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The δ generalized functional

δd : P (X)× P (X) → R+ ∪ {+∞}, δd(A,B) := sup{d(a, b)| a ∈ A, b ∈ B}.
In particular, δ(A) := δ(A,A).

The excess generalized functional

ρd : P (X)× P (X) → R+ ∪ {+∞}, ρd(A,B) := sup{Dd(a,B)| a ∈ A}.
The Hausdorff-Pompeiu generalized functional

Hd : P (X)× P (X) → R+ ∪ {+∞}, Hd(A,B) := max{ρd(A,B), ρd(B,A)}.
If no confusion is possible, we will avoid the subscript d from the above notations.

If T : X → P (X) is a multivalued operator, then by

Graph(T ) := {(x, y) ∈ X ×X : y ∈ T (x)}
we denote the graphic of the multivalued operator T and by

I(T ) := {Y ⊂ X|T (Y ) ⊂ Y },
the set of all invariant subsets of T . A selection for T is an operator t : X → X
with the property t(x) ∈ T (x) for each x ∈ X.

We also denote by T 0 := 1X , T
1 := T, . . . , Tn+1 = T ◦ Tn, n ∈ N the iterate

operators of T . A sequence of successive approximations of T starting from x ∈ X
is a sequence (xn)n∈N of elements in X with x0 = x, xn+1 ∈ T (xn), for n ∈ N. In

the same framework, the operator T̂ : P (X) → P (X), defined by

T̂ (Y ) :=
∪
x∈Y

T (x), for Y ∈ P (X)

is called the fractal operator generated by T .
If (X, d) is a metric space, then a multivalued operator T : X → P (X) is called

upper semicontinuous (briefly u.s.c.) on X if and only if T+(V ) := {x ∈ X| T (x) ⊂
V } is open, for each open set V ⊂ X and it is said to be lower semicontinuous
(briefly l.s.c.) on X if and only if T−(W ) := {x ∈ X| T (x) ∩W ̸= ∅} is open, for
each open set W ⊂ X. If T is u.s.c. and l.s.c. on X then it is called continuous on
X.

Lemma 2.1 (see e.g. [1], [3], [10]). If (X, d) is a metric space and T : X → Pcp(X),
then the following conclusions hold:

(a) if T is upper semicontinuous, then T (Y ) ∈ Pcp(X), for every Y ∈ Pcp(X);

(b) the continuity of T implies the continuity of T̂ : Pcp(X) → Pcp(X);
(c) If T is a multivalued α-contraction (i.e., α ∈ [0, 1[ and Hd(T (x), T (y)) ≤

αd(x, y), for each x, y ∈ X), then the operator T̂ : (Pcp(X),Hd) → (Pcp(X),Hd) is
a (singlevalued) α-contraction.

Definition 2.2 ([23]). Let (X, d) be a metric space. Then, T : X → P (X) is called
a multivalued weakly Picard operator (briefly MWP operator) if for each x ∈ X
and each y ∈ T (x) there exists a sequence (xn)n∈N in X such that:

i) x0 = x, x1 = y;
ii) xn+1 ∈ T (xn), for all n ∈ N;
iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of T .
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The sequence (xn)n∈N in X satisfying (i) and (ii) from the above definition is also
called a sequence of successive approximations of T starting from (x, y) ∈ Graph(T ).

Definition 2.3 ([12], [15]). Let (X, d) be a metric space and T : X → P (X) be
a MWP operator. Then we define the multivalued operator T∞ : Graph(T ) →
P (FT ) by the formula T∞(x, y) = { z ∈ FT | there exists a sequence of successive
approximations of T starting from (x, y) that converges to z }.

Definition 2.4 ([12], [15]). Let (X, d) be a metric space and T : X → P (X) a
MWP operator. Then T is said to be a ψ-multivalued weakly Picard operator
(briefly ψ-MWP operator) if and only if ψ : R+ → R+ is increasing, continuous in
0 and satisfies ψ(0) = 0 and there exists a selection t∞ of T∞ such that

d(x, t∞(x, y)) ≤ ψ(d(x, y)), for all (x, y) ∈ Graph(T ).

In particular, if ψ has a linear representation, i.e., there exists c > 0 such that
ψ(t) = ct for all t ∈ R+, then T is called a c-multivalued weakly Picard operator.

Definition 2.5 (see [18]). Let (X, d) be a metric space. An operator f : X → X
is Picard operator if and only if:

(i) Ff = {x∗};
(ii) (fn(x))n∈N → x∗ as n→ ∞, for all x ∈ X.

