

ANOTHER VERSION OF THE VON NEUMANN-JORDAN CONSTANT

HELGA FETTER NATHANSKY AND VÍCTOR PÉREZ GARCÍA

ABSTRACT. We define another version of the von Neumann-Jordan constant, study some of its properties and relate it to the fixed point property for Lipschitzian mappings.

1. A GENERALIZATION OF VON NEUMANN-JORDAN CONSTANT

The von Neumann-Jordan constant of a Banach space X was defined by Clarkson [1] as

$$C_{NJ}(X) = \sup \left\{ \frac{\|x+y\|^2 + \|x-y\|^2}{2(\|x\|^2 + \|y\|^2)} : x, y \in X, (x,y) \neq (0,0) \right\}.$$

It is known that this constant is connected with some geometric structures of Banach spaces, such as normal structure and uniform non-squareness, and thus with the fixed point property, see for example [9] and [11].

Based on the following characterization of Hilbert spaces we will define a family of constants for Banach spaces similar to the von Neumann-Jordan constant and apply this to find conditions for the existence of fixed points for periodic mappings.

Lemma 1.1. Let X be a Banach space and $\alpha \in (0,1)$. X is a Hilbert space if and only if for every $x, y \in X$,

$$\|\alpha x + (1 - \alpha)y\|^2 + \alpha(1 - \alpha)\|x - y\|^2 = \alpha\|x\|^2 + (1 - \alpha)\|y\|^2.$$

Definition 1.2. Let X be a Banach space and $\alpha \in [0, 1]$, we set:

$$C_{\alpha}(X) = \sup \left\{ \frac{\|\alpha x + (1 - \alpha)y\|^2 + \alpha(1 - \alpha)\|x - y\|^2}{\alpha \|x\|^2 + (1 - \alpha)\|y\|^2} : \right.$$

$$x, y \in X, \alpha ||x||^2 + (1 - \alpha)||y||^2 \neq 0$$
.

Closely associated to $C_{\alpha}(X)$ is the function f given as follows:

Definition 1.3. For $\alpha \in (0, 1/2]$ and $t \in [0, 1]$, define $f(t) = \frac{(\alpha + (1-\alpha)t)^2 + \alpha(1-\alpha)(1+t)^2}{\alpha + (1-\alpha)t^2}$.

Remark 1.4. f attains its unique maximum $1 + 2\sqrt{\alpha(1-\alpha)}$ at $t_0 = \sqrt{\frac{\alpha}{1-\alpha}}$.

Lemma 1.5. Let X be a Banach space. Then:

(a)
$$C_{\frac{1}{2}}(X) = C_{NJ}(X)$$
.

 $Key\ words\ and\ phrases.$ Von Neumann-Jordan constant, uniform non-squareness, fixed point, Lipschitzian mappings.

²⁰¹⁰ Mathematics Subject Classification. 46B20, 47H09, 47H10.

- (b) It is clear that $C_{\alpha}(X) = C_{1-\alpha}(X)$ for every $\alpha \in [0,1]$.
- (c) $C_{\alpha}(X) = 1$ for $\alpha \in (0,1)$ if and only if X is a Hilbert space.

Proof. (a) and (b) are obvious.

Proof of (c).

Suppose that $C_{\alpha}(X) = 1$ for $\alpha \in (0,1)$, then for $x, y \in X$, $\|\alpha x + (1-\alpha)y\|^2 + \alpha(1-\alpha)\|x-y\|^2 \le \alpha\|x\|^2 + (1-\alpha)\|y\|^2$. Let $u = \alpha x + (1-\alpha)y$ and $v = \alpha x - \alpha y$. Then we have $\|\alpha u + (1-\alpha)v\|^2 + \alpha(1-\alpha)\|u-v\|^2 \le \alpha\|u\|^2 + (1-\alpha)\|v\|^2$; that is,

$$\alpha^{2} \|x\|^{2} + \alpha(1 - \alpha)\|y\|^{2} \le \alpha \|\alpha x + (1 - \alpha)y\|^{2} + \alpha^{2}(1 - \alpha)\|x - y\|^{2},$$

hence by lemma 1.1 X is a Hilbert space.

If X is a Hilbert space, by lemma 1.1 is clear that
$$C_{\alpha}(X) = 1$$
.

The following lemma will be useful for calculating $C_{\alpha}(X^*)$.

Lemma 1.6. Let X be a Banach space and $\alpha \in (0,1)$. Let $Z = X \times X$ equipped with the norm $\|(x,y)\|_Z^2 = \alpha \|x\|_X^2 + (1-\alpha)\|y\|_X^2$, and in $X^* \times X^*$ consider

(1.1)
$$||(f,g)||^2 = \frac{||f||_{X^*}^2}{\alpha} + \frac{||g||_{X^*}^2}{1-\alpha}.$$

Then $\|\cdot\|$ defines the dual norm of Z.

Proof. Using Lagrange multipliers it is easy to see that the function $F: \mathbb{R}^2 \to \mathbb{R}$ given by $F(u,v) = (au+bv)^2$ subject to the condition $\alpha u^2 + (1-\alpha)v^2 = 1$, attains its maximum at a point (u_0, v_0) and

(1.2)
$$F(u_0, v_0) = \frac{a^2}{\alpha} + \frac{b^2}{1 - \alpha}.$$

Let X be a Banach space, $\alpha \in (0,1), Z = X \times X$ as in the hypothesis and $f,g \in X^*$. By definition

$$||(f,g)||_{Z^*} = \sup \left\{ |f(x) + g(y)| : \alpha ||x||_X^2 + (1-\alpha)||y||_X^2 = 1 \right\}.$$

Let $x, y \in X$ be such that $\alpha ||x||_X^2 + (1 - \alpha)||y||_X^2 = 1$. By (1.2):

$$|f(x) + g(x)|^2 \le (||f||_{X^*} ||x||_X + ||g||_{X^*} ||y||_X)^2 \le \frac{||f||_{X^*}^2}{\alpha} + \frac{||g||_{X^*}^2}{1 - \alpha},$$

hence $||(f,g)||_{Z^*} \le ||(f,g)||$.

Let $\varepsilon > 0$ and $x_0, y_0 \in S_X$ be such that $f(x_0) = (1 - \varepsilon) ||f||_{X^*}$ and $g(y_0) = (1 - \varepsilon) ||g||_{X^*}$ and let

$$x = x_0 \sqrt{\left(\frac{1-\alpha}{\alpha}\right) \frac{\|f\|_{X^*}^2}{(1-\alpha)\|f\|_{X^*}^2 + \alpha\|g\|_{X^*}^2}} = Ax_0,$$

$$y = y_0 \sqrt{\left(\frac{\alpha}{1-\alpha}\right) \frac{\|g\|_{X^*}^2}{(1-\alpha)\|f\|_{X^*}^2 + \alpha\|g\|_{X^*}^2}} = By_0.$$

Then

$$\begin{split} |f(x) + g(y)|^2 &= \left| A(1 - \varepsilon) \|f\| + B(1 - \varepsilon) \|g\| \right|^2 \\ &= \frac{(1 - \varepsilon)^2}{(1 - \alpha) \|f\|^2 + \alpha \|g\|^2} \left| \sqrt{\frac{1 - \alpha}{\alpha}} \|f\|^2 + \sqrt{\frac{\alpha}{1 - \alpha}} \|g\|^2 \right|^2 \\ &= \frac{(1 - \varepsilon)^2}{\alpha (1 - \alpha) ((1 - \alpha) \|f\|^2 + \alpha \|g\|^2)} \left[(1 - \alpha)^2 \|f\|^4 + 2\alpha (1 - \alpha) \|f\|^2 \|g\|^2 + \alpha^2 \|g\|^4 \right] \\ &= \frac{(1 - \varepsilon)^2}{\alpha (1 - \alpha)} \left[(1 - \alpha) \|f\|^2 + \alpha \|g\|^2 \right] = (1 - \varepsilon)^2 \left[\frac{\|f\|^2}{\alpha} + \frac{\|g\|^2}{1 - \alpha} \right], \end{split}$$

which proves the equality.

