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MULTIVALUED PICARD OPERATORS

ADRIAN PETRUSEL AND GABRIELA PETRUSEL

ABSTRACT. The aim of this paper is to realize a systematic study of the theory
of multivalued Picard operators. Some open questions are also presented.

1. INTRODUCTION

Let (X,d) be a metric space and T' : X — P(X) be a multivalued operator.
The symbol Fr := {# € X| x € T(x)} denotes the fixed point set of T', while
(SF)p :={z € X| {a} = T(x)} is the strict fixed point set of T. We also denote
by Hg the Pompeiu-Hausdorff functional generated by d.

By definition, 7' : X — P(X) is called a multivalued Picard operator (see [12],
[15]) if and only if:

(i) (SF)r = Pr = {z*};

(i) T™(z) g {z*} as n — oo, for each z € X.

The aim of this paper is to realize a systematic study of the theory of multivalued
Picard operators. Several new results and some open questions are presented. We
will focus our attention on the (strict) fixed point problem for a -multivalued
Picard operator from the following perspectives:

e data dependence of the (strict) fixed point set;
e well-posedness of the (strict) fixed point problem;
e Ulam-Hyers stability of the (strict) fixed point problem.

2. PRELIMINARIES

We recall first the notations and concepts used in this paper. Let X be a
nonempty set. Then we denote
P(X):={Y|Y is a subset of X}, P(X):={Y € P(X)| Y is non-empty}.

Let (X, d) be a metric space. We introduce the following notations:
Py(X):={Y € P(X)| Y is bounded }, Py(X) :={Y € P(X)| Y is closed},
P, (X):={Y € P(X)| Y is compact}, P (X) := Py(X) N Py(X).

The following (generalized) functionals are used throughout the paper.
The gap functional
Dy: P(X) x P(X) = Ry U{+o0}, D4(A, B) :=inf{d(a,b)| a € A, b€ B}.
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The § generalized functional
dq: P(X) x P(X) = Ry U{+o0}, 04(A, B) :=sup{d(a,b)| a € A, b€ B}.
In particular, 6(A) := §(A4, A).
The excess generalized functional
pa: P(X) x P(X) = Ry U{+oo}, pa(A, B) :=sup{Da(a, B)| a € A}.
The Hausdorff-Pompeiu generalized functional
Hy: P(X) X P(X) — Ry U {+OO}, Hd(A7 B) = max{pd(A, B)apd(BaA)}
If no confusion is possible, we will avoid the subscript d from the above notations.
If T: X — P(X) is a multivalued operator, then by
Graph(T) :={(z,y) e X x X : yeT(z)}
we denote the graphic of the multivalued operator T" and by
I(T):={Y CcX|T(Y)CY},
the set of all invariant subsets of T. A selection for T is an operator ¢t : X — X
with the property t(z) € T'(x) for each z € X.
We also denote by 7° := 1y, T' :=T,..., 7" = T o T", n € N the iterate
operators of T. A sequence of successive approximations of T starting from z € X

is a sequence (z,)pen of elements in X with zg = z, zp41 € T(x,), for n € N. In
the same framework, the operator 7': P(X) — P(X), defined by

T(Y):= | T(x), for Y € P(X)
zeY

is called the fractal operator generated by T

If (X,d) is a metric space, then a multivalued operator 7' : X — P(X) is called
upper semicontinuous (briefly u.s.c.) on X if and only if TH(V) := {z € X| T'(z) C
V'} is open, for each open set V' C X and it is said to be lower semicontinuous
(briefly l.s.c.) on X if and only if T— (W) := {z € X| T(x) N W # (} is open, for
each open set W C X. If T is u.s.c. and l.s.c. on X then it is called continuous on
X.

Lemma 2.1 (see e.g. [1], [3], [10]). If (X, d) is a metric space and T : X — Ppp(X),
then the following conclusions hold:

(a) if T is upper semicontinuous, then T(Y) € Pyy(X), for every Y € Pe,(X);

(b) the continuity of T implies the continuity of T : Puy(X) = Pep(X);

(¢) If T is a multivalued a-contraction (i.e., a € [0,1] and Hy(T(x),T(y)) <
ad(z,y), for each x,y € X ), then the operator T (Pep(X), Hq) = (Pep(X), Hy) is
a (singlevalued) a-contraction.

