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VARIOUS CONVERGENCE RESULTS IN STRONG LAW OF
LARGE NUMBERS FOR DOUBLE ARRAY OF RANDOM SETS
IN BANACH SPACES

CHARLES CASTAING, NGUYEN VAN QUANG, AND DUONG XUAN GIAP

ABSTRACT. In this paper, we state several convergence results with respect to the
slice and Wijsman topologies of strong laws of large numbers for double array of
independent (or pairwise independent) random sets in a separable Banach space
with or without geometric property. We also provide some typical examples
illustrating this study.

1. INTRODUCTION

In recent decades, the strong laws of large numbers (SLLN) for sequence of un-
bounded random sets, gave rise to applications in several fields, such as optimization
and control, stochastic and integral geometry, mathematical economics, statistics
and related fields. Z.Artstein and S. Hart [2] obtained a SLLN for independent
identically distributed (i.i.d.) random sets having values in the closed (possibly un-
bounded) subsets of R? and applied it to a problem of optimal allocations. Later,
F. Hiai [19] and C. Hess [15, 16] independently proved similar results for random
sets in an infinite dimensional Banach space, with respect to the Kuratowski-Mosco
convergence. In [23], H. Inoue and R. L. Taylor derive laws of large numbers for
exchangeable random sets in Kuratowski-Mosco sense. Recently, K. A. Fu [13] ob-
tained some SLLN for sequence of identically distributed random sets or fuzzy ran-
dom sets with ¢(p*)-mixing dependence in a separable Banach space. The strong
laws of large numbers for these two sequences are derived under Kuratowski-Mosco
sense. The multivalued SLLN for random sets in Fréchet spaces was proved by P.
Raynaud de Fitte [26]. Moreover, C. Hess [18] obtained a convergence result on
the Wijsman topology of SLLN for sequence of pairwise independent identically
distributed (p.i.i.d.) random sets in a separable Banach space. Let us mention
also the work of Attouch-Wets [3] and Castaing-Ezzaki [8] dealing with the law of
large numbers for normal integrands. In this context, C. Hess [17] derived from the
strong law of large numbers with respect to the Wijsman convergence for sequence
of pairwise independent identically distributed integrable random sets and the slice
convergence for these objects. In a different context, J. Hoffmann-Jgrgensen, G.
Pisier proved an important norm a.s. convergence for sequence of independent
identically distributed integrable random variables {X,, : n > 1} in Rademacher
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type p (1 < p < 2) Banach space satisfying
(1.1) EX, = 0VYn>1

[ee]
(1.2) Z n PE|X,||P < +oo (Chung’s condition).
n=1
Beck [4] proved that in B-convex space, the strong law of large numbers holds for

sequence of independent identically distributed integrable random variables {X, :
n > 1} satisfying (1.1) and

(1.3) sup F|| X, ||* < +oc.
n

J. Hoffmann-Jgrgensen, G. Pisier’s result contains Beck’s result because a B-
convex space is of Rademacher type p with 1 < p < 2.

In this work we present various convergence results in the strong law of large
numbers for double array of independent (or pairwise independent) identically dis-
tributed closed valued random variables in a separable Banach space with respect
to the slice and Wijsman topologies.

Here we also provide two probabilistically constructive methods allowing to prove
these type of convergence.

This paper is organized as follows. In Section 2, we introduce some basic notions
of random sets and the slice and Wijsman topologies. Section 3 is concerned with
Wijsman topology of SLLN for double array of pairwise independent identically
distributed closed valued random sets in a separable Banach space. In Section 4,
we treat the SLLN in Wijsman topology for double array of independent closed
valued random sets in Rademacher type p Banach spaces (1 < p < 2), in particular,
some illustrating examples are provided. In Section 5, we present the applications
of the results obtained in Sections 3-4 to the SLLN in slice topology for double array
of independent (or pairwise independent) integrable closed valued random sets.

Our results contain the above mentioned results and some related results in the
literature.

2. PRELIMINARIES

Throughout this paper, let (2, A, P) be a complete probability space, (X, ||.||) be
a separable Banach space and X* be its topological dual. The closed unit ball of X*
is denoted by B* and o-field of all Borel sets of X is denoted by B(X). Also denote
by M(X) (resp. M (X)) the set of all finite measures (resp. probability measures) on
(X,B(X)). The vector space M(X) is endowed with the narrow topology, namely the
topology o(M(X), Cp(X)), where Cp(X) denotes the space of real-valued, bounded
continuous functions on X. Recall that M (X) is a closed convex subset of M(X).
For each measurable function f : 2 — X, the distribution of f is denoted by py and
defined on B(X) by us(B) = P{f~Y(B)} (B € B(X)). In the present paper, N* will
be denoted the set of positive integers, R (resp. R™1) the set of real numbers (resp.
positive real numbers).

Let ¢(X) (resp. cc(X)) (resp. ¢b(X)) (vesp. cwk(X)) (resp. k(X)) (resp. ck(X))
be the family of all nonempty closed (resp. closed convex) (resp. closed bounded
convex) (resp. convex weakly compact) (resp. compact) (resp. convex compact)
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subsets of X and £ the Effros o-field on ¢(X). This o-field is generated by the subsets
U ={FecX): FNU # 0}, where U ranges over the open subsets of X. On the
other hand, for each A,C C X, clC, w—clC, coC and ¢oC' denote the norm-closure,
the weak-closure, the conver hull and the closed convexr hull of C, respectively; the
distance function d(.,C) of C, the gap between A and C, the Hausdorff distance
di(A,C) of A and C, and the support function 6*(.,C) of C are defined by

d(z,C) = inf{[|lz —y|| :y € C}, (x € X),
D(A,C) =inf{llz —y|| : z € A,y € C},
dr (A, C) = max{supd(z,C),supd(y, A)},
€A yeC
0*(x*,C) = sup{(z*,y) 1y € C}, (z* € X¥).
We note that
(2.1) 5 (x*,C) = 0™ (x*,caC).
A slice of a ball is the intersection of a closed ball (of radius r and centered at
x
2 B(zg,r), (x0€ X,7>0)
and a closed half space
F(z,a):={z e X:(z,x) >a}, (z€X",2#0,a € R).
Let ¢ be a topology on X and (Cy,)n>1 be a sequence in ¢(X). We put
t—1liC,={zxeX:x=t—limxy,, z, € C,,Vn > 1},
t—1sCy ={z € X 1w =1t —limxy, zp € Oy, ¥k > 1}
where (Cn(k))kzzl is a subsequence of (Cp,)p>1. The subsets t —1iC), and t —[sC,, are
the lower limit and the upper limit of (Cy,)n>1, relative to topology t. We obviously
have t — liC,, C t — sC),. Let us denote by s the strong topology of X.

A map X from  into ¢(X) is also called a multifunction with closed values in X.
The domain and the graph of X are respectively defined by

dom(X) ={w e N: X(w) #0} and Gr(X)={(w,z) €A xX:2€ X(w)}.

X is said to be Effros measurable or weakly measurable in the terminology of
Himmelberg [21] (or simply “measurable”) if for every B in £, X ~1(B) is a member
of A. From the definition of the Effros o-field it follows that X is measurable if and
only if, for any open subset U of X,

X HNU ) ={weQ: X(w)NU # 0}

is a member of A (X ~1(U7) is also denoted by X ~1(U)). The sub-o-field X (&)
generated by X is denoted by Ax.

