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function. Then the Bregman distance [1, 3] corresponding to g is the function
D : E × E → R defined by

(1.2) D(x, y) = g(x)− g(y)− ⟨x− y,∇g(y)⟩, ∀x, y ∈ E.

It is clear that D(x, y) ≥ 0 for all x, y ∈ E. In the case when E is a smooth Banach
space, setting g(x) = ∥x∥2 for all x ∈ E, we have that ∇g(x) = 2Jx for all x ∈ E
and hence

D(x, y) = ∥x∥2 − ∥y∥2 − ⟨x− y,∇g(y)⟩
= ∥x∥2 − ∥y∥2 − ⟨x− y, 2Jy⟩
= ∥x∥2 − ∥y∥2 − ⟨x, 2Jy⟩+ 2∥y∥2
= ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2
= ϕ(x, y)

for all x, y ∈ E. Let C be a nonempty subset of E. A mapping T : C → C is said
to be of Bregman generalized nonexpansive type if

(1.3) D(Tx, Ty) +D(Ty, Tx) ≤ D(x, Ty) +D(y, Tx), ∀x, y ∈ C.

In this paper, we first study Bregman generalized nonexpansive retracts in Ba-
nach spaces and give a characterization of sunny Bregman generalized nonexpansive
retracts. Furthermore, we generalize the fixed point theorems for generalized nonex-
pansive type mappings in [5] with Bregman functions in reflexive Banach spaces. We
prove fixed point and convergence theorems for Bregman generalized nonexpansive
type mappings in Banach spaces.

2. Preliminaries

Let E be a Banach space with the norm ∥.∥ and the dual space E∗. For any
x ∈ E, we denote the value of x∗ ∈ E∗ at x by ⟨x, x∗⟩. When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the
weak convergence by xn ⇀ x. For any sequence {x∗n} in E∗, we denote the strong
convergence of {x∗n} to x∗ ∈ E∗ by x∗n → x∗, the weak convergence by x∗n ⇀ x∗ and
the weak∗ convergence by x∗n ⇀∗ x∗. The modulus δ of convexity of E is denoted
by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. Let S = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be
Gâteaux differentiable if for each x, y ∈ S, the limit

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In the case, E is called smooth. If the limit (2.1) is attained uniformly in
x, y ∈ S, then E is called uniformly smooth. The Banach space E is said to be
strictly convex if ∥x+y

2 ∥ < 1 whenever x, y ∈ S and x ̸= y. It is well-known that E
is uniformly convex if and only if E∗ is uniformly smooth. It is also known that if
E is reflexive, then E is strictly convex if and only if E∗ is smooth; for more details,
see [17].
Let T : E → 2E

∗
be a set-valued mapping. We define the domain and range of T

by D(T ) = {x ∈ E : Tx ̸= Ø} and R(T ) = ∪x∈ETx, respectively. The graph of T
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is denoted by G(T ) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Tx}. The mapping T ⊂ E × E∗ is
said to be monotone [13] if ⟨x − y, x∗ − y∗⟩ ≥ 0 whenever (x, x∗), (y, y∗) ∈ T . It is
also said to be maximal monotone [16] if its graph is not contained in the graph of
any other monotone operator on E. If T ⊂ E × E∗ is maximal monotone, then we
can show that the set T−10 = {z ∈ E : 0 ∈ Tz} is closed and convex. A function
f : E → (−∞,+∞] is said to be proper if the domain D(f) = {x ∈ E : f(x) < ∞}
is nonempty. It is also called lower semicontinuous if {x ∈ E : f(x) ≤ r} is closed
for all r ∈ R. We say that f is upper semicontinuous if {x ∈ E : f(x) ≥ r} is closed
for all r ∈ R. The function f is said to be convex if

(2.2) f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for all x, y ∈ E and α ∈ (0, 1). It is also said to be strictly convex if the strict
inequality holds in (2.2) for all x, y ∈ D(f) with x ̸= y and α ∈ (0, 1). For a proper
lower semicontinuous convex function f : E → (−∞,+∞], the subdifferential ∂f of
f is defined by

(2.3) ∂f(x) = {x∗ ∈ E∗ : f(x) + ⟨y − x, x∗⟩ ≤ f(y), ∀y ∈ E}

for all x ∈ E. It is well known that ∂f ⊂ E×E∗ is maximal monotone [14, 15]. For
any proper lower semicontinuous convex function f : E → (−∞,+∞], the conjugate
function f∗ of f is defined by

f∗(x∗) = sup
x∈E

{⟨x, x∗⟩ − f(x)}

for all x∗ ∈ E∗. It is well known that f(x)+f∗(x∗) ≥ ⟨x, x∗⟩ for all (x, x∗) ∈ E×E∗.
It is also known that (x, x∗) ∈ ∂f is equivalent to

(2.4) f(x) + f∗(x∗) = ⟨x, x∗⟩.

We also know that if f : E → (−∞,+∞] is a proper lower semicontinuous convex
function, then f∗ : E∗ → (−∞,+∞] is a proper weak∗ lower semicontinuous convex
function; see [18] for more details on convex analysis. Let g : E → R be a convex
function. The function g is also said to be Fréchet differentiable at x ∈ E (see, for
example, [2, p. 13] or [11, p. 508]) if for all ϵ > 0, there exists δ > 0 such that
∥y − x∥ ≤ δ implies that

| g(y)− g(x)− ⟨y − x,∇g(x)⟩ |≤ ϵ∥y − x∥.