Definition 2.2 (]23]). Let (X, d) be a metric space. Then, T': X — P(X) is called
a multivalued weakly Picard operator (briefly MWP operator) if for each x € X
and each y € T'(x) there exists a sequence (xy,)nen in X such that:

i) xo =z, 11 =y;

ii) zpy1 € T(zy), for all n € N;

iii) the sequence (zy)nen is convergent and its limit is a fixed point of T'.
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The sequence (zy,)nen in X satisfying (i) and (ii) from the above definition is also
called a sequence of successive approximations of T" starting from (z,y) € Graph(T).

Definition 2.3 ([12], [15]). Let (X, d) be a metric space and T': X — P(X) be
a MWP operator. Then we define the multivalued operator 7°° : Graph(T) —
P(Fr) by the formula T°°(z,y) = { z € Fr | there exists a sequence of successive
approximations of T starting from (z,y) that converges to z }.

Definition 2.4 ([12], [15]). Let (X,d) be a metric space and T': X — P(X) a
MWP operator. Then T is said to be a w-multivalued weakly Picard operator
(briefly ¢»-MWP operator) if and only if ) : Ry — R, is increasing, continuous in
0 and satisfies 1(0) = 0 and there exists a selection t> of T°° such that

d(z, t>*(x,y)) < (d(x,y)), for all (z,y) € Graph(T).

In particular, if ¢ has a linear representation, i.e., there exists ¢ > 0 such that
Y(t) = ct for all t € Ry, then T is called a c-multivalued weakly Picard operator.

Definition 2.5 (see [18]). Let (X,d) be a metric space. An operator f: X — X
is Picard operator if and only if:

(i) Fy = {a"};

(ii) (f™(x))neny — ™ as n — oo, for all x € X.

For basic notions and results on the theory of weakly Picard and Picard operators
see [12], [11], [15], [18], [24]. For related results concerning metric spaces, operators
on metric spaces and fixed points see [2], [7], [8], [26].

3. MULTIVALUED ¢-PICARD OPERATORS

Let (X,d) be a metric space. Recall that T : X — P(X) is called a multivalued
Picard operator if:
(i) (SF)r = Fr = {z"};
(ii) T"(x) i {z*} as n — oo, for each x € X.

We will give now some examples of multivalued Picard operators. Let us mention
here that the theoretical support of these examples comes from several research
directions in metric fixed point theory.

A first direction was given by the following result of S. Reich in [17].

Theorem 3.1 (Reich’s Theorem). Let (X, d) be a complete metric space and T :
X — Py(X) be a multivalued §-contraction of Reich type with coefficients «, 3,7,
i.e., there exist a, 8,y € Ry with o+ B+ v < 1 such that

6(T'(x),T(y)) < ad(x,y) + Bo(z, T(x)) +~0(y, T(y)), for all z,y € X.
Then, (SF)r = Fr = {z*}.

Proof. Let ¢ > 1 and let g € X be arbitrary. Then there exists x; € T'(z¢) such
that 6(xo, T'(z0)) < q - d(zo,z1). Thus, we have

6(x1, T (1)) < 6(T'(20), T(21)) < ad(wo, x1) + Bo(x0, T (20)) + ¥0(21, T (21))
< ad(wo, 1) + Bgd(zo, 21) + v6(21, T (21)).
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Hence, we get 8(z1,T(z1)) < “29d(zo, 1). By this approach we can construct a

1=
sequence (zp)neny C X of successive approximations for 7', such that
a+ Bg\"
d(p, Tnt1) < 0(xp, T(xy)) < 1 d(xo, 1), for all n € N.
-

Choosing ¢ > 1 with ¢8 < 1 — a — v we obtain atgq < 1. Hence (zp)nen ia a

1
Cauchy sequence in the complete metric space (X, d). Let us denote by z* € X its

limit. We show that z* is a strict fixed point for T, i.e., T(z*) = {z*}. Indeed,
since

0(z", T(2")) < d(z, 2nt1) + D(@nt1, T(n)) + 6(T(2n), T(2")) <
d(2”, xni1) + ad(@n, ) + B0(2n, T(xn)) +76(2", T(2")) <

at ﬁq) d(z0,21) + 16(z*, T(z")),

e i) + adlan,a®) 4.5 (T2

we have, for each n € N, that

o(z*,T(z")) < j(d(x yTpt1) +ad(zy, x )—1—6( l _iq> ~d(zg,x1)).
As n — oo, we obtain that d(z*, T (z*)) = 0 and thus T'(z*) = {z*}.