Proposition 1.7. For every Banach space X and $\alpha \in [0,1]$, $C_{\alpha}(X) = C_{\alpha}(X^*)$.

The proof is similar to Kato's and Takahashi's, when they showed that $C_{NJ}(X) = C_{NJ}(X^*)$ [10].

Proof. Let X be a Banach space. If $\alpha=0$ or $\alpha=1$, the equality holds trivially. Suppose that $\alpha\in(0,1)$. Let $Z=X\times X$ as in the previous lemma.

Define the linear operator $L: Z \to Z$ as $L(x,y) = (\alpha x + (1-\alpha)y, \alpha x - \alpha y)$ for any $(x,y) \in Z$. Let $(x,y) \in Z$, then

$$||L(x,y)||_Z^2 \le ||L||^2 ||(x,y)||_Z^2 = ||L||^2 (\alpha ||x||_X^2 + (1-\alpha) ||y||_X^2)$$

and this happens if and only if

$$\frac{\alpha(\|\alpha x + (1 - \alpha)y\|_X^2 + \alpha(1 - \alpha)\|x - y\|_X^2)}{\alpha\|x\|_Y^2 + (1 - \alpha)\|y\|_Y^2} \le \|L\|^2.$$

Taking the supremum over $x, y \in X$ we obtain $\alpha C_{\alpha}(X) \leq ||L||^2$. Now take $\varepsilon > 0$ and $x, y \in X$ such that $||L(x,y)||_Z^2 / ||(x,y)||_Z^2 > ||L||^2 - \varepsilon$. Then

$$||L||^2 - \varepsilon < \frac{\alpha(||\alpha x + (1 - \alpha)y||_X^2 + \alpha(1 - \alpha)||x - y||_X^2)}{\alpha||x||_X^2 + (1 - \alpha)||y||_X^2} \le \alpha C_\alpha(X).$$

Hence $||L||^2 = \alpha C_{\alpha}(X) = ||L^t||^2$ where L^t is the transpose of L, given by $L^t(f,g) = (\alpha f + \alpha g, (1-\alpha)f - \alpha g)$ for every $f,g \in X^*$. Thus

$$\frac{\|L^t(f,g)\|_{Z^*}^2}{\|(f,g)\|_{Z^*}^2} \le \|L\|^2 = \alpha C_\alpha(X).$$

By (1.1) we have:

$$\frac{1}{\alpha} \frac{\|L^{t}(f,g)\|_{Z^{*}}^{2}}{\|(f,g)\|_{Z^{*}}^{2}} = \frac{1}{\alpha} \frac{\frac{\|\alpha f + \alpha g\|_{X^{*}}^{2}}{\alpha} + \frac{\|(1-\alpha)f - \alpha g\|_{X^{*}}^{2}}{1-\alpha}}{\frac{\|f\|_{X^{*}}^{2}}{\alpha} + \frac{\|g\|_{X^{*}}^{2}}{1-\alpha}}$$

$$= \frac{\alpha(1-\alpha)\|f + g\|_{X^{*}}^{2} + \|(1-\alpha)f - \alpha g\|_{X^{*}}^{2}}{(1-\alpha)\|f\|_{X^{*}}^{2} + \alpha\|g\|_{X^{*}}^{2}} \leq C_{\alpha}(X).$$

Observe that

$$\begin{split} C_{\alpha}(X^*) &= \sup \left\{ \frac{\|\alpha f + (1-\alpha)g\|_{X^*}^2 + \alpha(1-\alpha)\|f - g\|_{X^*}^2}{\alpha \|f\|_{X^*}^2 + (1-\alpha)\|g\|_{X^*}^2} : f, g \in X^* \right\} \\ &= \sup \left\{ \frac{\|(1-\alpha)f - \alpha g\|_{X^*}^2 + \alpha(1-\alpha)\|f + g\|_{X^*}^2}{(1-\alpha)\|f\|_{X^*}^2 + \alpha\|g\|_{X^*}^2} : f, g \in X^* \right\}, \end{split}$$

hence

$$C_{\alpha}(X^*) \leq C_{\alpha}(X).$$

For the other inequality, let us take $(f,g) \in Z^*$ such that

$$\frac{\|L^{t}(f,g)\|_{Z^{*}}^{2}}{\|(f,g)\|_{Z^{*}}^{2}} > \|L^{t}\|^{2} - \varepsilon\alpha = \alpha C_{\alpha}(X) - \varepsilon\alpha,$$

that is

$$C_{\alpha}(X) - \varepsilon < \frac{\alpha(1-\alpha)\|f + g\|_{X^*}^2 + \|(1-\alpha)f - \alpha g\|_{X^*}^2}{(1-\alpha)\|f\|_{X^*}^2 + \alpha\|g\|_{X^*}^2} \le C_{\alpha}(X^*),$$

and we conclude $C_{\alpha}(X) \leq C_{\alpha}(X^*)$.

In order to be able to calculate the value of $C_{\alpha}(X)$ we will introduce the following function, which is similar to a function defined by Yang and Wang [12]:

$$\eta(\alpha, t) = \sup \left\{ \|\alpha x + (1 - \alpha)ty\|^2 + \alpha(1 - \alpha)\|x - ty\|^2 : x, y \in S_X \right\}.$$

It follows immediately that $\eta(\alpha,t) = \varphi(1-\alpha,t)$. We now list some useful properties of η :

Lemma 1.8. (a) For every $\alpha \in [0,1]$, $\eta(\alpha,0) = \alpha$.

- (b) If we take $y = x \in S_X$, we obtain $\eta(\alpha, t) \ge \alpha + (1 \alpha)t^2 \ge \alpha$ for any $\alpha \in [0, 1]$ and any $t \in [0, 1]$. In particular for every α , $\eta(\alpha, 1) \ge 1$.
- (c) By the triangle inequality, we have $\eta(\alpha,t) \leq (\alpha+(1-\alpha)t)^2 + \alpha(1-\alpha)(1+t)^2 = \alpha + (1-\alpha)t^2 + 4\alpha(1-\alpha)t$ for any $\alpha \in [0,1]$ and any $t \in [0,1]$. In particular $\eta(\alpha,1) \leq 1 + 4\alpha(1-\alpha) \leq 2$.

Moreover the function η is continuous and convex.

Proposition 1.9. Let X be a Banach space and $\alpha \in [0,1]$. Let us consider $\eta(\alpha,t)$ as a function of the variable t. Then η is a continuous function on [0,1) and is convex and nondecreasing on [0,1].

