2 Pug
.
%

Journal of Nonlinear and Convex Analysis @ Mdm P"uis’,as
C 7
Sinee 199

Volume 13, Number 1, 2012, 125-139 ISSN 1880-5221 ONLINE JOURNAL

Yo[;%
SELY

N

ANOTHER VERSION OF THE VON NEUMANN-JORDAN
CONSTANT

HELGA FETTER NATHANSKY AND VICTOR PEREZ GARCIA

ABSTRACT. We define another version of the von Neumann-Jordan constant,
study some of its properties and relate it to the fixed point property for Lips-
chitzian mappings.

1. A GENERALIZATION OF VON NEUMANN-JORDAN CONSTANT

The von Neumann-Jordan constant of a Banach space X was defined by Clarkson
[1] as

[z +ylI* + l|lz — yl?
rx,y € X, (w,y) # (0,0) ¢
2(12)1* + [lylI*)

It is known that this constant is connected with some geometric structures of
Banach spaces, such as normal structure and uniform non-squareness, and thus
with the fixed point property, see for example [9] and [11].

Based on the following characterization of Hilbert spaces we will define a family
of constants for Banach spaces similar to the von Neumann-Jordan constant and
apply this to find conditions for the existence of fixed points for periodic mappings.

Cny(X) =sup {

Lemma 1.1. Let X be a Banach space and o € (0,1). X is a Hilbert space if and
only if for every x,y € X,

laz + (1 = a)y|* + a(l = )|z — y|I* = afz]* + (1 - o) |Jy*.
Definition 1.2. Let X be a Banach space and « € [0, 1], we set:
oz + (1 = a)y|]* + a(l —a)|lz —y|*
afz|* + (1 —a)lly?
7,y € X,allz|? + (1 - a)yl* #0}.

Co(X) = sup{

Closely associated to Cy(X) is the function f given as follows:

Definition 1.3. For a € (0,1/2] and ¢ € [0, 1], define f(t) = (O‘Jr(l_a;ﬁffs;a)(lﬁf.

Remark 1.4. f attains its unique maximum 1+ 2\/a(1 — «) at to = /7.

11—«
Lemma 1.5. Let X be a Banach space. Then:
() C3(X) = Cra(X).
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(b) It is clear that Cyo(X) = C1—o(X) for every a € [0,1].
(c) Co(X) =1 for a € (0,1) if and only if X is a Hilbert space.

Proof. (a) and (b) are obvious.

Proof of (c).

Suppose that Co(X) = 1 for a € (0,1), then for 2,y € X, [az + (1 — a)y||* +
a(l—a)|lz—yl|? < alz]|®> + (1 —a)|y||*>. Let u=ax+ (1 —a)y and v = ax — ay.
Then we have [|au + (1 — a)v||* + (1 — a)|lu —v||* < allul* + (1 — @)||v||?; that is,

o?[l2]* + a(1 = )lyl* < allaz + (1 = a)y|* + o*(1 = a) = — g%,

hence by lemma 1.1 X is a Hilbert space.
If X is a Hilbert space, by lemma 1.1 is clear that Co(X) = 1. O

The following lemma will be useful for calculating Cy (X™).
Lemma 1.6. Let X be a Banach space and o € (0,1). Let Z = X x X equipped

with the norm ||(z,y)||% = allz|% + (1 — a)|yl%, and in X* x X* consider

2 2
(1.1 I = 100 ol

« l1—«

Then || - || defines the dual norm of Z.

Proof. Using Lagrange multipliers it is easy to see that the function F : R? — R
given by F(u,v) = (au+ bv)? subject to the condition au® + (1 — a)v? = 1, attains
its maximum at a point (ug, vg) and

2 bQ

a
1.2 F = — .
(1.2) (w0, v0) =~ + 17—

Let X be a Banach space, a € (0,1), Z = X x X as in the hypothesis and
f,g9 € X*. By definition

17, 9)llz- = sup {| £ (@) + 9(v)] : allelk + (1 — )iyl =1}

Let x,y € X be such that of|z||% + (1 — a)|jy[|% = 1. By (1.2):

s - IR, ol
1F@) +9(@)P < (Wl lellx + gl Tle)? < FE 4+ ROIX

hence [[(f, 9)llz= < (£, 9)ll-
Let ¢ > 0 and z0,y0 € Sx be such that f(zg) = (1 — ¢)||fllx+ and g(yo) =

