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GENERALIZED RETRACTION AND FIXED POINT THEOREMS
USING BREGMAN FUNCTIONS IN BANACH SPACES

ESKANDAR NARAGHIRAD", WATARU TAKAHASHI, AND JEN-CHIH YAO

ABSTRACT. In this paper, using Bregman functions, we first study Bregman
generalized nonexpansive retracts in Banach spaces and give a characterization
of sunny Bregman generalized nonexpansive retracts. Furthermore, we prove
fixed point and convergence theorems for Bregman generalized nonexpansive type
mappings in Banach spaces.

1. INTRODUCTION

Let E be a smooth Banach space and let J be the normalized duality mapping
of E. A mapping T : ' — F is said to be of generalized nonexpansive type if

o(Tz, Ty) + ¢(Ty, Tx) < ¢(x, Ty) + ¢(y, T'x), Yo,y € E,

where ¢(z,y) = ||z||* — 2(z, Jy) + ||y||* for all 2,y € E. Recently, Ibaraki and
Takahashi [5] proved the following fixed point theorem for generalized nonexpansive
type mappings in a Banach space.

Theorem 1.1. Let E be a smooth, strictly convex and reflexive Banach space and
let T be a generalized nonexpansive type mapping of E into itself. Then the following
are equivalent:

(1) The set F(T') of fixed points of T is nonempty;

(2) {T™z} is bounded for some x € E.

Let E be a Banach space and let E* be the dual space of E. Throughout this
paper, we denote the set of real numbers and the set of positive integers by R and N,
respectively. Let g : E — R be a convex function. Then the directional derivative
d*g(z)(y) of g at x € E with the direction y € F is defined by

(11) 0 () (y) = im gz + t? —g(x)

The function g is said to be Gateaux differentiable at x if d*g(z) € E* (see, for
example, 2, p. 12] or [11, p. 508]). In this case, we denote d*g(x) by Vg(x). A
convex function g : £ — R is said to be Gateaux differentiable if it is Gateaux
differentiable everywhere. Let g : F — R be a convex and Gateaux differentiable
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function. Then the Bregman distance [1, 3| corresponding to g is the function
D : E x E — R defined by

(1.2) D(z,y) = g(x) — g(y) — (z —y,Vg(y)), Yo,y € E.
It is clear that D(x,y) > 0 for all z,y € E. In the case when E is a smooth Banach

space, setting g(z) = ||z||? for all € E, we have that Vg(z) = 2Jx for all z € F
and hence

D(z,y) = |lz]* = yll* = (x =y, Vg(¥))
= [lz|* = [lyl|* = (x — v, 2Jy)
= [|lz[|* = [lylI* = (z,2Jy) + 2[|y||?
= ||z||? — 2(z, Jy) + [ly|?

for all z,y € E. Let C be a nonempty subset of £. A mapping T : C' — C is said
to be of Bregman generalized nonexpansive type if

(13)  D(Tw,Ty)+ D(Ty,Tx) < D(x,Ty) + D(y, Tx), Yo,y € C.

In this paper, we first study Bregman generalized nonexpansive retracts in Ba-
nach spaces and give a characterization of sunny Bregman generalized nonexpansive
retracts. Furthermore, we generalize the fixed point theorems for generalized nonex-
pansive type mappings in [5] with Bregman functions in reflexive Banach spaces. We
prove fixed point and convergence theorems for Bregman generalized nonexpansive
type mappings in Banach spaces.

2. PRELIMINARIES

Let E be a Banach space with the norm |.|| and the dual space E*. For any
x € E, we denote the value of z* € E* at x by (z,z*). When {z,} is a sequence
in E, we denote the strong convergence of {z,} to z € E by x, — x and the
weak convergence by x, — x. For any sequence {z}} in E*, we denote the strong
convergence of {z}} to * € E* by z} — z*, the weak convergence by x} — z* and
the weak® convergence by x; —* z*. The modulus § of convexity of E is denoted
by

st =int {1 = 2 o <1 < 1o - 2

for every € with 0 < e¢ < 2. A Banach space E is said to be uniformly conver if
d(e) > 0 for every € > 0. Let S = {z € E : ||z|| = 1}. The norm of E is said to be
Gateaux differentiable if for each x,y € S, the limit

o) et tyll — |
t—0 t

exists. In the case, F is called smooth. If the limit (2.1) is attained uniformly in
x,y € S, then FE is called uniformly smooth. The Banach space F is said to be
strictly convex if ||%|| < 1 whenever z,y € S and x # y. It is well-known that F
is uniformly convex if and only if £* is uniformly smooth. It is also known that if
E is reflexive, then FE is strictly convex if and only if E* is smooth; for more details,
see [17].