We will show now that Fr = (SF)p. For this purpose it is enough to show that
Fr C (SF)r. Let x € Fr be arbitrarily chosen. Then, from the contraction type
condition, by putting y = x € T'(x), we get

(T (z)) < (B+7)-0(z,T(x)) < (B+7) - (T ().

If, we suppose, by contradiction, that card(T(x)) > 1, then 6(7'(x)) > 0 and, by
above relation, we obtain 1 < § + =, a contradiction. Thus, we have proved that
(T (z)) =0 and so {z} =T (x).

For the uniqueness of the strict fixed point, let us consider y € (SF)p, with
y # a*. Then

d(z*,y) = (T (z%), T(y)) < ad(z”,y) + Bo(x*, T(x")) +v(y, T(y)) = ad(z",y),

which let us the contradiction o« > 1. The proof is now complete. O

—_

Remark 3.2. The original proof of this result is based on the idea of constructing

a singlevalued Cirié¢-Reich-Rus selection of the operator T see [17]. See also L.A.
Rus [21].

Adding a new condition on the coefficients we obtain an example of multivalued
Picard operator.

Corollary 3.3. Let (X,d) be a complete metric space and T : X — Py(X) be a mul-
tivalued §-contraction of Reich type with coefficients o, 8,y. Additionally suppose
that o+ 28 < 1. Then T is a multivalued Picard operator.

Proof. By Theorem 3.1 we know that (SF)r = Fr = {z*}. We have to prove that

T (x) s {z*} as n — oo, for each z € X. We successively have:
S(T(@),2%) = &(T(@),T(") < ad(e,a®) + Bz, T(@)) + 10", T(x")) =
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ad(z,z*) + Bé(z, T(z)) < ad(x, z*) 4+ B(d(x, z*) + §(z*, T (x))). Thus

5(T(2), %) < ‘ffgd(x,x*), for all z € X.
Then )
S(T2(x),2) = sup S(T(y),a") < wp<“+ﬁ>ﬂ%f>s(a+ﬁ)d@ww
yeT(z) yeT(z) \1— B 1-5

By induction, we get that

(@) < (§54

The proof is now complete. O

> d(z,z*) — 0 as n — +oo, for each z € X.

For the next result we need the following two notions, see [21] for details. A
mapping ¢ : Ry — R, is said to be a comparison function if it is increasing and
©*(t) — 0, as k — 4o00. As a consequence, we also have o(t) < t, for each t > 0,
©(0) = 0 and ¢ is continuous in 0. A comparison function ¢ : Ry — R, having the
property that ¢t —p(t) — +00, as t — 400 is said to be a strict comparison function.

A general result for multivalued operators satisfying a nonlinear contraction type
condition was proved by I.A. Rus in [21], see Theorem 8.4.3, page 85.

Theorem 3.4 (Rus’ Theorem). Let (X,d) be a complete metric space, T : X —
Py(X) be a multivalued operator and ¢ : Ri — R4 be a mapping. Suppose:
(i) 7, s € R%,r < s implies that p(r) < p(s);
(ii) there exists p > 1 such that the mapping ®, : R — R4 given by t —
o(t,pt,pt,t,t) is a strict comparison function;

(iii) 0(T'(z), T(y)) < @(d(z,y),d(x, T(x)),0(y,T(y)),0(z,T(y)),6(y, T (x))), for
all x,y € X.

Then, (SF)r = Fr = {z*}.

The above result also assures the first assumption from the definition of a multi-
valued Picard operator. In order to obtain the second one too, we have to impose,
as before, another condition on the operator T. A result in this direction is the
following theorem.