Proof. Let $0 \le t_1 < t_2 \le 1$ and $\beta \in [0,1]$. Since $x = \beta x + (1-\beta)x$ and considering that $h(x) = x^2$ is a convex function, for any $x, y \in S_X$

$$\|\alpha x + (1 - \alpha)(\beta t_1 + (1 - \beta)t_2)y\|^2 + \alpha(1 - \alpha)\|x - (\beta t_1 + (1 - \beta)t_2)y\|^2$$

$$\leq (\beta \|\alpha x + (1 - \alpha)t_1y\| + (1 - \beta)\|\alpha x + (1 - \alpha)t_2y\|)^2$$

$$+ \alpha(1 - \alpha)(\beta \|x - t_1y\| + (1 - \beta)\|x - t_2y\|)^2$$

$$\leq \beta \|\alpha x + (1 - \alpha)t_1y\|^2 + (1 - \beta)\|\alpha x + (1 - \alpha)t_2y\|^2$$

$$+ \alpha(1 - \alpha)(\beta \|x - t_1y\|^2 + (1 - \beta)\|x - t_2y\|^2)$$

$$\leq \beta \eta(\alpha, t_1) + (1 - \beta)\eta(\alpha, t_2).$$

Thus, η is a convex function on [0,1] and is continuous on (0,1). By lemma 1.8 (c), $\eta(\alpha,0)=\alpha$ and

$$0 \le \eta(\alpha, t) - \eta(\alpha, 0) \le (1 - \alpha)t^2 + 4\alpha(1 - \alpha)t.$$

We conclude $\lim_{t\to 0} (\eta(\alpha,t) - \eta(\alpha,0)) = 0$.

Since η is a convex function on [0,1], in order to prove that η is nondecreasing, it is enough to show that $\eta(\alpha,t) \geq \eta(\alpha,0)$ for every $t \in [0,1]$, and this is true, because $\eta(\alpha,0) = \alpha$ and $\eta(\alpha,t) \geq \alpha$ for every $t \in [0,1]$, by lemma 1.8 (b).

We have the following lemma:

Lemma 1.10. Let X be a Banach space and $\alpha \in (0, \frac{1}{2}]$. Then

$$\sup_{t\in[0,1]}\frac{\eta(1-\alpha,t)}{\alpha t^2+(1-\alpha)}\leq \sup_{t\in[0,1]}\frac{\eta(\alpha,t)}{\alpha+(1-\alpha)t^2}.$$

Proof. Let X be a Banach space and $w, z \in S_X$, $t \in [0,1]$. Note that $\frac{\alpha}{1-\alpha} \leq 1$. Then

$$\frac{\|\alpha tz + (1-\alpha)w\|^2 + \alpha(1-\alpha)\|tz - w\|^2}{(1-\alpha) + \alpha t^2}$$

$$= \frac{\|\alpha w + (1-\alpha)\frac{\alpha t}{1-\alpha}(-z)\|^2 + \alpha(1-\alpha)\|w - \frac{\alpha t}{1-\alpha}(-z)\|^2}{\alpha + (1-\alpha)\left(\frac{\alpha t}{1-\alpha}\right)^2}$$

$$\leq \frac{\eta(\alpha, \frac{\alpha t}{1-\alpha})}{\alpha + (1-\alpha)\left(\frac{\alpha t}{1-\alpha}\right)^2} \leq \sup_{s \in [0,1]} \frac{\eta(\alpha, s)}{\alpha + (1-\alpha)s^2}.$$

Taking the supremum over $z, w \in S_X$ and then the supremum over $t \in [0, 1]$, we have the desired inequality.

Now we can state the following characterization of $C_{\alpha}(X)$:

Lemma 1.11. Let X be a Banach space and $\alpha \in (0, \frac{1}{2}]$. Then

$$C_{\alpha}(X) = \sup_{t \in [0,1]} \frac{\eta(\alpha, t)}{\alpha + (1 - \alpha)t^2}.$$

Proof. Let X be a Banach space and $\alpha \in (0, \frac{1}{2}]$. Let $x, y \in S_X$ and $t \in [0, 1]$. By definition of $C_{\alpha}(X)$

$$\sup_{t \in [0,1]} \frac{\eta(\alpha,t)}{\alpha + (1-\alpha)t^2} = \sup_{t \in [0,1]} \left\{ \frac{\|\alpha x + (1-\alpha)ty\|^2 + \alpha(1-\alpha)\|x - ty\|^2}{\alpha + (1-\alpha)t^2} \right\} \le C_{\alpha}(X).$$

Let $x, y \in X$ and suppose first that $||x|| \ge ||y|| > 0$, then

$$\begin{split} &\frac{\|\alpha x + (1-\alpha)y\|^2 + \alpha(1-\alpha)\|x - y\|^2}{\alpha\|x\|^2 + (1-\alpha)\|y\|^2} \\ &= \frac{\left\|\alpha\frac{x}{\|x\|} + (1-\alpha)\frac{\|y\|}{\|x\|}\frac{y}{\|y\|}\right\|^2 + \alpha(1-\alpha)\left\|\frac{x}{\|x\|} - \frac{\|y\|}{\|x\|}\frac{y}{\|y\|}\right\|^2}{\alpha + (1-\alpha)\left(\frac{\|y\|}{\|x\|}\right)^2} \\ &\leq \frac{\eta(\alpha,\frac{\|y\|}{\|x\|})}{\alpha + (1-\alpha)\left(\frac{\|y\|}{\|x\|}\right)^2} \leq \sup_{t \in [0,1]} \frac{\eta(\alpha,t)}{\alpha + (1-\alpha)t^2}. \end{split}$$

Now suppose that $||y|| \ge ||x|| > 0$; by lemma 1.10

$$\begin{split} &\frac{\|\alpha x + (1-\alpha)y\|^2 + \alpha(1-\alpha)\|x - y\|^2}{\alpha \|x\|^2 + (1-\alpha)\|y\|^2} \\ &= \frac{\left\|\alpha \frac{\|x\|}{\|y\|} \frac{x}{\|x\|} + (1-\alpha) \frac{y}{\|y\|}\right\|^2 + \alpha(1-\alpha) \left\|\frac{\|x\|}{\|y\|} \frac{x}{\|x\|} - \frac{y}{\|y\|}\right\|^2}{\alpha \left(\frac{\|x\|}{\|y\|}\right)^2 + (1-\alpha)} \\ &\leq \frac{\eta(1-\alpha, \frac{\|x\|}{\|y\|})}{\alpha \left(\frac{\|x\|}{\|y\|}\right)^2 + (1-\alpha)} \leq \sup_{t \in [0,1]} \frac{\eta(1-\alpha, t)}{\alpha t^2 + (1-\alpha)} \leq \sup_{t \in [0,1]} \frac{\eta(\alpha, t)}{\alpha + (1-\alpha)t^2}. \end{split}$$

Note that if x=0 or y=0, then the same inequality holds, because for t=0 we have $\frac{\eta(\alpha,0)}{\alpha}=1$. Taking the supremum over $x,y\in X$,

$$C_{\alpha}(X) \le \sup_{t \in [0,1]} \frac{\eta(\alpha, t)}{\alpha + (1 - \alpha)t^2}.$$

Corollary 1.12. Let X be a Banach space and $\alpha \in [0,1]$. Then $1 \leq C_{\alpha}(X) \leq 1 + 2\sqrt{\alpha(1-\alpha)}$.