A measurable multifunction defined on a probability space is also called a random
set (r.s.). Like for real or vector valued random variables, the distribution px of
the measurable multifunction X can be defined on the measurable space (¢(X), &)
by

ux(B) =P{X YB)}, VBe€.
C. Hess ([18], Proposition 2.1) showed that the closed valued random sets X and
Y have the same distribution on (¢(X),€) if and only if for any finite subset F' =
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{x1,..., 2} of X (or of some countable dense subset), the R*¥-valued random vectors
(d(z, X))zer and (d(z,Y))zcr have the same distribution.
A finite set of random sets {X7,..., X, } is said to be independent if

P{X|€X,Xs€Xy,...,Xn € X} =P{X; € X1} P{Xs € X}...P{X, € X},

for all X}, A, ..., X, € £. It is known that the finite set of closed valued random
variables { X1, ..., X,,} is independent if and only if

n
i=1
for all K1, Ko,..., K, € ¢(X).
A infinite set of random sets {X;,i € I} is said to be independent if every
nonempty finite subset {X;,, X;,,..., X, } C {Xi,i € I} is independent.
A set of random sets {Xj,7 € I} is said to be pairwise independent if each pair
of random sets {X;,, X;,} C {X;,i € I} is independent.

For every sub-o-field F of A, consider the space L£°(€, F, P, X) of all measurable
functions from (€2, F) into (X,B(X)). Further, define the two following subsets
associated with the multifunction X involving its measurable selections:

S(X,F)={fe L0 F,P,X): f(w) € X(w), for almost every w € dom(X)}
M(X,F) ={p=pre M(X): feSX,F)}

So, S(X,F) is the set of F-measurable selections of X and M(X,F) is the set
of all probability measures p on (X,B(X)) such that each p € M(X,F) is the
distribution of some F-measurable selection of X. By Kuratowski Ryll-Nardzewski
Theorem every Effros measurable multifunction, X admits at least one measurable
selection. Moreover, X admits a Castaing representation, that is, a sequence (fy)
of measurable selections, such that for every w € dom(X), X(w) is equal to the
closure of the countable subset { f,(w) : n > 1} (see [10]).

It is known that £°(Q, A,P,X) (= £°(X)) endowed with the topology of con-
vergence in probability is a metrizable topological vector space. Since a sequence
converging in probability admits an almost sure converging subsequence it is clear
that, for any sub-o-field F of A, the set S(X, F) is closed in £°(Q, F, P, X).

For 1 < p < oo, LP(Q, A, P, X) (= LP(X)) denotes the subspace of L(X) whose
members f: Q — X satisfy

1l = (LIPS = < / Hf(w)HpP(dw))p oo

LP(R) is denoted by £P. We denote by M!(X) the subset of M (X) whose members
b satisfy f% lz|ldp < +oo. Given a sub-o-field F of A and a random set X, define
the following subsets of LP(Q, F, P, X) and M (X) respectively

SP(X,F)={feLP(Q,F,PX): f(w) € X(w), for almost every w € dom(X)}
MP(X, F) =A{py: f € SP(X, F)}.

Using standard measurable selection arguments, it is not hard to see that, when
Ax C F C A, the set S'(X,F) is non empty if and only if the positive function
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d(0, X) is integrable. In such a situation, we shall say that the multifunction X
is integrable. Observe that when X is integrable, P(dom(X)) = 1. On the other
hand, X is said to be integrably bounded if the function |X|(w) = sup{||z|| : = €
X (w)} is integrable. In this case, we have S'(X,A) = S(X,A). An integrably
bounded multifunction is also integrable, but the converse implication is false. For
any measurable multifunction X and any sub-o-field F of A, the multivalued integral
of X over (), with respect to F, is defined by

E(X,F)={E(f): f € SY(X,F)},

where E(f) = [, fdP is the usual Bochner integral of f. We note that F(X, A) is
not always closed. E(X,.A) is non empty if and only if X is integrable. Now, con-
sider an integrable multifunction X. Obviously, the inclusion M (X, F) C M (X, F)
holds for any sub-o-field F of A. C. Hess (see [18], Lemma 2.4) showed that, the
following equality holds true

d MY X, F) =c M(X,F)

the closure being taken in M(X) (or M (X)) in the narrow topology.

The Wijsman topology Ty on ¢(X) is the topology of pointwise convergence of
distance functions. Recall that a net (C,) of closed sets is said to converge to C'in
the Wigsman topology if, for every = € X, one has

d(z,C) =limd(z,Cy).
[0
It is known that for any closed convex subset C of X and for any = € X, we have

(2.2) d(z,C) = zsgug;{(z,a?) —6%(2,C)}.

C. Hess (see [18], Lemma 3.1) showed that, for any closed convex subset C' of X,
there exists a countable subset D* of B* verifying, for any =z € X,

(2.3) d(z,C) = sup {(z,z) — 0" (2,C)}.

zeD*

The slice topology on ¢(X) is the narrow topology Ts determined by the following
family of gap functionals

{D(A,-) : Ais a nonempty slice of a ball}.

The slice topology is generally stronger than both the Kuratowski-Mosco topology
and the Wijsman topology; it coincides with the Kuratowski-Mosco topology if
and only if X is reflexive [6]. From Theorem 5.2 in [6], we know that the slice
topology restricted to cc(X) coincides with the narrow topology 7 determined by
the following family of gap functionals

(D(B,"): B € cb(X)}.

A real separable Banach space is of Rademacher type p (1 < p < 2) if and only if
there exists a constant 0 < C' < oo such that

|5 < ain
j=1 i=1
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for every finite collection { f1, fa, ..., fn} of independent mean 0 integrable random
elements.

If a real separable Banach space is of Rademacher type p for some 1 < p < 2,
then it is of Rademacher type ¢ for all 1 < ¢ < p. Every real separable Banach
space is of Rademacher type (at least) 1 while the £)-spaces and l,-spaces are of
Rademacher type 2 A p for p > 1. Every real separable Hilbert space and real
separable finite-dimensional Banach space is of Rademacher type 2. In particular,
the real line R is of Rademacher type 2. See [22] for details and proofs.

A double array {fmn, : m > 1,n > 1} of random elements is said to be stochasti-
cally dominated by a random element f if for some constant C' < oo

P{l[fmnll =t} <CP{|If| =}, t=0,m>1 n=>1

A double array {X,,, : m > 1,n > 1} of random sets is said to be stochastically
dominated by a random element X if for some constant C' < oo

P{|X,n| >t} <CP{||IX||>t}, t>0, m>1,n>1.

This condition is satisfied when the { X, : m > 1,n > 1} is identically distributed.

For notational convenience, for a,b € R, max{a, b} is denoted by a V b, min{a, b}
is denoted by a A b and the symbol C' denotes a generic positive constant which is
not necessarily the same one in each circumstance. The logarithms are to the base
2, for a € R, log(a vV 1) will be denoted by log™ a.

For basic notions of probability theory and set-valued analysis, we refer to G.
Beer [5, 7], C. Castaing [1], C. Hess [14, 17, 18], F. Hiai [20], Y. S. Chow and H.
Teicher [11], N. Neveu [25].

Now we proceed to state our main results.

3. THE STRONG LAWS OF LARGE NUMBERS FOR DOUBLE ARRAY OF PAIRWISE
INDEPENDENT IDENTICALLY DISTRIBUTED CLOSED VALUED RANDOM SETS IN
SEPARABLE BANACH SPACES

We must first recall some facts on set valued integration

Proposition 3.1 (see [18]). (i) For every integrable r.s. X whose values are in
c(X), the following equality holds true

oM (X, A) = oM (X, Ax)
the closure being taken in M(X) (or M (X)) in the narrow topology.
(73) For every integrable r.s. X whose values lie in c(X), one has
CoE(X,A) =CoE(X, Ax).
In particular, if X(w) € cc(X) or X(w) € cwk(X) for all w € Q then E(X) =
E(X, Ax).

Proposition 3.2 (see [18]). Let X and Y be two random sets with closed values in
X. Then, the two following statements are equivalent:

(1) X and 'Y have the same distribution on the measurable space (¢(X),E).

(73) In M(X), the following equality holds true

M(X,Ax) = M(Y, Ay).
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Moreover, if X and Y are integrable then each of the above statements is equivalent
to
(iii) In MY (%), the following equality holds true

MY (X, Ax) = M'(Y, Ay).
Consequently, if X and Y have the same distribution, one has
BE(X, Ax) = E(Y, Ay).

