.
(A1) Each user’s objective operator, A(i) : H → H (i ∈ I), is strictly monotone

and hemicontinuous. The explicit form of A(i) is its own private information; that
is, other users cannot know the explicit form of A(i).

(A2) Each user’s feasible set, C(i) (i ∈ I), is a nonempty, bounded, closed convex

subset of H. The explicit form of C(i) is its own private information.

We will assume the network has the following properties:

Assumption 3.2.
(A3) A set, C :=

∩
i∈I C

(i), is nonempty.
(A4) The network topology is a closed structure such as a ring. The communi-

cation direction is constant and each user can communicate with one neighbor user
directly. Let user 1 be a user who initially executes an algorithm, and let user i
(i ∈ I) be a user who can communicate with user (i+1), where user (K+1) stands
for user 1 (Fig.4 describes the case of K = 5).

Let us consider the following variational inequality problem with information on
the whole network (see also Section 1):

Problem 3.3 (Centralized variational inequality problem). Under Assumptions 3.1
and 3.2,

find x∗ ∈ VI

(
C,
∑
i∈I

A(i)

)
:=

{
x∗ ∈ C :

⟨
y − x∗,

∑
i∈I

A(i)(x∗)

⟩
≥ 0 for all y ∈ C

}
,

where
(A5) VI(C,

∑
i∈I A

(i)) ̸= ∅ is assumed.
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Assumption (A1) implies that the operator,
∑

i∈I A
(i) : H → H, is strictly mono-

tone and hemicontinuous. Moreover, Assumptions (A2) and (A3) imply that C :=∩
i∈I C

(i)(⊂ H) is nonempty, closed, and convex. Hence, Assumption (A5) and
Proposition 2.1 (iii) guarantee the uniqueness and existence of the solution of Prob-
lem 3.3.

3.2. Unicast Decentralized Algorithm and Convergence Analysis. We as-
sume that all users have the following common information before they execute the
algorithm.

Assumption 3.4.
(A6) The step size, (αn)n∈N ⊂ (0, 1], initially satisfies the following conditions2:

(C1) αn+1 ≤ αn for all n ∈ N,
(C2) limn→∞ αn = 0,
(C3)

∑∞
n=0 αn = ∞.

The algorithm for solving Problem 3.3 under Assumptions (A1)-(A6) is as follows.

Algorithm 3.5 (Unicast decentralized algorithm).
Step 0. User 1 sets x0 ∈ H arbitrarily.

Step 1. User 1 computes x
(1)
0 ∈ H by x

(1)
0 = PC(1)(x0−α0A

(1)(x
(1)
0 )) and transmits

this point to user 2. User 2 computes x
(2)
1 ∈ H by x

(2)
1 = PC(2)(x

(1)
0 − α1A

(2)(x
(2)
1 ))

and transmits this point to user 3. User i (i = 3, 4, . . . ,K) computes x
(i)
1 ∈ H by

x
(i)
1 = PC(i)(x

(i−1)
1 − α1A

(i)(x
(i)
1 )) and transmits this point to user (i + 1), where

user (K + 1) means user 1.

Step 2. Given x
(K)
n ∈ H, user 1 computes x

(1)
n ∈ H by

x(1)n = PC(1)

(
x(K)
n − αnA

(1)
(
x(1)n

))
(3.1)

and transmits this point to user 2. User 2 computes x
(2)
n+1 ∈ H by

x
(2)
n+1 = PC(2)

(
x(1)n − αn+1A

(2)
(
x
(2)
n+1

))
(3.2)

and transmits this point to user 3. User i (i = 3, 4, . . . ,K) computes x
(i)
n+1 ∈ H by

x
(i)
n+1 = PC(i)

(
x
(i−1)
n+1 − αn+1A

(i)
(
x
(i)
n+1

))
(3.3)

and transmits this point to user (i + 1), where user (K + 1) means user 1. User 1

then computes z
(1)
n ∈ H by calculating

z(1)n :=
1∑n

k=1 αk

n∑
k=1

αkx
(1)
k .(3.4)