A convex function g : E → R is said to be Fréchet differentiable if it is Fréchet
differentiable everywhere. It is well known that if a continuous convex function
g : E → R is Gâteaux differentiable, then ∇g is norm-to-weak∗ continuous (see, for
example, [2, Proposition 1.1.10]). Also, it is known that if g is Fréchet differentiable,
then ∇g is norm-to-norm continuous (see, [11, p. 508]). The mapping ∇g is said
to be weakly sequentially continuous if xn ⇀ x implies that ∇g(xn) ⇀

∗ ∇g(x) (for
more details, see [2, Theorem 3.2.4] or [11, p. 508]). The function g : E → R is said
to be strongly coercive if

∥xn∥ → ∞ =⇒ g(xn)

∥xn∥
→ ∞.
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It is also said to be bounded on bounded sets if g(U) is bounded for each bounded
subset U of E. The following definition is slightly different from that in Butnariu
and Iusem [2].

Definition 2.1 ([11]). Let E be a Banach space. The function g : E → R is said
to be a Bregman function if the following conditions are satisfied:

(1) g is continuous, strictly convex and Gâteaux differentiable;
(2) the set {y ∈ E : D(x, y) ≤ r} is bounded for all x ∈ E and r > 0.

The following lemma follows from Butnariu and Iusem [2] and Zălinscu [19]:

Lemma 2.2. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function. Then

(1) ∇g : E → E∗ is one-to-one, onto and norm-to-weak continuous;
(2) ⟨x− y,∇g(x)−∇g(y)⟩ = 0 if and only if x = y;
(3) {x ∈ E : D(x, y) ≤ r} is bounded for all y ∈ E and r > 0;
(4) D(g∗) = E∗, g∗ is Gâteaux differentiable and ∇g∗ = (∇g)−1.

Let E be a reflexive Banach space, g : E → R be a strongly coercive Bregman
function and let D : E×E → R be the Bregman distance corresponding to g. Then,
g∗ : E∗ → R is convex and Gâteaux differentiable [19]. Let D∗ : E∗ × E∗ → R be
the function defined by

(2.5) D∗(x
∗, y∗) = g∗(x∗)− g∗(y∗)− ⟨∇g∗(y∗), x∗ − y∗⟩

for x∗, y∗ ∈ E∗, where ∇g∗ is the directional derivative of g∗. It follows from
(2.2)-(2.5) and Lemma 2.2 (4) that

D∗(∇g(x),∇g(y)) = g∗(∇g(x))− g∗(∇g(y))− ⟨∇g∗(∇g(y)),∇g(x)−∇g(y)⟩
= g∗(∇g(x))− g∗(∇g(y))− ⟨y,∇g(x)−∇g(y)⟩
= [⟨x,∇g(x)⟩ − g(x)]− [⟨y,∇g(y)⟩ − g(y)]

−⟨y,∇g(x)−∇g(y)⟩(2.6)

= ⟨x,∇g(x)⟩ − g(x)− ⟨y,∇g(y)⟩+ g(y)

−⟨y,∇g(x)⟩+ ⟨y,∇g(y)⟩
= g(y)− g(x)− ⟨y − x,∇g(x)⟩
= D(y, x)

for all x, y ∈ E. Let E be a Banach space and let C be a nonempty convex subset
of E. Let g : E → R be a convex and Gâteaux differentiable function. Then, for
x ∈ E and x0 ∈ C, D(x0, x) = miny∈C D(y, x) if and only if

(2.7) ⟨y − x0,∇g(x)−∇g(x0)⟩ ≤ 0, ∀y ∈ C.

Let us show (=⇒). For any z ∈ C and λ ∈ R with 0 < λ < 1, put y = (1−λ)x0+λz.
Then, we have that

D(x0, x) ≤ D((1− λ)x0 + λz, x)
⇐⇒ g(x0)− g(x)− ⟨x0 − x,∇g(x)⟩
≤ g((1− λ)x0 + λz)− g(x)− ⟨(1− λ)x0 + λz − x,∇g(x)⟩
⇐⇒ 0 ≤ g(x0 + λ(z − x0))− g(x0)− λ⟨z − x0,∇g(x)⟩
⇐⇒ 0 ≤ g(x0+λ(z−x0))−g(x0)

λ − ⟨z − x0,∇g(x)⟩.
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Letting λ ↓ 0, we have that

0 ≤ ⟨z − x0,∇g(x0)⟩ − ⟨z − x0,∇g(x)⟩

and hence 0 ≤ ⟨z − x0,∇g(x0) − ∇g(x)⟩. This implies (2.7). Further, if C is a
nonempty closed convex subset of a reflexive Banach space E and g : E → R is
a strongly coercive Bregman function, then for each x ∈ E, there exists a unique
x0 ∈ C such that

D(x0, x) = min
y∈C

D(y, x).

The Bregman projection PC from E onto C is defined by PC(x) = x0 for all x ∈ E.
It is also well known that PC has the following property:

(2.8) D(y, PCx) +D(PCx, x) ≤ D(y, x)

for all y ∈ C and x ∈ E (see [2] for more details). Let E be a Banach space and B
be the unit ball of E. Let rB := {z ∈ E : ∥z∥ ≤ r} for all r > 0. Then a function
g : E → R is said to be uniformly convex on bounded sets ([19, pp. 203, 221]) if
ρr(t) > 0 for all r, t > 0, where ρr : [0,+∞) → [0,∞] is defined by

ρr(t) = inf
x,y∈rB,∥x−y∥=t,α∈(0,1)

αg(x) + (1− α)g(y)− g(αx+ (1− α)y)

α(1− α)

for all t ≥ 0. The function g is also said to be uniformly smooth on bounded sets

([19, pp. 207, 221]) if limt↓0
σr(t)
t = 0 for all r > 0, where σr : [0,+∞) → [0,∞] is

defined by

σr(t) = sup
x∈rB,y∈S,α∈(0,1)

αg(x+ (1− α)ty) + (1− α)g(x− αty)− g(x)

α(1− α)

for all t ≥ 0. We know the following results; see [19, Proposition 3.6.4].