The two following propositions constitute a key ingredient for proving the main
convergence result in this section.

Proposition 3.3. Let {zy, : m > 1,n > 1} be a double array of elements in a
Banach space X such that
n

1
(1) For eachm > 1, EZwm] —x as n— oo,

=1
1 m

(ii) For eachmn > 1, —E Tip — T as m — 00,
it

uz ZE Tij = T as mAn— oo,

'Lljl

where x is a member of X. Then,
1 m n
—ZZQ@U —x as mVn— oo.
mni =
Proof. By (iii), there exists ng € N* such that

1 Hi —H for all m > ng,n >
(3.1) mn;;x] z|| < e for all m > ng,n > np.

y (i), for each [ = 1,2,...,ng (the row of "), there exists r(I) € N* such that for
all 7 > r(l) then

1 s
2 H, - H .
(3.2) sz;’m] x| <e

By (i4), for each s = 1,2,...,n0 (the column of st"), there exists k(s) € N* such
that for all £ > k(s) then

L F
(3.3) Hk;xw - xH < €.

Set N = max{no, k(1),k(2),...,k(ng),i(1),i(2),...,i(ng)}. It suffices to show that
for every m V n > N then

(3.4) H wa H <e

i=1 j=1
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To do this, we consider the following cases.
1. If m > N,n < ng then by (3.3) we have

I e /1 — Ten 1 <&
= Z%—“fH = A2 G e )| < || w4
j=1 i=1 j=1 i=1
< ;Zn:e:e.

j=1
2. If m > N,n > ng or m > ng,n > N then the conclusion (3.4) follows
immediately from (3.1).
3. If m < ng,n > N then using the arguments as in the proof of the first case
and applying (3.2) we get

el = R G < m i ]

i=1 j=1
1 m
13
mia

This completes the proof of the proposition. O

Proposition 3.4. Let X be a separable Banach space and let {Xpmpn :m > 1,n > 1}
be a double array of pairwise independent closed valued random sets having the same
distribution as an integrable r.s. X such that

E(|X|log™ |X]|) < 0.
Let C" be the set of all convex combinations of E(X, Ax), with rational coefficients.
Then, for each y € C', there exists a negligible subset N(y) of Q and a double array
{Gmn :m > 1,n > 1} in LYX) verifying:
(@) for each m >1,n>1, gmn € S*(Xpnn, Ax,,.,)
(73) for any w € Q\ N(y),

y= lm — LS Y ate)

=1 j=1
Proof. Consider y € C’. From the definition of C’ we have y = Z?zl A\jy; where k
is a positive integer, \; are positive rational numbers with Zé?:l A; = 1 and where,
for each j > 1, y; € E(X, Ax). Obviously, for every j = 1,...,k, it is possible to
write \; = % where d and the d; are positive integers satisfying d = Z;?:l d;. Put
21 = ylv"' 7zd1 - y17 zd1+1 == Z/27 oy Zd1+d2 - y27 soy Zd1+---+dk,1+1 - yk‘7 sy
24 = Yk. Since then, we have y = ézgj:l zj. For each 1 < j < d, z; = E(f;) of
fj € Sl(X,.Ax).
The proof will be performed in several steps.
Step 1. By Proposition 3.2(iii), we can choose f;; € Sl(Xij,AXij), 1<i<d1<
7 < d such that
v E(fi-l—j—l—d) if Z+] >d+ 1.
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Let z;; = E(fij),1 <i<d,1 <j <d. It is easy to check that

1 LA
(3.5) gzzl' = ﬁzzzija
i=1

i=1 j=1
1 1
(3.6) d;zi = d;zij for each j =1,2,...,d,
1 1
(3.7) Ezzi = Ezzzj for each i =1,2,....d,
i=1 7j=1
hold.

By Proposition 3.2(#ii), for each m > 1,n > 1, there exists a double array {gm :
m > 1,n > 1} of gmn € S*(Xpmn, Ax,,, ) such that {9(s=)dris(t—1)d+j s = 1, t > 1}
is a double array of random elements having the same distribution as f;; for each
i=1,....,dand j=1,...,d.

For any m > 1,n > 1, there exist the integers sn,, pm, tn and g, satisfying
(3.8) m = Spmd+pm, sm>0,1<pn <d,

(39) n = thd+¢qn, t,2>20, 1<¢g,<d
From the above relationships, we deduce that the sequences (p,,) and (g,) are
bounded, whereas from (3.8) and (3.9) we deduce

lim s, = o0 and lim ¢, = co.
m—00 n—oo

Furthermore it is not difficult to shows for all w € 2 that following equality holds

(%) %Zzgm( —S;Zinzz izgz 1)d-+i,(r—1)d+j (@)

i=1 j=1 i=1 =1 r=1

Pm

+%ZZ ngmd-‘rl(r 1d+j (W)

Zl_]l " or=1

ZZ ZQZ 1)d+ltnd+]( w)

21]1
Pm  dn

mn Z Z gsmd+7f tnd"‘] )

=1 j=1

The proof will be performed as follows.
Step 2. Claim 1: There is a negligible subset Nij(y) such that for every w €

Q\ N (y),

(310)
d d Sm  tn
ZZ Zzgl 1)d+i,(r— 1)d+j dzZZzw as mAn — oo.
i=1 j=1 Smlt =1 r=1 =1 =

Since our assumption that {X,,, : m > 1,n > 1} is a double array of p.i.i.d.
closed valued random sets, then {g(s—l)d+i,(t—1)d+j :s > 1,t > 1} is a double array
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of p.i.i.d. random elements in £!(X) with
E(llgij |1 log™ [lgi;11) < E(|Xi5]log™ [ Xi5]) < oo

Hence, applying Etemadi’s strong law of large numbers (see [12]) to each double
array of vector valued random elements {g(s_1)ai,(t—1)dtj : 5 = 1, > 1} in L£1(%)
yields a negligible subset Nj1(y) such that for every w € Q\ Ny1(y), for any 1 < i <
d, 1<j<d,

Sm  tn
(3.11) i\ (r—1)d+j (W) = 2ij as mVn — oo.
=1 r=1
Since we have
(3.12)
Sm. .. 1 1 pm) 1 R I A
Jim S i (G ) = g and T i (G0 - ) =

then (3.10) follows.
Step 3. Claim 2:

(3.13) m/&zrgoo (mn Z Z ngmd—‘rz (r—1 d+]( )

=1 j=1 =1
d qn Sm

* % Z Z SL Z 9(1-1)d+itnd+j (w)) =0 as.

i=1j=1 "™ |=1

Since {g(s—1)d+4i,(r—1)d+j : T = 1} is a sequence of p.i.i.d random elements in LX)
for each s > 1,1 <¢<d, 1 <j <d, applying Etemadi’s strong law of large
numbers (see [12]) to this sequence yields a negligible subset Ni2(y) such that for
every w € '\ Nia(y), forany 1 <i<d, 1 <j<d, m>1, we have

1
(3.14) - > Gomderir—1)ari (@) = 2zij as n — oo,
n
=1

Thus, for every w € 2\ Nia(y),

%ZZ ngmd+z (r—1)d+j(w) = 0 as m An — oo.

