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MIXED DUALITY IN NONDIFFERENTIABLE G-INVEX
MULTIOBJECTIVE PROGRAMMING

HO JUNG KIM, KWAN DEOK BAE, AND DO SANG KIM

ABSTRACT. We consider a class of nondifferentiable multiobjective programs
with inequality and equality constraints in which each component of the objective
function contains a term involving the support function of a compact convex set.
We introduce G-Mixed duality theorem for our nondifferentiable multiobjective
programs. Also, we derive G-Mond-Weir type and G-Wolfe type duality theo-
rems as special cases of our duality results. Our duality generalize and improve
the results in Antczak [3] to the nondifferentiable case.

1. INTRODUCTION AND PRELIMINARIES

It was introduced that many results in nonlinear programming involving convex
functions actually hold for a wider class of functions, called invex. Craven and
Glover [4] proved duality theorems for the so-called cone invex programs. Egudo
[5] established some duality results for differentiable multiobjective programming
problems with invex functions. Jeyakumar [6] defined p-invexity for nonsmooth
optimization problems, and Kuk et al. [10] defined the concept of V-p-invexity for
vector valued functions, which is a generalization of the V-invex function [7, 11].
Mond and Schechter [12] studied nondifferentiable symmetric duality, in which the
objective function contains a support function. Kim et al. [8] established necessary
and sufficient optimality conditions and duality results for weakly efficient solutions
of nondifferentiable multiobjective fractional programming problems.

Very recently, Antczak [1] introduced a new class of nonconvex functions, called
G-invex functions. Furthermore, they introduced new F. John-type and Karush-
Kuhn-Tucker-type problems, called G-F.John and G-Karush-Kuhn-Tucker prob-
lems, respectively. Subsequently, Antczak [3] formulated new various vector dual
problems for differentiable nonconvex multiobjective programming problems. In
this way, they introduced various vector G-dual problems in the format of Mond-
Weir, vector G-dual problem in the sense of Wolfe, and various vector mixed G-dual
problems for the considered multiobjective programming problem.

In this paper, we obtain an extension of the results in Antczak [2, 3] from the
differentiable to the nondifferentiable case. We introduce a mixed vector dual pro-
gramming problem and establish the weak , strong and converse duality theorems.
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In order to prove duality theorems for the nondifferentiable multiobjective program-
ming problems involving vector G-invex functions, we employ necessary optimality
conditions, the so-called G-Karush-Kuhn-Tucker necessary optimality conditions,
in Kim et al. [9]. As special cases of our duality results, G-Mond-Weir type and
G-Wolfe type duality theorems are given.

We provide some definitions and some results that we shall use in the sequel.
The following convention for equalities and inequalities will be used throughout the
paper.

For any = = (x1,22,...,2,) ",y = (y1,Y2, -, Un

x=yif and only if z; = y; for alli =1,2,...,n;

)T, we define:
x <y if and only if z; < y; forall i =1,2,...,n;
x < yifand only if z; < y; forall i =1,2,...,n;
x <y if and only if z; < y; and = # y,n > 1.
We also will use the same notation for row and column vectors when the interpre-

tation is obvious. We say that a vector z € IR" is negative if z < 0 and strictly
negative if z < 0.

Definition 1.1 ([12]). Let C be a compact convex set in IR". The support function
s(z|C) is defined by
5(x|C) := maz{zTy :y € C}.
The support function s(z|C), being convex and everywhere finite, has a subdiffer-
ential, that is, there exists z such that
s(y|C) > s(z|C) + 2T (y — x) for all y € D.
Equivalently,
Lo = s(z|C).
The subdifferential of s(x|C') is given by
0s(z|C) :={z € C: 2Tz = s(z|C)}.

Let f = (f1,..., fr) : X = IR* be a vector-valued differentiable function defined
on a nonempty open set X C IR", and Iy, (X),i =1,...,k, be the range of f;, that
is, the image of X under f;.

Definition 1.2. Let f : X — IR* be a vector-valued differentiable function defined
on a nonempty set X C IR"™ and w € X. If there exist a differentiable vector-
valued function G; = (Gy,,...,Gy,) : IR — IR* such that any its component
Gy, : I5,(X) — IR is a strictly increasing function on its domain. If there exists a
vector-valued function n : X x X — IR" such that, for all x € X(x # u) and for
any t =1,...,k,

(L.1) Gy (fi(@)) = G (fi(w) 2 G (fi(u)V fi(w)n(z, u) (>),
then f is said to be a (strictly) vector Gy-invex function at u on X (with respect

to 1) (or shortly, G-invex function at w on X). If (1.1) is satisfied for each u € X,
then f is vector Gy-invex on X with respect to 7.
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Remark 1.3 ([2]). In order to define an analogous class of (strictly) vector G-
incave functions with respect to 7, the direction of the inequality in the definition
of these function should be changed to the opposite one.