Theorem 2.3. Let E be a reflexive Banach space and let g : E → R be a con-
vex function which is bounded on bounded sets. Then the following assertions are
equivalent:

(1) g is strongly coercive and uniformly convex on bounded sets;
(2) D(g∗) = E∗, g∗ is bounded on bounded sets and uniformly smooth on

bounded sets;
(3) D(g∗) = E∗, g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-

norm continuous on bounded sets.

Theorem 2.4. Let E be a reflexive Banach space and let g : E → R be a contin-
uous convex function which is strongly coercive. Then the following assertions are
equivalent:

(1) g is bounded on bounded sets and uniformly smooth on bounded sets;
(2) g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm continuous

on bounded sets;
(3) D(g∗) = E∗, g∗ is strongly coercive and uniformly convex on bounded sets.

The following lemma has been proved in [11].
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Lemma 2.5. Let E be a Banach space and let g : E → R be a convex and Gâteaux
differentiable function which is uniformly convex on bounded sets. If {xn} and {yn}
are bounded sequences in E such that limn→∞D(xn, yn) = 0, then limn→∞ ∥xn −
yn∥ = 0.

3. Generalized retractions and Bregman functions

Let E be a Banach space and let g : E → R be a convex and Gâteaux differen-
tiable function. Then the Bregman distance [1, 3] satisfies that

(3.1) D(x, z) = D(x, y) +D(y, z) + ⟨x− y,∇g(y)−∇g(z)⟩, ∀x, y, z ∈ E.

Let C be a nonempty and closed subset of E. A mapping T : C → C is called
Bregman firmly generalized nonexpansive [9] if F (T ) ̸= Ø and

(3.2) D(x, Tx) +D(Tx, p) ≤ D(x, p)

for each x ∈ C and p ∈ F (T ). A mapping T : C → C is called Bregman generalized
nonexpansive if F (T ) ̸= Ø and

(3.3) D(Tx, p) ≤ D(x, p), ∀(x, p) ∈ C × F (T ).

A mapping T : C → C is of Bregman generalized nonexpansive type if

(3.4) D(Tx, Ty) +D(Ty, Tx) ≤ D(x, Ty) +D(y, Tx), ∀x, y ∈ C.

A mapping T : C → C is of Bregman firmly generalized nonexpansive type if

(3.5)
D(x, Tx) +D(y, Ty) +D(Tx, Ty) +D(Ty, Tx)

≤ D(x, Ty) +D(y, Tx), ∀x, y ∈ C.

It is clear that a Bregman firmly generalized noneaxpansive mapping is Bregman
generalized nonexpansive in a Banach space (see also [9]). Let C be a nonempty
subset of Banach space E. A mapping R : E → C is said to be sunny if

R(Rx+ t(x−Rx)) = Rx

for each x ∈ E and t ≥ 0. A mapping R : E → C is said to be a retraction
if Rx = x for each x ∈ C. We have the following results for Bregman firmly
generalized nonexpansive type mappings.

Lemma 3.1. Let E be a Banach space and let g : E → R be a convex and Gâteaux
differentiable function. Let C be a nonempty closed subset of E. If T : C → C is a
Bregman firmly generalized nonexpansive type mapping with F (T ) ̸= Ø, then T is
Bregman firmly generalized nonexpansive.

Lemma 3.2. Let E be a Banach space and let g : E → R be a convex and Gâteaux
differentiable function. Let C be a closed subset of E. Then, a mapping T : C → C
is of Bregman firmly generalized nonexpansive type if and only if

⟨(x− Tx)− (y − Ty),∇gTx−∇gTy⟩ ≥ 0, ∀x, y ∈ C.

Using ideas in [6], we can also prove the following result.

Lemma 3.3. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function. Let C be a nonempty closed subset of E and let R be a
retraction from E onto C. Then the following assertions are equivalent:
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(1) R is sunny and Bregman generalized nonexpansive;
(2) ⟨x−Rx,∇g(y)−∇g(Rx)⟩ ≤ 0, ∀(x, y) ∈ E × C.

Furthermore, a sunny and Bregman generalized nonexpansive retraction of E onto
C is uniquely determined.

Proof. (=⇒) Let R be a sunny and Bregman generalized nonexpansive retraction
of E onto C. Let x ∈ E and let y ∈ C = F (R). Putting xt = Rx + t(x − Rx) for
all t ∈ [0, 1], we have that D(Rx, y) = D(Rxt, y) ≤ D(xt, y) and hence

D(Rx, y) = min
z∈[x,Rx]

D(z, y),

where [x,Rx] is the closed line segment joining x and Rx. Using (2.7), we have that

0 ≤ ⟨xt −Rx,∇g(Rx)−∇g(y)⟩, ∀t ∈ [0, 1].

Putting t = 1, we have 0 ≤ ⟨x−Rx,∇g(Rx)−∇g(y)⟩ for all y ∈ C.
(⇐=) Let x ∈ E and let y ∈ C = F (R). Then, we have from (3.1) that

D(x, y) = D(x,Rx) +D(Rx, y) + ⟨x−Rx,∇g(Rx)−∇g(y)⟩.
From the assumption ⟨x−Rx,∇g(Rx)−∇g(y)⟩ ≥ 0, we have

D(x, y) ≥ D(x,Rx) +D(Rx, y) ≥ D(Rx, y).

This implies that R is Bregman generalized nonexpansive. Let us show that R is
sunny. Putting xt = Rx+ t(x−Rx) for x ∈ E and t > 0, we have

⟨xt −Rxt,∇g(Rxt)−∇g(Rx)⟩ ≥ 0 and ⟨x−Rx,∇g(Rx)−∇g(Rxt)⟩ ≥ 0.