Theorem 3.5. Let (X,d) be a complete metric space, T : X — Py(X) be a multi-
valued operator satisfying all the assumptions from Theorem 3.4. If, additionally,
there exists a comparison function ¢ : Ry — R4 such that

ro,m1 € Ry with ry < @(ro,m0 + r1,0,70,71) implies that 1y < (o),
then T is a multivalued Picard operator.
Proof. By Theorem 3.4 we have that (SF)pr = Fr = {z*}. We have to prove that
T (x) g {z*} as n — oo, for each z € X. We successively have:

0(T(x),2") = (T (x), T(x"))
< pld(z,27),6(x, T(x)),6(2", T(2")),0(x, T(x7)), 6(2", T(x)))
= pld(z,2"),0(z,T(x)), Od(m&)ﬁ(:ﬂ*,T x)))
< pld(x, 27),d(x, 2") + 6(2", T(2)), 0,d(z, 2%),6(«", T(x))).
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Thus, by the additional hypothesis we get that
O(T(x), ") < P(d(z, "))

Next, §(T2(z),2%) = sup 8(T(y),a*) < sup w(d(y,a*)) < v3(d(z,a")).
yeT () y€eT (z)
By induction, for each x € X, we get that

o(T"(x),z") < ¢"(d(x,z")) — 0 as n — +oo.
The proof is complete. O

A second direction concerning multivalued Picard operators is given by the fol-
lowing result of I.A. Rus, see [21], Theorem 8.5.1, page 87.

Theorem 3.6 (Rus’ Theorem). Let (X,d) be a complete metric space and let T :
X — P a(X) be a multivalued a-contraction such that (SF)p # 0. Then Fr =

(SF)r = {*}.

We get now another example of multivalued Picard operator. For the sake of
completeness we recall here the proof of the whole theorem.

Theorem 3.7. Let (X,d) be a complete metric space and let T : X — Py, (X) be a
multivalued a-contraction with (SF)p # 0. Then, we have:

(i) Fr = (SF)r = {z*};

(i) T™(x) g {z*} as n — +o0, for each x € X,
.e., T is a multivalued Picard operator.
Proof. (i) (see [21]). Let a* € (SF)p. Notice first that (SF)r = {z*}. Indeed, if
y € (SF)pr with y # 2*, then d(z*,y) = H(T(2*),T(y)) < ad(z*,y). Thus, since
a < 1, we immediately get that y = x*.

Suppose now that y € Fp. Then,

d(z*,y) = D(T(z%),y) < H(T'(z%), T(y)) < ad(z", y).

Thus, again we have that y = x*. Hence Fr C (SF)r. Since (SF)r C Fr, we get
that (SF)T = FT.
(ii) Let « € X be arbitrarily chosen. Then, using Lemma 2.1 (¢), we have

H(T"(x),2*) = H(T"(x), T"(z*)) < «H(T" (), T"  (z%)) < --- < a™d(z,z*).
Thus, T"(x) g {z*} as n — 4o0. O

Remark 3.8. A similar result for the case of multivalued ¢-contractions (i.e., mul-
tivalued operators T : X — P, (X) satisfying, with a strict comparison function
¢ : Ry — Ry, the following assumption

Hq(T(z), T(y)) < p(d(z,y)), for all z,y € X)
can be established (see also A. Sintamarian [25]).
The above presented results give rise to the following definition.

Definition 3.9. Let (X,d) be a metric space. Then, by definition, a multivalued
operator 7' : X — P(X) satisfies Rus’ alternative if

either (SF)pr =0 or Fp = (SF)r = {z*}.
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Using this definition, we have the following results.

Theorem 3.10. Let (X,d) be a complete metric space and let T : X — Py(X)
be a strong Caristi multivalued operator, i.e., there exists a lower semicontinuous
function n: Ry — Ry such that, for each (z,y) € Graph(T), we have

n(y) +d(z,y) < n(x).
Suppose that T satisfies Rus’ alternative and it has closed graph.
Then, Fr = (SF)r = {z*}.

Proof. By Aubin-Siegel’s Theorem (see [4]), we have that (SF)pr # (. Now, by
Rus’s alternative we obtain the conclusion. O

Theorem 3.11. Let (X,d) be a complete metric space and let T : X — Py(X) for
which there exists a € [0, 1 such that, for each (z,y) € Graph(T), we have

1
Suppose that T satisfies Rus’ alternative and it has closed graph.
Then, Fr = (SF)r = {z*}.

6(T(2),T(y)) < amax{d(z,T(x)),6(y,T(y))

Proof. By Theorem 2.1 in [16] we have that Fp = (SF)r # (. Next, by Rus’s
alternative we get the conclusion. O

A third direction concerning the theory of multivalued Picard operators is re-
lated to the following theorem given by Tarafdar-Yuan in [27], (see also Yuan [28],
Theorem 9.3.14. on page 559).