(1 —¢)|lg]|x+ and let

l1-a ILf 115
T = x = Axy,
\/< @ )(1—04)Hf!§(*+OéHgH§<*

Yy = Yo < = > ol = Byo
l—a/) (1=a)|fl%x + allglk-
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Then

|fwy+mwﬁ={Aa—fow+Bu—snmﬁ

(1-¢)? 2,
“T i ralaP |V a M o]
s (@I + 21— Pl + ool
1— 2 2 2
L -l +alol?] = - o2 [ Jol ]
which proves the equality. Il

Proposition 1.7. For every Banach space X and o € [0,1], Co(X) = Co(X™).

The proof is similar to Kato’s and Takahashi’s, when they showed that Cn (X)) =
Cny(X™) [10].

Proof. Let X be a Banach space. If « = 0 or @ = 1, the equality holds trivially.
Suppose that a € (0,1). Let Z = X x X as in the previous lemma.

Define the linear operator L : Z — Z as L(x,y) = (ax + (1 — o)y, ax — ay) for
any (z,y) € Z. Let (z,y) € Z, then

IL(z )7 < ILIP )1, )l = 1L (@llzl% + (1 = a)llyl%)
and this happens if and only if

allar + (1 - aylf + ol — o)z —yl%) _ < |ILJ.
alz% + 1 - o)llyllik a

Taking the supremum over z,y € X we obtain aC,(X) < ||L|?.
Now take € > 0 and z,y € X such that | L(z,y)|%/l/(z,y)||% > ||L||*> — . Then

afflax + (1 = aylk +a(l - o)llz —
afzl% + 1 - o)llyllk

vlx) aCio(X).

I~

Hence ||L||?> = aCq(X) = ||LY|*> where L' is the transpose of L, given by
L'(f,9) = (af + ag,(1 —a)f — ag) for every f,g € X*. Thus

Lt %
s < I = ool

By (1.1) we have:

lof+aogllfs | 10—a)f—agll%s

l”Lt(fngQZ* _ l @ + -
D2« 1%, lol%e
1, 9% T

_ ol a)lf el +I0-0)f —aglke _ (o )

(=) fl5 + gl
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Observe that

) laf + (1= a)gll%- +a(l— )| f — gl%- }
Co(X™) =  f, X
&7 S“p{ allf 1% + (1 — a)llgll%- f9 €
I =a)f —aglde +a(l = a)|f +gl% X*}
S“p{ (1= ) /1% + allgll%- foe Xty

hence
Co(X™) < Ch(X).
For the other inequality, let us take (f,g) € Z* such that

IZE(f, 9) 1% £2
— =22 S ||LY)F — e = aCy (X)) — ea,
1(f, 9115
that is
1 - 2 * 1 - - 2 *
CQ(X) —e< Oé( a)||f+gHX ;_H( a)Qf agHX S CQ(X*),
(1= [ f[5- + allgll-

and we conclude Cy(X) < Co(X™). O

In order to be able to calculate the value of C,(X) we will introduce the following
function, which is similar to a function defined by Yang and Wang [12]:

n(a,t) = sup {[laz + (1 — a)ty[|* + a(l — a)|lz — ty||* - 2,y € Sx} .

It follows immediately that n(a,t) = ¢(1 — a,t). We now list some useful prop-
erties of n:

Lemma 1.8. (a) For every a € [0,1], n(a,0) = a.
(b) If we take y = x € Sx, we obtain n(a,t) > a+ (1 —a)t> > a for any a € [0,1]
and any t € [0,1]. In particular for every o, n(a,1) > 1.
(c) By the triangle inequality, we have n(ca,t) < (a+(1—a)t)?+a(l—a)(1+t)* =
a+ (1 —a)t? +4a(l — a)t for any o € [0,1] and any t € [0,1]. In particular
(e, 1) <1+4a(l —a) <2.

Moreover the function 7 is continuous and convex.