Remark 1.4 ([2]). In the case when Gy,(a) = a, i =1,...,k, for any a € I, (X),
we obtain a definition of a vector-valued invex function.

We consider the following multiobjective programming problem :

(NMP) Minimize ( Gg,(fi(z)+ s(z|Ch)),...,(Gr (fe(z)+ s(z|Ck)) )
subject to  ( Gg,(91(x)),...,Gg,(gm(x)) ) =0, j€J
( Ghl(hl(x)), .. .,th(hp(a;)) ) =0,teT

where F; : X - R, i e I ={1,...,k}, g;: X =R, jeJ={1,...,m}, he :
X - R, t eT={l,...,p} are differentiable functions on a nonempty open
set X C IR". Moreover GF,,7 € I, are differentiable real-valued strictly increasing
functions , Gy;,j € J, are differentiable real-valued strictly increasing functions, and
Gy, ,t € T, are differentiable real-valued strictly increasing functions. Let D = {z €
X Gy, (gi(x)) £0, jeJ, Gp(hi(z)) =0,t € T} be the set of all feasible solutions
for problem (NMP), and F; = f;(-) + (-)Tw;, i = 1,..., k. Further, we denote by
J(z) :={j € J: Gy;(gj(2)) = 0} the set of inequality constraint functions active at
z € D and by I(z) :={i € I: \; > 0} the objective functions indices set, for which
the corresponding Lagrange multiplier is not equal to 0. For such optimization
problems, minimization means in general obtaining weak Pareto solutions in the
following sense:

Definition 1.5. A feasible point Z is said to be a weak Pareto solution (a weakly
efficient solution, a weak minimum) of (NMP) if there exists no other z € D such
that

G f(ayamul (@) +5(2]C) ) < Gpayiare( f(T) +5(2|C)).

2. MIXED DUALITY THEOREMS

In this section, we introduce a mixed dual programming problem and establish
weak and strong duality theorems. Now we propose the following mixed dual (G-
VMD) to (NMP).

(G-VMD) Maximize
(G AW) +y )+ 3 Gy (g + D G (hey)),

j€Jo teTy

Gr( fily) +yTw ) + Y §Go,(95() + Y mG, (huly)))

j€Jdo teTy
subject to

k m
D NG fily) +y"w )(Vfily) +wi) + Y &Gy (9;)Ve;(y)
=1

Jj=1
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+ 371G, (h(y) Vhe(y) = 0,

t=1
D Gy (gi W) + Y G, (hu(y)) 20,
J€Ja teTn
yeX, w,€Cy,i=1,...k,
AMeRF, A>0, Me=1,
§eR™, €20, pelR?,
where J, C J ={1,...,m},a =0,1,...,r with U,_yJo = J and J, N Jg = 0 if
a# B, ToCcT=A{1,...,p},a=0,1,...,r with U,_¢T,, = T and T, N Tp = 0 if
a # B
Let A ={AeRP: X220, Ne=1, e=(1,...,1)T € R?} and G,,i € I be
differentiable real-valued strictly increasing functions defined in If,(z), Gy,,j € J
be differentiable real-valued strictly increasing functions defined in I, (x).
Let Wi denote the set of all feasible solutions for (G-VMD) and prxW; be the
projection of the set Wj on X, that is, prxW; = {y € X : (y,\,§, u,w) € Wi},
Moreover, for a given (y, A\, &, u,w) € Wi, we denote by I(y) the set of objective
functions indices for which a corresponding Lagrange multiplier is positive, that is,
I(y):={iel:\ >0}