User i (i = 2, 3, . . . ,K) computes z
(i)
n+1 ∈ H by calculating

z
(i)
n+1 :=

1∑n+1
k=1 αk

n+1∑
k=1

αkx
(i)
k .(3.5)

2Examples of (αn)n∈N satisfying Conditions (C1)-(C3) are αn := 1/(n+ 1)ρ (ρ ∈ (0, 1]).
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user 1

user 2

user 3

user 4

user 5

Figure 4. Algorithm 3.5 when K = 5 (The values in the dotted
frame are the values obtained by Algorithm 3.5. Each user transmits
its own computed value to its neighbor.)

Put n := n+ 1, and go to Step 2.

Figure 4 illustrates the concept of Algorithm 3.5 when K = 5. The unique-

ness and existence of x
(i)
n+1 (i ∈ I, n ∈ N) in Equations (3.1), (3.2), and (3.3)

are guaranteed by Equation (2.3) and Proposition 2.3 (ii) and (iii). The possi-

bility of calculating x
(i)
n+1 (i ∈ I, n ∈ N) depends on the forms of A(i) and C(i).

Some important examples of the resolvents of monotone operators are given in [10,

Subsection 2.6]. z
(i)
n+1 (i ∈ I, n ∈ N) in Equations (3.4) and (3.5) is defined by

the mean of (x
(i)
k )n+1

k=1 . This idea is based on the ergodic algorithm [7] for solv-

ing the variational inequality problem. From z
(i)
n+1 := (1/

∑n+1
k=1 αk)

∑n+1
k=1 αkx

(i)
k =

(1/
∑n+1

k=1 αk){
∑n

k=1 αkz
(i)
n +αn+1x

(i)
n+1}, user i can compute z

(i)
n+1 ∈ H by using not

all x
(i)
k s (k = 1, 2, . . . , n+ 1) but z

(i)
n and x

(i)
n+1.

The following theorem constitutes the convergence analysis of Algorithm 3.5.

Theorem 3.6. The sequence, (z
(i)
n+1)n∈N (i ∈ I), in Algorithm 3.5 converges weakly

to a unique solution to Problem 3.3.

3.3. Lemmas and Proof of Theorem 3.6. We first prove the following lemma:

Lemma 3.7. Let (z
(i)
n+1)n∈N and (x

(i)
n+1)n∈N (i ∈ I) be sequences generated by Algo-

rithm 3.5. Then,

(i) (x
(i)
n+1)n∈N and (z

(i)
n+1)n∈N (i ∈ I) are bounded;

(ii) for all n ∈ N and for all y ∈ C,

−

∥∥∥x(1)0 − y
∥∥∥2∑n

k=0 αk+1
≤ 2

∑
i∈I

⟨
y − z

(i)
n+1, A

(i)(y)
⟩
− 1∑n

k=0 αk+1

n∑
k=0

∥∥∥x(K)
k+1 − x

(1)
k+1

∥∥∥2
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−
K∑
i=3

1∑n
k=0 αk+1

n∑
k=0

∥∥∥x(i)k+1 − x
(i−1)
k+1

∥∥∥2 ;
(iii) for each i ∈ I\{2},(

1∑n
k=0 αk+1

n∑
k=0

∥∥∥x(i)k+1 − x
(i−1)
k+1

∥∥∥2)
n∈N

is bounded,

where x
(0)
n+1 := x

(K)
n+1 (n ∈ N).

Proof. (i) Equations (3.1), (3.2), and (3.3) and the boundedness of C(i) (i ∈ I)

guarantee that (x
(i)
n+1)n∈N ⊂ C(i) (i ∈ I) is bounded. Moreover, the convexity of

C(i) (i ∈ I), and Equations (3.4) and (3.5) ensure that (z
(i)
n+1)n∈N ⊂ C(i) (i ∈ I).