Let T : E — 25" be a set-valued mapping. We define the domain and range of T
by D(T) ={z € E:Tx # O} and R(T) = UyepTx, respectively. The graph of T
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is denoted by G(T) = {(z,2*) € E x E* : 2* € Tx}. The mapping T C E x E* is
said to be monotone [13] if (x — y,z* — y*) > 0 whenever (x,z*), (y,y*) € T. It is
also said to be mazximal monotone [16] if its graph is not contained in the graph of
any other monotone operator on E. If T' C F x E* is maximal monotone, then we
can show that the set 7710 = {z € F : 0 € Tz} is closed and convex. A function
f: E — (—o00,+00] is said to be proper if the domain D(f) ={z € E : f(z) < oo}
is nonempty. It is also called lower semicontinuous if {x € E : f(x) < r} is closed
for all » € R. We say that f is upper semicontinuous if {x € E : f(x) > r} is closed
for all r € R. The function f is said to be convex if

(2.2) flaz+ (1= a)y) < af(z)+(1—a)f(y)

for all z,y € F and a € (0,1). It is also said to be strictly convez if the strict
inequality holds in (2.2) for all z,y € D(f) with  # y and « € (0,1). For a proper
lower semicontinuous convex function f : E — (—o0, +00], the subdifferential Of of
f is defined by

(2.3) Of(x) ={z" € E*: f(x) + {y —z,2") < f(y), Vy € E}

for all z € E. 1t is well known that 0f C E x E* is maximal monotone [14, 15]. For
any proper lower semicontinuous convex function f : £ — (—o00, 400], the conjugate
function f* of f is defined by

[ (&) = sup{(z,2") — f(2)}
el
for all z* € E*. It is well known that f(z)+ f*(z*) > (z,2*) for all (z,2*) € Ex E*.
It is also known that (x,z*) € Of is equivalent to

(2.4) f(@) + [ (2") = (@, z7).

We also know that if f: F — (—o0,+00] is a proper lower semicontinuous convex
function, then f*: E* — (—o0, +00] is a proper weak* lower semicontinuous convex
function; see [18] for more details on convex analysis. Let g : E — R be a convex
function. The function g is also said to be Fréchet differentiable at x € E (see, for
example, [2, p. 13] or [11, p. 508]) if for all € > 0, there exists 6 > 0 such that
lly — x|| < § implies that

| 9(y) — g9(x) = (y — 2, Vg(x)) |< elly — z]|.

A convex function g : E — R is said to be Fréchet differentiable if it is Fréchet
differentiable everywhere. It is well known that if a continuous convex function
g : E — R is Gateaux differentiable, then Vg is norm-to-weak* continuous (see, for
example, [2, Proposition 1.1.10]). Also, it is known that if g is Fréchet differentiable,
then Vg is norm-to-norm continuous (see, [11, p. 508]). The mapping Vg is said
to be weakly sequentially continuous if z,, — x implies that Vg(z,) —=* Vg(x) (for
more details, see [2, Theorem 3.2.4] or [11, p. 508]). The function g : E — R is said
to be strongly coercive if

9(xn) 00

|zn|| = co = .
|||
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It is also said to be bounded on bounded sets if g(U) is bounded for each bounded
subset U of E. The following definition is slightly different from that in Butnariu
and Iusem [2].

Definition 2.1 ([11]). Let E be a Banach space. The function g : E — R is said
to be a Bregman function if the following conditions are satisfied:
(1) g is continuous, strictly convex and Gateaux differentiable;
(2) the set {y € E: D(z,y) < r} is bounded for all z € E and r > 0.
The following lemma follows from Butnariu and Iusem [2] and Zalinscu [19]:
Lemma 2.2. Let E be a reflevive Banach space and let g : E — R be a strongly
coercive Bregman function. Then

(1) Vg : E — E* is one-to-one, onto and norm-to-weak continuous;

(2) (& =y, Vg(x) = Vg(y)) = 0 if and only if v = y;
(3) {x € E: D(x,y) <r} is bounded for ally € E and r > 0;
(4) D(g*) = E*, g* is Gateaux differentiable and Vg* = (Vg)~ 1.

Let E be a reflexive Banach space, g : E — R be a strongly coercive Bregman
function and let D : Fx E — R be the Bregman distance corresponding to g. Then,
g* : E* — R is convex and Gateaux differentiable [19]. Let D, : E* x E* — R be
the function defined by
(2.5) Di(z%,y") = g"(2") —g"(y") = (Vg™ (y"), 2" —y7)
for x*,y* € E*, where Vg* is the directional derivative of g*. It follows from
(2.2)-(2.5) and Lemma 2.2 (4) that

D.(Vg(z),Vg(y)) = ¢"(Vg(x)) — 9" (Va(y)) — (Vg"(Vg(y)), Vg(x) — Vg(y))
= ¢ (Vg(z)) — ¢"(Vg(y)) — (y, Vg(x) = Vg(y))
= [(3«“ Vy(z)) — g9(x)] — [(y. Vg(y)) — 9(y)]
(2.6) —(y, Vg(z) — Vyg(y))
= (z,Vg(z)) —g(z) — (¥, Vg(y)) + 9(y)
—(y,Vg(z)) + (y, Vg(y))
9(y) — g(x) — (y — z,Vg(x))
D(y,z)

for all x,y € E. Let E be a Banach space and let C' be a nonempty convex subset
of E. Let g : E — R be a convex and Gateaux differentiable function. Then, for
x € F and g € C, D(xo,x) = minygec D(y, x) if and only if
(2.7) (y — x0,Vg(x) — Vg(xg)) <0, Yy € C.
Let us show (=). Forany z € Cand A € Rwith 0 < A < 1, put y = (1—=A)zo+Az.
Then, we have that
D(zg,z) < D((1—Nzo+ Az,x)
< g(x0) — g(x) — (w0 — x, Vg(x))
< g((1 = Nz + Az) — g(z) = (L = A)zo + Az — x, Vg(x))
<0< g(zo + Az — 20)) — g(w0) — Mz — 20, Vg(z))
= 0< g($0+’\(z_/\zo))_g($o) — (2 — x0, Vg(x)).