We define the so called vector G-Lagrange function. The vector G-Lagrange
function Lg : X x R* x R™ x RP x R* — RF
La(y, M €, pyw) =diag NGr( fi(y) +s(2[C1) ), Gro( fily) + s(x]Cr) )T
m p
+ > &G, (9w + D G, (hu(y))e
j=1

t=1

=(MGR( fily) + s(=]C1) +Z£j 097 (9)) + D G, (he(y)),

t=1

ey

MG ( fr(y) + s(z|Cy) ) +ny 0, (95 W) + D G, (he(y)))

t=1
where
A1 0 O 0
0 X O 0
diag \ = '
: 0
L 0 ... ... 0 Al

Theorem 2.1 (G-Weak Duality). Let  and (y, A\, &, u, w) be any feasible solutions
for (NMP) and (G-VMD), respectively. Further, assume that f(-) + (-)Tw is Gp-
invex with respect ton aty € prxWi on D UprxWi, g is Gg-invex with respect to
naty € prxWi on DUprxWh, hy, t € TT(y) is Gp,-invex with respect to n at
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y € prxWi on DUprxWi and hy, t € T~ (y) is Gp,-incave with respect to n at
y €prxWy on DUprxWy. Then the following holds:

(2.2) ( Gr(filz)+s(@[Ch)),...,Cr(fr(x) + s(z|Ck) )
£ (Gr () +y wi )+ ) &G (W) + > G, (he(y)), .-,

iedo teTy
Gr (fe@) + v we) + D §Go;(95W) + > mGhn, (u(y)) ).
j€Jo teTy

Proof. Let x and (y, A\, &, i, w) be any feasible solutions for (NMP) and (G-VMD),
respectively. We proceed by contradiction. Suppose that

( Gr (fi(2) + s(z|Ch)), ..., Gr (fe(z) + s(2|Ck) )
< (Gr(AW) +y"w)+ D &G (95) + D G, (he(y)), - -,

j€Jdo teTy

Gr (fe(y) +y we) + D &G, (9i() + Y G, (he(y)) )-

j€Jdo teTy

Since Gf,,1 € I, are differentiable real-valued strictly increasing functions defined
in Ir,(z). By definition of support function, we get

(Gr(fi(e) +a2Tw), ..., Gr(fr(x) + 2T wy) )
< (Gr (AW +y"w) + Y &G (g;W) + D G, (h(y)), -,

j€Jo teTy

Gro(fr(y) +y wr) + D &Gy, (95() + D G, (he(y)) ).

j€Jo teTy
Therefore, for any ¢ € I
Gr( filx) +a"wi ) = Gr( fily) +y"wi )
(2.3) <Y &G (g5 W) + D G, (ha(y))-
J€Jo teTy
Since A > 0, then (2.3) gives

k k
YNGR file) +aTwi) =Y NGR(fily) +y wi)
=1

< Z%[ > &G (9iW) + Y G, (e(y)) |-
i=1 Jj€Jo teTy

From the feasibility of (y, A, &, 4, w) in (G-VMD), we have Zle A; = 1. Then the
inequality above implies

k k
24) D NGR( filx) + 2w ) =Y NGE( fily) +yTwi)
i=1 =1

< Y GG (9;W) + Y G, (he(y))-

j€Jo teTy
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From z € D follows that Gy, (g;(7)) <0, j € J and Gy, (h(x)) =0, t € T. Thus
from the feasibility of (y, A, &, u, w) in (G-VMD), it follows that

(2.5) > &G, (gi(2) + Y G, (hu(w)) £ 0

j€Jo teTy
By assumption, f(-) + (-)Tw is G p-invex with respect to n at y € prxW; on D U
prxWi, gj, j € JoUJy is Gy;-invex with respect to n at y € prxWi on DUprx Wi,
he, t € TH(y) is Gp,-invex with respect to n at y € prxWi on D U prxW; and

hi, t € T~ (y) is Gp,-incave with respect to n at y € prxWi on D U prxWi. Then,
by Definition 1.2, we have

(Gr( file) +aTw; ) = (GR( fily) +y"wi)
% (G, (fiy) +y" wi) (Vfi(y) + wi)] n(,y),
)

Gy, (95(2)) = Gg;(95(y)) = Gy, (9;()) Vi (y) n(z,y),
Ghy(hi(2)) — G, (he(y)) 2 Z(ht(y))Vht( ) n(x,y), t €T (y)
Gh,(hi(2)) = Gh,(he(y)) < G}, (ha(y))Viu(y) n(,y), t €T (y).