Proposition 1.9. Let X be a Banach space and o € [0,1]. Let us consider n(a,t)
as a function of the variable t. Then 7 is a continuous function on [0,1) and is
convez and nondecreasing on [0, 1].

Proof. Let 0 <t; <te <1 and g € 0,1]. Since z = Sz + (1 — )z and considering
that h(x) = 22 is a convex function, for any z,y € Sx

loz + (1 — a)(Bt1 + (1 — Bt2)yll”> + (1 — @) |z — (Bt1 + (1 — B)t2)yl|”
< (Bllaz + (1 — a)tryl + (1 = B)|lox + (1 — a)tayl])?

+o(l - o) (Bllz — tryll + (1 = B) |z — tayl)”
<Bllaz + (1 — a)tryl® + (1 = B)[az + (1 — a)tay|?

+a(l—a) (Bllz — tiyl]® + (1 = B) ||z — tayl?)
<Bn(a,t1) + (1 = B)n(a, ta2).
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Thus, 7 is a convex function on [0, 1] and is continuous on (0, 1). By lemma 1.8 (c),
n(a,0) = a and

0 < n(a,t) —n(a,0) < (1 —a)t? + 4a(l — a)t.

We conclude lim(n(a,t) —n(a,0)) = 0.
t—0

Since 7 is a convex function on [0, 1], in order to prove that 7 is nondecreasing, it
is enough to show that n(«,t) > n(a,0) for every ¢ € [0, 1], and this is true, because
n(,0) = a and n(a,t) > « for every t € [0, 1], by lemma 1.8 (b). O

We have the following lemma:

Lemma 1.10. Let X be a Banach space and o € (0,1]. Then

1 _
772( a, t) < su n(a,t) N
tefo,] t* + (1 —a) = yepyat+ (1 —a)t

Proof. Let X be a Banach space and w,z € Sx, t € [0,1]. Note that ;% < 1.
Then

latz + (1 — a)w|]® + a(l — @)tz — w]?

(1—a)+ at?
w0l oo o
a+ (1—a) (%>2

o 125) -
e Hyar - aw

Taking the supremum over z,w € Sx and then the supremum over ¢ € [0, 1], we
have the desired inequality. O

Now we can state the following characterization of C, (X):

Lemma 1.11. Let X be a Banach space and « € (0, %] Then

(e, t)
Co(X)= sup —————.
&0 te[o,l}a+(1_a)t2

Proof. Let X be a Banach space and « € (0, %]
Let z,y € Sx and t € [0,1]. By definition of C,(X)

n(a, t) {||a$+(1 —aty|? + a(l — )|z — ty?

sup ————*— = sup
e @+ (L—a)t? o] a+ (1—a)t?

} < Ca(X).
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Let z,y € X and suppose first that ||| > ||ly|| > 0, then
low + (1 — a)y|* + (1 — )|z — y|I?
allz|? + (1 — a)yl?

x el v | _ ’ Tz MLW
B HO‘||xH+(1 )1a] uynH +a(l = )| 1 — el Tl
- 2
a+(1—a) (H%H)
]
77 Q, T
< (o fafr) < sup @)

Now suppose that [|y|| > ||z|| > 0; by lemma 1.10

law + (1 — a)yl* + o(1 — a) |z — y|?
allz)? + (1 = a)llyl]?

llzll = v Il 2y |
et + 0 - o]+ a0 o[ - )
I=l\? 4 g —
o () + -0
[Ed]
n(l — o, 1) 1—a,t t
< O 772( 1oz, ) < sup n(la, ) N
a (%) +(1—a) ol at? + (1 —a) = yepyat(l—a)
Note that if £ = 0 or y = 0, then the same inequality holds, because for t = 0 we
have @ = 1. Taking the supremum over z,y € X,

(e, t)
Co(X) < sup ————.
(%) tejo,) @ + (1 — a)t?

O
Corollary 1.12. Let X be a Banach space and o € [0,1]. Then 1 < Cp(X) <

1+2y/a(l —a).