T
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Letting A | 0, we have that
0 < (2 — 0, Vg(20)) — (2 — z0, Vg())

and hence 0 < (z — xo, Vg(xo) — Vg(z)). This implies (2.7). Further, if C is a
nonempty closed convex subset of a reflexive Banach space F and g : £ — R is
a strongly coercive Bregman function, then for each z € FE, there exists a unique
xo € C such that

D = min D(y, z).
(2o, x) min (y,2)

The Bregman projection Po from E onto C'is defined by Po(z) = ¢ for all x € E.
It is also well known that Pg has the following property:

(2.8) D(y, Pcx) + D(Pox,xz) < D(y,x)

for all y € C and = € E (see [2] for more details). Let E be a Banach space and B
be the unit ball of E. Let rB := {z € E : ||z]| < r} for all r > 0. Then a function
g : E — R is said to be uniformly conver on bounded sets ([19, pp. 203, 221]) if
pr(t) > 0 for all r,¢ > 0, where p, : [0,4+00) — [0, 00| is defined by

pr(t) = inf ag(z) + (1~ a)g(y) — glaz + (1 — a)y)
z,yerB,||lz—y||=t,a€(0,1) a(l - a)

for all ¢t > 0. The function ¢ is also said to be uniformly smooth on bounded sets
([19, pp. 207, 221])) if lim UTT@) =0 for all » > 0, where o, : [0,+00) — [0, 0] is
defined by
1—a)t 1— —aty) —
oo () = sup ag(z + (1 —a)ty) + (1 — a)g(x — aty) — g(x)
zerB,yeS,ae(0,1) a(l —a)

for all t > 0. We know the following results; see [19, Proposition 3.6.4].

Theorem 2.3. Let E be a reflexive Banach space and let g : E — R be a con-
vex function which is bounded on bounded sets. Then the following assertions are
equivalent:

(1) g is strongly coercive and uniformly convex on bounded sets;

(2) D(g*) = E*, g* is bounded on bounded sets and uniformly smooth on
bounded sets;

(3) D(¢g*) = E*, g* is Fréchet differentiable and Vg* is uniformly norm-to-
norm continuous on bounded sets.

Theorem 2.4. Let E be a reflexive Banach space and let g : E — R be a contin-
uous convex function which is strongly coercive. Then the following assertions are
equivalent:

(1) g is bounded on bounded sets and uniformly smooth on bounded sets;

(2) g* is Fréchet differentiable and Vg* is uniformly norm-to-norm continuous
on bounded sets;

(3) D(g*) = E*, g* is strongly coercive and uniformly convex on bounded sets.

The following lemma has been proved in [11].
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Lemma 2.5. Let E be a Banach space and let g : E — R be a convex and Gateaux
differentiable function which is uniformly convex on bounded sets. If {zy} and {yn}
are bounded sequences in E such that lim,_oo D(xn,yn) = 0, then lim, o ||z, —

ynH =0.
3. GENERALIZED RETRACTIONS AND BREGMAN FUNCTIONS

Let E be a Banach space and let g : E — R be a convex and Gateaux differen-
tiable function. Then the Bregman distance [1, 3] satisfies that

(3.1) D(z,2) = D(z,y) + D(y, 2) + (x — y,Vg(y) — Vg(2)), Vz,y,z € E.

Let C be a nonempty and closed subset of E. A mapping T : C — C is called
Bregman firmly generalized nonexpansive [9] if F(T) # @ and

(3.2) D(z,Tz)+ D(Tz,p) < D(z,p)

for each z € C' and p € F(T'). A mapping T : C — C is called Bregman generalized
nonezxpansive if F(T) # () and

(3.3) D(Tz,p) < D(x,p), Y(z,p) € C x F(T).
A mapping T : C — C is of Bregman generalized nonexpansive type if
(34)  D(Tw,Ty)+ D(Ty,Tx) < D(x,Ty) + D(y, Tx), Va,y € C.

A mapping T : C — C is of Bregman firmly generalized nonexpansive type if

D(z,Tx)+ D(y,Ty) +D(Tx,Ty)+ D(Ty,Tx)
< D(quy) + D(vax)’ V%y eC.
It is clear that a Bregman firmly generalized noneaxpansive mapping is Bregman

generalized nonexpansive in a Banach space (see also [9]). Let C' be a nonempty
subset of Banach space E. A mapping R : E — C is said to be sunny if

R(Rx +t(x — Rz)) = Rz

for each x € F and ¢ > 0. A mapping R : £ — C is said to be a retraction
if Rx = x for each x € C. We have the following results for Bregman firmly
generalized nonexpansive type mappings.

(3.5)

Lemma 3.1. Let E be a Banach space and let g : E — R be a conver and Gateaux
differentiable function. Let C' be a nonempty closed subset of E. If T : C — C' is a
Bregman firmly generalized nonexpansive type mapping with F(T) # O, then T is
Bregman firmly generalized nonexpansive.

Lemma 3.2. Let E be a Banach space and let g : E — R be a conver and Gateaux
differentiable function. Let C be a closed subset of E. Then, a mapping T : C' — C
is of Bregman firmly generalized nonexpansive type if and only if

((x =Tx)— (y—Ty),VgTx —VgTy) >0, Va,y € C.
Using ideas in [6], we can also prove the following result.