For basic notions and results on the theory of weakly Picard and Picard operators
see [12], [11], [15], [18], [24]. For related results concerning metric spaces, operators
on metric spaces and fixed points see [2], [7], [8], [26].

3. Multivalued ψ-Picard operators

Let (X, d) be a metric space. Recall that T : X → P (X) is called a multivalued
Picard operator if:

(i) (SF )T = FT = {x∗};
(ii) Tn(x)

Hd→ {x∗} as n→ ∞, for each x ∈ X.

We will give now some examples of multivalued Picard operators. Let us mention
here that the theoretical support of these examples comes from several research
directions in metric fixed point theory.

A first direction was given by the following result of S. Reich in [17].

Theorem 3.1 (Reich’s Theorem). Let (X, d) be a complete metric space and T :
X → Pb(X) be a multivalued δ-contraction of Reich type with coefficients α, β, γ,
i.e., there exist α, β, γ ∈ R+ with α+ β + γ < 1 such that
δ(T (x), T (y)) ≤ αd(x, y) + βδ(x, T (x)) + γδ(y, T (y)), for all x, y ∈ X.

Then, (SF )T = FT = {x∗}.

Proof. Let q > 1 and let x0 ∈ X be arbitrary. Then there exists x1 ∈ T (x0) such
that δ(x0, T (x0)) ≤ q · d(x0, x1). Thus, we have

δ(x1, T (x1)) ≤ δ(T (x0), T (x1)) ≤ αd(x0, x1) + βδ(x0, T (x0)) + γδ(x1, T (x1))

≤ αd(x0, x1) + βqd(x0, x1) + γδ(x1, T (x1)).
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Hence, we get δ(x1, T (x1)) ≤ α+βq
1−γ d(x0, x1). By this approach we can construct a

sequence (xn)n∈N ⊂ X of successive approximations for T , such that

d(xn, xn+1) ≤ δ(xn, T (xn)) ≤
(
α+ βq

1− γ

)n

d(x0, x1), for all n ∈ N.

Choosing q > 1 with qβ < 1 − α − γ we obtain α+βq
1−γ < 1. Hence (xn)n∈N ia a

Cauchy sequence in the complete metric space (X, d). Let us denote by x∗ ∈ X its
limit. We show that x∗ is a strict fixed point for T , i.e., T (x∗) = {x∗}. Indeed,
since

δ(x∗, T (x∗)) ≤ d(x∗, xn+1) +D(xn+1, T (xn)) + δ(T (xn), T (x
∗)) ≤

d(x∗, xn+1) + αd(xn, x
∗) + βδ(xn, T (xn)) + γδ(x∗, T (x∗)) ≤

d(x∗, xn+1) + αd(xn, x
∗) + β

(
α+ βq

1− γ

)n

· d(x0, x1) + γδ(x∗, T (x∗)),

we have, for each n ∈ N, that

δ(x∗, T (x∗)) ≤ 1

1− γ
(d(x∗, xn+1) + αd(xn, x

∗) + β

(
α+ βq

1− γ

)n

· d(x0, x1)).

As n→ ∞, we obtain that δ(x∗, T (x∗)) = 0 and thus T (x∗) = {x∗}.
We will show now that FT = (SF )T . For this purpose it is enough to show that

FT ⊂ (SF )T . Let x ∈ FT be arbitrarily chosen. Then, from the contraction type
condition, by putting y = x ∈ T (x), we get

δ(T (x)) ≤ (β + γ) · δ(x, T (x)) ≤ (β + γ) · δ(T (x)).

If, we suppose, by contradiction, that card(T (x)) > 1, then δ(T (x)) > 0 and, by
above relation, we obtain 1 ≤ β + γ, a contradiction. Thus, we have proved that
δ(T (x)) = 0 and so {x} = T (x).

For the uniqueness of the strict fixed point, let us consider y ∈ (SF )T , with
y ̸= x∗. Then

d(x∗, y) = δ(T (x∗), T (y)) ≤ αd(x∗, y) + βδ(x∗, T (x∗)) + γδ(y, T (y)) = αd(x∗, y),

which let us the contradiction α ≥ 1. The proof is now complete. �

Remark 3.2. The original proof of this result is based on the idea of constructing
a singlevalued Ćirić-Reich-Rus selection of the operator T , see [17]. See also I.A.
Rus [21].

Adding a new condition on the coefficients we obtain an example of multivalued
Picard operator.

Corollary 3.3. Let (X, d) be a complete metric space and T : X → Pb(X) be a mul-
tivalued δ-contraction of Reich type with coefficients α, β, γ. Additionally suppose
that α+ 2β < 1. Then T is a multivalued Picard operator.