=1 j=1 r=1
Similarly, there exists a negligible subset N13(y) such that for every w € Q\ Ni3(y),

Sm

d gn
ZZ;Z 9(1—1)d+i,tnd+; (W) = 0 as m An — oo.
i=1 j=1

Step 4. Claim 3: There is a negligible N;(y) such that for every w € Q\ Ni(y),

Pm dn

(3.15) % 2 zzlgsmdﬂ tnd+j(W) = 0 as m An — oo.
i=1 j
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We define the negligible subset Ni(y) as the union of the Ny;(y) where j €
{1,2,3}, from (3.11), (3.12) and (3.14) we have that for every w € Q\ Ni(y), for
any 1 <i<d, 1 <j<d,

Sm  tn
1 smtn
mn gsmd—l—ztnd—i-j( ) Zzgld—&-zrd—m
=1 r=1
Sm—1 tn
Sm—
T Z Zgld+zrd+1
m tn =1 r=1

tn—1

th—1 1 ) 1
. E . . N 1.2 —0.2::) =0
Smtn o —1 & Gomdtirdt () gz (7 = L2y = 0:2)

as mAn— oo,

whence Claim 3 follows by applying this estimate.
Combining the above limits and using (3.5) and coming back to (%) we have that
for every w € Q\ Ni(y),

m n d
(3.16) %ZZgij(w)%éZzi as mAn — oo.

i=1 j=1 =1

Step 5. Next, foreachn =td+j, 1 <j<d. If m =spnd+ pm, 1 < pm < d then
for all w € €2, the following equality holds

() %ng( = m Z Zg(h 1)d-tin (W ngmd—Hn
=1

Claim 4:

Sm

(317) n%g)noo m Z Zgh ld-Hn Zzzj a.s.

=1

Since {g(s—1)dt+in : 5 = 1} is a sequence of p.i.i.d random elements in L1(%) for
each 1 < ¢ < d, n > 1 then applying again Etemadi’s strong law of large numbers
(see [12]) to this sequence yields a negligible subset Naj(n,y) such that for every
w € Q\ Naj(n,y), for any 1 <i <d,

75 gh 1d+1n _>ZZj as m — o0.

Thus, for every w € Q0 \ Ngl(n Y),

d
sz Zgh 1dtin (W %Zzij as m — 0.
= 1 X

Claim 5:
Pm

. 1
(3.18) n}gnoo . Z Gsmd+in(w) =0 as.
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Applying Etemadi’s strong law of large numbers (see [12]) yields a negligible subset
Naa(n,y) such that for every w € Q\ Nao(n,y), for any 1 < i <d,

1 Sl 1 sm—1 1 ‘2=
mgsmd+z,n(w) - m <3m ;:1 gldJrz,n(w) S P 1 ;:1 gldJrz,n(w))

1
— a(z” —1.2;5) =0 as m — oo.

Thus, for every w € Q\ Naa(n,y),
1 Pm
m ngderi,n(w) — 0 as m — oc.
i=1

We define the negligible subset Na(n,y) as the union of the Ny; where j € {1,2},
combining the above limits and by (3.6) and coming back to (**) we have that for
every w € 2\ Na(n,y),

m d
1 1
(3.19) - ;1 Gin(w) — p ZE 1 z; as m — 0.

Similarly, for each m > 1, there exists a negligible subset N3(m,y) such that for
every w € Q\ N3(m,y),

1 1
(3.20) Jim 23 () = g
j= i=

Final Step and Conclusion:

We define the negligible subset N(y) as the union of the Ni(y), Na(n,y) and
N3(m,y) where m > 1,n > 1. Combining (3.16), (3.19), (3.20) and Proposition 3.3,
we have that for every w € Q\ N(y),

1 m n
—g E gij(w) =y as mVn — oo.
mn < -

=1 j=1

The proof is therefore completed. O
We also need an useful lemma that is formally derived from (2.2).

Lemma 3.5. Let {Cp,p, : m > 1,n > 1} be a double array in c(X). Also consider
C € ¢(X) and a countable dense subset D* of B* such that

d(xz,coC) = sup {(z,z) — §*(z,c0C)}, x € X
zeD*

(which is possible by (2.2)). If, for every z € D*, one has
(3.21) limsup 0% (z, Cppn) < 6%(2,C)

m\Vn—oo

then, for every x € X,
liminf d(x,Cp,y) > d(x,coC).

mVn—oo
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Proof. For every x € X, we have by (2.1), (2.2), (3.21) and elementary calculations

liminf d(z,Cy,y) > liminf d(z,€6C),,)

mVn— oo Vn—oo

> lim inf [ sup {<2,$> —0%(z, Cmn)}}

mVn—oo 2EB*

> sup { lim inf [<Z,$> — 6*(270771”)]}

zeB* { mVn—o0

> sup {(z,2) = (2,0 }
zeB*

> sup {(z,x> - 5*(2,0)} = d(x,coC).
z€D*

g

Proposition 3.4 allows to prove the “lim sup” part in the Wijsman convergence
for the SLLN under consideration.

Proposition 3.6. Under the same hypotheses as in Proposition 3.4, there exists a
negligible subset N such that, for any w € Q\ N and z € X,

(3.22) lim sup d(m, cl % 35 Xy (w)) < d(z, E(X, A)).

m\Vn—oo ; X
=1 j=1
Proof. The proof is similar to the proof of Proposition 3.4 in C. Hess [18]. For the
sake of completeness we provide the details.

Let Zpp(w) = ¢l =371, > =1 Xij(w) for every m > 1,n > 1, w € Q. From
Proposition 3.1(i7) we know that ¢6 F(X,.A) = ¢ E(X, Ax). Further, let D’ be a
countable dense subset of F(X, Ax) satisfying cl D' = ¢l E(X, Ax), and consider
the set C” of all rational convex combinations of members of D’. On the other
hand, consider a countable dense subset D of X and observe that it suffices to prove
(3.22) for all z in D. Indeed, each side of (3.22) defines a Lipschitz function of x
(with Lipschitz constant 1). So, consider € D and an integer p > 1. One can find
y' =1vy'(z,p) € C’, depending on z and p, such that

1

lz — /|| < d(z, e E(X, A)) + >
Further, Proposition 3.4 applied to 3/, yields the existence of a negligible subset
N(z,p) and of a double array {gm, : m > 1,n > 1} verifying properties (i) and (i7).
Then, define the negligible subset NV as the union of the N(x,p) where x € D and

p > 1, and consider w € Q\ N. For every x € D, we have

1 m n
li d(z, Z < i ——> gy
A A In)) < Bl = e 2 2,90

1
= |lz =yl < d(z,w E(X, A) + e

whence, by the arbitrariness of p, yields the desired conclusion. O
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Now, we can state and prove the main result of this section, namely, the multival-
ued SLLN for double array of pairwise independent identically distributed random
sets when ¢(X) is endowed with the Wijsman topology.

Theorem 3.7. Let X be a separable Banach space and let { X, : m > 1,n > 1} be
a double array of pairwise independent closed valued random sets having the same
distribution as an integrable r.s. X such that

E(|X|log’ |X]|) < .
Then, there exists a negligible subset N such that, for any w € Q\ N,
_ . 1
@ E(X, A) =Ty - lim_c— Z > Xij(w)

m\Vn—oo

that is, for any x € X,

d(z,co E(X,A)) = mvlggood(x,cl % i iX@'(W)).
i=1 j=1

Proof. Let Zyy(w) = cl 571" > j=1 Xij(w) for every m > 1,n > l,w € Q and
let C =¢co E(X,A). By (2.3) there is a countable set D* in B* such that
d(z,C) = sup {(z,z) — 0" (2,C)} Vx € X.
zeD*

Let z be fixed in D*. Since the map F' — ¢6*(z, F) is Effros measurable from ¢(X)
in R, we deduce that {0*(z, X;nn) : m > 1,n > 1} is a double array of R-valued
pairwise independent random variables having the same distribution as §*(z, X).
Further, by the inequality

E(]6* (2, X)|log™ [6*(2, X)|) < E(|X|log™ |X]) < o0,
we may apply Etemadi’s strong law of large numbers (see [12]) to double array of

R-valued random variables {0*(2, X;,) : m > 1,n > 1}. This yields the existence
of a negligible subset N(z) of  verifying, for every w € Q\ N(z),

52,0 = lim —— 338 X)) =m0z, Zun():

mVn—oo MmN 4 - mVn—oo
=1 j=1

Now, defining the negligible subset N; as the union of the N(z), for z € D*, we
deduce that

(3.23) 0*(2,C) = \}ug 0" (2, Zmn(w)) Yz € D*, Vw € Q\ Nj.
The above equality and Lemma 3.5 entail
(3.24) li\sngnf d(z, Zmn(w)) > d(z,C) Ve € X, Yw e Q\ Nj.