Lemma 3.3. Let E be a reflexive Banach space and let g : E — R be a strongly
coercive Bregman function. Let C be a nonempty closed subset of & and let R be a
retraction from E onto C. Then the following assertions are equivalent:
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(1) R is sunny and Bregman generalized nonexpansive;

(2) (x — Rz,Vg(y) — Vg(Rz)) <0, V(z,y) € ExC.
Furthermore, a sunny and Bregman generalized nonexpansive retraction of E onto
C' is uniquely determined.

Proof. (=) Let R be a sunny and Bregman generalized nonexpansive retraction
of E onto C. Let x € E and let y € C = F(R). Putting x; = Rz + t(z — Rx) for
all ¢ € [0,1], we have that D(Rz,y) = D(Rx,y) < D(z,y) and hence

D(Rz,y) = Zer{lig }D(z,y),

)

where [z, Rz| is the closed line segment joining = and Rxz. Using (2.7), we have that
0 < (v — Rz, Vg(Rz) — Vg(y)), Vt € [0,1].

Putting ¢t = 1, we have 0 < (z — Rz, Vg(Rx) — Vg(y)) for all y € C.
(<) Let x € E and let y € C = F(R). Then, we have from (3.1) that

D(z,y) = D(x, Rr) + D(Rz,y) + (z — Re, Vg(Rz) — Vg(y))-
From the assumption (xr — Rz, Vg(Rz) — Vg(y)) > 0, we have
D(z,y) > D(x, Rx) + D(Rx,y) > D(Rux,y).

This implies that R is Bregman generalized nonexpansive. Let us show that R is
sunny. Putting x; = Rz + t(x — Rx) for 2 € E and t > 0, we have

(xy — Rxy, Vg(Rxy) — Vg(Rzx)) > 0 and (x — Rz, Vg(Rx) — Vg(Rzy)) > 0.
From z; — Rz = t(z — Rx), we have
(x — Rx, Vg(Rzx) — Vg(Rxt)) = t{x — Rz, Vg(Rx) — Vg(Rxzy)) > 0
and hence (Rx — Rz, Vg(Rxy) — Vg(Rx)) > 0. This implies that
(Rx — Rz, Vg(Rzy) — Vg(Rx)) = 0.

Thus, we have from Lemma 2.2 (2) that Rx = Rzy = R(Rz + t(x — Rx)), that is,
R is sunny.

Next, we show that a sunny and Bregman generalized nonexpansive retraction is
unique. Let R and P be sunny and Bregman generalized nonexpansive retractions
of ¥ onto C. Then, we have

(x = Rx,Vg(Px) — Vg(Rx)) <0 and (z — Px,Vg(Rx) — Vg(Pz)) < 0.
Thus, we have (Px — Rx,Vg(Px) — Vg(Rz)) < 0 and hence (Px — Rz, Vg(Px) —
Vg(Rz)) = 0. Then, we have from Lemma 2.2 (2) that Rz = Pz forallz € E. O

Using Lemma 3.3, we can prove the following result.

Lemma 3.4. Let E be a reflexive Banach space and let g : E — R be a strongly
coercive Bregman function. Let C be a nonempty closed subset of E and let R be
a sunny Bregman generalized nonezpansive retraction from E onto C. Let (x,z) €
E x C. Then the following assertions hold:

(1) z = Rx if and only if (x — 2,Vg(y) — Vg(2)) <0 for ally € C;

(2) D(Rx,z)+ D(z,Rx) < D(x, z).
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Using the techniques developed by Kohsaka and Takahashi [12], we prove the
following lemma.

Lemma 3.5. Let E be a reflexive Banach space and let g : E — R be a conver,
continuous, strongly coercive and Gateauz differentiable function which is bounded
on bounded sets and uniformly convex on bounded sets. Let C be a nonempty closed
Bregman generalized nonexpansive retract of E. Then VgC' is closed and conver.

Proof. Let R be a Bregman generalized nonexpansive retraction from E onto C.
Since R is a retraction from E onto C, we have F(R) = C. We first show that
VgC is convex. In view of Lemma 2.2 (4), we have Vg* = (Vg)~!, where g* is the
conjugate function of g. Let * and y* be arbitrary elements of VgC, let o € (0, 1)
and put f =1 — a. Then we have x,y € C such that z* = Vg(z) and y* = Vg(y).
Since z,y € C = F(R) and R is Bregman generalized nonexpansive, we have

D(RVg*(aVg(z) + BVg(y)), Vg*(aVg(z) + BVg(y)))
= g(RVg*(aVyg(z) + BVg(y))) — 9(Vg*(aVg(x) + BVg(y)))

—(RVg*(aVg(z) + BVg(y)) — Vg*(aVg(z) + BVg(y)),aVg(z) + BVg(y))
g(RVg*(aVg(z) + BVg(y))) — 9(Vg*(aVg(z) + BVg(y)))
—[(RVg*(aVyg(z) + BVg(y)),aVg(z)) + (RVg*(aVg(z) + BVg(y)), BVg(y))
—(Vg*(aVg(z) + BVg(y)),aVg(x)) — (Vg*(aVg(z) + BVg(y)), BVa(y))]
= (RVg (aVg(z) + BVg(y))) — 9(Vg*(aVg(x) + BVg(y)))
—[(RVg*(aVyg(z) + BVg(y)) — z,aVg(x))

) —v,8Vg(y)) + (v, BVg(y))