Let X be a topological space. By definition, T': X — P, (X) is called a topolog-
ical contraction (Tarafdar-Yuan [27], see also [28]) if:

a) T is u.s.c.
b)Y € Py(X) with T(Y) =Y = Y = {a*}.

Theorem 3.12 (Tarafdar-Yuan’s Theorem). Let X be a Hausdorff compact topo-
logical space and T : X — Py(X) be a topological contraction. Then T has a unique
strict fized point x* € X and ﬂ T"X) = {«*}.

n>0

From the above theorem we obtain another example of multivalued Picard oper-
ator.

Theorem 3.13. Let (X,d) be a compact metric space and T : X — P,(X) be a
l.s.c. topological contraction. Then T is a multivalued Picard operator.

Proof. Notice first that, from Tarafdar-Yuan’s Theorem, there exists a unique z* €

X such that T(z*) = {z*} = ﬂ T™(X). Thus (SF)r = {z*}. Let x € Fr be
n>0

arbitrary chosen. Then z € T(x) C T?(x) C -+ C T™(x) C ---. So, x € T"(z) C

T™(X), for each n € N. Hence x = z* and so Fr = (SF)r = {z*}. Consider now
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the fractal operator T’ generated by T, i.e., the operator T : Pop(X) — Pep(X),
defined by

T(Y) = | T(x), for Y € Py(X).
zeY
Since T is continuous it follows that 7" is a Hgz-continuous operator from Py,y(X) to
itself. Moreover, T is a (singlevalued) self topological contraction on P, (X), since
T(Y) = Y implies T(Y) = Y and so Y = {z*}. Thus, by Corollary 9.3.16. in
[28] (page 559), we have that (7™(Z))nen converges to {z*} as n — oo, for each
Z € Pyy(X). Hence, T"(z) L {z*} as n — oo, for each = € X. O

The above theorem give rise to the following definition.

Definition 3.14. Let (X, d) be a metric space. Then, by definition, a multivalued
operator T : X — P(X) satisfies Tarafdar-Yuan’s alternative if

either Fp, = () or Fp = {2"},

where 7" is the fractal operator generated by 7T, i.e., T P(X) — P(X) is given by
T(Y):= | T(x), for Y € P(X).
z€eY
From the above results, we get the following interesting open question: find
sufficient conditions for the existence of a set ¥ C X such that T(Y) = Y and

Fr C Y. Notice that, from Tarafdar-Yuan’s Theorem the core ﬂ T"(X) of the
n>0
operator T is an example of such a set. For other examples and related rsults see
Theorem 3.1 (vii) in A. Petrusel, I.A. Rus [15].
Another example comes from Martelli’s Theorem, see [9].

Theorem 3.15 (Martelli’s Theorem). Let X be a compact topological space and
T:X — Py(X) be an u.s.c. multivalued operator. Then, there exists Y € Py(X)
such that T(Y) =Y.

By combining Tarafdar-Yuan’s Theorem and Martelli’s Theorem, we get the fol-
lowing result.

Theorem 3.16. Let X be a Hausdorff compact topological space and T : X —
P, (X) be an u.s.c. multivalued operator which satisfies Tarafdar-Yuan’s alternative.
Then T has a unique strict fized point x* € X.

Proof. By Martelli’s Theorem there exists Y € P.(X) such that T(Y) = Y. By
Tarafdar-Yuan’s alternative, we obtain that Fi; = {z*}, i.e., there exists a unique
x* € X such that T'(z*) = {z*}. The proof is complete. O

Another result of this type was given by I.A. Rus in [22].

Theorem 3.17. Let X be a complete metric space and T : X — Py(X) be a
multivalued (9, p)-contraction, i.e.,

S(T(Y)) < p(3(Y)), for all Y € I(T),

where ¢ : Ry — Ry is a comparison function. If T(X) is bounded, then Fr =
(SF)p = {z"}.
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It is an open problem to give, for the two above mentioned results, conditions

which guarantee that 7" (z) —¢ {*} as n — oo, for each z € X, i.e., to obtain other
examples of multivalued Picard operators.