Proof. By Theorem 3.1 we know that (SF )T = FT = {x∗}. We have to prove that

Tn(x)
Hd→ {x∗} as n→ ∞, for each x ∈ X. We successively have:

δ(T (x), x∗) = δ(T (x), T (x∗)) ≤ αd(x, x∗) + βδ(x, T (x)) + γδ(x∗, T (x∗)) =



MULTIVALUED PICARD OPERATORS 161

αd(x, x∗) + βδ(x, T (x)) ≤ αd(x, x∗) + β(d(x, x∗) + δ(x∗, T (x))). Thus

δ(T (x), x∗) ≤ α+ β

1− β
d(x, x∗), for all x ∈ X.

Then

δ(T 2(x), x∗) = sup
y∈T (x)

δ(T (y), x∗) ≤ sup
y∈T (x)

(
α+ β

1− β

)
d(y, x∗) ≤

(
α+ β

1− β

)2

d(x, x∗).

By induction, we get that

δ(Tn(x), x∗) ≤
(
α+ β

1− β

)n

d(x, x∗) → 0 as n→ +∞, for each x ∈ X.

The proof is now complete. �
For the next result we need the following two notions, see [21] for details. A

mapping φ : R+ → R+ is said to be a comparison function if it is increasing and
φk(t) → 0, as k → +∞. As a consequence, we also have φ(t) < t, for each t > 0,
φ(0) = 0 and φ is continuous in 0. A comparison function φ : R+ → R+ having the
property that t−φ(t) → +∞, as t→ +∞ is said to be a strict comparison function.

A general result for multivalued operators satisfying a nonlinear contraction type
condition was proved by I.A. Rus in [21], see Theorem 8.4.3, page 85.

Theorem 3.4 (Rus’ Theorem). Let (X, d) be a complete metric space, T : X →
Pb(X) be a multivalued operator and φ : R5

+ → R+ be a mapping. Suppose:

(i) r, s ∈ R5
+, r ≤ s implies that φ(r) ≤ φ(s);

(ii) there exists p > 1 such that the mapping Φp : R+ → R+ given by t 7−→
φ(t, pt, pt, t, t) is a strict comparison function;

(iii) δ(T (x), T (y)) ≤ φ(d(x, y), δ(x, T (x)), δ(y, T (y)), δ(x, T (y)), δ(y, T (x))), for
all x, y ∈ X.

Then, (SF )T = FT = {x∗}.

The above result also assures the first assumption from the definition of a multi-
valued Picard operator. In order to obtain the second one too, we have to impose,
as before, another condition on the operator T . A result in this direction is the
following theorem.

Theorem 3.5. Let (X, d) be a complete metric space, T : X → Pb(X) be a multi-
valued operator satisfying all the assumptions from Theorem 3.4. If, additionally,
there exists a comparison function ψ : R+ → R+ such that

r0, r1 ∈ R+ with r1 ≤ φ(r0, r0 + r1, 0, r0, r1) implies that r1 ≤ ψ(r0),

then T is a multivalued Picard operator.

Proof. By Theorem 3.4 we have that (SF )T = FT = {x∗}. We have to prove that

Tn(x)
Hd→ {x∗} as n→ ∞, for each x ∈ X. We successively have:

δ(T (x), x∗) = δ(T (x), T (x∗))

≤ φ(d(x, x∗), δ(x, T (x)), δ(x∗, T (x∗)), δ(x, T (x∗)), δ(x∗, T (x)))

= φ(d(x, x∗), δ(x, T (x)), 0, d(x, x∗), δ(x∗, T (x)))

≤ φ(d(x, x∗), d(x, x∗) + δ(x∗, T (x)), 0, d(x, x∗), δ(x∗, T (x))).
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Thus, by the additional hypothesis we get that

δ(T (x), x∗) ≤ ψ(d(x, x∗)).

Next, δ(T 2(x), x∗) = sup
y∈T (x)

δ(T (y), x∗) ≤ sup
y∈T (x)

ψ(d(y, x∗)) ≤ ψ2(d(x, x∗)).

By induction, for each x ∈ X, we get that

δ(Tn(x), x∗) ≤ ψn(d(x, x∗)) → 0 as n→ +∞.

The proof is complete. �
A second direction concerning multivalued Picard operators is given by the fol-

lowing result of I.A. Rus, see [21], Theorem 8.5.1, page 87.

Theorem 3.6 (Rus’ Theorem). Let (X, d) be a complete metric space and let T :
X → Pb,cl(X) be a multivalued α-contraction such that (SF )T ̸= ∅. Then FT =
(SF )T = {x∗}.