[

+(x,aVg(x)) + (RVg*(aVg(x) + BVg(y)

—(Vg*(aVg(z) + BVg(y)), aVyg(z)) — (Vg*(aVg(x) + BVg(y)), BVg(y))]

= ag(RVg*(aVg(x )+BV9( ) + Bg(RVg*(aVg(z) + BVg(y)))

—ag(x) + ag(z) — Bg(y) + Bg(y)

—ag(Vg*(aVyg(r) + BVg(y))) — Bg(Vg*(aVg(z) + BVg(y)))
—[(RVg*(aVy(z) + BVg(y)) — z,aVg(x)

)
+(z,aVg(z)) + (RVg*(aVg(z) +BVg(y)) y,BVg(y)> + (v, 8Vg(y))
—(Vg*(aVg(z) + BVy(y)), aVg(x)) — <V9<*( g(x) + BVy(y)), BVg(y))]
(RV

= a[g(RVg*(an( )+ BVg(y))) — g(x) — (RVg*(aVg(z) + BVg(y)) — z,Vg(z))]
RVg*(aVyg(z) + BVg(y)) —y, Va(y))]

Vg (aVg(z) + BVg(y))
Vg (aVg(z) + BVg(y)), =
—aD(Vg*(aVyg(z) + BVg(y)), =
=0.

Thus, we conclude that

D(RVg*(aVg(z) + 8Vg(y)), Vg" (aVg(x) + Vg(y))) = 0.
It follows from Lemma 2.5 that

RVg*(aVg(z) + BVg(y) = Vg*(aVg(z) + BVg(y)).

Therefore, we obtain Vg*(aVyg(z) + fVg(y)) € C and hence
az® + By* = aVyg(z) + 8Vg(y) € VgC.

+Blg(RVg*(aVg(x) + BVg(y))) — 9(y) —
—alg(Vg*(aVg(z) + BVg(y))) — g(z) — (V *(an(w)JrﬁVg( )) — 2, Vg(x))]
Blg(Vg*(aVg(z) + BVg(y))) — g(y) — (Vg*(aVg(z) + BVg(y)) -y, Va(y))]
—ag (x) + BVy(y)),z) + BD(RVg*(aVg(x )+BVg(y)), )
< aD

(
(Vg
(R Vg (aVg
( ,2) — BD(Vg*(aVyg(z) + BVg(y)),y)
( )+ BD(Vg*(aVg(x) + BVg(y)),y)
( ) — BD(Vg*(aVyg(x) + BVg(y)),y)
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This proves that VgC' is convex.

We next show that VgC' is closed. Let {z}} be a sequence of VgC' converging
strongly to z* € E*. Then there exist x € E and z,, € C such that z* = Vg(x) and
x} = Vg(xy,) for all n € N. This implies that

(3.6) lim [[Vg(,) — Vg(a)]| = 0.

From Theorem 2.3, we have lim,,_,« ||z, —2|| = 0 and hence {x,,} is bounded. Since
R is Bregman generalized nonexpansive, it follows from (3.3) and (3.6) that

D(Rz,x,) < D(z,x,)
= g(l’) - g($n) - <£L‘ — Tn, vy(xn)>
= g(x) — g(zn) — (x — 2, Vg(z)) — (¥ — 20, Vg(20) — Vg(2))
< g(x) — g(zn) — (¥ — 20, Vg(2)) + ||z — 20| Vg(20) — Vg(z)|
— g(z) — g(z) — (z — 2, Vg(z)) =0

as n — 0o0. Thus we have lim,,_,o D(Rz,x,) = 0 and lim,_,+, D(z,z,) = 0. On the
other hand, since {x,} is bounded, we have from Lemma 2.5 that lim,, || Rz, —
z|| = 0 and limy,,_yc ||zn, — 2| = 0. Thus, we conclude that Rx = = and hence z € C.
Since R is a retraction of E onto C, we have x* = Vg(z) = Vg(Rx) € VgC. Thus
VgC' is closed, which completes the proof. O

The following result can be derived from Lemmas 3.3, 3.4 and 3.5.

Lemma 3.6. Let E be a reflexive Banach space and let g : E — R be a convex,
continuous and strongly coercive function which is bounded on bounded sets, and
uniformly convexr and uniformly smooth on bounded sets. Let C, be a nonempty
closed convex subset of E* and let Po, be the Bregman projection from E* onto C..
Then the mapping R defined by R = (V)™ 'Pc, Vg is a sunny Bregman generalized
nonexpansive retraction from E onto (Vg)~'C,.

Proof. We first prove that (Vg)~1C, is closed. Let {x,} be a sequence in Vg*C,
such that x,, — x. Then, we have Vg(z,) € C,. Since Vg is continuous, we have
Vg(x,) — Vg(x) and hence Vg(x) € Ci. So, we have x € (Vg) 'C.. Thus,
(Vg)~1C, is closed. If x € E, then we have

R(z) = (Vg) ' Po,Vy(z) € (Vg) ' Po, E* = (Vg)'C.

and hence R is a mapping of E into (Vg)~'C,. Furthermore, for any = € (Vg)~C,
we have Vg(z) € C, and hence P, Vg(z) = Vg(x). Thus, we have