Accordingly, the boundedness of C(i) (i ∈ I) implies that (z
(i)
n+1)n∈N is bounded.

(ii) Inequality (2.1) and Equation (3.1) guarantee that, for all y ∈ C :=∩
j∈I C

(j) =
∩

j∈I Fix(PC(j)) ⊂ Fix(PC(1)) and for all k ∈ N,∥∥∥x(1)k+1 − y
∥∥∥2 = ∥∥∥PC(1)

(
x
(K)
k+1 − αk+1A

(1)
(
x
(1)
k+1

))
− PC(1)(y)

∥∥∥2
≤
∥∥∥x(K)

k+1 − αk+1A
(1)
(
x
(1)
k+1

)
− y
∥∥∥2

−
∥∥∥(x(K)

k+1 − αk+1A
(1)
(
x
(1)
k+1

)
− y
)
−
(
x
(1)
k+1 − y

)∥∥∥2
=
∥∥∥(x(K)

k+1 − y
)
− αk+1A

(1)
(
x
(1)
k+1

)∥∥∥2
−
∥∥∥(x(K)

k+1 − x
(1)
k+1

)
− αk+1A

(1)
(
x
(1)
k+1

)∥∥∥2
=
∥∥∥x(K)

k+1 − y
∥∥∥2 − 2αk+1

⟨
x
(K)
k+1 − y,A(1)

(
x
(1)
k+1

)⟩
−
∥∥∥x(K)

k+1 − x
(1)
k+1

∥∥∥2 − 2αk+1

⟨
x
(1)
k+1 − x

(K)
k+1, A

(1)
(
x
(1)
k+1

)⟩
=
∥∥∥x(K)

k+1 − y
∥∥∥2 + 2αk+1

⟨
y − x

(1)
k+1, A

(1)
(
x
(1)
k+1

)⟩
−
∥∥∥x(K)

k+1 − x
(1)
k+1

∥∥∥2 .
Assumption (A1) implies that ⟨y − x

(1)
k+1, A

(1)(y)⟩ ≥ ⟨y − x
(1)
k+1, A

(1)(x
(1)
k+1)⟩. There-

fore, for all y ∈ C and for all k ∈ N, we find that

∥∥∥x(1)k+1 − y
∥∥∥2 ≤ ∥∥∥x(K)

k+1 − y
∥∥∥2 + 2αk+1

⟨
y − x

(1)
k+1, A

(1) (y)
⟩
−
∥∥∥x(K)

k+1 − x
(1)
k+1

∥∥∥2 .
(3.6)

Inequality (2.1) and Equation (3.2) also imply that, for all y ∈ C :=
∩

j∈I C
(j) ⊂

Fix(PC(2)) and for all k ∈ N,∥∥∥x(2)k+1−y
∥∥∥2 = ∥∥∥PC(2)

(
x
(1)
k − αk+1A

(2)
(
x
(2)
k+1

))
− PC(2)(y)

∥∥∥2
≤
∥∥∥(x(1)k − y

)
− αk+1A

(2)
(
x
(2)
k+1

)∥∥∥2 − ∥∥∥(x(1)k − x
(2)
k+1

)
− αk+1A

(2)
(
x
(2)
k+1

)∥∥∥2
=
∥∥∥x(1)k − y

∥∥∥2 − 2αk+1

⟨
x
(1)
k − y,A(2)

(
x
(2)
k+1

)⟩
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−
∥∥∥x(1)k − x

(2)
k+1

∥∥∥2 − 2αk+1

⟨
x
(2)
k+1 − x

(1)
k , A(2)

(
x
(2)
k+1

)⟩
=
∥∥∥x(1)k − y

∥∥∥2 + 2αk+1

⟨
y − x

(2)
k+1, A

(2)
(
x
(2)
k+1

)⟩
−
∥∥∥x(1)k − x

(2)
k+1

∥∥∥2 .
Together with the monotonicity of A(2), this means∥∥∥x(2)k+1 − y

∥∥∥2 ≤ ∥∥∥x(1)k − y
∥∥∥2 + 2αk+1

⟨
y − x

(2)
k+1, A

(2) (y)
⟩
−
∥∥∥x(1)k − x

(2)
k+1

∥∥∥2 .(3.7)