On the other hand, Proposition 3.6 yields the existence of a negligible subset Na
such that
(3.25) limsup d(z, Zyn(w)) < d(z,C) Vo € X, Yw € Q\ Ns.

mVn—oo

Finish the proof by defining the negligible subset N = N; U Ny and by combining
inequalities (3.24) and (3.25). O
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4. THE STRONG LAWS OF LARGE NUMBERS FOR DOUBLE ARRAY OF
INDEPENDENT CLOSED VALUED RANDOM SETS IN RADEMACHER TYPE p
BANACH SPACES

We will provide several Wijsman convergence results relative to the strong law
of large numbers for double array of independent closed valued random sets in
Rademacher type p Banach spaces. Before going further, let us recall a useful result
due to Stadtmiiller and Thanh [29]. That result is an analogue of Toeplitz lemma
(see, e.g., Loeve [24], p. 250).

Lemma 4.1. Let {xy, : m > 1,n > 1} be a double array of elements in a Banach
space X such that

where x is a member of X. Then we have

m

n
. 1
lim —g g Tij = T.
mVn—oco Mmn

i=1 j=1

The following proposition is a crucial tool for proving the main results in this
section.

Proposition 4.2. Suppose that X is a Rademacher type p Banach space, where
1<p<2. Let {Xppn:m >1,n>1} be a double array of independent closed valued
random sets satisfying the following conditions:

2. Ty <

m=1n=1
and there exists X € ¢(X) such that
(4.1) X C s — limvn—oo (¢l E(Xomn, Ax,0))
(4.2) lim sup &* (z,cl E(an,A)) <6%(2,X), VzeXx™
mVn—o0o

Consider the set C' of all conver combinations of X, with rational coefficients.
Then, for each y € C', there exists a negligible subset N(y) of Q and a double array
{Gmn :m >1,n > 1} in LP(X) satisfying:

(i) for each m > 1,n > 1, gmn € SY(Xpnn, Ax,...)
(ii) for any w € Q\ N(y),

1 m n
v= o 2D i)
i=1 j=1
Proof. Consider y € C'. From the definition of C’ we have y = Z§:1 A\;jy; where
k is a positive integer, A; are positive rational numbers with 2?21 Aj = 1 and
where, for each j > 1, y; € X. Obviously, for every j = 1,...,k, it is possible to
write \; = % where d and the d; are positive integers satisfying d = Z;“:l d;. Put
21 = ylv"' 7zd1 = y17 zd1+1 == Z/27 oy Zd1+d2 - y27 soy Zd1+---+dk,1+1 - yk7 sy
24 = Yk, then we have y = %Zle 2.
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The proof will be performed in several steps.
Step 1. The main part of the proof is to apply fairly Proposition 3.3, we choose
an array {z; : 1 <14 <d,1 <j <d} of the members of X such that

- Zitji—1 if i4+75<d+1,
E Zitj—1—d if i+5j>d+1.
It is easy to check that (3.5), (3.6) and (3.7) are true.
By condition (4.1), there exists a double array {gmn, : m > 1,n > 1} of gmn €

SY(Xinn, Ax,,, ) such that
(4.3)

E(g(s,l)dﬂ’(t,l)dH) — 2 as sVt —ooforeachi=1,2,...,dand j =1,2,...,d.
For any m > 1,n > 1, there exist the integers s,,, pm, tn and ¢, satisfying (3.8)

and (3.9). From the above relationships, we deduce that the sequences (p,,) and
(gn) are bounded,

lim s, = o0 and lim ¢, = co.
m—00 n—oo

Furthermore for all w € 2 the following equalities hold

(o % %) %ZZQ@J mnzz gij(w) — E(gi5) +7ZZE gij)
i=1 j=1 i=1 j=1 =1 j=1
m n

%ZZ gm gzy))

=1 j=1

d Sm  tn

d
3D Dl ) D TR
=1

s
i:lj m”llrl

ZZ ZE s pmdi,(r— 1)d+j)

21_1

+ o ZZ ZE I(1=1)d+i,tnd+j)

11]1
Pm  4n

— Z > " E(Gspdritndri)-

11]1

The proof will be performed as follows.
Step 2. Claim 1: There exists a negligible subset Nj(y) such that, for every
w € 2\ M(y),

(4.4) — ZZ gij(w) — E(gij)) = 0 as mVn — oo.

lel

Since { X, : m > 1,n > 1} is a double array of independent closed valued
random sets and gmn € SY(Xomn, Ax,,.) then {gm, : m > 1,n > 1} is a double
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array of independent random elements in £P(X) with

|P
n

EHgman E|Xm
> Z () 3 Z %,
m=1n=1 m=1n=1
whence Claim 1 follows by applying Theorem 3.1 in [27].
Step 3. Claim 2:
(4.5)

st Sm tn 1 d d

min

S 5 ST 3 S TRIINVREES o) gRPRE eI
11]1’””117«1 i=1 j=1

By (4.3) and Lemma 4.1, we get

1 Sm  tn
- Z Z E(g(—1)d+i,(r—1)d+j) — 2ij a8 mVn — 00,
M =1 r=1

By (3.12), we obtain (4.5).
Step 4. Claim 3:

Pm

(4.6) m/&}fgoo (;LT;L ZZ ZE Gspmd+i,(r— 1)d+])

=1 _1
szz ZE ll)d+ztnd+])> 0.

2131

By (4.3), we obtain E(g(s—1)dti,(t—1)d+;) — 2ij ast —ooforany 1 <i<d, 1 <j <
d, s > 1. Hence,

t
. 1 & . .
HIL{EO a ZlE(gSmd‘*‘iv(T—l)d-i-j) — zjj forany 1<:<d, 1<j<d, m>1

—

Thus,

d t
t 1 n
%ZZ ZE Gsmd+i,(r—1)dtj) — 0 as m An — oo,
i=1 j=1 tn r=1
Similarly,

Sm

d 4n
1
m—mZZ—mZ (9u—1)d+itnd+j) — 0 as mAn — oco.
i=1 j=1

Step 5. Claim 4:

1 Pm  Qn
(4.7) P Z; 221 E(gs,dtitnd+i) — 0 as m An — oo.
i=1 j=

By (4.3) and Lemma 4.1, for any 1 <i <d, 1 <j <d,

Sm  tn

YN Egiarirars)

=1 r=1

1
——E(Gsmdtitndts) = (

mn Smt
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Sm—1 tn

S — 1
- Z ZE (9td+ird+j)
Sm —
tn—1
th—1 1 % 1
B a— > E(gsmd+i,rd+j)) — (i = Laij — 0.245)

r=1
=0 as mAn — oco.

Thus, we obtain (4.7).
Combining the above limits and using (3.5) coming back to (* * x) we have that
for every w € Q\ N1(y),

m n d
(4.8) %ZZQU(M)_)%ZZ" as mAn — oo.

i=1 j=1 i=1

Step 6. Next, foreach n =td+j, 1 <j<d. If m = spd+ pm, 1 < pp < d then
for all w € Q, the following equalities hold

m

ng “ D) - E(gin>>+;ZE(gm)

=1
d Sm
_ Z g’m g'm)) Em Z 11 Z h 1)d+i, n
° he1

=1
| b
+ > E(Gspdtin)-
i=1
Claim 5:
1 m
(4.9) m - Z(gm(w) — E(gin)) =0 ass.

Since {gin : ¢ > 1} is a sequence of independent random elements in £P(X) for each
n>1land ) ° EH‘%A < 00, there exists a negligible subset Na(n,y) such that

for every w € Q \ Na(n,y),

m

%Z(Qm(“) — E(gin)) — 0 as m — oo.
i=1
Claim 6:
1
(4.10) 2m Z ZE (9(h—1)d+in) - ZZij as m — oo.
=1 1
For any 1 <i <d,
|

- ZE(Q(hq)dH,n) — Zjj as m — 0.
Sm 2
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Thus, (4.10) is true.