We get now another example of multivalued Picard operator. For the sake of
completeness we recall here the proof of the whole theorem.

Theorem 3.7. Let (X, d) be a complete metric space and let T : X → Pcp(X) be a
multivalued α-contraction with (SF )T ̸= ∅. Then, we have:

(i) FT = (SF )T = {x∗};
(ii) Tn(x)

Hd→ {x∗} as n→ +∞, for each x ∈ X,
i.e., T is a multivalued Picard operator.

Proof. (i) (see [21]). Let x∗ ∈ (SF )T . Notice first that (SF )T = {x∗}. Indeed, if
y ∈ (SF )T with y ̸= x∗, then d(x∗, y) = H(T (x∗), T (y)) ≤ αd(x∗, y). Thus, since
α < 1, we immediately get that y = x∗.

Suppose now that y ∈ FT . Then,

d(x∗, y) = D(T (x∗), y) ≤ H(T (x∗), T (y)) ≤ αd(x∗, y).

Thus, again we have that y = x∗. Hence FT ⊂ (SF )T . Since (SF )T ⊂ FT , we get
that (SF )T = FT .

(ii) Let x ∈ X be arbitrarily chosen. Then, using Lemma 2.1 (c), we have

H(Tn(x), x∗) = H(Tn(x), Tn(x∗)) ≤ αH(Tn−1(x), Tn−1(x∗)) ≤ · · · ≤ αnd(x, x∗).

Thus, Tn(x)
Hd→ {x∗} as n→ +∞. �

Remark 3.8. A similar result for the case of multivalued φ-contractions (i.e., mul-
tivalued operators T : X → Pcl(X) satisfying, with a strict comparison function
φ : R+ → R+, the following assumption

Hd(T (x), T (y)) ≤ φ(d(x, y)), for all x, y ∈ X)

can be established (see also A. Ŝıntămărian [25]).

The above presented results give rise to the following definition.

Definition 3.9. Let (X, d) be a metric space. Then, by definition, a multivalued
operator T : X → P (X) satisfies Rus’ alternative if

either (SF )T = ∅ or FT = (SF )T = {x∗}.
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Using this definition, we have the following results.

Theorem 3.10. Let (X, d) be a complete metric space and let T : X → Pcl(X)
be a strong Caristi multivalued operator, i.e., there exists a lower semicontinuous
function η : R+ → R+ such that, for each (x, y) ∈ Graph(T ), we have

η(y) + d(x, y) ≤ η(x).

Suppose that T satisfies Rus’ alternative and it has closed graph.
Then, FT = (SF )T = {x∗}.

Proof. By Aubin-Siegel’s Theorem (see [4]), we have that (SF )T ̸= ∅. Now, by
Rus’s alternative we obtain the conclusion. �

Theorem 3.11. Let (X, d) be a complete metric space and let T : X → Pb(X) for
which there exists a ∈ [0, 1[ such that, for each (x, y) ∈ Graph(T ), we have

δ(T (x), T (y)) ≤ amax{δ(x, T (x)), δ(y, T (y)), 1
2
D(x, T (y))}.

Suppose that T satisfies Rus’ alternative and it has closed graph.
Then, FT = (SF )T = {x∗}.

Proof. By Theorem 2.1 in [16] we have that FT = (SF )T ̸= ∅. Next, by Rus’s
alternative we get the conclusion. �

A third direction concerning the theory of multivalued Picard operators is re-
lated to the following theorem given by Tarafdar-Yuan in [27], (see also Yuan [28],
Theorem 9.3.14. on page 559).

Let X be a topological space. By definition, T : X → Pcl(X) is called a topolog-
ical contraction (Tarafdar-Yuan [27], see also [28]) if:

a) T is u.s.c.
b) Y ∈ Pcl(X) with T (Y ) = Y ⇒ Y = {x∗}.

Theorem 3.12 (Tarafdar-Yuan’s Theorem). Let X be a Hausdorff compact topo-
logical space and T : X → Pcl(X) be a topological contraction. Then T has a unique

strict fixed point x∗ ∈ X and
∩
n≥0

Tn(X) = {x∗}.

From the above theorem we obtain another example of multivalued Picard oper-
ator.

Theorem 3.13. Let (X, d) be a compact metric space and T : X → Pcl(X) be a
l.s.c. topological contraction. Then T is a multivalued Picard operator.