From xt −Rx = t(x−Rx), we have

⟨x−Rxt,∇g(Rx)−∇g(Rxt)⟩ = t⟨x−Rx,∇g(Rx)−∇g(Rxt)⟩ ≥ 0

and hence ⟨Rx−Rxt,∇g(Rxt)−∇g(Rx)⟩ ≥ 0. This implies that

⟨Rx−Rxt,∇g(Rxt)−∇g(Rx)⟩ = 0.

Thus, we have from Lemma 2.2 (2) that Rx = Rxt = R(Rx + t(x − Rx)), that is,
R is sunny.

Next, we show that a sunny and Bregman generalized nonexpansive retraction is
unique. Let R and P be sunny and Bregman generalized nonexpansive retractions
of E onto C. Then, we have

⟨x−Rx,∇g(Px)−∇g(Rx)⟩ ≤ 0 and ⟨x− Px,∇g(Rx)−∇g(Px)⟩ ≤ 0.

Thus, we have ⟨Px− Rx,∇g(Px)−∇g(Rx)⟩ ≤ 0 and hence ⟨Px− Rx,∇g(Px)−
∇g(Rx)⟩ = 0. Then, we have from Lemma 2.2 (2) that Rx = Px for all x ∈ E. �

Using Lemma 3.3, we can prove the following result.

Lemma 3.4. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function. Let C be a nonempty closed subset of E and let R be
a sunny Bregman generalized nonexpansive retraction from E onto C. Let (x, z) ∈
E × C. Then the following assertions hold:

(1) z = Rx if and only if ⟨x− z,∇g(y)−∇g(z)⟩ ≤ 0 for all y ∈ C;
(2) D(Rx, z) +D(x,Rx) ≤ D(x, z).
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Using the techniques developed by Kohsaka and Takahashi [12], we prove the
following lemma.

Lemma 3.5. Let E be a reflexive Banach space and let g : E → R be a convex,
continuous, strongly coercive and Gâteaux differentiable function which is bounded
on bounded sets and uniformly convex on bounded sets. Let C be a nonempty closed
Bregman generalized nonexpansive retract of E. Then ∇gC is closed and convex.

Proof. Let R be a Bregman generalized nonexpansive retraction from E onto C.
Since R is a retraction from E onto C, we have F (R) = C. We first show that
∇gC is convex. In view of Lemma 2.2 (4), we have ∇g∗ = (∇g)−1, where g∗ is the
conjugate function of g. Let x∗ and y∗ be arbitrary elements of ∇gC, let α ∈ (0, 1)
and put β = 1− α. Then we have x, y ∈ C such that x∗ = ∇g(x) and y∗ = ∇g(y).
Since x, y ∈ C = F (R) and R is Bregman generalized nonexpansive, we have

D(R∇g∗(α∇g(x) + β∇g(y)),∇g∗(α∇g(x) + β∇g(y)))
= g(R∇g∗(α∇g(x) + β∇g(y)))− g(∇g∗(α∇g(x) + β∇g(y)))
−⟨R∇g∗(α∇g(x) + β∇g(y))−∇g∗(α∇g(x) + β∇g(y)), α∇g(x) + β∇g(y)⟩
= g(R∇g∗(α∇g(x) + β∇g(y)))− g(∇g∗(α∇g(x) + β∇g(y)))
−[⟨R∇g∗(α∇g(x) + β∇g(y)), α∇g(x)⟩+ ⟨R∇g∗(α∇g(x) + β∇g(y)), β∇g(y)⟩
−⟨∇g∗(α∇g(x) + β∇g(y)), α∇g(x)⟩ − ⟨∇g∗(α∇g(x) + β∇g(y)), β∇g(y)⟩]
= g(R∇g∗(α∇g(x) + β∇g(y)))− g(∇g∗(α∇g(x) + β∇g(y)))
−[⟨R∇g∗(α∇g(x) + β∇g(y))− x, α∇g(x)⟩
+⟨x, α∇g(x)⟩+ ⟨R∇g∗(α∇g(x) + β∇g(y))− y, β∇g(y)⟩+ ⟨y, β∇g(y)⟩
−⟨∇g∗(α∇g(x) + β∇g(y)), α∇g(x)⟩ − ⟨∇g∗(α∇g(x) + β∇g(y)), β∇g(y)⟩]
= αg(R∇g∗(α∇g(x) + β∇g(y))) + βg(R∇g∗(α∇g(x) + β∇g(y)))
−αg(x) + αg(x)− βg(y) + βg(y)
−αg(∇g∗(α∇g(x) + β∇g(y)))− βg(∇g∗(α∇g(x) + β∇g(y)))
−[⟨R∇g∗(α∇g(x) + β∇g(y))− x, α∇g(x)⟩
+⟨x, α∇g(x)⟩+ ⟨R∇g∗(α∇g(x) + β∇g(y))− y, β∇g(y)⟩+ ⟨y, β∇g(y)⟩
−⟨∇g∗(α∇g(x) + β∇g(y)), α∇g(x)⟩ − ⟨∇g∗(α∇g(x) + β∇g(y)), β∇g(y)⟩]
= α[g(R∇g∗(α∇g(x) + β∇g(y)))− g(x)− ⟨R∇g∗(α∇g(x) + β∇g(y))− x,∇g(x)⟩]
+β[g(R∇g∗(α∇g(x) + β∇g(y)))− g(y)− ⟨R∇g∗(α∇g(x) + β∇g(y))− y,∇g(y)⟩]
−α[g(∇g∗(α∇g(x) + β∇g(y)))− g(x)− ⟨∇g∗(α∇g(x) + β∇g(y))− x,∇g(x)⟩]
−β[g(∇g∗(α∇g(x) + β∇g(y)))− g(y)− ⟨∇g∗(α∇g(x) + β∇g(y))− y,∇g(y)⟩]
= αD(R∇g∗(α∇g(x) + β∇g(y)), x) + βD(R∇g∗(α∇g(x) + β∇g(y)), y)
−αD(∇g∗(α∇g(x) + β∇g(y)), x)− βD(∇g∗(α∇g(x) + β∇g(y)), y)
≤ αD(∇g∗(α∇g(x) + β∇g(y)), x) + βD(∇g∗(α∇g(x) + β∇g(y)), y)
−αD(∇g∗(α∇g(x) + β∇g(y)), x)− βD(∇g∗(α∇g(x) + β∇g(y)), y)
= 0.