Claim 7:
1 Pm
(4.11) po. ;E(gsmd+i’n) — 0 as m — oo.
1=
For any 1 <17 <d,
1 Sm 1 sm—1 1 ‘n2!
iy oy ) = ﬂ<7 E Sy I E ) )
m (gsmd-‘rzm,) m \s,, ; (gld—i-z,n) S Sy — 1 ; (gld—i-z,n)
1
— 8(%;‘ —1.z;5) =0 as m — oo,

whence Claim 7 follows by applying above estimate.
Combining the above limits and by (3.6) coming back to (x % *x) we have that
for every w € Q\ Na(n,y),

1 & 1
(4.12) P E 1 gin(w) — p E 1 zi as m — Q.
1= 1=

Similarly, for each m > 1, there exists a negligible subset N3(m,y) such that for
every w € '\ N3(m,y),

1 1<
(4.13) nzlgmj(w)_)dzzi as n — oo.
J:

=1

Final Step and Conclusion:

We define the negligible subset N(y) as the union of the Ni(y), Na2(n,y) and
N3(m,y) where m > 1,n > 1. Combining (4.8), (4.12), (4.13) and Proposition 3.3,
we have that for every w € Q\ N(y),

1 m n
—E E gij(w) =y as mVn — oo.
mn ~— 4

=1 j=1

The proof is therefore completed. O

Proposition 4.3. Under the same hypotheses as in Proposition 4.2, there exists a
negligible subset N such that, for any w € Q\ N and z € X,

1 m n
4.14 li ] — X,i(w)) < d(z,X).
(4.14) imsup d(z,c - ZZ j(w)) < d(x,c0X)

m\Vn—o0 i=1 j=1

Proof. Let Zyp(w) = ¢l 23", > -1 Xij(w) for every m > 1Ln > 1, w € Q.
Further, let D’ be a countable dense subset of X satisfying cl D' = ¢l X, and
consider the set C’ of all rational convex combinations of members of D’. On the
other hand, consider a countable dense subset D of X and observe that it suffices to

prove (4.14) for all z in D. Indeed, each side of (4.14) defines a Lipschitz function
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of z (with Lipschitz constant 1). So, consider x € D and an integer p > 1. One can
find ¢ = ¢/(z,p) € C’', depending on x and p, such that

1
le =yl < d(z, @0 X) + .

Further, Proposition 4.2 applied to 3/, yields the existence of a negligible subset
N(z,p) and of a double array {gm, : m > 1,n > 1} verifying properties (i) and (i7).
Then, define the negligible subset N as the union of the N(x,p) where x € D and
p > 1, and consider w € Q\ N. For every x € D, we have

1 < i - = <
limsup d(z, Zpn(w)) < | lim o= ;]Zlgzg W) = lle=y/|| < d(z,c0X)+
whence, by the arbitrariness of p, yields the desired conclusion. O

Theorem 4.4. Under the same hypotheses as in Proposition 4.2, there exists a
negligible subset N such that, for any w € Q\ N,

o ) 1 m n
coX =Tw — mvlggoo cl P z; Z;Xij(w)
=1 j=

that is, for any x € X,

d(z,c0X)= lim d(z CI—ZZXU

m\Vn—o00
i=1 j=1

Proof. We begin by choosing a countable subset D* of B*, satisfying (2.3) relatively
to the subset C' =co X, that is
d(z,C) = sup {(z,z) — 0" (2,C)} Vx € X.
zeD*
Let z be fixed in D*. Since the map F' — ¢*(z, F) is Effros measurable from c(X)
in R, we deduce that {6*(z, X;un) : m > 1,n > 1} is a double array of R-valued
independent random variables in £P with

E|6*( anp EXm
>0y FTE Al 7y Pl

m=1n=1 m=1n=1

Further, by (4.1), (4.2) and Proposition 3.1,

|P
n

E(é*(z,an)> = 6"(z,clE(Xmn, A)) = 0"(2,X) as mV n — oo.

Hence, there exists a negligible subset N(z) of § verifying, for every w € Q\ N(z),

0*(z,C) = lim ZZ&* 2, Xij(w)) = lim 6"(z, Zmn(w)).

mVn—oo Mmn mVn—oo
=1 j=1
Now, defining the negligible subset N; as the union of the N(z), for z € D*, we
deduce that
(4.15) 0"(z,C) = lim 0"(z,Zpn(w)) Vz € D*, Yw e Q\ M.

mVn—oo
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The above equality and Lemma 3.5 entail
(4.16) li\r/nglf d(z, Zmn(w)) > d(z,C) Ve e X, Yw e Q\ Nj.

On the other hand, Proposition 4.3 yields the existence of a negligible subset No
such that
(4.17) limsup d(z, Zmn(w)) < d(z,C) Vo € X, Yw € Q\ Na.

mVn—oo

Finish the proof by defining the negligible subset N = N; U Ny and by combining
inequalities (4.16) and (4.17). O

If the conditions (4.1) and (4.2) no longer satisfied then we get the following
theorem

Theorem 4.5. Let 1 < p < 2 and let X be a Rademacher type p Banach space.
Consider a double array { Xmm : m > 1,n > 1} of independent closed valued random
sets such that 0 € E(Xuun, Ax,,,) and for every choice of constants o> 0,5 > 0,

E|X |p
>y Ty <
m=1n= 1

Then, there exists a negligible subset N such that, for any w € Q\ N and x € X,

(4.18) limsup d(z, cl———5 5 Z ZXU z,{0}).

m\Vn—o0o i=1 j=1

Proof. For all m > 1,n > 1, since 0 € E(Xpn,Ax,,,), there exists fp, €
S Xpmn, Ax,,, ) such that E(fu,) = 0.

Moreover, since { X, : m > 1,n > 1} is a double array of independent closed
valued random sets and f,,, is a Ay,  -measurable selection of X,,,, then {f, :
m > 1,n > 1} is independent.

On the other hand, we have
PP PELLTIERED ) pracit 8
mo‘nﬁ manﬁ
m=1n= 1 m=1n= 1

By Theorem 3.1 [27], we get

aﬁszw ) — 0 as. as mVn— oo.
m
=1 j=1

Then, there exists a negligible subset NV such that, for any w € Q\ N and z € X,

1 m n
lim su d(m,cli Xii(w ) < limsu H:U — H
m\/n—)o% mon? ; jz::l Z]( ) mVn—>oI<)> Oénﬂ ; ; fl]
= d(z,{0}).
The proof is completed. O

In the next theorem, we obtain the Marcinkiewicz-Zygmund type law of large
numbers for double array of independent closed valued random sets.
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Theorem 4.6. Let X be a Rademacher type p (1 < p < 2) Banach space and let
{Xmn :m >1,n> 1} be a double array of independent closed valued random sets
with 0 € E(Xpmn, Ax,,,.) for allm > 1,n > 1. Suppose that { X, : m > 1,n > 1}
is stochastically dominated by a random element X.

(i) If E(|X||7log™ | X||) < oo for some q € (0,p), then, there exists a negligible
subset N such that, for any w € Q\ N and z € X,

337 X)) < e {0)),

(4.19) lim sup d(x, cl——-
mn)q i=1 j=1

m\Vn—o00

(i) If E(| X||(log™ || X|)?) < oo, then, there ewists a negligible subset N such
that, for any w € Q\ N and z € X,

(4.20) lim sup d(x cl— Z Z Xij(w {O})

mVn—oo i=1 j=1

Proof. Using the same argument as in the proof of Theorem 4.5 provides a selection
fmn of Xy such that E(fp,,) =0 and {fp, : m > 1,n > 1} is independent.
Since the event of {|| frn| >t} C {|Xmn| >t} forall £ >0,m > 1,n > 1, then

P{HfmnH > t} < P{‘an‘ > t} < CP{HXH > t} forall £>0,m>1,n>1.