Proof. Notice first that, from Tarafdar-Yuan’s Theorem, there exists a unique x∗ ∈
X such that T (x∗) = {x∗} =

∩
n≥0

Tn(X). Thus (SF )T = {x∗}. Let x ∈ FT be

arbitrary chosen. Then x ∈ T (x) ⊂ T 2(x) ⊂ · · · ⊂ Tn(x) ⊂ · · ·. So, x ∈ Tn(x) ⊂
Tn(X), for each n ∈ N. Hence x = x∗ and so FT = (SF )T = {x∗}. Consider now
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the fractal operator T̂ generated by T , i.e., the operator T̂ : Pcp(X) → Pcp(X),
defined by

T̂ (Y ) :=
∪
x∈Y

T (x), for Y ∈ Pcp(X).

Since T is continuous it follows that T̂ is a Hd-continuous operator from Pcp(X) to

itself. Moreover, T̂ is a (singlevalued) self topological contraction on Pcp(X), since

T̂ (Y ) = Y implies T (Y ) = Y and so Y = {x∗}. Thus, by Corollary 9.3.16. in

[28] (page 559), we have that (T̂n(Z))n∈N converges to {x∗} as n → ∞, for each

Z ∈ Pcp(X). Hence, Tn(x)
H→ {x∗} as n→ ∞, for each x ∈ X. �

The above theorem give rise to the following definition.

Definition 3.14. Let (X, d) be a metric space. Then, by definition, a multivalued
operator T : X → P (X) satisfies Tarafdar-Yuan’s alternative if

either FT̂ = ∅ or FT̂ = {x∗},

where T̂ is the fractal operator generated by T , i.e., T̂ : P (X) → P (X) is given by

T̂ (Y ) :=
∪
x∈Y

T (x), for Y ∈ P (X).

From the above results, we get the following interesting open question: find
sufficient conditions for the existence of a set Y ⊂ X such that T (Y ) = Y and

FT ⊂ Y . Notice that, from Tarafdar-Yuan’s Theorem the core
∩
n≥0

Tn(X) of the

operator T is an example of such a set. For other examples and related rsults see
Theorem 3.1 (vii) in A. Petruşel, I.A. Rus [15].

Another example comes from Martelli’s Theorem, see [9].

Theorem 3.15 (Martelli’s Theorem). Let X be a compact topological space and
T : X → Pcl(X) be an u.s.c. multivalued operator. Then, there exists Y ∈ Pcl(X)
such that T (Y ) = Y .

By combining Tarafdar-Yuan’s Theorem and Martelli’s Theorem, we get the fol-
lowing result.

Theorem 3.16. Let X be a Hausdorff compact topological space and T : X →
Pcl(X) be an u.s.c. multivalued operator which satisfies Tarafdar-Yuan’s alternative.
Then T has a unique strict fixed point x∗ ∈ X.

Proof. By Martelli’s Theorem there exists Y ∈ Pcl(X) such that T (Y ) = Y . By
Tarafdar-Yuan’s alternative, we obtain that FT̂ = {x∗}, i.e., there exists a unique
x∗ ∈ X such that T (x∗) = {x∗}. The proof is complete. �

Another result of this type was given by I.A. Rus in [22].

Theorem 3.17. Let X be a complete metric space and T : X → Pb(X) be a
multivalued (δ, φ)-contraction, i.e.,

δ(T (Y )) ≤ φ(δ(Y )), for all Y ∈ I(T ),

where φ : R+ → R+ is a comparison function. If T (X) is bounded, then FT =
(SF )T = {x∗}.
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It is an open problem to give, for the two above mentioned results, conditions

which guarantee that Tn(x)
Hd→ {x∗} as n→ ∞, for each x ∈ X, i.e., to obtain other

examples of multivalued Picard operators.

Other examples of Picard operators are given in what follows.

Theorem 3.18. Let (X, d) be a complete metric space and f1, ..., fm : X → X
be αi-contractions, such that Ffi = {x∗} for each i ∈ {1, 2, ...,m}. Consider the
multivalued operator T : X → Pcp(X) defined by

T (x) = {f1(x), f2(x), · · · fm(x)}.

Then, T is a multivalued Picard operator.

Proof. Notice first that x∗ ∈ (SF )T . Moreover, FT = (SF )T = {x∗}. Indeed,
if y ∈ X is another fixed point of T with y ̸= x∗, then y ∈ T (y) implies there
exists j ∈ {1, 2, · · · ,m} such that y = fj(y), which is a contradiction with our
assumptions. Since any self contraction on a complete metric space is a Picard

operator, we immediately obtain that Tn(x)
Hd→ {x∗} as n→ ∞, for each x ∈ X. �

More generally, we have:

Theorem 3.19. Let (X, d) be a metric space and f1, ..., fm : X → X be Picard
operators, such that Ffi = {x∗} for each i ∈ {1, 2, ...,m}. Consider the multivalued
operator T : X → Pcp(X) defined by

T (x) = {f1(x), f2(x), · · · fm(x)}.