Other examples of Picard operators are given in what follows.

Theorem 3.18. Let (X,d) be a complete metric space and fi,...,fm + X — X
be a;-contractions, such that Fy, = {«*} for each i € {1,2,...,m}. Consider the
multivalued operator T : X — Ppp(X) defined by

T(z) = {fi(z), fo(@), - fn(2)}.
Then, T is a multivalued Picard operator.
Proof. Notice first that 2* € (SF)p. Moreover, Fr = (SF)r = {z*}. Indeed,
if y € X is another fixed point of T" with y # a*, then y € T(y) implies there

exists j € {1,2,---,m} such that y = f;(y), which is a contradiction with our
assumptions. Since any self contraction on a complete metric space is a Picard

operator, we immediately obtain that 7" (z) g {z*} asn — oo, foreachz € X. O

More generally, we have:

Theorem 3.19. Let (X,d) be a metric space and fi,..., fm : X — X be Picard
operators, such that Fy, = {x*} for each i € {1,2,...,m}. Consider the multivalued
operator T : X — Py, (X) defined by

T(z) = {fi(z), fo(@), - fn(2)}.
Then, T is a multivalued Picard operator.

Theorem 3.20. Let (X,d) be a metric space and T, ..., T, : X — Pep(X) be mul-
tivalued Picard operators, such that Fr, = (SF)r, = {«*} for each i € {1,2,...,m}.
Consider the multivalued operator T : X — P.p(X) defined by

T(z) = | Tila).
=1

Then, T is a multivalued Picard operator.

We will present now the concept of multivalued -Picard operators.

Let ¢ : Ry — Ry be an increasing function which is continuous in 0 and ¥ (0) = 0.
By definition (see [13], [14]), a multivalued Picard operator T': X — P(X) is said
to be:

(1) a multivalued (¢, Hy)-Picard operator if and only if

d(z,z*) < Y(Hg(z,T(x))), forall xz € X.
(2) a multivalued (¢, Dg)-Picard operator if and only if
d(z,z*) < YP(Dgy(xz,T(x))), forall x € X.

Remark 3.21. Any multivalued (¢, Dy)-Picard operator is a multivalued (i, Hy)-
Picard operator.



166 A. PETRUSEL AND G. PETRUSEL

Theorem 3.22. Let (X,d) be a complete metric space and let T : X — Pp(X)
be a multivalued a-contraction, such that (SF)r # (0. Then T is a multivalued
(1, D)-Picard operator with 1(t) := -t t € Ry.

Proof. By Theorem 3.7 we have that T is a multivalued Picard operator with
Fr = (SF)r = {z*}. We also have:

d(z,z*) = D(z,T(z")) < D(z,T(x)) + H(T(z), T(z")) < D(z,T(x)) + ad(z,x*).
Hence, we get that

d(z,z*) < D(z,T(x)), for all z € X.

— o
Theorem 3.23. Let (X,d) be a complete metric space and let T : X — Py(X)
be a multivalued -weakly Picard operator, such that Fr = (SF)r = {z*} and

T"(x) i {z*} as n — 400, for each v € X. Then T is a multivalued (v, H)-Picard
operator.

Proof. Notice first that T is a multivalued Picard operator and t*°(z,y) = z¥,
for each (z,y) € Graph(T). Since T is a multivalued ¢-weakly Picard operator,
we also have that d(z,z*) < ¥(d(z,y)), for each x € X and y € T(z). Hence,
d(z,z*) < Y(H(xz,T(x))), for all z € X. O

Theorem 3.24. Let (X,d) be a complete metric space and let T : X — Py(X) be
a multivalued &-contraction of Reich type with coefficients o, B, and o + 25 < 1.
Then T is a multivalued (v, H)-Picard operator with 1 (t) := }fgt, teR,.