Proof. For $\alpha = 0$ or $\alpha = 1$ we have equality. Let us consider $\alpha \in (0, 1/2]$. Using lemma 1.8 and remark 1.4:

$$1 \le \frac{\eta(\alpha, t)}{\alpha + (1 - \alpha)t^2} \le \frac{(\alpha + (1 - \alpha)t)^2 + \alpha(1 - \alpha)(1 + t)^2}{\alpha + (1 - \alpha)t^2} = f(t) \le 1 + 2\sqrt{\alpha(1 - \alpha)}.$$

By the previous lemma and by lemma 1.5 (b), we conclude that for $\alpha \in (0,1)$, $1 \le C_{\alpha}(X) \le 1 + 2\sqrt{\alpha(1-\alpha)}$.

The lower bound for $C_{\alpha}(X)$ is attained by Hilbert spaces. The upper bound is also attained by Banach spaces which are not uniformly nonsquare, as we will see in proposition 1.16.

James introduced in [8] the concept of uniform nonsquare spaces:

Definition 1.13. A Banach space X is uniformly nonsquare if there is $\varepsilon \in (0,1)$ such that for any $x, y \in S_X$, $\min \{||x+y||, ||x-y||\} \le 2(1-\varepsilon)$.

It is known that Hilbert spaces are uniformly nonsquare, but the space ℓ_1 is not uniformly nonsquare.

Lemma 1.14. Let X be a Banach space and $\alpha \in (0,1)$. X is uniformly nonsquare if and only if there is $\delta \in (0,1)$ such that for any $x,y \in S_X$, $\min \{ \|\alpha x + (1 - \alpha)y\|, \|x - y\|/2 \} \le (1 - \delta).$

Proof. Suppose that X is uniformly nonsquare and let ε as in the definition 1.13. Let us take $x, y \in S_X$, then $||x-y|| \le 2(1-\varepsilon)$ or $||x+y|| \le 2(1-\varepsilon)$. If $||x-y|| \le 2(1-\varepsilon)$, we have nothing to prove. Suppose that $||x+y|| \le 2(1-\varepsilon)$; if $\alpha \in (0,1/2]$, then

$$\|\alpha x + (1 - \alpha)y\| = \alpha \|x + y + \frac{1 - 2\alpha}{\alpha}y\| \le \alpha \|x + y\| + \alpha \frac{1 - 2\alpha}{\alpha}$$
$$\le 2\alpha (1 - \varepsilon) + 1 - 2\alpha = 1 - 2\alpha \varepsilon.$$

Similarly, if $\alpha \in [1/2, 1)$, we have that $\|\alpha x + (1 - \alpha)y\| \le 1 - 2(1 - \alpha)\varepsilon$.

Suppose that there is $\delta \in (0,1)$ such that $\min \{ \|\alpha x + (1-\alpha)y\|, \|x-y\|/2 \} \le$ $(1-\delta)$ for any $x,y\in S_X$. Let us take $x,y\in S_X$. Suppose that $||x-y||>2(1-\delta)$ then $\|\alpha x + (1-\alpha)y\| \le 1-\delta$ and $\|\alpha y + (1-\alpha)x\| \le 1-\delta$. From this

$$||x + y|| = ||\alpha x + (1 - \alpha)y + \alpha y + (1 - \alpha)x||$$

$$\leq ||\alpha x + (1 - \alpha)y|| + ||\alpha y + (1 - \alpha)x|| \leq 2(1 - \delta).$$

Hence X is uniformly nonsquare.

Proposition 1.15. Let X be a Banach space and $\alpha \in (0,1)$, then the following statements are equivalent:

- (1) X is not uniformly nonsquare.
- (2) $\eta(\alpha, t) = (\alpha + (1 \alpha)t)^2 + \alpha(1 \alpha)(1 + t)^2$ for every $t \in [0, 1]$. (3) $\eta(\alpha, t_0) = (\alpha + (1 \alpha)t_0)^2 + \alpha(1 \alpha)(1 + t_0)^2$ for some $t_0 \in (0, 1]$.

Proof. (1) \Rightarrow (2) If X is not uniformly nonsquare, by lemma 1.14 there are sequences $\{x_n\}, \{y_n\} \subset S_X$ such that $\lim_{n \to \infty} \|\alpha x_n + (1-\alpha)y_n\| = 1$ and $\lim_{n \to \infty} \|x_n - y_n\| = 2$. Let $t \in [0,1]$; note that:

$$\alpha + (1 - \alpha)t \ge ||\alpha x_n + (1 - \alpha)ty_n|| = ||\alpha x_n + (1 - \alpha)y_n + (1 - \alpha)(t - 1)y_n||$$

$$\ge ||\alpha x_n + (1 - \alpha)y_n|| - (1 - \alpha)(1 - t).$$

Hence $\lim_{n\to\infty} \|\alpha x_n + (1-\alpha)ty_n\| = \alpha + (1-\alpha)t$. On the other hand

$$1+t > ||x_n - ty_n|| = ||x_n - y_n + (1-t)y_n|| > ||x_n - y_n|| - (1-t).$$

From this $\lim_{n\to\infty} ||x_n - ty_n|| = 1 + t$. Since $\eta(\alpha,t) \le (\alpha + (1-\alpha)t)^2 + \alpha(1-\alpha)(1+t)^2$,

$$\eta(\alpha, t) \ge \lim_{n \to \infty} \left(\|\alpha x_n + (1 - \alpha)t y_n\|^2 + \alpha (1 - \alpha) \|x_n - t y_n\|^2 \right)$$
$$= (\alpha + (1 - \alpha)t)^2 + \alpha (1 - \alpha)(1 + t)^2 \ge \eta(\alpha, t).$$

We conclude that for every $t \in [0, 1]$, $\eta(\alpha, t) = (\alpha + (1 - \alpha)t)^2 + \alpha(1 - \alpha)(1 + t)^2$. $(2) \Rightarrow (3)$ Is obvious.

 $(3) \Rightarrow (1)$ Suppose that $\eta(\alpha, t_0) = (\alpha + (1 - \alpha)t_0)^2 + \alpha(1 - \alpha)(1 + t_0)^2$ for some $t_0 \in (0, 1]$ and that X is uniformly nonsquare, then there is $0 < \delta < 1$ as in lemma 1.14. Let $x, y \in S_X$, suppose first that $||x - y|| \le 2(1 - \delta)$, then

$$\|\alpha x + (1 - \alpha)t_0y\|^2 + \alpha(1 - \alpha)\|x - t_0y\|^2 \le (\alpha + (1 - \alpha)t_0)^2$$

$$+ \alpha(1 - \alpha)\|t_0x - t_0y + (1 - t_0)x\|^2$$

$$\le (\alpha + (1 - \alpha)t_0)^2$$

$$+ \alpha(1 - \alpha)(t_0\|x - y\| + (1 - t_0))^2$$

$$\le (\alpha + (1 - \alpha)t_0)^2$$

$$+ \alpha(1 - \alpha)(2t_0(1 - \delta) + (1 - t_0))^2$$

$$= \eta(\alpha, t_0) - 4\alpha(1 - \alpha)\delta t_0(1 + (1 - \delta)t_0).$$

Now suppose that $\|\alpha x + (1 - \alpha)y\| \le 1 - \delta$, in this case:

$$\|\alpha x + (1 - \alpha)t_0y\|^2 + \alpha(1 - \alpha)\|x - t_0y\|^2 \le \|(1 - t_0)\alpha x + t_0(\alpha x + (1 - \alpha)y)\|^2$$

$$+ \alpha(1 - \alpha)(1 + t_0)^2$$

$$\le ((1 - t_0)\alpha + t_0\|\alpha x + (1 - \alpha)y\|)^2$$

$$+ \alpha(1 - \alpha)(1 + t_0)^2$$

$$\le ((1 - t_0)\alpha + t_0(1 - \delta))^2$$

$$+ \alpha(1 - \alpha)(1 + t_0)^2$$

$$= \eta(\alpha, t_0) - \delta t_0((2 - \delta)t_0 + 2\alpha(1 - t_0)).$$

We conclude that $\eta(\alpha, t_0) < \eta(\alpha, t_0)$, which is a contradiction.