Thus {fmn : m > 1,n > 1} is stochastically dominated by a random element X.
Using Corollary 3.2 [28], we get

(i) If E(]|X|1og™ ||X]]) < oo for some g € (0, p), then

I ZZ]‘}] ) — 0 a.s. as mVn— oo,
(mn) (mn)l/a iy
i=1 j=

so, there exists a negligible subset N such that, for any w € Q\ N and = € X,

tmanp(s: e S ) < o - g S )|

n)a =1 j—1 mvn—00 i—1 j—=1

= d(z,{0}).
(v3) If E(HXH(log+ HXH)2) < 00, then
—ZZfU ) — 0 a.s. as mVn— oo,
=1 j=1

and so, there exists a negligible subset N such that, for any w € Q\ N and = € X,

lim sup d,(x cl— ZZXU ) < limsup Hl‘ - — ZfU H =d(x,{0}).

mVn—oo m\Vn—o0
i=1 j=1 =1 j=1

The proof is completed. O
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The following examples show that in Theorems 4.5 and 4.6, the conclusion (4.18)
(resp. (4.19)) (resp. (4.20)) cannot be replaced by the stronger one

0 T Z Z Xijw) = {0} as.
(I1) (resp. Tw — \}Hg CIZ ZX,] = {0} as.)
=1 j=1

(III) (resp. Tw — lim —CIZZX” = {0} as.).

mVn—oo Mmmn
=1 j=1

Example 4.1. Let X = R, then X is Rademacher type p (1 < p < 2) Banach
space. Put X (w) = [—1,1] for all w € Q, then X is a random set and Ax = {0, }.
Put f(w) =0 for all w € Q, we get f € SY(X, Ax) and E(f) = 0.

Put Xy = X, finn = f forallm > 1,n > 1. We infer that {X,,,,, : m > 1,n > 1}
is a double array of independent random sets, 0 € E(Xp, Ax,,,). Leta=1,5=1,

oo o0

ZZE‘;(;”"’ SN o <o for 1<p<2,

m=1n=1 m=1n=1

Next, put gmn(w) = glw) = 1 for all w € Q and m > 1,n > 1, we get gmn €
S*(Xymn, Ax,,, ). Then, we have

1= ZZQU GCI—ZZX” for all w € Q.

21]1 =1 j=1

Since then, for x =1,

0 < liminf d(z CI—ZZX” ) < hmlnf |z — g(w)|| =0 for all w e,

mVn—oo
=1 j=1

but d(z, {0}) = 1. Hence, for all w € Q,

liminf d(z, cl— ZZXU z,{0}) for =z =1.

mVn—oo
=1 j=1

Thus {X,n, @ m > 1,n > 1} satisfies all the conditions of Theorem 4.5 but the
conclusion (I) is not true.

Example 4.2. Let X = R, then X is Rademacher type p (1 < p < 2) Banach space.
The random variable g, the double array of random sets {X,,,, : m > 1,n > 1} and
the measurable selections g, of X,,, are defined as in the above example. It is
easy to check that {X,,, : m > 1,n > 1} is stochastically dominated by the random
variable g and g satisfies the conditions (i) and (i) for all ¢ € (0,p). However, for
all w e Q,

J:ﬂl_t}lofod(x — ZZXU ) x,{0}) for z = 1.

lel
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Hence, { Xy, : m > 1,n > 1} satisfies all the conditions of Theorem 4.6 but the
conclusions (II) (for ¢ = 1) and (III) are not true.

Open problem. It is worth to address the question of the validity of Theorems
4.5 and 4.6 when the condition 0 € E(X,,, Ax,,,) is replaced by the condition
0 € E(Xmn,A).

If X,,n having the values in cc(X) or cwk(X) then by Proposition 3.1(i7), the
answer is positive. The following example shows that in the general case, when
Xmn having the values in ¢(X), we can choose the double array of selections { fy, :
m > 1,n > 1} such that E(fmn,) = 0, but {fin : m > 1,n > 1} doesn’t obey the
strong law of large numbers. Hence, in this case, the method used in the proof of
the Theorems 4.5 and 4.6 is not applicable to the above problem.

Example 4.3. Let Q = [0,1] and X = R. Let (2, £([0,1]),dt) be a standard
probability space, £([0,1]) is the o-algebra of Lebesgue measurable sets on [0, 1]
and dt is the Lebesgue measure on [0, 1]. Put X = {5}, 3}, then Ax = {0,Q}.

Consider a random variable f : © — {5}, 1} such that P(f = 3) = P(f =
_71) = % Obviously, f is a measurable selection of X and E(f) = %% + _71% =0,

P(f+£0)=1>0.

Put X, = X, frun = f forallm > 1,n > 1. We infer that {X,,,, : m > 1,n > 1}
is a double array of independent random sets, fn € S'(Xmn, A) and E(fimn) =0
(so 0 € E(Xyn,A)). However, {fpn : m > 1,n > 1} doesn’t obey the strong law of
large numbers

%szij(w):f(@—ﬁo a.s. as mVn — oo.

i=1 j=1
5. APPLICATION TO SLICE CONVERGENCE
Before going further let us mention some simple lemmas.

Lemma 5.1. Let ¢ be a real valued lower semicontinuous function defined on a
topological space S and let D be a dense subset in S. The following holds:

sup ¢(z) = sup ¢(z).

€S zeD

Lemma 5.2. Assume that X* is separable. Let D} be a dense sequence in the closed
unit ball B* of X*. Then for all bounded closed convex subsets B and C in X, the
following holds:

D(B,C) = sup {-0*(z*,C) = 6" (—z*,B)} = sup {-6"(z*,C) — 6" (—z*, B)}.
z*€B* z*€D?
Proof. Equality
D(B,C) = sup {-6"(z",C) — 6" (—2*,B)}
z*eB*
follows from Hahn-Banach theorem, while the second equality

sup {—0*(z*,C) — 6*(—2*,B)} = sup {—6"(z",C) — 6*(—2",B)}
z*eB* z*eD}
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follows from the strong separability of X* and the above lemma, noting that the
function z* — —§*(x*,C) — §*(—a*, B) is strongly continuous on X*. O

Lemma 5.3. Assume that X is separable. Let D7 be a dense sequence in the closed
unit ball B* of X* with respect to the Mackey topology. Then for all conver weakly
compact subsets B and C in X, the following holds:

D(B,C) = sup {-0"(z*,C) — 0" (—z*,B)} = sup {—d6*(z*,C) — §*(—z", B)}.
z*€B* z*€D}
Proof. Equality
D(B,C) = sug {=6"(z*,C) — 6" (—2*,B)}
z*€B*
follows from Hahn-Banach theorem, while equality
sup {—0"(z*,C) — 0" (—z*,B)} = sup {-6"(«*,C) — §*(—=*,B)}

z*€B* @+ €D}
follows from Lemma 5.1, noting that the function z* — —§*(z*,C) — 6*(—z*, B) is
continuous on X* with respect to the Mackey topology. g

Corollary 5.4. Assume that the strong dual X* of X is separable and the hypotheses
and notations of Theorem 3.7 are satisfied with E(X,A) bounded, then one has

D(B,®@E(X, A) = lim D(B CI—ZZXW )a.s.

mVn— oo
=1 j=1

for all B in c¢b(X), in other words the double array {Xm, : m > 1,n > 1} satisfies
the strong law of large numbers with respect to the slice convergence.