Then, T is a multivalued Picard operator.

Theorem 3.20. Let (X, d) be a metric space and T1, ..., Tm : X → Pcp(X) be mul-
tivalued Picard operators, such that FTi = (SF )Ti = {x∗} for each i ∈ {1, 2, ...,m}.
Consider the multivalued operator T : X → Pcp(X) defined by

T (x) =

m∪
i=1

Ti(x).

Then, T is a multivalued Picard operator.

We will present now the concept of multivalued ψ-Picard operators.
Let ψ : R+ → R+ be an increasing function which is continuous in 0 and ψ(0) = 0.

By definition (see [13], [14]), a multivalued Picard operator T : X → P (X) is said
to be:

(1) a multivalued (ψ,Hd)-Picard operator if and only if

d(x, x∗) ≤ ψ(Hd(x, T (x))), for all x ∈ X.

(2) a multivalued (ψ,Dd)-Picard operator if and only if

d(x, x∗) ≤ ψ(Dd(x, T (x))), for all x ∈ X.

Remark 3.21. Any multivalued (ψ,Dd)-Picard operator is a multivalued (ψ,Hd)-
Picard operator.
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Theorem 3.22. Let (X, d) be a complete metric space and let T : X → Pcp(X)
be a multivalued α-contraction, such that (SF )T ̸= ∅. Then T is a multivalued
(ψ,D)-Picard operator with ψ(t) := 1

1−α t, t ∈ R+.

Proof. By Theorem 3.7 we have that T is a multivalued Picard operator with
FT = (SF )T = {x∗}. We also have:

d(x, x∗) = D(x, T (x∗)) ≤ D(x, T (x)) +H(T (x), T (x∗)) ≤ D(x, T (x)) + αd(x, x∗).

Hence, we get that

d(x, x∗) ≤ 1

1− α
D(x, T (x)), for all x ∈ X.

Theorem 3.23. Let (X, d) be a complete metric space and let T : X → Pcl(X)
be a multivalued ψ-weakly Picard operator, such that FT = (SF )T = {x∗} and

Tn(x)
Hd→ {x∗} as n→ +∞, for each x ∈ X. Then T is a multivalued (ψ,H)-Picard

operator.

Proof. Notice first that T is a multivalued Picard operator and t∞(x, y) = x∗,
for each (x, y) ∈ Graph(T ). Since T is a multivalued ψ-weakly Picard operator,
we also have that d(x, x∗) ≤ ψ(d(x, y)), for each x ∈ X and y ∈ T (x). Hence,
d(x, x∗) ≤ ψ(H(x, T (x))), for all x ∈ X. �
Theorem 3.24. Let (X, d) be a complete metric space and let T : X → Pb(X) be
a multivalued δ-contraction of Reich type with coefficients α, β, γ and α + 2β < 1.
Then T is a multivalued (ψ,H)-Picard operator with ψ(t) := 1+β

1−α t, t ∈ R+.

Proof. By Theorem 3.1 we have that T is a multivalued Picard operator with FT =
(SF )T = {x∗}. For x ∈ X, we also have:
d(x, x∗) ≤ δ(x, T (x)) + δ(T (x), x∗) = δ(x, T (x)) + δ(T (x), T (x∗)) ≤ δ(x, T (x)) +
αd(x, x∗) + βδ(x, T (x)) + γδ(x∗, T (x∗)) = (1 + β)δ(x, T (x)) + αd(x, x∗). Thus,

d(x, x∗) ≤ 1 + β

1− α
H(x, T (x)), for all x ∈ X.

�

4. Data dependence of the (strict) fixed point set

We will present now some data dependence results for multivalued Picard oper-
ators.

The following result was proved in A. Petruşel, I.A. Rus [15].

Theorem 4.1. Let (X, d) be a complete metric space and T, S : X → Pcl(X) be
two multivalued operators. Suppose:

(i) T is a multivalued α-contraction;
(ii) (SF )T ̸= ∅;
(iii) FS ̸= ∅;
(iv) there exists η > 0 such that H(S(x), T (x)) ≤ η, for each x ∈ X.