Proposition 1.16. Let X be a Banach space and $\alpha \in (0,1)$. Then X is uniformly nonsquare if and only if $C_{\alpha}(X) < 1 + 2\sqrt{\alpha(1-\alpha)}$.

Proof. Since $C_{\alpha}(X) = C_{1-\alpha}(X)$ for every Banach space X, it is enough to prove it for $\alpha \in (0, 1/2]$. If X is not uniformly nonsquare, by proposition 1.15 and by lemma 1.11

$$C_{\alpha}(X) = \sup_{t \in [0,1]} \frac{(\alpha + (1-\alpha)t)^2 + \alpha(1-\alpha)}{\alpha + (1-\alpha)t^2} = 1 + 2\sqrt{\alpha(1-\alpha)}.$$

Suppose now that $C_{\alpha}(X) = 1 + 2\sqrt{\alpha(1-\alpha)}$. By lemma 1.11 there is a sequence $\{t_n\} \subset [0,1]$, which we assume converges to $s \in [0,1]$ such that

$$\lim_{n} \frac{\eta(\alpha, t_n)}{\alpha + (1 - \alpha)t_n^2} = C_{\alpha}(X) = 1 + 2\sqrt{\alpha(1 - \alpha)}.$$

Case 1) $s \in [0, 1)$.

By proposition 1.9 since $\eta(\alpha, s)$ is continuous on [0, 1):

$$\lim_{n} \frac{\eta(\alpha, t_n)}{\alpha + (1 - \alpha)t_n^2} = \frac{\eta(\alpha, s)}{\alpha + (1 - \alpha)s^2} = 1 + 2\sqrt{\alpha(1 - \alpha)},$$

and by (1.3)

$$1 + 2\sqrt{\alpha(1-\alpha)} = \frac{\eta(\alpha, s)}{\alpha + (1-\alpha)s^2} \le f(s) \le 1 + 2\sqrt{\alpha(1-\alpha)}.$$

Thus $f(s)=1+2\sqrt{\alpha(1-\alpha)}$ and by remark 1.4 $s=\sqrt{\frac{\alpha}{1-\alpha}}$. Since $s\in[0,1),\ \alpha\in(0,\frac{1}{2})$ and

$$\eta\left(\alpha, \sqrt{\frac{\alpha}{1-\alpha}}\right) = 2\alpha(1+2\sqrt{\alpha(1-\alpha)})$$

$$= \left(\alpha + (1-\alpha)\sqrt{\frac{\alpha}{1-\alpha}}\right)^2 + \alpha(1-\alpha)\left(1+\sqrt{\frac{\alpha}{1-\alpha}}\right)^2,$$

thus by proposition 1.15, X is not uniformly nonsquare.

Case 2) s = 1.

Again by (1.3), for any $n \in \mathbb{N}$:

(1.4)
$$\frac{\eta(\alpha, t_n)}{\alpha + (1 - \alpha)t_n^2} \le f(t_n),$$

and this implies

$$1 + 2\sqrt{\alpha(1-\alpha)} = \lim_{n} \frac{\eta(\alpha, t_n)}{\alpha + (1-\alpha)t_n^2} \le \lim_{n} f(t_n) = f(1) = 1 + 4\alpha(1-\alpha)$$

which cannot hold for $\alpha \in (0, \frac{1}{2})$, because $1 + 4\alpha(1 - \alpha) < 1 + 2\sqrt{\alpha(1 - \alpha)}$; hence $\alpha = \frac{1}{2}$. By the equality in (1.4) we get $\lim_{n} \eta(\frac{1}{2}, t_n) = 2$. Therefore, since η is nondecreasing and by lemma 1.8 (c), $\eta(\frac{1}{2}, t) \leq 2$, we obtain $\eta(\frac{1}{2}, 1) = 2$ and by proposition 1.15 we conclude that X is not uniformly nonsquare.

Now we are going to calculate the value of $C_{\alpha}(X)$ for some spaces.

Example 1.17. Let $X = \ell_2 - \ell_1$ be the space \mathbb{R}^2 with the norm $\|\cdot\|_{2,1}$ defined by

$$\|(a,b)\|_{2,1} = \begin{cases} \|(a,b)\|_2 & \text{if } ab \ge 0\\ \|(a,b)\|_1 & \text{if } ab \le 0. \end{cases}$$

Then $C_{\alpha}(X) = 1 + \sqrt{\alpha(1-\alpha)}$.

In order to prove this, first note that the set of extreme points of the unit ball is $\mathcal{E}(B_X) = \{(a,b) \in \mathbb{R}^2 : a^2 + b^2 = 1, ab \ge 0\}$. Using Krein-Milman's theorem, we have that $\eta(\alpha,t) = \sup\{\|\alpha x + (1-\alpha)ty\|^2 + \alpha(1-\alpha)\|x - ty\|^2 : x,y \in \mathcal{E}(B_X)\}$.

have that $\eta(\alpha, t) = \sup\{\|\alpha x + (1 - \alpha)ty\|^2 + \alpha(1 - \alpha)\|x - ty\|^2 : x, y \in \mathcal{E}(B_X)\}$. Let $a, b, c, d \geq 0$, be such that $a^2 + b^2 = c^2 + d^2 = 1$ and let $t \in [0, 1]$. First take x = (a, b) and y = (c, d). It is clear that $\|\alpha x + (1 - \alpha)ty\|_{2,1} = \|\alpha x + (1 - \alpha)ty\|_2$. If $\|x - ty\|_{2,1} = \|x - ty\|_2$, then we have

$$\|\alpha x + (1 - \alpha)ty\|_{2,1}^2 + \alpha(1 - \alpha)\|x - ty\|_{2,1}^2 = \alpha + (1 - \alpha)t^2.$$

If $||x - ty||_{2,1} = ||x - ty||_1$, then

$$\|\alpha x + (1 - \alpha)ty\|_{2,1}^{2} + \alpha(1 - \alpha)\|x - ty\|_{2,1}^{2}$$

$$= \alpha + (1 - \alpha)t^{2} + 2\alpha(1 - \alpha)((ad + cb)t - ab - t^{2}cd)$$

$$\leq \alpha + (1 - \alpha)t^{2} + 2\alpha(1 - \alpha)t$$

because $ad + cb \leq 1$.

If we consider x = (a, b) and y = (-c, -d), we get the same inequality.

Thus $\eta(\alpha,t) \leq \alpha + (1-\alpha)t^2 + 2\alpha(1-\alpha)t$. For x = (1,0), y = (0,1), we get equality.