Proof. Indeed, by Proposition 3.6 there exists a negligible subset N; such that, for
any w € Q\ Ny and z € X,

lim sup d(l’ CI—ZZXU ) < d(z,c0 E(X, A)).

mVn—o0o i=1 j=1

Whence using the definition of the gap functional, we get formally, the "lim sup”
part of the slice convergence under consideration,

lim sup D(B CI—ZZXU ) = limsup inf d(m CI—ZZX” )

mVn—o0 mVn—soco TEB
i=1 j=1 i=1 j=1

< inf limsup d(x CI—ZZXW >

2€B mVn—oo =1 j=1
(5.1) < inf d(w,@ B(X, A)) = D(B, E(X, A))
xre

while the “lim inf” part follows easily from the techniques of the proof of Theorem
3.7 and the separability of X*. Indeed, by Lemma 5.2 there exists a negligible subset
Ny such that, for any w € 2\ N2 and every B € cb(X),

g D50 5553 ,09) = it D500 1553 ,)

=1 j=1 =1 j=1
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= Jiming s {9 (0 D) <)

i=1 j=1

> sup liminf{—é*(x co— Xij(w )—5* x*,B}
x*eDIm\/n—wo ZZ J )

i=1 j=1
> su — limsup 6* Xij(w)) =0 (—2*,B
o x*eg{ { m\/n—>oI<)3 ( Zgzl ] ) )}
(5.2) > sup {—0"(z",c0 E(X,A)) — 6" (—2*,B)} = D(B,c0 E(X, A)).
z*eDy

We finish the proof by defining the negligible subset N = N;U Ny and by combining
inequalities (5.1) and (5.2). O

Corollary 5.5. Assume that the strong dual X* of X is separable and the hypotheses
and notations of Theorem 4.4 are satisfied with X bounded, then one has

D(B,X) = lim D(B CI—ZZXU ) @.5.

m\Vn—o0
i=1 j=1

for all B in ¢b(X), in other words the double array { Xy, : m > 1,n > 1} satisfies
the strong law of large numbers with respect to the slice convergence.

Proof. Indeed, by Proposition 4.3 there exists a negligible subset N; such that, for
any w € Q\ Ny and x € X,

lim sup d(iL’ CI—ZZXU ) < d(z,c0X).

m\Vn—oo =1 j—1

Whence using the definition of the gap functional, we get formally, the ”lim sup”
part of the slice convergence under consideration,

lim sup D(B CI—ZZX” ) = limsup inf d(x CI—ZZXU )

zeB
m\Vn—o0 i=1 j=1 m\Vn—oo i— 1] 1

< inf limsup d(w clszXm )

2EB mVn—oo =1 j=1

(5.3) < inf d(z,c0X) = D(B,w0X)
e

while the “lim inf” part can be achieved as in the preceding corollary making use
of Lemma 5.2. Applying this lemma and (4.15), there exists a negligible subset No
such that, for any w € Q\ Ny and every B € cb(X),

_ > _
g D50 5553 ,09) = it D500 1553 ,)

zl]l 2131

=it sup {0 (e LS5 ) <5

=1 j=1
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> li f{—é*(* X (w )—5* *,B}
Sup Bamint i 22 2 X)) =05,

i=1 j=1
> sup {—limsup5*( * Xij(w )—5* (—x*, B }
x*EDI m\Vn—o0 ; ; J )
(5.4) > sup {—¢"(z",c0X) — 0" (—2",B)} = D(B,c6X).
z*eDy
We finish the proof by defining the negligible subset N = N;U Ny and by combining
inequalities (5.3) and (5.4). O

Here are some variants of Corollaries 5.4 and 5.5. Let us denote £} (%) the space

cwk
of all nonempty convex weakly compact valued random sets. From Theorem 3.7 we

derive the following

Corollary 5.6. Assume that the hypotheses and notations of Theorem 3.7 are sat-
isfied with X in Ecwk(x), then one has

D(K,E(X,A)) = lim D (K ol Z; Z; Xij(w ) 0.5,
i=1j
for all K in cwk(X), in other words the double array { X, : m > 1,n > 1} satisfies
the strong law of large numbers with respect to the slice convergence.

Proof. Since X is a convex weakly compact valued integrable bounded random sets,
then FE(X,.A) is convex weakly compact, using the James theorem (see, e.g., [9],
Proposition 6.2.3 and Remarks 6.2.4). Applying Proposition 3.6 to { X, : m >
1,n > 1} yields

lim sup d(a: CI—ZZXU ) <d(z,E(X,A)) Vx € X as.

mVn— oo i=1 j=1

Whence using the definition of the gap functional, we get formally, the “lim sup”
part of the slice convergence under consideration,

lim sup D(K CI—ZZX” ) = limsup inf d(x CI—ZZXU )

zeK
mVn— oo i=1 j—1 mVn— oo i 1] 1

< m}f( lim sup d(aﬁ CI—ZZXW )

TEK mVn—oo i1 j=1
< inf d(z, B(X, A)) = D(K, E(X, A)) a.s
S

while the “lim inf” part follows easily from the techniques of the proof of Theorem
3.7 and the Lemmas 5.1, 5.2 and 5.3. Indeed, invoking again the weak compactness
assumption, for any convex weakly compact subset C' and K in cwk(X) we have
D(K,C)= sup {-6*(z*,C) = §*(—z*,K)} = sup {-0"(z",C) — 6" (-2, K)}
z*€B* z*eD}
where D7 is a countable dense subset in B* with respect to the Mackey topology,
remembering that the support function z* — —¢*(2*, C') — §*(—z*, K) is continuous
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on cwk(X)* with respect to this topology. Applying Lemma 5.3 and equality (3.7.1)
in Theorem 3.7 it is not difficult to get the “lim inf” part

hmme(K CI—ZZXU ) ZTE\I/%I—{IEOD(K CO—ZZXU )

mVn—oo
=1 j=1 =1 j=1

= liminf sup {—5*<x*, mljnZZX”( ))—5*( :U*,K)}

mVn—o0 r*EB*

> sup hmmf{ 5*(1:*, n"jniiX”( ))—5*( x*,K)}

r*EB* mVn—oo

g

i=1 j=1
1 m n
> . - ) . * *
_mflelgf{ TlrlLI\ELSl)lOIZ)(S v 7mn;;X”( )> (- ’K)}
> sup {—0"(z%, E(X, A)) - 6"(—2", K)} = D(K, E(X, A)) as
*eD]

From Theorem 4.4 we derive the following

Corollary 5.7. Assume that the hypotheses and notations of Theorem 4.4 are sat-
isfied with X in cwk(X), then one has

D(K,X)= lim D(K CI—ZZX,] ) @.5.

m\Vn—oo
=1 j=1

for all K in cwk(X), in other words the double array { X, : m > 1,n > 1} satisfies
the strong law of large numbers with respect to the slice convergence.

Proof. Indeed, by Proposition 4.3 we have

hmsupd(m CI—ZZX” ><da:X) Ve e X as.

mVn—oo i=1 j=1

Whence using the definition of the gap functional, we get formally, the “lim sup”
part of the slice convergence under consideration,

lim sup D(K CI—ZZX” ) = limsup inf d(a: CI—ZZXU )

mvVn— o0 mVn—soo TEK
=1 j=1 = 1] 1
< inf limsu d(a: cl — X; )
T zeK mVnHoI; ;; U
< inf d(z,X) = D(K, X) a.s.
rzeK

while the “lim inf” part can be achieved as in the preceding corollary making use
the formula

D(K,C) = sup {~&"(a*,C) — 6*(—2*, K)}

z*eD7
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which holds for any convex weakly compact K and C in cwk(X) here D7 is a
countable dense subset in B* with respect to the Mackey topology. Applying this
equality and (4.15) we get easily

(1]
2l
3]
(4]
[5]
(6]

7]
(8]

(9]

(10]
(11]
(12]
(13]

[14]

7 > 7
ot DKl LSS5, 0) = fimint D(1m 035X, )

11]1 =1 j=1

:T}S\%l_rgoxsgg*{ 5*(.%' CO—ZZXZJ )—(5*(—3:*,[()}

=1 j=1

* * 1 - - * *
2 st il (= ( 5 23 X)) (et K

1 m n
> su {flimsu 5*(1“*,— Xilw)f(s* fx*,K}
m*egf m\/n%oli mn;; ]( ) ( )
> sup {—0"(z", X) —0*(—2",K)} = D(K, X) as.

z*eD]
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