For each i ∈ I\{1, 2}, Inequality (2.1) and Equation (3.3) guarantee that, for all
y ∈ C ⊂ Fix(PC(i)) and for all k ∈ N,∥∥∥x(i)k+1 − y

∥∥∥2 = ∥∥∥PC(i)

(
x
(i−1)
k+1 − αk+1A

(i)
(
x
(i)
k+1

))
− PC(i)(y)

∥∥∥2
≤
∥∥∥(x(i−1)

k+1 − y
)
− αk+1A

(i)
(
x
(i)
k+1

)∥∥∥2
−
∥∥∥(x(i−1)

k+1 − x
(i)
k+1

)
− αk+1A

(i)
(
x
(i)
k+1

)∥∥∥2
=
∥∥∥x(i−1)

k+1 − y
∥∥∥2 − 2αk+1

⟨
x
(i−1)
k+1 − y,A(i)

(
x
(i)
k+1

)⟩
−
∥∥∥x(i−1)

k+1 − x
(i)
k+1

∥∥∥2 − 2αk+1

⟨
x
(i)
k+1 − x

(i−1)
k+1 , A(i)

(
x
(i)
k+1

)⟩
=
∥∥∥x(i−1)

k+1 − y
∥∥∥2 + 2αk+1

⟨
y − x

(i)
k+1, A

(i)
(
x
(i)
k+1

)⟩
−
∥∥∥x(i−1)

k+1 − x
(i)
k+1

∥∥∥2 .
Hence, the monotonicity of A(i) implies that

∥∥∥x(i)k+1 − y
∥∥∥2 ≤ ∥∥∥x(i−1)

k+1 − y
∥∥∥2 + 2αk+1

⟨
y − x

(i)
k+1, A

(i) (y)
⟩
−
∥∥∥x(i−1)

k+1 − x
(i)
k+1

∥∥∥2 .
(3.8)

Therefore, Inequalities (3.6), (3.7), and (3.8) ensure that, for all y ∈ C and for all
k ∈ N,∥∥∥x(1)k+1 − y

∥∥∥2 ≤ ∥∥∥x(K)
k+1 − y

∥∥∥2 + 2αk+1

⟨
y − x

(1)
k+1, A

(1) (y)
⟩
−
∥∥∥x(K)

k+1 − x
(1)
k+1

∥∥∥2
≤
{∥∥∥x(K−1)

k+1 − y
∥∥∥2 + 2αk+1

⟨
y − x

(K)
k+1, A

(K) (y)
⟩
−
∥∥∥x(K−1)

k+1 − x
(K)
k+1

∥∥∥2}
+ 2αk+1

⟨
y − x

(1)
k+1, A

(1) (y)
⟩
−
∥∥∥x(K)

k+1 − x
(1)
k+1

∥∥∥2
≤
∥∥∥x(2)k+1 − y

∥∥∥2 + 2αk+1

K∑
i=3

⟨
y − x

(i)
k+1, A

(i) (y)
⟩
−

K∑
i=3

∥∥∥x(i−1)
k+1 − x

(i)
k+1

∥∥∥2
+ 2αk+1

⟨
y − x

(1)
k+1, A

(1) (y)
⟩
−
∥∥∥x(K)

k+1 − x
(1)
k+1

∥∥∥2
≤
{∥∥∥x(1)k − y

∥∥∥2 + 2αk+1

⟨
y − x

(2)
k+1, A

(2) (y)
⟩
−
∥∥∥x(1)k − x

(2)
k+1

∥∥∥2}
+ 2αk+1

K∑
i=3

⟨
y − x

(i)
k+1, A

(i) (y)
⟩
−

K∑
i=3

∥∥∥x(i−1)
k+1 − x

(i)
k+1

∥∥∥2
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+ 2αk+1

⟨
y − x

(1)
k+1, A

(1) (y)
⟩
−
∥∥∥x(K)