Proof. For @ = 0 or @« = 1 we have equality. Let us consider o € (0,1/2]. Using
lemma 1.8 and remark 1.4:
(1.3)
(e, t) (a+(1-a)t)+al—a)(l+1)
1< < =f(t) <142 1—a).
Sar(l-aE s at (- ) fB) s1+2vall-a)
By the previous lemma and by lemma 1.5 (b), we conclude that for a € (0,1),

1 <Cu(X)<14+2y/a(l —a). O

The lower bound for C,(X) is attained by Hilbert spaces. The upper bound is
also attained by Banach spaces which are not uniformly nonsquare, as we will see
in proposition 1.16.

James introduced in [8] the concept of uniform nonsquare spaces:

Definition 1.13. A Banach space X is uniformly nonsquare if there is ¢ € (0,1)
such that for any z,y € Sx, min {||z + y||, ||z — y||} < 2(1 —¢).
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It is known that Hilbert spaces are uniformly nonsquare, but the space ¢; is not
uniformly nonsquare.

Lemma 1.14. Let X be a Banach space and o € (0,1). X is uniformly non-
square if and only if there is 6 € (0,1) such that for any =,y € Sk,
min {[|az + (1 = a)yll, = — yl|/2} < (1 -0).

Proof. Suppose that X is uniformly nonsquare and let € as in the definition 1.13. Let
us take z,y € Sx, then ||z —y| < 2(1—¢) or [|[z+y| <2(1—¢). If |[x—y| <2(1—¢),
we have nothing to prove. Suppose that ||z 4 y|| < 2(1 —¢); if a € (0,1/2], then

1 -2«
loz+(1-a)yl = afo+y+—"y <alz+yl+a

< 2a(l—¢e)+1—-2a=1-2ce.

1 -2«

Similarly, if a € [1/2,1), we have that oz + (1 — @)yl <1—-2(1 — a)e.

Suppose that there is § € (0,1) such that min {|laz + (1 — a)y||, |z — y||/2} <
(1 —9) for any x,y € Sx. Let us take =,y € Sx. Suppose that ||z — y|| > 2(1 — )
then |jaz + (1 —a)y|| <1—06 and |jay + (1 — a)z|| <1 —¢. From this

2 +yll = [lox + (1 — )y + ay + (1 — a)z|
< lex + (1 = )yl + lay + (1 — a)z| <2(1 = 9).
Hence X is uniformly nonsquare. g

Proposition 1.15. Let X be a Banach space and o € (0,1), then the following
statements are equivalent:

(1) X is not uniformly nonsquare.
(2) n(a,t) = (a+ (1 —a)t)? + a(l — a)(1 + )% for every t € [0,1].
(3) nla,to) = (a+ (1 —a)tg)? + a(l — a)(1 + tg)? for some to € (0,1].

Proof. (1) = (2) If X is not uniformly nonsquare, by lemma 1.14 there are sequences
{zn}, {yn} C Sx such that li_}m lozy, + (1 — a)y,|| = 1 and 1i_>m |Tn — ynl| = 2.
n o0 n—oo

Let ¢ € [0, 1]; note that:

o+ (1= )t >l|awy + (1= a)tyall = lazn + (1 — a)yn + (1 — a)(t = Lyl
>l + (1 = @)yall - (1 - a)(1 - 1).

Hence lim ||az, + (1 — a@)ty,| = o+ (1 — a)t. On the other hand
n—oo
L+t 2 [[an —tynll = [[2n =y + (1 = yall = 20 —yal = (1 = 1).
From this lim ||z, —ty,| = 1+¢. Since n(a,t) < (a+ (1 —a)t)? +a(l—a)(1+1)?,
n—oo
(e, t) > lim ([laz, + (1 — &)tyn|® + (1 — @) ||z, — tyn|?)
n—oo
—(a+ (1= )t + a1 — a)(1 + 1) > n(a, ).