Then

H(FS , FT ) ≤
η

1− α
.
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Proof. Let x∗ ∈ (SF )T . Then, it is easy to observe (see the proof of Theorem 3.7)
that FT = (SF )T = {x∗}. Let y ∈ FS . Then

d(y, x∗) ≤ H(S(y), x∗) ≤ H(S(y), T (y)) +H(T (y), x∗) ≤ η + αd(y, x∗).

Thus, d(y, x∗) ≤ η
1−α . Since

H(FS , FT ) = sup
y∈FS

d(y, x∗) ≤ η

1− α
,

we get the desired conclusion. �

As an immediate consequence of the above result, we have the following.

Theorem 4.2. Let (X, d) be a complete metric space and let T : X → Pcl(X) be a
multivalued α-contraction with (SF )T ̸= ∅. For each n ∈ N, let Tn : X → Pcl(X),
n ∈ N be a sequence of multivalued operators such that FTn ̸= ∅ for each n ∈ N and

Tn(x)
Hd→ T (x) as n→ +∞, uniformly with respect to x ∈ X.

Then,

FTn

Hd→ FT as n→ +∞.

More generally, we have the following abstract result.

Theorem 4.3. Let (X, d) be a metric space and T, S : X → P (X) be two multival-
ued operators. Suppose:

(i) T is a multivalued (ψ,Dd)-Picard operator;
(ii) S(x) is closed for each x ∈ X and FS ̸= ∅;
(iv) there exists η > 0 such that H(S(x), T (x)) ≤ η, for each x ∈ X.

Then

H(FS , FT ) ≤ ψ(η).

Proof. Let x∗ ∈ X be the unique fixed (and also strict) point for T . Let y ∈ FS .
Then we have:
d(y, x∗) ≤ ψ(Dd(y, T (y))) ≤ ψ(Dd(y, S(y)) +H(S(y), T (y))) = ψ(H(S(y), T (y)))
≤ ψ(η). Thus,

H(FS , FT ) = sup
y∈FS

d(y, x∗) ≤ ψ(η).

�

Remark 4.4. In particular, if T : X → Pcp(X) is a multivalued α-contraction with
(SF )T ̸= ∅, then (via Theorem 3.22) Theorem 4.3 reduces to Theorem 4.1.

As a consequence of the above theorem, we have the following.

Theorem 4.5. Let (X, d) be a complete metric space and let T : X → Pcl(X)
be a multivalued (ψ,Dd)-Picard operator. For each n ∈ N, let Tn : X → Pcl(X)
be a sequence of multivalued operators such that FTn ̸= ∅ for each n ∈ N and

Tn(x)
Hd→ T (x) as n→ +∞, uniformly with respect to x ∈ X.

Then,

FTn

Hd→ FT as n→ +∞.
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Proof. Let ϵ > 0. Then, there exists nϵ ∈ N, such that

H(Tn(x), T (x)) < ϵ, for all n ≥ nϵ and each x ∈ X.

Then, by Theorem 4.3, we get that

H(FTn , FT ) ≤ ψ(ϵ), for all n ≥ nϵ.

This completes the proof. �

Another data dependence result is the following.

Theorem 4.6. Let (X, d) be a metric space and T, S : X → P (X) be two multival-
ued operators. Suppose:

(i) T is a multivalued (ψ,Hd)-Picard operator;
(ii) (SF )S ̸= ∅;
(iv) there exists η > 0 such that H(S(x), T (x)) ≤ η, for each x ∈ X.

Then

H((SF )S , (SF )T ) ≤ ψ(η).

Proof. Let x∗ ∈ X be the unique fixed (and also strict) point for T . Let y ∈ (SF )S .
Then we have d(y, x∗) ≤ ψ(Hd(y, T (y))) = ψ(Hd(S(y), T (y))) ≤ ψ(η). Thus,

H((SF )S , (SF )T ) = sup
y∈(SF )S

d(y, x∗) ≤ ψ(η).

�

5. Well-posedness of the (strict) fixed point problem

We will devote this section to the study of the well-posedness of (strict) fixed
point problems. Firstly, we recall some definitions of a well-posed (strict) fixed
point problem.

Definition 5.1. Let (X, d) be a metric space, Y ∈ P (X) and T : Y → Pcl(X) be a
multivalued operator. The fixed point problem is well-posed for T with respect to
Dd if:

(a1) FT = {x∗}
(b1) If (xn)n∈N ⊂ Y and Dd(xn, T (xn)) → 0 as n → +∞, then xn → x∗ as

n→ +∞.

Definition 5.2. Let (X, d) be a metric space, Y ∈ P (X) and T : Y → Pcl(X) be a
multivalued operator. The fixed point problem is well-posed for T with respect to
Hd if:

(a2) (SF )T = {x∗}
(b2) If (xn)n∈N ⊂ Y and Hd(xn, T (xn)) → 0 as n → +∞, then xn → x∗ as

n→ +∞.