k+1 − x
(1)
k+1

∥∥∥2
≤
∥∥∥x(1)k − y

∥∥∥2 + 2αk+1

∑
i∈I

⟨
y − x

(i)
k+1, A

(i) (y)
⟩
−

K∑
i=3

∥∥∥x(i−1)
k+1 − x

(i)
k+1

∥∥∥2
−
∥∥∥x(K)

k+1 − x
(1)
k+1

∥∥∥2 .
Summing this inequation from k = 0 to k = m (m ∈ N) gives, for all y ∈ C,∥∥∥x(1)m+1 − y

∥∥∥2 ≤ ∥∥∥x(1)0 − y
∥∥∥2 + 2

m∑
k=0

αk+1

∑
i∈I

⟨
y − x

(i)
k+1, A

(i) (y)
⟩

−
m∑
k=0

K∑
i=3

∥∥∥x(i)k+1 − x
(i−1)
k+1

∥∥∥2 − m∑
k=0

∥∥∥x(K)
k+1 − x

(1)
k+1

∥∥∥2 ,
which implies that

−
∥∥∥x(1)0 − y

∥∥∥2 ≤ 2
∑
i∈I

⟨
m∑
k=0

αk+1y −
m∑
k=0

αk+1x
(i)
k+1, A

(i) (y)

⟩

−
m∑
k=0

∥∥∥x(K)
k+1 − x

(1)
k+1

∥∥∥2 − K∑
i=3

m∑
k=0

∥∥∥x(i)k+1 − x
(i−1)
k+1

∥∥∥2 .
Consequently, we get

−

∥∥∥x(1)0 − y
∥∥∥2∑m

k=0 αk+1
≤ 2

∑
i∈I

⟨
y − z

(i)
m+1, A

(i)(y)
⟩
− 1∑m

k=0 αk+1

m∑
k=0

∥∥∥x(K)
k+1 − x

(1)
k+1

∥∥∥2
−

K∑
i=3

1∑m
k=0 αk+1

m∑
k=0

∥∥∥x(i)k+1 − x
(i−1)
k+1

∥∥∥2 .
(iii) Condition (C3) and the boundedness of (z

(i)
n+1)n∈N (i ∈ I) guarantee that, for all

y ∈ C, the sequences, (∥x(1)0 −y∥/
∑n

k=0 αk+1)n∈N and (
∑

i∈I⟨y−z
(i)
n+1, A

(i)(y)⟩)n∈N,
are bounded. From Lemma 3.7 (ii), we find that, for all n ∈ N,

K∑
i=3

1∑n
k=0 αk+1

n∑
k=0

∥∥∥x(i)k+1 − x
(i−1)
k+1

∥∥∥2 ≤
∥∥∥x(1)0 − y

∥∥∥2∑n
k=0 αk+1

+ 2
∑
i∈I

⟨
y − z

(i)
n+1, A

(i)(y)
⟩
,

1∑n
k=0 αk+1

n∑
k=0

∥∥∥x(K)
k+1 − x

(1)
k+1

∥∥∥2 ≤
∥∥∥x(1)0 − y

∥∥∥2∑n
k=0 αk+1

+ 2
∑
i∈I

⟨
y − z

(i)
n+1, A

(i)(y)
⟩
.

Therefore, (
∑n

k=0 ∥x
(i)
k+1−x

(i−1)
k+1 ∥2/

∑n
k=0 αk+1)n∈N (i ∈ I\{1, 2}) and (

∑n
k=0 ∥x

(K)
k+1−

x
(1)
k+1∥

2/
∑n

k=0 αk+1)n∈N are bounded. �

Lemma 3.7 leads directly to the next lemma:



UNICAST DECENTRALIZED ALGORITHM 43

Lemma 3.8. Let (z
(i)
n+1)n∈N be the sequence generated by Algorithm 3.5. Then,

(i) for each i ∈ I, limn→∞ ∥z(i+1)
n+1 − z

(i)
n+1∥ = 0, where z

(K+1)
n+1 := z

(1)
n+1 (n ∈ N);

(ii) limn→∞ ∥z(i)n+1 − z
(j)
n+1∥ = 0 for all i, j ∈ I.