Thus, we conclude that

D(R∇g∗(α∇g(x) + β∇g(y)),∇g∗(α∇g(x) + β∇g(y))) = 0.

It follows from Lemma 2.5 that

R∇g∗(α∇g(x) + β∇g(y) = ∇g∗(α∇g(x) + β∇g(y)).

Therefore, we obtain ∇g∗(α∇g(x) + β∇g(y)) ∈ C and hence

αx∗ + βy∗ = α∇g(x) + β∇g(y) ∈ ∇gC.
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This proves that ∇gC is convex.
We next show that ∇gC is closed. Let {x∗n} be a sequence of ∇gC converging

strongly to x∗ ∈ E∗. Then there exist x ∈ E and xn ∈ C such that x∗ = ∇g(x) and
x∗n = ∇g(xn) for all n ∈ N. This implies that

(3.6) lim
n→∞

∥∇g(xn)−∇g(x)∥ = 0.

From Theorem 2.3, we have limn→∞ ∥xn−x∥ = 0 and hence {xn} is bounded. Since
R is Bregman generalized nonexpansive, it follows from (3.3) and (3.6) that

D(Rx, xn) ≤ D(x, xn)
= g(x)− g(xn)− ⟨x− xn,∇g(xn)⟩
= g(x)− g(xn)− ⟨x− xn,∇g(x)⟩ − ⟨x− xn,∇g(xn)−∇g(x)⟩
≤ g(x)− g(xn)− ⟨x− xn,∇g(x)⟩+ ∥x− xn∥∥∇g(xn)−∇g(x)∥
→ g(x)− g(x)− ⟨x− x,∇g(x)⟩ = 0

as n → ∞. Thus we have limn→∞D(Rx, xn) = 0 and limn→∞D(x, xn) = 0. On the
other hand, since {xn} is bounded, we have from Lemma 2.5 that limn→∞ ∥Rxn −
x∥ = 0 and limn→∞ ∥xn−x∥ = 0. Thus, we conclude that Rx = x and hence x ∈ C.
Since R is a retraction of E onto C, we have x∗ = ∇g(x) = ∇g(Rx) ∈ ∇gC. Thus
∇gC is closed, which completes the proof. �

The following result can be derived from Lemmas 3.3, 3.4 and 3.5.

Lemma 3.6. Let E be a reflexive Banach space and let g : E → R be a convex,
continuous and strongly coercive function which is bounded on bounded sets, and
uniformly convex and uniformly smooth on bounded sets. Let C∗ be a nonempty
closed convex subset of E∗ and let PC∗ be the Bregman projection from E∗ onto C∗.
Then the mapping R defined by R = (∇g)−1PC∗∇g is a sunny Bregman generalized
nonexpansive retraction from E onto (∇g)−1C∗.

Proof. We first prove that (∇g)−1C∗ is closed. Let {xn} be a sequence in ∇g∗C∗
such that xn → x. Then, we have ∇g(xn) ∈ C∗. Since ∇g is continuous, we have
∇g(xn) → ∇g(x) and hence ∇g(x) ∈ C∗. So, we have x ∈ (∇g)−1C∗. Thus,
(∇g)−1C∗ is closed. If x ∈ E, then we have

R(x) = (∇g)−1PC∗∇g(x) ∈ (∇g)−1PC∗E
∗ = (∇g)−1C∗

and hence R is a mapping of E into (∇g)−1C∗. Furthermore, for any x ∈ (∇g)−1C∗
we have ∇g(x) ∈ C∗ and hence PC∗∇g(x) = ∇g(x). Thus, we have

Rx = (∇g)−1PC∗∇g(x) = (∇g)−1∇g(x) = x.

Then, R is onto and Rx = x for all x ∈ (∇g)−1C∗. It is obvious that

R2x = R(Rx) = Rx = x

for all x ∈ E and hence R is a retraction. We finally show that R is sunny and
Bregman generalized nonexpansive. Since R is a retraction of E onto (∇g)−1C∗,
we have F (R) = (∇g)−1C∗. Thus F (R) is nonempty. On the other hand, we know
from (2.8) that

D∗(y
∗, PC∗x

∗) +D∗(PC∗x
∗, x∗) ≤ D∗(y

∗, x∗)
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for all (x∗, y∗) ∈ E∗ × C∗, which is equivalent to

D∗(∇g(y), PC∗∇g(x)) +D∗(PC∗∇g(x),∇g(x)) ≤ D∗(∇g(y),∇g(x))

for all (x, y) ∈ E × (∇g)−1C∗. Thus, we have

D(Rx, y) +D(x,Rx) ≤ D(x, y)

for all (x, y) ∈ E × (∇g)−1C∗. Then, we have that for all (x, y) ∈ E × (∇g)−1C∗,

0 ≤ D(x, y)− {D(Rx, y) +D(x,Rx)}
= g(x)− g(y)− ⟨x− y,∇g(y)⟩ − {g(Rx)− g(y)− ⟨Rx− y,∇g(y)⟩}
−{g(x)− g(Rx)− ⟨x−Rx,∇g(Rx)⟩}
= ⟨Rx,∇g(y)⟩ − ⟨x,∇g(y)⟩+ ⟨x,∇g(Rx)⟩} − ⟨Rx,∇g(Rx)⟩
= ⟨x−Rx,∇g(Rx)−∇g(y)⟩.