Rx = (Vg)~'Pc.Vy(x) = (Vg) ™' Vy(z) = =.
Then, R is onto and Rz = z for all x € (Vg)~!C,. It is obvious that
R’z =R(Rzx)=Rx =z

for all x € F and hence R is a retraction. We finally show that R is sunny and
Bregman generalized nonexpansive. Since R is a retraction of E onto (Vg)~'C.,
we have F(R) = (Vg)~1C,. Thus F(R) is nonempty. On the other hand, we know
from (2.8) that

D.(y", Pe.x") + Du(Pe,a”, ") < Di(y", 27)
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for all (z*,y*) € E* x C,, which is equivalent to
D.(Vg(y), Pc.Vg(2)) + Di(Pc,Vy(2), Vg(z)) < Di(Vy(y), Vg(z))
for all (z,y) € E x (Vg)~'C,. Thus, we have
D(Rz,y) + D(xz, Rx) < D(z,y)
for all (z,y) € E x (Vg)~'C,. Then, we have that for all (z,y) € E x (Vg)~1C,,
0 < D(.%', y) - {D<R$7y) + D(iL’, RJ})}
=g(x) —g(y) — {z —y,Vg(y)) — {9(Rz) — g(y) — (Rx —y,Vg(y))}
—{9(z) — 9(Rz) — (z — Ra, Vg(Rx))}
= (R, Vg(y)) — (z, Vg(y)) + (z,Vg(Rz))} — (Rz, Vg(Rz))
= (z — Rz, Vg(Rx) — Vy(y)).

By Lemma 3.3 we have that R is sunny and Bregman generalized nonexpansive.
This completes the proof. O

Let E be a reflexive Banach space and let g : £ — R be a strongly coercive
Bregman function. Let C be a nonempty closed subset of £. We know from
Lemma 3.3 that a sunny Bregman generalized nonexpansive retraction of E onto
C is uniquely determined. Then, such a sunny Bregman generalized nonexpansive
retraction of F onto C is denoted by Rc. A nonempty subset C' of F is said to
be a sunny Bregman generalized nonexpansive retract (resp. a Bregman generalized
nonexpansive retract) of E if there exists a sunny Bregman generalized nonexpansive
retraction (resp. a Bregamn generalized nonexpansive retraction) of E onto C'. The
set of all fixed points of such a sunny Bregman generalized nonexpansive retraction
of E onto C' is, of course, C. We obtain the following result by using Lemmas 2.2
(4), 3.5 and 3.6.

Theorem 3.7. Let E be a reflexive Banach space and let g : E — R be a convex,
continuous and strongly coercive function which is bounded on bounded sets, and
uniformly convex and uniformly smooth on bounded sets. Let C' be a nonempty
closed subset of E. Then the following statements are equivalent:

(1) C is a sunny Bregman generalized nonexpansive retract of E;
(2) C is a Bregman generalized nonexpansive retract of E;
(3) VgC is closed and conver.

In this case, the unique sunny Bregman generalized nonexpansive retraction from
E onto C is given by (Vg) 1 Pc, Vg, where Po, is the Bregman projection from E*
onto VgC'.

Proof. Since E is reflexive, by Lemma 2.2 (4) we have Vg* = (Vg)~!. The implica-
tion (1) = (2) is obvious. In view of Lemma 3.5, we have (2) = (3). Assume now
that (3) holds. Since VgC' is closed and convex, in view of Lemma 3.6, we conclude
that R = (Vg)~'Pg, Vg is a sunny Bregman generalized nonexpansive retraction
from E onto C = (Vg)~!VgC, which completes the proof. O

Lemma 3.8. Let E be a reflexive Banach space and let g : E — R be a conver,
continuous and strongly coercive function which is bounded on bounded sets, and
uniformly convex and uniformly smooth on bounded sets. Let C' be a nonempty
closed subset of £ such that VgC' is closed and convex. If T : C'— C' is a Bregman
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generalized nonexpansive mapping such that F(T) # @, then F(T) is closed and
VgF(T) is closed and convez.

Proof. First, let us prove that VgF(T) is closed. Let {z} } be a sequence of VgF'(T')
such that z; — z* for some z* € E*. Since VgC is closed and convex, we have
x* € VgC. This implies that there exist z € C and {x,} C F(T) such that
x* = Vgx and z}, = Vga,, for all n € N. Since FE is reflexive, by Lemma 2.2 (4) we
have Vg* = (Vg)~!. In view of Theorem 2.3 (3), we obtain that Vg* is uniformly
norm-to-norm continuous on bounded sets. Thus we obtain z, — =z as n — oo.
Since ¢ is continuous and {Vg(z,)} is bounded, we conclude that

D(Tx,z,) < D(z,x,)
= g(z) — g(zn) — (& — zn, Vg(zy))
= g(x) —g(z) -0

)

This means that lim,, oo D(Tz,x,) = 0 and lim,_, D(z,x,) = 0. On the other
hand, we have from Lemma 2.5 that ||z, — z|| — 0 and ||z, — Tz|| — 0. Then,
we have Tz = z. Thus we have * = Vgz € VgF(T). So, we get that VgF(T)
is closed. Since Vg is norm-to-norm continuous, we have that F'(T) is closed. A
similar argument as mentioned in the proof of Lemma 3.5 shows that VgF(T) is
convex. This completes the proof. O

The following result is deduced from Theorem 3.7 and Lemma 3.8.