We conclude that for every t € [0,1], n(a,t) = (o + (1 — a)t)? + (1 — a)(1 + 1)
(2) = (3) Is obvious.
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(3) = (1) Suppose that n(a,tg) = (a + (1 — a)tg)? + a(l — a)(1 + tg)? for some
to € (0,1] and that X is uniformly nonsquare, then there is 0 < § < 1 as in lemma
1.14. Let z,y € Sx, suppose first that ||z — y|| < 2(1 — 4), then

laz + (1 = a)toy|* + (1 — @)l — toyl|* <(a + (1 - a)to)?
+ a1l — a)l[toz — toy + (1 — to)z|?
<(a+(1-a)ty)?
+a(l—a)(tolle -yl + (1 — t0))”
<(a+(1-a)t)?
+ ol —a)(2to(1—6) + (1 — tp))?
=n(a,to) — 4ol — a)dto(1 + (1 — d)to).
Now suppose that ||az + (1 — a)y|| <1 -4, in this case:
oz + (1 — a)toyl® + a(l — a)llz — oyl <II(1 — to)az + to(az + (1 — a)y)
+a(l = a)(1+tp)?
<((1 = to)a + tollaz + (1 — a)y|)?
+a(l—a)(1+t)?
<((1 —to)a + to(1 — 6))?
+ a1 — a)(1 +ty)?
=n(a, to) — 6to((2 = 6)to + 2a(1 — to)).
We conclude that (o, o) < n(a, ), which is a contradiction. O

Proposition 1.16. Let X be a Banach space and a € (0,1). Then X is uniformly
nonsquare if and only if Co(X) <1+ 2¢y/a(l — a)

Proof. Since Cy(X) = C1_o(X) for every Banach space X, it is enough to prove it
for ae € (0,1/2]. If X is not uniformly nonsquare, by proposition 1.15 and by lemma
1.11

Co(X) = sup (a+ (-t +a(l—a) =14+2vya(l —a).

t€[0,1] a+ (1 —a)t?

Suppose now that Co(X) =1+ 2y/a(l — «). By lemma 1.11 there is a sequence
{tn} C [0,1], which we assume converges to s € [0, 1] such that

: (e tn)
lim ———————— = C(X) =14+ 2v/a(l — a).
17rtna+(1—a)t% o(X) +2Va(l—a)
Case 1) s€]0,1).
By proposition 1.9 since n(«, s) is continuous on [0, 1):

lim — Mt _ - +"7((1a’_si)82 —1+2va(l—a),

noa+(l—a)t?

and by (1.3)

1+2vao(l—a) —)2§f(3)§1+2\/a(1—04).

+(1—-a)s
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Thus f(s) =1+ 2y/a(l —«a) and by remark 1.4 s = | /7%-.
Since s € [0,1), a € (0, 3) and

1(a/15 ) =20+ 2vat—a)
:(a—i—(l—a)\/Z)z—Fa(l—a)(l—i- 1fa)2,

thus by proposition 1.15, X is not uniformly nonsquare.
Case 2) s=1.
Again by (1.3), for any n € N:

(1.4) (e tn) 7 < Jltn),

a+(1—a)
and this implies

1+2y/a(l - a) =lim M <lim f(t,) = f(1) = 1+ 4a(1 - a)

which cannot hold for a € (0, 3), because 1 + 4a(1 — a) < 1+ 2y/a(l — a); hence

o = %. By the equality in (1.4) we get limn(%,tn) = 2. Therefore, since 7 is
n

nondecreasing and by lemma 1.8 (c), n(3,t) < 2, we obtain n(3,1) = 2 and by
proposition 1.15 we conclude that X is not uniformly nonsquare. O

Now we are going to calculate the value of C,(X) for some spaces.

Example 1.17. Let X = {3 — {1 be the space R? with the norm | - ||2.; defined by

B {n(a,b)uz if ab>0

7b -
I@:ll2a =S yanyy it ab<o.

Then Co(X) =14 /ol — ).

In order to prove this, first note that the set of extreme points of the unit ball
is £(Bx) = {(a,b) e R* : a* + b* = 1,ab > 0}. Using Krein-Milman’s theorem, we
have that n(a,t) = sup{|laz + (1 — a)ty||* + a(1 — a)||lz — ty||? : 2,y € E(Bx)}.

Let a,b,c,d > 0, be such that a® + b* = ¢ +d?> = 1 and let ¢ € [0,1]. First take
z = (a,b) and y = (¢, d). It is clear that |az + (1 — a)ty|l21 = |lax + (1 — a)ty||2.
If ||z — tyll2q = ||z — tyl|2, then we have

loz + (1 = a)tyll3, + a(l - a)llz — tyl3, = a+ (1 - a)t’.