Remark 5.3. Notice that (b1) implies (b2) and (a1) implies (a2). Moreover, if
FT = (SF )T = {x∗} then the well-posedness of the fixed point problem for T with
respect to Dd implies the well-posedness of the fixed point problem for T with
respect to Hd.

We have the following abstract results.
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Theorem 5.4. Let (X, d) be a complete metric space and T : X → Pcl(X) be a
multivalued operator such that FT = {x∗}. Suppose there exists a function ψ : R+ →
R+ such that ψ is increasing, continuous in 0 with ψ(0) = 0 and, for each x ∈ X,
we have d(x, x∗) ≤ ψ(Dd(x, T (x))). Then, the fixed point problem is well-posed for
T with respect to Dd. In particular, if T is a multivalued (ψ,Dd)-Picard operator,
then the fixed point problem for T is well-posed with respect to Dd.

Proof. Let xn ∈ X, n ∈ N such that D(xn, T (xn)) → 0, as n → +∞. Then
d(xn, x

∗) ≤ ψ(D(xn, T (xn))) → 0, as n→ +∞. �
Theorem 5.5. Let (X, d) be a complete metric space and T : X → Pcl(X) be
a multivalued operator such that (SF )T = {x∗}. Suppose there exists a function
ψ : R+ → R+ such that ψ is increasing, continuous in 0 and ψ(0) = 0 and, for each
x ∈ X, we have d(x, x∗) ≤ ψ(H(x, T (x))). Then the fixed point problem is well-
posed for T with respect to Hd. In particular, if T is a multivalued (ψ,Hd)-Picard
operator, then the fixed point problem for T is well-posed with respect to Hd.

Proof. Let (xn)n∈N ⊂ X be a sequence such that H(xn, T (xn)) → 0 as n → +∞.
Then d(xn, x

∗) ≤ ψ(H(xn, T (xn))) → 0 as n→ +∞. �

6. Ulam-Hyers stability of the (strict) fixed point problem

We start this section by presenting the concept of (generalized) Ulam-Hyers sta-
bility for the (strict) fixed point problem.

Definition 6.1. Let (X, d) be a metric space and T : X → P (X) be a multivalued
operator. The strict fixed point inclusion

(1) {x} = T (x), x ∈ X

is called generalized Ulam-Hyers stable if and only if there exists ψ : R+ → R+

increasing, continuous in 0 and ψ(0) = 0 such that for each ε > 0 and for each
solution y∗ ∈ X of the inequation

(2) H(y, T (y)) ≤ ε

there exists a solution x∗ ∈ X of the strict fixed point inclusion (1) such that

d(y∗, x∗) ≤ ψ(ε).

If there exists c > 0 such that ψ(t) := ct, for each t ∈ R+, then the strict fixed point
inclusion (1) is said to be Ulam-Hyers stable.

The following theorem is an abstract result concerning the Ulam-Hyers stability
of the strict fixed point inclusion (1) for multivalued operators with closed values.

Theorem 6.2. Let (X, d) be a metric space and T : X → Pcl(X) be a multivalued
(ψ,Hd)-Picard operator. Then, the strict fixed point inclusion (1) is generalized
Ulam-Hyers stable.

Proof. Let ε > 0 and y∗ ∈ X be a solution of (2), i.e., H(y∗, T (y∗)) ≤ ε. Since T is
a multivalued (ψ,Hd)-Picard operator, we have

d(x, x∗) ≤ ψ(H(x, T (x))), for all x ∈ X.

Hence, d(y∗, x∗) ≤ ψ(H(y∗, T (y∗))) ≤ ψ(ε). �
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[25] A. Ŝıntămărian, Common fixed point theorems for multivalued mappings, Seminar on Fixed

Point Theory Cluj-Napoca, Vol. 1997, pp. 27–31.



MULTIVALUED PICARD OPERATORS 171

[26] W. Takahashi, Nonlinear Functional Analysis. Fixed Point Theory and its Applications, Yoko-
hama Publishers, Yokohama, 2000.

[27] E. Tarafdar and G. X. -Z. Yuan, Set-valued contraction mapping principle, Applied Math.
Letter 8 (1995), 79–81.

[28] G.X.-Z. Yuan, KKM Theory and Applications in Nonlinear Analysis, Marcel Dekker, New
York, 1999.

Manuscript received August 10, 2011

revised November 2, 2011

Adrian Petruşel
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