Proposition 3.9. Let E be a reflexive Banach space and let g : E — R be a convex,
continuous, strongly coercive and Gateauz differentiable function which is bounded
on bounded sets, and uniformly convex and uniformly smooth on bonded sets. Let C
be a nonempty closed subset of E such that VgC' is closed and convez. If T : C' — C
is a Bregman generalized nonexpansive mapping such that F(T) # O, then F(T) is
a sunny Bregman generalized nonexpansive retract of E.

4. FIXED POINT THEOREMS

In this section, we prove fixed point theorems for Bregman generalized nonex-
pansive type mappings in a Banach space.

Theorem 4.1. Let E be a reflexive Banach space and let g : E — R be a convex,
continuous, strongly coercive and Gateauz differentiable function which is bounded
on bounded sets and uniformly convex on bonded sets. Let C' be a nonempty closed
Bregman generalized nonexpansive retract of E and let T : C — C' be a Bregman
generalized nonexpansive type mapping. Then the following statements are equiva-
lent:

(1) F(T) is nonempty;

(2) {T"x} is bounded for some x € C.
Proof. The implication (1) = (2) is obvious. We prove the implication (2) = (1).
Let there exist € C such that {T™z} is bounded. By the definition of T', we get
D(TF*'z, Ty) +D(Ty, TF 1)

(4.1) < D(T*z,Ty) + D(y, T"'z), Yk e NU{0}, y € C.
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In view of (3.1), we conclude that

D(Ty, T*1z) = D(Ty,y) + D(y, T*'z) + (Ty — y, Vgy — VgT"+1z).
This implies that
(4.2)  D(y,T""'a) — D(Ty, T %) = —D(Ty,y) + (y — Ty, Vay — VT 2.
In view of (4.1) and (4.2), we obtain

0 < D(T*z,Ty) —D(TF 'z, Ty) — D(Ty,y)
+(y — Ty, Vgy — VgTr*lz), VE e NU {0}, y € C.

Summing these inequalities with respect to £k = 0,1,2,...,n — 1 and then dividing
by n, we get

1 1 n *
(4.3) 0< ED(x,Ty) - ;D(T 2, Ty) — D(Ty,y) + (y — Ty, Vgy — S,z),

where S}z = %22:1 VgT*z. Since C is a Bregman generalized nonexpansive
retract, in view of Lemma 3.5, we conclude that VgC' is closed and convex. This
implies that {S}z} is a well-defined sequence in VgC'. The function g is bounded on
bounded subsets of ' and therefore Vg is also bounded on bounded subsets of E*
(see, for example, [2, Proposition 1.1.11] for more details). Since {7z} is bounded,
{VgT™z} is also bounded. So, we have {S}z} is bounded. Since E* is reflexive, we
have that {S;;x} has a subsequence {S}; x} such that S;; x — p* for some p* € VgC.

Letting n; — oo in (4.3), we obtain

(4.4) 0<-=D(Ty,y) +(y —Ty,Vgy —p").

Put p := (Vg)~!p*. Then p € C and letting y = p in (4.4), we conclude that
0<—=D(Tp,p)+{p—Tp,Vgp— Vygp).

This implies that D(Tp,p) < 0. From Lemma 2.5, we have T'p = p. Thus we have
F(T) is nonempty, which completes the proof. O

The following theorem is an easy consequence of Lemma 3.5 and Theorem 4.1.

Theorem 4.2. Let E be a reflexive Banach space and let g : E — R be a convex,
continuous, strongly coercive and Gateauz differentiable function which is bounded
on bounded sets and uniformly convex on bounded sets. Let C be a nonempty closed
Bregman generalized nonexpansive retract of E and let T : C — C be a Bregman
firmly generalized nonexpansive type mapping. Then the following statements are
equivalent:

(1) F(T) is nonempty;

(2) {T™z} is bounded for some x € C.

Let C be a nonempty closed subset of a Banach space E and let T': C' — C
be a mapping. A point p € C is said to be a Bregman generalized asymptotic
fixed point [8] of T" if C' contains a sequence {z,} such that Vgz, —* Vgp and
\Vgx, —VgTx,| — 0. The set of all Bregman generalized asymptotic fixed points
of T is denoted by F(T).
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Theorem 4.3. Let E be a reflexive Banach space. Let g : E — R be a convex,
continuous, strongly coercive and Gateauz differentiable function which is bounded
on bounded sets and uniformly convex on bounded sets. Let C be a nonempty closed
Bregman generalized nonexpansive retract of E and let T : C — C be a Bregman
generalized nonexpansive type mapping. If F(T) # @, then F(T) = F(T).

Proof. Tt is clear that F(T) C EF(T). Let us show that F(T) C F(T). For any
p € F(T), there exists a sequence {z,} C C such that Vgz,, — VgT'z, — 0 and
Vgx, — Vgp. By the definition of T', we obtain

(4.5) D(Tx,,Tp) + D(Tp,Txy) < D(xy,Tp) + D(p, Txy).
In view of (3.1), we conclude that

D(Tp,Txy,) = D(Tp,p) + D(p, Txy) + (Tp — p,Vgp — VgTx,)
and hence
(4.6) D(p,Txn) — D(Tp, Txy) = —D(Tp,p) + (p — Tp,Vgp — VgTn).
It follows from (4.5) and (4.6) that

D( Ty, Tp) - D(xm Tp)

~D(Tp,p) +(p—Tp,Vgp — VgTry,)

—D(Tp,p) + (p— Tp,Vgp — Vg, + Vgr, — VgTz,)
—D(Tp,p) + (p—Tp,Vgp — Vgzn)

+lp = TplllIVg(wn) — Vg(Txn)||.