Proof. (i) Choose any i ∈ I\{1}. From Lemma 3.7 (i) and (iii), there exist M1,

M2 > 0 such that, for all n ∈ N, ∥x(i+1)
n+1 − x

(i)
n+1∥2 ≤ M1 and

∑n
k=0 ∥x

(i+1)
k+1 −

x
(i)
k+1∥

2/
∑n

k=0 αk+1 ≤ M2, where x
(K+1)
n+1 := x

(1)
n+1 (n ∈ N). Choose ε > 0 arbitrarily.

Condition (C2) guarantees that m1 ∈ N exists such that αn ≤ ε for all n ≥ m1.
Moreover, Condition (C3) guarantees that m2 := m2(m1) ∈ N exists such that

1∑m2
k=1 αk

m1∑
k=1

αk

∥∥∥x(i+1)
k − x

(i)
k

∥∥∥2 ≤ M1∑m2
k=1 αk

m1∑
k=1

αk ≤ ε,

which implies that, for all n ≥ m2,

1∑n+1
k=1 αk

m1∑
k=1

αk

∥∥∥x(i+1)
k − x

(i)
k

∥∥∥2 ≤ ε.

Accordingly, Equations (3.4) and (3.5), the convexity of ∥ · ∥2, and Condition (C1)
imply that, for all n ≥ n0 := max{m1,m2},∥∥∥z(i+1)

n+1 − z
(i)
n+1

∥∥∥2 = ∥∥∥∥∥ 1∑n+1
k=1 αk

n+1∑
k=1

αk

(
x
(i+1)
k − x

(i)
k

)∥∥∥∥∥
2

≤ 1∑n+1
k=1 αk

n+1∑
k=1

αk

∥∥∥x(i+1)
k − x

(i)
k

∥∥∥2
=

1∑n+1
k=1 αk

m1∑
k=1

αk

∥∥∥x(i+1)
k − x

(i)
k

∥∥∥2
+

1∑n+1
k=1 αk

n+1∑
k=m1+1

αk

∥∥∥x(i+1)
k − x

(i)
k

∥∥∥2
≤ ε+

αm1+1∑n+1
k=1 αk

n+1∑
k=m1+1

∥∥∥x(i+1)
k − x

(i)
k

∥∥∥2
≤ ε+

ε∑n+1
k=1 αk

n+1∑
k=1

∥∥∥x(i+1)
k − x

(i)
k

∥∥∥2
≤ (1 +M2)ε,

which in turn implies that limn→∞ ∥z(i+1)
n+1 − z

(i)
n+1∥ = 0 for all i ∈ I\{1}, where

z
(K+1)
n+1 := z

(1)
n+1 (n ∈ N). On the other hand, the triangle inequality ensures that,

for all n ∈ N, ∥z(1)n+1 − z
(2)
n+1∥ ≤ ∥z(1)n+1 − z

(K)
n+1∥ +

∑K−1
l=2 ∥z(l+1)

n+1 − z
(l)
n+1∥. Hence, we

find that limn→∞ ∥z(1)n+1 − z
(2)
n+1∥ = 0. Therefore, limn→∞ ∥z(i+1)

n+1 − z
(i)
n+1∥ = 0 for all

i ∈ I.
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(ii) Choose an i, j ∈ I. If j > i, the triangle inequality and Lemma 3.8 (i) ensure

that limn→∞ ∥z(i)n+1− z
(j)
n+1∥ ≤ limn→∞

∑j−1
l=i ∥z

(l)
n+1− z

(l+1)
n+1 ∥ = 0. Similarly, if j ≤ i,

we find that limn→∞ ∥z(i)n+1 − z
(j)
n+1∥ = 0. Hence, limn→∞ ∥z(i)n+1 − z

(j)
n+1∥ = 0 holds

for all i, j ∈ I. �

The next lemma follows from Lemmas 3.7 and 3.8:

Lemma 3.9. For all i ∈ I, (z
(i)
n+1)n∈N generated by Algorithm 3.5 has a subsequence

converging weakly to a point in VI(C,
∑

j∈I A
(j)).

Proof. Choose an i ∈ I. From the boundedness of (z
(i)
n )n∈N\{0} in Lemma 3.7 (i),

we can prove that a subsequence, (z
(i)
nl )l∈N, of (z

(i)
n )n∈N\{0} and a point, z

(i)
∗ ∈ H,

exist such that (z
(i)
nl )l∈N converges weakly to z

(i)
∗ . We shall show that z

(i)
∗ ∈ C.

The closedness and convexity of C(i)(⊂ H) and (z
(i)
nl )l∈N ⊂ C(i) guarantee that

z
(i)
∗ ∈ C(i). Choose j ∈ I\{i} arbitrarily. Then, from Lemma 3.8 (ii), we find that

liml→∞ ∥z(j)nl −z
(i)
nl ∥ = 0, which means that (z

(j)
nl )l∈N converges weakly to z

(i)
∗ ∈ C(i).

Moreover, the closedness and convexity of C(j) and (z
(j)
nl )l∈N ⊂ C(j) guarantee that

z
(i)
∗ ∈ C(j). Therefore, z

(i)
∗ ∈ C(i) ∩

∩
j∈I\{i}C

(j) =: C.

Next, we shall show that z
(i)
∗ ∈ VI(C,

∑
j∈I A

(j)). Lemma 3.7 (ii) ensures that,
for all y ∈ C and for all l ∈ N,

−

∥∥∥x(1)0 − y
∥∥∥2∑nl−1

k=0 αk+1

≤ 2
∑
j∈I

⟨
y − z(j)nl

, A(j)(y)
⟩
.

The weak convergence of (z
(j)
nl )l∈N (j ∈ I) to z

(i)
∗ ∈ C and Condition (C3) guarantee

that, for all y ∈ C,

0 ≤ 2
∑
j∈I

⟨
y − z

(i)
∗ , A(j)(y)

⟩
= 2

⟨
y − z

(i)
∗ ,
∑
j∈I

A(j)(y)

⟩
.

From the monotonicity and hemicontinuity of
∑

i∈I A
(i) (Assumption (A1)) and

Proposition 2.1 (i), we find that

0 ≤

⟨
y − z

(i)
∗ ,
∑
j∈I

A(j)
(
z
(i)
∗

)⟩
for all y ∈ C,

which implies that z
(i)
∗ ∈ VI(C,

∑
j∈I A

(j)). This completes the proof. �

We can prove Theorem 3.6 by using Lemma 3.9:

Proof of Theorem 3.6. Choose an i ∈ I. As shown in Subsection 3.1, the uniqueness
and existence of the point, x∗, in VI(C,

∑
j∈I A

(j)) are guaranteed. Therefore,

from Lemma 3.9, x∗ = z
(i)
∗ , where z

(i)
∗ ∈ VI(C,

∑
j∈I A

(j)) is as in the proof of
Lemma 3.9. Moreover, Lemma 3.9 ensures that, for each i ∈ I, there exists a

subsequence of (z
(i)
n )n∈N\{0} such that it converges weakly to the unique point,
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x∗ ∈ VI(C,
∑

j∈I A
(j)). Therefore, we conclude that (z

(i)
n+1)n∈N converges weakly to

the solution to Problem 3.3 for all i ∈ I. �

4. Application to network resource allocation problem

We shall apply Algorithm 3.5 to the following network resource allocation:

Problem 4.1. Suppose that Assumptions (A1)-(A6) are satisfied, where the util-

ity function, U (i) : H → R, of user i is strictly concave and continuously Fréchet
differentiable and A(i) := −∇U (i) (i ∈ I). Then,

find x∗ ∈ C such that
∑
i∈I

U (i)(x∗) ≥
∑
i∈I

U (i)(y) for all y ∈ C.