If $0 < \alpha \le \frac{1}{2}$, it can be proved that $\sup_{t \in [0,1]} \{ \frac{\eta(\alpha,t)}{\alpha + (1-\alpha)t^2} \} = 1 + \sqrt{\alpha(1-\alpha)} = C_{\alpha}(X).$

Example 1.18. Let $X = \ell_{\infty} - \ell_1 = (\mathbb{R}^2, \|\cdot\|_{\infty,1})$, where:

$$||x||_{\infty,1} = \begin{cases} ||x||_{\infty} & \text{if } x_1 x_2 \ge 0, \\ ||x||_1 & \text{if } x_1 x_2 \le 0, \end{cases}$$

for $x=(x_1,x_2)\in X$. If $1\leq \alpha\leq \frac{1}{2}$, then $C_{\alpha}(X)=1+\frac{-\alpha+\sqrt{4\alpha-3\alpha^2}}{2}$ and the maximum value is $C_{\frac{1}{2}}(X)=\frac{4}{3}$.

Take $\alpha \in (0, \frac{1}{2}]$. We can see that $\mathcal{E}(B_X)$ consists of 6 points. Using again Krein-Milman's theorem,

$$\eta(\alpha, t) = \begin{cases} \alpha + (1 - \alpha)^2 t^2 + 2\alpha (1 - \alpha) & 0 \le t \le \sqrt{\frac{\alpha}{1 - \alpha}}, \\ \alpha (1 - \alpha) + (1 - \alpha) t^2 + 2\alpha (1 - \alpha) & \sqrt{\frac{\alpha}{1 - \alpha}} \le t \le 1, \end{cases}$$

thus

$$\sup_{t \in [0,1]} \eta(\alpha,t) = 1 + \frac{-\alpha + \sqrt{4\alpha - 3\alpha^2}}{2} = C_{\alpha}(X).$$

Example 1.19. Let us consider the ℓ_p spaces, for $p \in [1,2]$. Take $\alpha \in (0,1/2]$, $x_0 = (0,1,0...)$, $y_0 = (1,0,...)$ and $t \in [0,1]$. By definition:

$$C_{\alpha}(\ell_{p}) \geq \frac{\|\alpha x_{0} + (1-\alpha)ty_{0}\|_{p}^{2} + \alpha(1-\alpha)\|x_{0} - ty_{0}\|_{p}^{2}}{\alpha\|x\|_{p}^{2} + (1-\alpha)\|ty_{0}\|^{2}}$$
$$= \frac{(\alpha^{p} + (1-\alpha)^{p}t^{p})^{2/p} + \alpha(1-\alpha)(1+t^{p})^{2/p}}{\alpha + (1-\alpha)t^{2}} = f(t),$$

and evaluating at $t = \sqrt{\frac{\alpha}{1-\alpha}}$ we have

(1.5)
$$C_{\alpha}(\ell_p) \ge (\alpha^{p/2} + (1-\alpha)^{p/2})^{2/p}.$$

If we take p=1 or p=2, we have equality in (1.5) for every $\alpha \in (0,1/2]$. Note also that

$$\lim_{p \to 1^+} (\alpha^{p/2} + (1 - \alpha)^{p/2})^{2/p} = 1 + 2\sqrt{\alpha(1 - \alpha)} = C_{\alpha}(\ell_1).$$

If we take $\alpha = 1/2$, then $C_{1/2}(\ell_p) = C_{NJ}(\ell_p) \ge 2^{2/p-1}$, in fact, the equality was proved by Clarkson (see [2]).

1.1. Some applications to fixed point theory. Applying some of the previous results, we want to study the existence of fixed points for k-Lipschitzian rotative mappings:

Definition 1.20. Let $C \subset X$ be a subset of a Banach space X and $T: C \to C$. We say that T is a Lipschitzian mapping if there is k > 0 such that $||Tx - Ty|| \le k||x - y||$ for any $x, y \in C$ and we will write $T \in \mathcal{L}(k)$. If k_0 is the minimum number such that $T \in \mathcal{L}(k)$ we will write $T \in \mathcal{L}_0(k_0)$. If $T \in \mathcal{L}_0(k_0)$ we will say that T is nonexpansive.

Definition 1.21. Let $T: C \to C$ where C is a nonempty, closed and convex subset of a Banach space X. We will say that T is an (a, n) rotative mapping if $0 \le a < n$ and for any $x \in C$, $||x - T^n x|| \le a||x - T x||$. If T is an (a, n) rotative mapping for some $n \in \mathbb{N}$ and some a < n, we will say that T is a rotative mapping. If a = 0, we will say that T is an n-periodic mapping.

In 1981 K. Goebel and M. Koter, proved the following, see [4] and [5]:

Theorem 1.22. If C is a nonempty, closed and convex subset of a Banach space, then any nonexpansive and rotative mapping $T: C \to C$ has a fixed point.

Let us define the following:

$$\gamma_n^X(a) = \inf\{k : \exists C \subset X, T : C \to C, (a, n) - \text{rotative}, T \in \mathcal{L}_0(k), \text{Fix}(T) = \emptyset\},$$

where C is a nonempty, closed and convex subset of a Banach space X. If a=0, we will write γ_n^X instead of $\gamma_n^X(0)$.

In [3, pp.179-180] it was shown that for any $0 \le a < n$, $\gamma_n^X(a) > 1$. The exact value of $\gamma_n^X(a)$ is unknown, even more, it is not known if is bounded.

The next lemma and its proof are similar to a result by J. Górnicki and K. Pupka in [7].

Lemma 1.23. Let X be a Banach space and $T: X \to X$ a continuous function. If there are 0 < A < 1, B > 0 and $\{u_n\}_{n=0}^{\infty} \subset X$ such that for $n \ge 1$

$$d(Tu_n, u_n) \le A d(Tu_{n-1}, u_{n-1})$$

and

$$d(u_n, u_{n-1}) \leq B d(Tu_{n-1}, u_{n-1}),$$

then $z = \lim_{n \to \infty} u_n$ is a fixed point of T.

Proposition 1.24. Let X be a Banach space. Then

$$\gamma_2^X \ge \sqrt{\frac{5}{C_{1/2}(X)}}.$$

Proof. Let X be a Banach space, C a nonempty, closed and convex subset of X and $\alpha = 1/2$. Let $T: C \to C$ be a k-Lipschitzian and 2-periodic mapping. For $x \in C$ let us define $u(x) = \alpha x + (1-\alpha)Tx$, using the definition of $C_{\alpha}(X)$ we have that for every $u, v \in X$, $\|\alpha u + (1-\alpha)v\|^2 \le C_{\alpha}(X)(\alpha\|u\|^2 + (1-\alpha)\|v\|^2) - \alpha(1-\alpha)\|u-v\|^2$. Then we have:

$$||x - Tu(x)|| = ||T^2x - Tu(x)|| \le k||u(x) - Tx|| = \alpha k||x - Tx||$$

and

$$||Tx - Tu(x)|| \le k||u(x) - x|| = (1 - \alpha)k||x - Tx||.$$

Hence

$$||u(x) - Tu(x)||^{2} = ||\alpha(x - Tu(x) + (1 - \alpha)(Tx - Tu(x)))||^{2}$$

$$\leq C_{\alpha}(X) \left(\alpha||x - Tu(x)||^{2} + (1 - \alpha)||Tx - Tu(x)||^{2}\right)$$

$$- \alpha(1 - \alpha)||x - Tx||^{2}$$

$$\leq \left\{C_{\alpha}(X) \left[\alpha^{3} + (1 - \alpha)^{3}\right] k^{2} - \alpha(1 - \alpha)\right\} ||x - Tx||^{2}$$

$$= \left\{C_{\frac{1}{2}}(X) \left[\frac{k^{2}}{4}\right] - \frac{1}{4}\right\} ||x - Tx||^{2}.$$

If we set $u_n = u^n(x)$ for $n \in \mathbb{N}$ and $u_0 = x$, applying lemma 1.23, if $C_{1/2}(X) \left[k^2/4 \right] - 1/4 < 1$ or equivalently if $k < \sqrt{\frac{5}{C_{1/2}(X)}}$, then $\operatorname{Fix}(T) \neq \emptyset$.