By Lemma 3.3 we have that R is sunny and Bregman generalized nonexpansive.
This completes the proof. �

Let E be a reflexive Banach space and let g : E → R be a strongly coercive
Bregman function. Let C be a nonempty closed subset of E. We know from
Lemma 3.3 that a sunny Bregman generalized nonexpansive retraction of E onto
C is uniquely determined. Then, such a sunny Bregman generalized nonexpansive
retraction of E onto C is denoted by RC . A nonempty subset C of E is said to
be a sunny Bregman generalized nonexpansive retract (resp. a Bregman generalized
nonexpansive retract) of E if there exists a sunny Bregman generalized nonexpansive
retraction (resp. a Bregamn generalized nonexpansive retraction) of E onto C. The
set of all fixed points of such a sunny Bregman generalized nonexpansive retraction
of E onto C is, of course, C. We obtain the following result by using Lemmas 2.2
(4), 3.5 and 3.6.

Theorem 3.7. Let E be a reflexive Banach space and let g : E → R be a convex,
continuous and strongly coercive function which is bounded on bounded sets, and
uniformly convex and uniformly smooth on bounded sets. Let C be a nonempty
closed subset of E. Then the following statements are equivalent:

(1) C is a sunny Bregman generalized nonexpansive retract of E;
(2) C is a Bregman generalized nonexpansive retract of E;
(3) ∇gC is closed and convex.

In this case, the unique sunny Bregman generalized nonexpansive retraction from
E onto C is given by (∇g)−1PC∗∇g, where PC∗ is the Bregman projection from E∗

onto ∇gC.

Proof. Since E is reflexive, by Lemma 2.2 (4) we have ∇g∗ = (∇g)−1. The implica-
tion (1) =⇒ (2) is obvious. In view of Lemma 3.5, we have (2) =⇒ (3). Assume now
that (3) holds. Since ∇gC is closed and convex, in view of Lemma 3.6, we conclude
that R = (∇g)−1PC∗∇g is a sunny Bregman generalized nonexpansive retraction
from E onto C = (∇g)−1∇gC, which completes the proof. �
Lemma 3.8. Let E be a reflexive Banach space and let g : E → R be a convex,
continuous and strongly coercive function which is bounded on bounded sets, and
uniformly convex and uniformly smooth on bounded sets. Let C be a nonempty
closed subset of E such that ∇gC is closed and convex. If T : C → C is a Bregman
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generalized nonexpansive mapping such that F (T ) ̸= Ø, then F (T ) is closed and
∇gF (T ) is closed and convex.

Proof. First, let us prove that ∇gF (T ) is closed. Let {x∗n} be a sequence of ∇gF (T )
such that x∗n → x∗ for some x∗ ∈ E∗. Since ∇gC is closed and convex, we have
x∗ ∈ ∇gC. This implies that there exist x ∈ C and {xn} ⊂ F (T ) such that
x∗ = ∇gx and x∗n = ∇gxn for all n ∈ N. Since E is reflexive, by Lemma 2.2 (4) we
have ∇g∗ = (∇g)−1. In view of Theorem 2.3 (3), we obtain that ∇g∗ is uniformly
norm-to-norm continuous on bounded sets. Thus we obtain xn → x as n → ∞.
Since g is continuous and {∇g(xn)} is bounded, we conclude that

D(Tx, xn) ≤ D(x, xn)

= g(x)− g(xn)− ⟨x− xn,∇g(xn)⟩
→ g(x)− g(x)− 0

= 0.

This means that limn→∞D(Tx, xn) = 0 and limn→∞D(x, xn) = 0. On the other
hand, we have from Lemma 2.5 that ∥xn − x∥ → 0 and ∥xn − Tx∥ → 0. Then,
we have Tx = x. Thus we have x∗ = ∇gx ∈ ∇gF (T ). So, we get that ∇gF (T )
is closed. Since ∇g is norm-to-norm continuous, we have that F (T ) is closed. A
similar argument as mentioned in the proof of Lemma 3.5 shows that ∇gF (T ) is
convex. This completes the proof. �

The following result is deduced from Theorem 3.7 and Lemma 3.8.

Proposition 3.9. Let E be a reflexive Banach space and let g : E → R be a convex,
continuous, strongly coercive and Gâteaux differentiable function which is bounded
on bounded sets, and uniformly convex and uniformly smooth on bonded sets. Let C
be a nonempty closed subset of E such that ∇gC is closed and convex. If T : C → C
is a Bregman generalized nonexpansive mapping such that F (T ) ̸= Ø, then F (T ) is
a sunny Bregman generalized nonexpansive retract of E.

4. Fixed point theorems

In this section, we prove fixed point theorems for Bregman generalized nonex-
pansive type mappings in a Banach space.

Theorem 4.1. Let E be a reflexive Banach space and let g : E → R be a convex,
continuous, strongly coercive and Gâteaux differentiable function which is bounded
on bounded sets and uniformly convex on bonded sets. Let C be a nonempty closed
Bregman generalized nonexpansive retract of E and let T : C → C be a Bregman
generalized nonexpansive type mapping. Then the following statements are equiva-
lent:

(1) F (T ) is nonempty;
(2) {Tnx} is bounded for some x ∈ C.