By using Algorithm 3.5 and the relation between Equations (2.3) and (2.4), we
can devise the following unicast decentralized resource allocation algorithm:

Algorithm 4.2 (Unicast decentralized resource allocation algorithm).
Step 0. User 1 sets x0 ∈ H arbitrarily.

Step 1. User 1 computes x
(1)
0 ∈ H by {x(1)0 } := Argmaxx∈C(1) [U (1)(x) − ∥x −

x0∥2/(2α0)] and transmits this point to user 2. User 2 computes x
(2)
1 ∈ H by

{x(2)1 } := Argmaxx∈C(2) [U (2)(x)−∥x−x
(1)
0 ∥2/(2α1)] and transmits this point to user

3. User i (i = 3, 4, . . . ,K) computes x
(i)
1 ∈ H by {x(i)1 } := Argmaxx∈C(i) [U (i)(x) −

∥x − x
(i−1)
1 ∥2/(2α1)] and transmits this point to user (i + 1), where user (K + 1)

means user 1.
Step 2. Given x

(K)
n ∈ H, user 1 computes x

(1)
n ∈ H by{

x(1)n

}
:= Argmax

x∈C(1)

[
U (1)(x)− 1

2αn

∥∥∥x− x(K)
n

∥∥∥2]
and transmits this point to user 2. User 2 computes x

(2)
n+1 ∈ H by{

x
(2)
n+1

}
:= Argmax

x∈C(2)

[
U (2)(x)− 1

2αn+1

∥∥∥x− x(1)n

∥∥∥2]
and transmits this point to user 3. User i (i = 3, 4, . . . ,K) computes x

(i)
n+1 ∈ H by{

x
(i)
n+1

}
:= Argmax

x∈C(i)

[
U (i)(x)− 1

2αn+1

∥∥∥x− x
(i−1)
n+1

∥∥∥2]
and transmits this point to user (i + 1), where user (K + 1) means user 1. User 1

then computes z
(1)
n ∈ H by calculating

z(1)n :=
1∑n

k=1 αk

n∑
k=1

αkx
(1)
k .

User i (i = 2, 3, . . . ,K) computes z
(i)
n+1 ∈ H by calculating

z
(i)
n+1 :=

1∑n+1
k=1 αk

n+1∑
k=1

αkx
(i)
k .

Put n := n+ 1, and go to Step 2.
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The point, x
(i)
n+1 (i ∈ I, n ∈ N), in Step 2 is the unique maximizer of a strictly

concave function over a closed convex set. If H = RL (L ≥ 1), this problem can
be solved by using convex optimization techniques such as projection methods [11],
interior-point methods [6, Chapter III, 10 and 11], [26, Chapters 15-19], and fixed
point optimization algorithms [8, 12, 16, 33]. Some important examples in which

x
(i)
n+1 in Step 2 can be solved explicitly are given in [10, Subsection 2.6].
From Theorem 3.6, we reach the following conclusion:

Corollary 4.3. The sequence, (z
(i)
n+1)n∈N (i ∈ I), in Algorithm 4.2 converges weakly

to the unique solution to Problem 4.1.

5. Conclusion

This paper presented a unicast decentralized algorithm for solving the central-
ized variational inequality problem associated with the network resource allocation
problem. The proposed algorithm enables each user to adjust its optimal allocation
by using only its own private information and the transmitted information from the
neighbor user. Moreover, this paper presented a convergence analysis of the algo-
rithm. The analysis ensures that the algorithm converges weakly to the solution to
the centralized variational inequality problem.
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