If 12— tyllas =}z — tyll, then
o + (1 - @)yl +a(l — )z — tyl3,
=a+ (1 —a)t* +2a(1 — a)((ad + cb)t — ab — t3cd)
<a+(1—a)t? +2a(l —a)t

because ad + ¢b < 1.
If we consider z = (a,b) and y = (—c, —d), we get the same inequality.
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Thus n(a,t) < a+ (1 — a)t? +2a(l — a)t. For x = (1,0),y = (0,1), we get
equality.
fo<a<s 1 it can be proved that sup {a+ 1a2t2} =14+ +/a(l —a)
te(0,1]

)

Example 1.18. Let X = log — f1 = (R, || - |00 1), Where:

12lloor = 1| o if x122 >0,
el i <o,
for z = (z1,20) € X. If 1 < o < 3, then Cp(X) = 1 + =atja=do” W and the
3
Take « € (0, %] We can see that £(Bx) consists of 6 points. Using again Krein-
Milman’s theorem,

maximum value is C1(X) = 4.
3

a+(1—a)*? +2a(1 —a) 0<t< /125,
n(a,t) =
(@) a(l—a)+ (1 —a)t?® +2a(1 —a) Vit <t<1

_ Vo — 302

sup n(a,t) =1+ ot Via - 3a = Co(X).

t€[0,1] 2
Example 1.19. Let us consider the ¢, spaces, for p € [1,2]. Take o € (0,1/2],
xzo=(0,1,0...), yo = (1,0,...) and ¢ € [0,1]. By definition:
lezo + (1 — a)tyolly + a(l — a)||lzo — tyoll;

aflz]F + (1= a)l[tyol?

C(@P+ (1 — a)PtP)2/P a1l — a)(1 +tP)2/P

thus

Ca(ly) >

a+ (1 —a)t? = /),
and evaluating at t = | /7%= we have
(1.5) Cally) > (P + (1 — a)?/?2)?/r.

If we take p =1 or p = 2, we have equality in (1.5) for every a € (0,1/2]. Note

also that
lim (/% 4+ (1 — a)P/?)?? =1+ 2/a(1 — a)

p—1+
If we take o = 1/2, then C )5(fp) = Cny(p) > 22/P=1_in fact, the equality was
proved by Clarkson (see [2]).

1.1. Some applications to fixed point theory. Applying some of the previous
results, we want to study the existence of fixed points for k-Lipschitzian rotative
mappings:

Definition 1.20. Let C C X be a subset of a Banach space X and T : C — C. We
say that T is a Lipschitzian mapping if there is k > 0 such that ||Tz—Ty|| < k||z—yl|
for any xz,y € C and we will write T' € Z (k). If k¢ is the minimum number such
that T € Z(k) we will write T € Zy(ko). Uf T € £(1) we will say that T is
nonexpansive.
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Definition 1.21. Let T : C — C where C' is a nonempty, closed and convex subset
of a Banach space X. We will say that T is an (a,n) rotative mapping if 0 < a < n
and for any x € C, ||z — T"z|| < allz —Tx|. If T is an (a,n) rotative mapping for
some n € N and some a < n, we will say that T is a rotative mapping. If a = 0, we
will say that T is an n-periodic mapping.

In 1981 K. Goebel and M. Koter, proved the following, see [4] and [5]:

Theorem 1.22. If C is a nonempty, closed and conver subset of a Banach space,
then any nonexpansive and rotative mapping T : C — C' has a fixed point.

Let us define the following:
X (a) = inf{k:3C C X,T: C — C, (a,n) — rotative, T € % (k), Fix(T) = 0},

where C' is a nonempty, closed and convex subset of a Banach space X. If a = 0,
we will write ;X instead of ;X (0).

In [3, pp.179-180] it was shown that for any 0 < a < n, ¥,X(a) > 1. The exact
value of ;X (a) is unknown, even more, it is not known if is bounded.

The next lemma and its proof are similar to a result by J. Gérnicki and K. Pupka
in [7].