Proof. By Theorem 3.1 we have that 7' is a multivalued Picard operator with Fr =
(SF)r = {z*}. For x € X, we also have:

d(z,z*) < 6(x, T(x)) + 6(T'(x),2") = 6(x,T(x)) + 6(T(z), T'(z")) < 6(z, T(x)) +
ad(z,z*) 4+ B6(x, T(x)) +vo(x*, T(z*)) = (1 + B)d(x, T(x)) + ad(zx, z*). Thus

d(z,z*) < . LS 5H(:C,T(a;)), for all z € X.
-«

4. DATA DEPENDENCE OF THE (STRICT) FIXED POINT SET

We will present now some data dependence results for multivalued Picard oper-
ators.
The following result was proved in A. Petrusel, I.A. Rus [15].

Theorem 4.1. Let (X,d) be a complete metric space and T,S : X — Py(X) be
two multivalued operators. Suppose:

(i) T is a multivalued a-contraction;

(i) (SF)7 # 0;

(iii) Fg # 0;

(iv) there exists n > 0 such that H(S(z),T(x)) <n, for each z € X.

Then
n

H(Fs, Fr) <
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Proof. Let x* € (SF)r. Then, it is easy to observe (see the proof of Theorem 3.7)
that Fp = (SF)p = {x*}. Let y € Fg. Then

d(y,z") < H(S(y),z") < H(S(y), T(y)) + H(T(y), ") < n+ ad(y,z").
Thus, d(y,z*) < +L-. Since

l—a”

H(Fs, Fr) = sup d(y,z*) < —"—,
yEFS 1 - OZ

we get the desired conclusion. O
As an immediate consequence of the above result, we have the following.

Theorem 4.2. Let (X,d) be a complete metric space and let T : X — Py(X) be a
multivalued a-contraction with (SE)r # 0. For each n € N, let T,, : X — Py(X),
n € N be a sequence of multivalued operators such that Fr, # () for each n € N and
T, (x) H T(x) as n — 400, uniformly with respect to x € X.

Then,

Fr, Iif Fr as n — 4o0.
More generally, we have the following abstract result.

Theorem 4.3. Let (X,d) be a metric space and T, S : X — P(X) be two multival-
ued operators. Suppose:
(1) T is a multivalued (v, Dg)-Picard operator;
(ii) S(x) is closed for each v € X and Fs # 0;
(iv) there exists n > 0 such that H(S(z),T(x)) <mn, for each z € X.
Then

H(Fs, Fr) < ¢(n).

Proof. Let * € X be the unique fixed (and also strict) point for 7. Let y € Fgs.
Then we have:

d(y, =*) < (Da(y, T(y))) < ¥(Daly, S(y)) + H(S(y), T(y))) = »(H(S(y), T(y)))
< t(n). Thus,

H(Fs, Fr)= sup d(y,z") <(n).
yeFs

g

Remark 4.4. In particular, if T : X — P.,(X) is a multivalued a-contraction with
(SF)r # 0, then (via Theorem 3.22) Theorem 4.3 reduces to Theorem 4.1.

As a consequence of the above theorem, we have the following.

Theorem 4.5. Let (X,d) be a complete metric space and let T : X — Py(X)
be a multivalued (¢, Dg)-Picard operator. For each n € N, let T, : X — Py(X)
be a sequence of multivalued operators such that Fr, # 0 for each n € N and

T (x) He T(x) as n — 400, uniformly with respect to x € X.
Then,

Fr, Ii?FT as n — +o0.
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Proof. Let € > 0. Then, there exists n. € N, such that
H(T,(z),T(z)) < ¢, for all n > n, and each z € X.
Then, by Theorem 4.3, we get that
H(Fr,,Fr) <i(e), for all n > n,.
This completes the proof. O

Another data dependence result is the following.

Theorem 4.6. Let (X, d) be a metric space and T, S : X — P(X) be two multival-
ued operators. Suppose:

(i) T is a multivalued (v, Hy)-Picard operator;

(ii) (SF)s # 0;

(iv) there exists n > 0 such that H(S(z),T(x)) <n, for each z € X.

Then
H((SF)s, (SF)r) < ¢(n).

(5
Proof. Let z* € X be the unique fixed (and also strict) point for T'. Let y € (SF)s.
Then we have d(y, z*) < ¢(Ha(y,T(y))) = ¢(Ha(5(y), T(y))) < ¢(n). Thus,

H((SF)s,(SF)r) = sup d(y,z") < ().

yE(SF)s

5. WELL-POSEDNESS OF THE (STRICT) FIXED POINT PROBLEM

We will devote this section to the study of the well-posedness of (strict) fixed
point problems. Firstly, we recall some definitions of a well-posed (strict) fixed
point problem.