From the above, if we consider a Banach space X such that $1 \leq C_{1/2}(X) < \frac{5}{4}$, then $\gamma_2^X > 2$, improving in this case the bound obtained by K. Goebel and E. Złotkiewicz [6] in 1971 who proved that for every Banach space X, $\gamma_2^X \geq 2$.

Proposition 1.25. Let X be a Banach space and $\alpha = 0.346$. If $1 \le C_{\alpha}(X) < 1.1136$ then $\gamma_3^X > 1.3821$.

Proof. Let X be a Banach space, C a nonempty, closed and convex subset of X and $T: C \to C, T \in \mathcal{L}(k), T^3 = Id$. For $x \in C$, define

$$x_0 = x \in C,$$

 $x_1 = \alpha x_0 + (1 - \alpha)Tx_0,$
 $x_2 = \alpha x_0 + (1 - \alpha)Tx_1.$

By definition of $C_{\alpha}(X)$ we get

$$||x_{2} - Tx_{2}||^{2} = ||\alpha(x_{0} - Tx_{2}) + (1 - \alpha)(Tx_{1} - Tx_{2})||^{2}$$

$$\leq C_{\alpha}(X) \left(\alpha||x_{0} - Tx_{2}||^{2} + (1 - \alpha)||Tx_{1} - Tx_{2}||^{2}\right)$$

$$- \alpha(1 - \alpha)||x_{0} - Tx_{1}||^{2}$$

$$\leq C_{\alpha}(X) \left(\alpha k^{2}||T^{2}x_{0} - x_{2}||^{2} + (1 - \alpha)k^{2}||x_{1} - x_{2}||^{2}\right)$$

$$- \alpha(1 - \alpha)||x_{0} - Tx_{1}||^{2}$$

$$\leq C_{\alpha}(X)(\alpha k^{2}||\alpha(x_{0} - T^{2}x_{0}) + (1 - \alpha)(Tx_{1} - T^{2}x_{0})||^{2}$$

$$+ (1 - \alpha)^{5}k^{4}||x_{0} - Tx_{0}||^{2}) - \alpha(1 - \alpha)||x_{0} - Tx_{1}||^{2}.$$

Also

$$\|\alpha(x_0 - T^2x_0) + (1 - \alpha)(Tx_1 - T^2x_0)\|^2$$

$$\leq C_{\alpha}(X)(\alpha \|x_0 - T^2x_0\|^2 + (1 - \alpha)\|Tx_1 - T^2x_0\|^2) - \alpha(1 - \alpha)\|x_0 - Tx_1\|^2$$

$$\leq C_{\alpha}(X)(\alpha k^4 \|Tx_0 - x_0\|^2 + (1 - \alpha)k^2\alpha^2 \|x_0 - Tx_0\|^2) - \alpha(1 - \alpha)\|x_0 - Tx_1\|^2.$$

hence

$$||x_{2} - Tx_{2}||^{2} \leq \alpha^{2} k^{6} C_{\alpha}(X)^{2} ||x_{0} - Tx_{0}||^{2} + \alpha^{3} (1 - \alpha) k^{4} C_{\alpha}(X)^{2} ||x_{0} - Tx_{0}||^{2}$$

$$+ (1 - \alpha)^{5} k^{4} C_{\alpha}(X) ||x_{0} - Tx_{0}||^{2}$$

$$- \alpha (1 - \alpha) [\alpha k^{2} C_{\alpha}(X) + 1] ||x_{0} - Tx_{1}||^{2}.$$

Now, let us consider

$$||x_1 - Tx_1||^2 = ||\alpha(x_0 - Tx_1) + (1 - \alpha)(Tx_0 - Tx_1)||^2$$

$$\leq \alpha C_{\alpha}(X)||x_0 - Tx_1||^2 + (1 - \alpha)^3 k^2 C_{\alpha}(X)||x_0 - Tx_0||^2$$

$$- \alpha(1 - \alpha)||x_0 - Tx_0||^2.$$

Suppose that for some ε , $||x_1 - Tx_1||^2 \ge (1 - \varepsilon)||x_0 - Tx_0||^2$, then

$$-\alpha \|x_0 - Tx_1\|^2 \le \frac{-(1-\varepsilon) + (1-\alpha)^3 k^2 C_{\alpha}(X) - \alpha(1-\alpha)}{C_{\alpha}(X)} \|x_0 - Tx_0\|^2.$$

This together with inequality (1.6) gives:

$$||x_{2} - Tx_{2}||^{2} \leq [\alpha^{2}k^{6}C_{\alpha}(X)^{2} + \alpha^{3}(1 - \alpha)k^{4}C_{\alpha}(X)^{2} + (1 - \alpha)^{5}k^{4}C_{\alpha}(X) + \alpha(1 - \alpha)k^{2}(-(1 - \varepsilon) + (1 - \alpha)^{3}k^{2}C_{\alpha}(X) - \alpha(1 - \alpha)) + \frac{1 - \alpha}{C_{\alpha}(X)}(-(1 - \varepsilon) + (1 - \alpha)^{3}k^{2}C_{\alpha}(X) - \alpha(1 - \alpha))]||x_{0} - Tx_{0}||^{2}.$$

Let $y_0 = x$. Suppose we have y_0, \ldots, y_m . Let $y_m^0 = y_m$ and $y_m^i = \alpha y_m + (1 - x_m^i)^{-1}$

 αTy_m^{i-1} , for i = 1, 2. If $||y_m^1 - Ty_m^1||^2 < (1 - \varepsilon)||y_m - Ty_m||^2$, we take $y_{m+1} = y_m^1$; if $||y_m^1 - Ty_m^1||^2 \ge (1 - \varepsilon)||y_m - Ty_m||^2$, let $y_{m+1} = y_m^2$.

Thus, by lemma 1.23, $\{y_m\}$ converges to a fixed point of T, provided that

$$\alpha^{2}k^{6}C_{\alpha}(X)^{2} + \alpha^{3}(1-\alpha)k^{4}C_{\alpha}(X)^{2} + (1-\alpha)^{5}k^{4}C_{\alpha}(X) - \alpha(1-\alpha)k^{2}$$
$$+\alpha(1-\alpha)^{4}k^{4}C_{\alpha}(X) - \alpha^{2}(1-\alpha)^{2}k^{2} - \frac{1-\alpha}{C_{\alpha}(X)} + (1-\alpha)^{4}k^{2} - \frac{\alpha(1-\alpha)^{2}}{C_{\alpha}(X)} < 1.$$

For $C_{\alpha}(X) = 1$ the best solution with this method is for $\alpha = 0.346$. Taking this α and if X is such that $1 \le C_{\alpha}(X) < 1.1136$, the last inequality holds for $k < k_0(X)$, where $k_0(X) > 1.3821$, that is, for these spaces $X, \gamma_3^X \ge k_0(X) > 1.3821$ which improves in this case the bound given by J. Górnicki and K. Pupka ([7]) for general Banach spaces.