Lemma 1.23. Let X be a Banach space and T : X — X a continuous function. If
there are 0 < A <1, B> 0 and {u,},~, C X such that forn >1

d(Tuna un) <A d(Tunfla unfl)

and
d(“ny unfl) <B d(Tunfly unfl)a

then z = lim w, is a fixed point of T'.
n—oo

Proposition 1.24. Let X be a Banach space. Then

5
X> _—
2=\ Cp(X)

Proof. Let X be a Banach space, C' a nonempty, closed and convex subset of X and
a=1/2. Let T : C — C be a k-Lipschitzian and 2-periodic mapping. For x € C
let us define u(x) = ax + (1 — a)Tx, using the definition of C,(X) we have that for
every u,v € X, [Jau+(1—a)v[* < Ca(X)(aful* + (1 - a)[v]*) —a(l —a)|u—v|>
Then we have:

lz — Tu(e)|| = | %z — Tu(2)| < kllu(z) - Tz|| = akllz — Tz

and

1Tz — Tu(z)|| < kllu(z) — 2| = (1 - a)kllz — Tl
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Hence
[u(z) — Tu(x)||? =|la(z — Tu(z) + (1 — )(Tz — Tu(x)))|?
<Ca(X) (allz = Tu(@)|* + (1 - )| Tz — Tu()|*)
—a(l—a)||z - TxH2

<{CaX) [*+ (1= a)’| K* —a(l — @)} ||z — Tz|?
2
~{eye0 5| - 1o - a2

If we set u,, = u"(x) for n € Nand ug = z, applying lemma 1.23, if C /o(X) [k2/4]
—1/4 < 1 or equivalently if k < , /%, then Fix(T) # 0. O

From the above, if we consider a Banach space X such that 1 < () /2(X ) < %,
then fyg( > 2, improving in this case the bound obtained by K. Goebel and E.
Ziotkiewicz [6] in 1971 who proved that for every Banach space X, y5 > 2.

Proposition 1.25. Let X be a Banach space and o = 0.346. If 1 < Co(X) <
1.1136 then v5* > 1.3821.

Proof. Let X be a Banach space, C' a nonempty, closed and convex subset of X and
T:C—C,TeZk),T3=Id. For x € C, define

xo=x € C,
1 = axg + (1 — )Tz,
xro = axo+ (1 — a)Tz;.
By definition of C,(X) we get
|2zo — Tao||* =||a(zo — Tx2) + (1 — a)(Txy — Tao)|?
<Co(X) (allzo — Tza|* + (1 — @) || Twy — Txa||)
— a1l — a)||zg — Tz ||?
<Cu(X) (k2|20 — 3l + (1 — )k — o))
— a(1 - a) a0 — T ?
<Co(X)(ak?||a(zo — T?x0) + (1 — a)(Txy — T?x0)|?
+ (1= )’k lzo — Tao|?) — a(l = a)l|lzo — Tz >,
Also
la(zo—T%x0) + (1 — a)(Tzy — T?x0)|?
<Ca(X)(allzo — Two|* + (1 = @)[|Tz1 — T?z0[*) — a(1 — @)|lwg — T |?
<Co(X)(ak|Txzo — z0|* + (1 — @)k2a?||zg — Txo?) — (1 — @)||zo — Tx1|?,

X
(X

hence
|22 — Taa|® <a?kSC,(X)?||zo — Taol* + (1 — @)k*Co(X)? |20 — T2 ||?
(1.6) + (1 — )’k (X))o — Tol|?
—a(l — a)[ak?Co(X) + 1]|Jz0 — Tx1 |
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Now, let us consider
21 = Ta1||* =[la(zo — T1) + (1 = a)(Tay — Ta1)||?
<aCy(X)||zo — Tx1]]? + (1 — a)?k2Co(X)||xo — Txo|)?
—a(l = a)||lzg — Txol*

Suppose that for some ¢, ||z1 — Ta1||? > (1 — €)||zo — Tzo/|?, then
—(1—¢e)+ (1 —a)k?Cu(X) — a(l — a)
Ca(X)

This together with inequality (1.6) gives:
|22 — Tao||? <[a?k5CL(X)? + (1 — @)k Cu(X)? + (1 — @)®k*C,h(X)
+a(l—a)k*(—(1 —¢) + (1 — a)*k*Co(X) — a(l — ))
l1-«a
Ca(X)

Let yo = z. Suppose we have 4o, ..., ym. Let 40 = y,, and 3!, = ay, + (1 —
a)Tyi-t, fori=1,2.