Definition 5.1. Let (X, d) be a metric space, Y € P(X)and T : Y — P,(X) be a
multivalued operator. The fixed point problem is well-posed for T" with respect to
D, if:

(a1) Fr = {z"}

(b1) If (xn)neny C Y and Dy(zp,T(xy)) — 0 as n — o0, then z,, — z* as
n — +00.

Definition 5.2. Let (X, d) be a metric space, Y € P(X)and T : Y — P,(X) be a
multivalued operator. The fixed point problem is well-posed for T with respect to
Hd if:

(a2) (SF)p = {z"}

(b2) If (zp)nen C Y and Hy(xy, T(zyn)) — 0 as n — +oo, then z, — z* as
n — +00.

Remark 5.3. Notice that (b;) implies (b2) and (a;) implies (a2). Moreover, if
Fr = (SF)r = {z*} then the well-posedness of the fixed point problem for 7" with
respect to Dy implies the well-posedness of the fixed point problem for T with
respect to Hy.

We have the following abstract results.
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Theorem 5.4. Let (X,d) be a complete metric space and T : X — Py(X) be a
multivalued operator such that Fp = {x*}. Suppose there exists a function ) : Ry —
Ry such that v is increasing, continuous in 0 with 1(0) = 0 and, for each x € X,
we have d(x,z*) < Y(Dgy(x,T(x))). Then, the fized point problem is well-posed for
T with respect to Dg. In particular, if T is a multivalued (1, Dg)-Picard operator,
then the fized point problem for T is well-posed with respect to Dg.

Proof. Let z, € X, n € N such that D(z,,T(z,)) — 0, as n — +4o0o. Then
d(xp,x*) < Y(D(xp, T(x,))) = 0, as n — +o00. O

Theorem 5.5. Let (X,d) be a complete metric space and T : X — Py(X) be
a multivalued operator such that (SF)r = {x*}. Suppose there exists a function
¥ : Ry — Ry such that ¢ is increasing, continuous in 0 and 1(0) = 0 and, for each
x € X, we have d(z,z*) < Y(H(z,T(x))). Then the fized point problem is well-
posed for T with respect to Hy. In particular, if T is a multivalued (v, Hy)-Picard
operator, then the fixed point problem for T is well-posed with respect to Hy.

Proof. Let (xn)neny C X be a sequence such that H(x,,T(x,)) — 0 as n — +o0.
Then d(zp, x*) < Y(H(zp, T (x,))) — 0 as n — +o0. O

6. ULAM-HYERS STABILITY OF THE (STRICT) FIXED POINT PROBLEM

We start this section by presenting the concept of (generalized) Ulam-Hyers sta-
bility for the (strict) fixed point problem.

Definition 6.1. Let (X, d) be a metric space and 7" : X — P(X) be a multivalued
operator. The strict fixed point inclusion
1) fo} =T(2), w€ X

is called generalized Ulam-Hyers stable if and only if there exists ¥ : Ry — R4
increasing, continuous in 0 and 1(0) = 0 such that for each ¢ > 0 and for each
solution y* € X of the inequation

(2) H(y,T(y)) <e
there exists a solution z* € X of the strict fixed point inclusion (1) such that
d(y*, ") < ¢(e).

If there exists ¢ > 0 such that ¥ (t) := ct, for each t € R, then the strict fixed point
inclusion (1) is said to be Ulam-Hyers stable.

The following theorem is an abstract result concerning the Ulam-Hyers stability
of the strict fixed point inclusion (1) for multivalued operators with closed values.

Theorem 6.2. Let (X,d) be a metric space and T : X — Py(X) be a multivalued
(1, Hy)-Picard operator. Then, the strict fixed point inclusion (1) is generalized
Ulam-Hyers stable.

Proof. Let € > 0 and y* € X be a solution of (2), i.e., H(y*,T(y*)) < e. Since T is
a multivalued (¢, Hy)-Picard operator, we have

d(z,z*) < ¢Y(H(xz,T(x))), forall z € X.
Hence, d(y*, ") < Y (H(y",T(y"))) < ¥(e). O
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