Instead of using $C_{\alpha}(X)$ one could also work with the following constant: Let X be a Banach space and $\alpha \in (0,1)$. We define

$$D_{\alpha}(X) =$$

$$\sup \left\{ \frac{\|\alpha x + (1-\alpha)y\|^2 + \|\alpha x - (1-\alpha)y\|^2 + \alpha(1-\alpha)\|x - y\|^2 + \alpha(1-\alpha)\|x + y\|^2}{2(\alpha\|x\|^2 + (1-\alpha)\|y\|^2)} \right\}$$

where the supremum is taken over $x, y \in X$ no both zero.

 $D_{\alpha}(X)$ has the following properties which are obtained similarly to those of

- (1) For $\alpha \in (0,1)$, $D_{1-\alpha}(X) = D_{\alpha}(X) \le C_{\alpha}(X)$.
- (2) $D_{1/2}(X) = C_{NJ}(X)$.
- (3) $1 \le D_{\alpha}(X) \le 1 + 2\sqrt{\alpha(1-\alpha)}$.
- (4) If H is a Hilbert space, then $D_{\alpha}(H) = 1$.
- (5) X is uniformly nonsquare if and only if $D_{\alpha}(X) < 1 + 2\sqrt{\alpha(1-\alpha)}$

Let $\alpha \in (0,1)$ and $t \in [0,1]$. We define

$$\varphi(\alpha, t) = \frac{1}{2} \sup_{x, y \in S_X} \left\{ \|\alpha x + (1 - \alpha)ty\|^2 + \|\alpha x - (1 - \alpha)ty\|^2 + \alpha(1 - \alpha)(\|x - ty\|^2 + \|x + ty\|^2) \right\}.$$

Proposition 1.26. Let $\alpha \in (0,1)$. The function $\varphi(\alpha,t)$ of the variable t is continuous on [0,1) and is convex and nondecreasing on [0,1].

Corollary 1.27. Let X be a Banach space and $\alpha \in (0, 1/2]$. Then

$$D_{\alpha}(X) = \sup_{t \in [0,1]} \frac{\varphi(\alpha, t)}{\alpha + (1 - \alpha)t^2}.$$

The problem of this constant is that we don't know if $D_{\alpha}(X) = D_{\alpha}(X^*)$ or if there is a Banach space X which is not a Hilbert space with $D_{\alpha}(X) = 1$. However in this case we were able to calculate $D_{\alpha}(\ell_p)$ for $p \geq 2$.

Example 1.28. Let $p \geq 2$ and $\alpha \in (0, 1/2]$. Then

$$D_{\alpha}(\ell_p) = \left(\frac{\left(\sqrt{1-\alpha} + \sqrt{\alpha}\right)^p + \left(\sqrt{1-\alpha} - \sqrt{\alpha}\right)^p}{2}\right)^{2/p}.$$

Proof. We will use Clarkson's inequality (see [1]): for $p \geq 2$ and $x, y \in \ell_p$

$$||x + y||^p + ||x - y||^p \le (||x|| + ||y||)^p + |(||x|| - ||y||)|^p.$$

Using this inequality and the definition of $\varphi(\alpha, t)$ we have that for $\alpha \in (0, 1/2], t \in [0, 1]$ and $x, y \in \ell_p$ with ||x|| = ||y|| = 1:

$$\frac{1}{2} \left(\|\alpha x + (1 - \alpha)yt\|^2 + \|\alpha x - (1 - \alpha)yt\|^2 + \alpha(1 - \alpha)(\|x - yt\|^2 + \|x + yt\|^2) \right)
\leq \frac{2^{1 - 2/p}}{2} \left((\alpha + (1 - \alpha)t)^p + |\alpha - (1 - \alpha)t|^p + \alpha(1 - \alpha)((1 - t)^p + (1 + t)^p) \right) = h(t).$$

Hence, $\varphi(\alpha, t) \leq h(t)$. If one take $x = (1/2^{1/p}, 1/2^{1/p}, 0, ...)$ and $y = (1/2^{1/p}, -1/2^{1/p}, 0, ...)$ we have the equality, thus $\varphi(\alpha, t) = h(t)$ and

$$D_{\alpha}(\ell_p) = \sup_{t \in [0,1]} \frac{\varphi(\alpha, t)}{\alpha + (1 - \alpha)t^2} = \sup_{t \in [0,1]} \frac{h(t)}{\alpha + (1 - \alpha)t^2}.$$

The maximum is attained at
$$t_0 = \sqrt{\frac{\alpha}{1-\alpha}}$$
, and $h(t_0) = \left(\frac{\left(\sqrt{1-\alpha}+\sqrt{\alpha}\right)^p + \left(\sqrt{1-\alpha}-\sqrt{\alpha}\right)^p}{2}\right)^{2/p}$.

ACKNOWLEDGMENTS

This work was partly supported by CIMAT and by Conacyt scholarship 170778. We thank professor K. Goebel for his valuable comments.

References

- [1] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- [2] J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue space, Ann. of Math. 38 (1937), 114–115.
- [3] K. Goebel and W. A. Kirk, *Topics in metric fixed point theory*, Cambridge University Press, 1990.
- [4] K. Goebel and M. Koter, Fixed points of rotative lipschitzian mappings, Rend. Sem. Mat. Fis. Milano 51 (1981), 145–156.
- [5] K. Goebel and M. Koter, A remark on nonexpansive mappings, Canadian Math. Bull. 24 (1981), 113–115.
- [6] K. Goebel and E. Złotkiewicz, Some fixed point theorems in Banach spaces, Colloquium Math. 23 (1971), 103–106.
- [7] J. Górnicki and K. Pupka, Fixed points of rotative mappings in Banach spaces, Journal of Nonlinear and Convex Analysis. 6 (2005), 217–233.
- [8] R. C. James, Uniformly non-square Banach spaces, Ann. Math. 80 (1964), 542–550.
- [9] M. Kato, L. Maligranda, and Y. Takahashi, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Mathematica 144 (2001), 275–295.
- [10] M. Kato and Y. Takahashi, Von Neumann-Jordan constant for Lebesgue-Bochner spaces, J. Inequal. Appl. 2 (1998), 89–97.
- [11] S. Saejung, On James and von Neumann-Jordan constants and sufficient conditions for the fixed point property, Journal of Mathematical Analysis and Applications, 323 (2006), 1018– 1024.
- [12] C. Yang and F. Wang, On a new geometric constant related to the von Neumann-Jordan constant, J. Math. Anal. Appl. 324 (2006), 555–565.

Manuscript received June 26, 2011 revised July 29, 2011

H. Fetter

CIMAT, Apartado Postal 402, 36000, Guanajuato, Guanajuato, Mexico $E\text{-}mail\ address:\ \mathtt{fetter@cimat.mx}$

V. Pérez

CIMAT, Apartado Postal 402, 36000, Guanajuato, Guanajuato, Mexico E-mail address: vicpega@cimat.mx