On the other hand, we have that

D(Txy, Tp) — D(xy, Tp)
= 9(Txn) — g(Tp) — (Txn — Tp, Vg(Tp))

—[g(xn) — 9(T'p) — (zn — Tp,Vg(Tp))]

— (T'zn, — Tp,Vg(Tp))

—9(xn) + 9(Tp) + (zn — Tp,Vg(Tp))
= ) = (Tan — 2, Vg(T'p))
= g(Tz,) —g mn) - <Txn - $n7Vg(Tp) Vg(zn) + v9<xn)>
= 9(Tzn) — g(xn) — (Txp — 20, Vg(n)) — (TTp — 75, Vg(T0) — Vg(n))
= D(Tzp,xn) — (Txp — xn, Vg(Tp) — Vg(xy,))
> —[[Tzp — 2| Vg(Tp) — Vg(zn)]-

(4.7)

VARIVANIVAN

From Vz, — Vgp, we have {Vgz,} is bounded. Since the mapping Vg* on E* is
uniformly norm to norm continuous on each bounded set and ||Vgz,—VgTx,| — 0,
we obtain ||z, — T'z,| — 0. Thus, we have that

lirginf{D(Txn,Tp) — D(zp,Tp)} > 0. (4.8)

In view of (4.7) and (4.8), we get —D(T'p,p) > 0. This implies that D(T’p,p) = 0.
From Lemma 2.5 we have p € F(T'), which completes the proof. O
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5. WEAK CONVERGENCE THEOREM

In this section, we prove a weak convergence theorem for Bregman firmly gener-
alized nonexpansive type mappings in a reflexive Banach space.

Theorem 5.1. Let E be a reflexive Banach space and let g : E — R be a convex,
continuous and strongly coercive function which is bounded on bounded sets, and
uniformly convex and uniformly smooth on bounded sets. Let C' be a nonempty
closed Bregman generalized nonexpansive retract of E and let T : C — C be a
Bregman firmly generalized nonezxpansive type mapping. If the mapping Vg is weakly
sequentially continuous, then the following statements are equivalent:

(1) F(T) is nonempty;

(2) {T™z} is bounded for some x € C.

In this case, {T™x} converges weakly to an element of F(T).

Proof. We know from Theorem 4.2 that (1) <= (2). Let z € C and z € F(T).
Since T' is a Bregman firmly generalized nonexpansive type mapping from C' into
itself, we have T' is Bregman firmly generalized nonexpansive. This implies that

(5.1) D(T™" "z, 2) < D(T"x, T" M 2) + D(T™ " a, 2) < D(T"x, 2), ¥n € N.
Therefore, lim,_,oo D(1"x, ) exists. From (5.1), it follows that

(5.2) D(T"z, T""'z) < D(T"z,z) — D(T" 2, 2), ¥n € N.
Since {D(T"xz, z)} converges, we obtain that
(5.3) lim D(T"z, T"z) = 0.

Since {T"x} is bounded, we have from (5.3) and Lemma 2.5 that
(5.4) lim |[T"z — T" | = 0.
n—o0

Since T : C — C' is a Bregman firmly generalized nonexpansive type mapping, we
have from Lemma 3.2 that

(5.5) (T'x — T e — (y — Ty), VgT" e — VgTy) >0, VneN, y e C.

Since {T"x} is bounded, there exists a subsequence {T™z} of {T"x} such that
Thix — p as i — oo. Since Vg is weakly sequentially continuous, we obtain
VygTmx — Vgp. Since VgC' is closed and convex, it is weakly closed and hence
Vgp € VgC'. Thus, we have p € C. On the other hand, since g is uniformly smooth
on bounded sets, Vg is norm-to-norm uniformly continuous on each bounded subset
of E. So in view of (5.4) we obtain ||[VgT"z — VgT™ x| — 0. This implies that
VgTmitle — Vgp as i — oo. Letting n; — oo in (5.5), we conclude that

(5.6) (Ty —y,Vgp—VgTy) >0, Vy € C.
Putting y = p in (5.6), we get
(5.7) (Tp —p,Vgp—VgTp) > 0.

Since Vg is strictly monotone, we obtain T’p = p. Thus we have p € F(T). Assume
now that {T™xz} and {T™ z} are two subsequences of {T"z} such that Tz — p;
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and T™ x — py. The above argument shows that p1,ps € F(T). Let
lim [D(T"x,p1) — D(T"x, p2)] = A

n—oo

By the definition of the Bregman distance, we have that for all n € N
D(T"xz,p1) — D(T"x,p2) =g(T"x) — g(p1) — (I""x — p1, Vgp1)
— [9(T"z) — g(p2) — (T"x — p2, Vg(p2))]
=9(p2) —9(p1) — (I"z —p,Vgp1) + (T"z — p2, Vg(p2))-
This together with T"ix — p; and T"ixz — po implies that

(5.8) 9(p2) — g(p1) + (p1 — p2, Vgp2) = A
and
(5.9) 9(p2) — 9(p1) — (p2 — p1, Vgp1) = .

In view of (5.8) and (5.9), we obtain

(p1 — p2, Vgp1 — Vgpa) = 0.

Employing Lemma 2.2 (2), we conclude that p; = pa. Thus we have {T"x} converges
weakly to an element of F(T). O
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