Proof. The implication (1) =⇒ (2) is obvious. We prove the implication (2) =⇒ (1).
Let there exist x ∈ C such that {Tnx} is bounded. By the definition of T , we get

(4.1)
D(T k+1x, Ty) +D(Ty, T k+1x)

≤ D(T kx, Ty) +D(y, T k+1x), ∀k ∈ N ∪ {0}, y ∈ C.
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In view of (3.1), we conclude that

D(Ty, T k+1x) = D(Ty, y) +D(y, T k+1x) + ⟨Ty − y,∇gy −∇gT k+1x⟩.

This implies that

(4.2) D(y, T k+1x)−D(Ty, T k+1x) = −D(Ty, y) + ⟨y − Ty,∇gy −∇gT k+1x⟩.

In view of (4.1) and (4.2), we obtain

0 ≤ D(T kx, Ty) −D(T k+1x, Ty)−D(Ty, y)
+⟨y − Ty,∇gy −∇gT k+1x⟩, ∀k ∈ N ∪ {0}, y ∈ C.

Summing these inequalities with respect to k = 0, 1, 2, ..., n − 1 and then dividing
by n, we get

(4.3) 0 ≤ 1

n
D(x, Ty)− 1

n
D(Tnx, Ty)−D(Ty, y) + ⟨y − Ty,∇gy − S∗

nx⟩,

where S∗
nx := 1

n

∑n
k=1∇gT kx. Since C is a Bregman generalized nonexpansive

retract, in view of Lemma 3.5, we conclude that ∇gC is closed and convex. This
implies that {S∗

nx} is a well-defined sequence in ∇gC. The function g is bounded on
bounded subsets of E and therefore ∇g is also bounded on bounded subsets of E∗

(see, for example, [2, Proposition 1.1.11] for more details). Since {Tnx} is bounded,
{∇gTnx} is also bounded. So, we have {S∗

nx} is bounded. Since E∗ is reflexive, we
have that {S∗

nx} has a subsequence {S∗
ni
x} such that S∗

ni
x ⇀ p∗ for some p∗ ∈ ∇gC.

Letting ni → ∞ in (4.3), we obtain

(4.4) 0 ≤ −D(Ty, y) + ⟨y − Ty,∇gy − p∗⟩.

Put p := (∇g)−1p∗. Then p ∈ C and letting y = p in (4.4), we conclude that

0 ≤ −D(Tp, p) + ⟨p− Tp,∇gp−∇gp⟩.

This implies that D(Tp, p) ≤ 0. From Lemma 2.5, we have Tp = p. Thus we have
F (T ) is nonempty, which completes the proof. �

The following theorem is an easy consequence of Lemma 3.5 and Theorem 4.1.

Theorem 4.2. Let E be a reflexive Banach space and let g : E → R be a convex,
continuous, strongly coercive and Gâteaux differentiable function which is bounded
on bounded sets and uniformly convex on bounded sets. Let C be a nonempty closed
Bregman generalized nonexpansive retract of E and let T : C → C be a Bregman
firmly generalized nonexpansive type mapping. Then the following statements are
equivalent:

(1) F (T ) is nonempty;
(2) {Tnx} is bounded for some x ∈ C.

Let C be a nonempty closed subset of a Banach space E and let T : C → C
be a mapping. A point p ∈ C is said to be a Bregman generalized asymptotic
fixed point [8] of T if C contains a sequence {xn} such that ∇gxn ⇀∗ ∇gp and
∥∇gxn −∇gTxn∥ → 0. The set of all Bregman generalized asymptotic fixed points
of T is denoted by F̌ (T ).
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Theorem 4.3. Let E be a reflexive Banach space. Let g : E → R be a convex,
continuous, strongly coercive and Gâteaux differentiable function which is bounded
on bounded sets and uniformly convex on bounded sets. Let C be a nonempty closed
Bregman generalized nonexpansive retract of E and let T : C → C be a Bregman
generalized nonexpansive type mapping. If F (T ) ̸= Ø, then F̌ (T ) = F (T ).

Proof. It is clear that F (T ) ⊂ F̌ (T ). Let us show that F̌ (T ) ⊂ F (T ). For any
p ∈ F̌ (T ), there exists a sequence {xn} ⊂ C such that ∇gxn − ∇gTxn → 0 and
∇gxn ⇀ ∇gp. By the definition of T , we obtain

(4.5) D(Txn, Tp) +D(Tp, Txn) ≤ D(xn, Tp) +D(p, Txn).

In view of (3.1), we conclude that

D(Tp, Txn) = D(Tp, p) +D(p, Txn) + ⟨Tp− p,∇gp−∇gTxn⟩

and hence

(4.6) D(p, Txn)−D(Tp, Txn) = −D(Tp, p) + ⟨p− Tp,∇gp−∇gTxn⟩.

It follows from (4.5) and (4.6) that

(4.7)

D( Txn, Tp)−D(xn, Tp)
≤ −D(Tp, p) + ⟨p− Tp,∇gp−∇gTxn⟩
≤ −D(Tp, p) + ⟨p− Tp,∇gp−∇gxn +∇gxn −∇gTxn⟩
≤ −D(Tp, p) + ⟨p− Tp,∇gp−∇gxn⟩

+∥p− Tp∥∥∇g(xn)−∇g(Txn)∥.