I |y = TYmll* < (1= &)l[ym — Tymll*, we take ymi1 =y if [y — Tyml? =
(1 =2)llym — Tym”27 let Ymi1 = y?%’r

Thus, by lemma 1.23, {y,,} converges to a fixed point of T, provided that

—allzg — Tm1H2 < lxo — T$0||2.

+ (=(1 =) + (1 = a)’k*Ca(X) — a1 = a))]||lzo — Tao|*.

(1.7)
A?k0CL(X)? 4+ a®(1 — a)k*Co(X)* + (1 — @)’k Cu(X) — a1 — )k?
Fa(l — a)kCa(X) — a2(1 — a)?k? — é_()?) F(1—a)tk? - OM <1

For C,(X) = 1 the best solution with this method is for @ = 0.346. Taking this «
and if X is such that 1 < C,(X) < 1.1136, the last inequality holds for k& < ko(X),
where ko(X) > 1.3821, that is, for these spaces X, v& > ko(X) > 1.3821 which
improves in this case the bound given by J. Gérnicki and K. Pupka ([7]) for general
Banach spaces. O

Instead of using C,(X) one could also work with the following constant:
Let X be a Banach space and « € (0,1). We define

Do (X) =

sup { lax + (1 = a)y|? + oz — (1 — a)yl® + a1 — ||z — y|* + a(l — o)z + y|* }
2(aljz]? + (1 = @)llyl1?)

where the supremum is taken over x,y € X no both zero.

Dy (X) has the following properties which are obtained similarly to those of
Co(X).

(1) For a € (0,1), D1_o(X) = Do(X) < Co(X).

(2) Dyj2(X) = Cny(X).

(3) 1< Du(X) <1+2y/a(l—a).

(4) If H is a Hilbert space, then D,(H) = 1.

(5) X is uniformly nonsquare if and only if Dy (X) <1+ 2y/a(l — «).
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Let aw € (0,1) and t € [0,1]. We define

1
plont) =5 sup {[laz +(1- a)ty|® + laz — (1 — a)ty|?
172165X

+a(l = a)([le —ty|® + [z + tyl*)} -

Proposition 1.26. Let « € (0,1). The function ¢(c,t) of the variable t is contin-
uous on [0,1) and is conver and nondecreasing on [0, 1].

Corollary 1.27. Let X be a Banach space and « € (0,1/2]. Then

The problem of this constant is that we don’t know if D, (X) = Dy (X™) or if
there is a Banach space X which is not a Hilbert space with D, (X) = 1. However
in this case we were able to calculate D, (¢p) for p > 2.

Example 1.28. Let p > 2 and « € (0,1/2]. Then

Dalty) = ((mwa)%(m—@f’)””
a\tp) — 9 .

Proof. We will use Clarkson’s inequality (see [1]): for p > 2 and z,y € ¢,

Iz +yl” + llz = ylI” < (lzll + ly[D” + [zl =y DI

Using this inequality and the definition of ¢(«, t) we have that for a € (0,1/2],t €
[0,1] and z,y € £, with ||z| = ||y| = 1:

1

5 (o + (1= )yt + llaz = (1= a)ytll* + a(l = a)([lz = yt|* + [lo + yt]*))

21-2/p
<
-2
Hence, (o, t) < h(t). If one take z = (1/2%/7,1/2'/7,0,...) and y = (1/2'/7, —1/2"/P,
0,...) we have the equality, thus ¢(a,t) = h(t) and

p(at) h(t)
Dy(l,) = sup ————— = sup —————.
( p) tE[OI,)l} o+ (1 - Oé)t2 tE[Ol,t)l] o+ (1 - Oé)t2

(a+T-a)t)f +la—1—-a)tfP+a(l—a)((1-t)P +(1+1)?)) = h(t).

l—« 2

Vi—« (0% P Vvi—oa—/« P 2/p
The maximum is attained at to = /7%, and h(ty) = <( matva)+{Vita—va) > .

g
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