On the other hand, we have that

D(Txn, Tp)−D(xn, Tp)

= g(Txn)− g(Tp)− ⟨Txn − Tp,∇g(Tp)⟩
−[g(xn)− g(Tp)− ⟨xn − Tp,∇g(Tp)⟩]

= g(Txn)− g(Tp)− ⟨Txn − Tp,∇g(Tp)⟩
−g(xn) + g(Tp) + ⟨xn − Tp,∇g(Tp)⟩

= g(Txn)− g(xn)− ⟨Txn − xn,∇g(Tp)⟩
= g(Txn)− g(xn)− ⟨Txn − xn,∇g(Tp)−∇g(xn) +∇g(xn)⟩
= g(Txn)− g(xn)− ⟨Txn − xn,∇g(xn)⟩ − ⟨Txn − xn,∇g(Tp)−∇g(xn)⟩
= D(Txn, xn)− ⟨Txn − xn,∇g(Tp)−∇g(xn)⟩
≥ −∥Txn − xn∥∥∇g(Tp)−∇g(xn)∥.

From ∇xn ⇀ ∇gp, we have {∇gxn} is bounded. Since the mapping ∇g∗ on E∗ is
uniformly norm to norm continuous on each bounded set and ∥∇gxn−∇gTxn∥ → 0,
we obtain ∥xn − Txn∥ → 0. Thus, we have that

lim inf
n→∞

{D(Txn, Tp)−D(xn, Tp)} ≥ 0. (4.8)

In view of (4.7) and (4.8), we get −D(Tp, p) ≥ 0. This implies that D(Tp, p) = 0.
From Lemma 2.5 we have p ∈ F (T ), which completes the proof. �
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5. Weak convergence theorem

In this section, we prove a weak convergence theorem for Bregman firmly gener-
alized nonexpansive type mappings in a reflexive Banach space.

Theorem 5.1. Let E be a reflexive Banach space and let g : E → R be a convex,
continuous and strongly coercive function which is bounded on bounded sets, and
uniformly convex and uniformly smooth on bounded sets. Let C be a nonempty
closed Bregman generalized nonexpansive retract of E and let T : C → C be a
Bregman firmly generalized nonexpansive type mapping. If the mapping ∇g is weakly
sequentially continuous, then the following statements are equivalent:

(1) F (T ) is nonempty;
(2) {Tnx} is bounded for some x ∈ C.

In this case, {Tnx} converges weakly to an element of F (T ).

Proof. We know from Theorem 4.2 that (1) ⇐⇒ (2). Let x ∈ C and z ∈ F (T ).
Since T is a Bregman firmly generalized nonexpansive type mapping from C into
itself, we have T is Bregman firmly generalized nonexpansive. This implies that

(5.1) D(Tn+1x, z) ≤ D(Tnx, Tn+1x) +D(Tn+1x, z) ≤ D(Tnx, z), ∀n ∈ N.

Therefore, limn→∞D(Tnx, z) exists. From (5.1), it follows that

(5.2) D(Tnx, Tn+1x) ≤ D(Tnx, z)−D(Tn+1x, z), ∀n ∈ N.

Since {D(Tnx, z)} converges, we obtain that

(5.3) lim
n→∞

D(Tnx, Tn+1x) = 0.

Since {Tnx} is bounded, we have from (5.3) and Lemma 2.5 that

(5.4) lim
n→∞

∥Tnx− Tn+1x∥ = 0.

Since T : C → C is a Bregman firmly generalized nonexpansive type mapping, we
have from Lemma 3.2 that

(5.5) ⟨Tnx− Tn+1x− (y − Ty),∇gTn+1x−∇gTy⟩ ≥ 0, ∀n ∈ N, y ∈ C.

Since {Tnx} is bounded, there exists a subsequence {Tnix} of {Tnx} such that
Tnix ⇀ p as i → ∞. Since ∇g is weakly sequentially continuous, we obtain
∇gTnix ⇀ ∇gp. Since ∇gC is closed and convex, it is weakly closed and hence
∇gp ∈ ∇gC. Thus, we have p ∈ C. On the other hand, since g is uniformly smooth
on bounded sets, ∇g is norm-to-norm uniformly continuous on each bounded subset
of E. So in view of (5.4) we obtain ∥∇gTnx − ∇gTn+1x∥ → 0. This implies that
∇gTni+1x ⇀ ∇gp as i → ∞. Letting ni → ∞ in (5.5), we conclude that

(5.6) ⟨Ty − y,∇gp−∇gTy⟩ ≥ 0, ∀y ∈ C.

Putting y = p in (5.6), we get

(5.7) ⟨Tp− p,∇gp−∇gTp⟩ ≥ 0.

Since ∇g is strictly monotone, we obtain Tp = p. Thus we have p ∈ F (T ). Assume
now that {Tnix} and {Tnjx} are two subsequences of {Tnx} such that Tnix ⇀ p1
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and Tnjx ⇀ p2. The above argument shows that p1, p2 ∈ F (T ). Let

lim
n→∞

[D(Tnx, p1)−D(Tnx, p2)] = λ.

By the definition of the Bregman distance, we have that for all n ∈ N
D(Tnx, p1)−D(Tnx, p2) =g(Tnx)− g(p1)− ⟨Tnx− p1,∇gp1⟩

− [g(Tnx)− g(p2)− ⟨Tnx− p2,∇g(p2)⟩]
=g(p2)− g(p1)− ⟨Tnx− p,∇gp1⟩+ ⟨Tnx− p2,∇g(p2)⟩.

This together with Tnix ⇀ p1 and Tnjx ⇀ p2 implies that

(5.8) g(p2)− g(p1) + ⟨p1 − p2,∇gp2⟩ = λ

and

(5.9) g(p2)− g(p1)− ⟨p2 − p1,∇gp1⟩ = λ.

In view of (5.8) and (5.9), we obtain

⟨p1 − p2,∇gp1 −∇gp2⟩ = 0.

Employing Lemma 2.2 (2), we conclude that p1 = p2. Thus we have {Tnx} converges
weakly to an element of F (T ). �
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