respectively.
From the feasibility of (y, A, &, u, w) in (G-VMD), it follows that

k k
(26) Y NGR( fil@) +a"wi) - Z NGE( fily) +y wi)
=

k
Z NG (fiy) + v wi) (V fi(y) + wi)n(z, y),

(2.7) ijng(gj(fL’)) - 25 g; (95 (y Z@G/ 9;(W)Vyg;(y)n(z,y),

Jj€Jo Jj€Jo Jj€Jo

(28) > G (@) = Y Gy (he(y)) 2 D Gy, (ha(y)) Vi (y)n(e, y),
teTy teTy teTy

t e T*(y) N Ty,

(29) > G (hu(x) = > G, (he(y)) < Y Gy, (he(y)) Viu(y)n(z, y),
teTy teTy teTy

teT (y)NTp.
By (2.4) and (2.6)
(210) D &G4, (95(®)) + D G, (ha(y))

j€Jdo teTy

!
> Z NG, (fi(y) +y"wi) (V fily) + wi)n(z, y).

=1
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Adding both sides of inequalities (2.7), (2.8) and (2.10), we get

D &Gy (gi(@) + D G, (bl [Z)\ G (fily) +y"wi) (V fi(y) + wi)

Jj€Jo teTy
(211)  + D &G, (0:()Veily) + Zmcwt(y))wt(y)}nm,y>.
j€Jo teTy
From the feasibility of (y, A, &, u, w) in (G-VMD), we also get
(212) 0 = | 37 Gy (6:W)Vey) + D mGh, () Vhely) |n(a.v).
J€Ja teETy

By (2.5), (2.11) and (2.12)

k
| D NG (fily) + 5w (T fily) + wi) + Zsj ¥))V9;()
i=1
+ZutG y)Vhi(y) |n(a.y) <0,
which contradicts the feasibility of (y, A, § , i, w) in (G-VMD). O

Theorem 2.2 (G-Weak Duality). Let x and (y, A, &, p, w) be any feasible solutions
for (NMP) and (G-VMD), respectively. If the G-Lagrange function Lg is invex with
respect ton aty on DUprxWi. Further, assume that g;, j € Jo is Gg;-invex with
respect ton at y € prxWi on D UprxWi, hy, t € TT(y) N T, is Gp,-inver with
respect ton aty € prxWi on DUprxWy and hy, t € T~ (y)NT,, is Gp,-incave with
respect to n at y € prx Wi on D U prxWi.Then the relation (2.2) is fulfilled.

The proof is similar to the one used for Theorem 2.1.

Theorem 2.3 (G-Strong Duality). Let T be a weak Pareto solution for problem
(NMP). We assume that G}, (ht(Z))Vhi(Z),t = 1,...,p are linearly independent,

and there exists z* € IR" such that <G’ (9;(z)Vyg;(z), z*> < 0,5 € J(x) and
<G§u(ht(:7:))Vht(:E),z*> =0,t =1,...,p. Then there exist \ € RE, € € R, p €
RP,w; € Cii = 1,...,k, such that (T, \, &, p,w) is feasible for (G-VMD) and
(Z,w;) = s(z|C;). Moreover, the objective functions of (NMP) and (G-VMD) are
equal at these points. If also G-weak duality (Theorem 2.1) between (NMP) and
(G-VMD) holds, then (Z,\,§, u, w) is a weak Pareto solution for (G-VMD).

Proof. By assumption, Z is a weak Pareto solution for (NMP). We assume that
G;Lt(ht(a_c))Vht(jj),t =1,...,p are linearly independent, and there exists z* € IR"

such that <quj (9;(%)Vg;(%), 2 > < 0,5 € J(z) and (G}, (he(2))Vhe(Z), 2*) = 0, =

1,...,p. That is, the Karush-Kuhn-Tucker constralnt quahﬁcation be satisfied at

Z [9]. Then there exist A € R¥, & € R™, and € RP, A > 0,& = 0,w; € Cy,i =
., k, such that

k
Z)‘iGIFi( fi(i')—i-i‘Twz’ ) Vi) +w;) +Z£jG/ g]( ))ng( )
=1

J=1
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p
(2.13) + Z G, (he(2))Viy(z) = 0,
t=1
(2.14) £G4, (9)(@) =0, j € J.
From the assumption, we get
(2.15) S G (@) =
teTo

Using (2.13)-(2.15), we obtain the feasibility of (z, A, &, u, w) in (G-VMD) and the
objective functions of (NMP) and (G-VMD) are equal at these points. Notice that,

Gr,(f(2)+5(2]Ch)) = Gr,(fi(@)+3"wi) = G (fi(@)+T" wi)+ 3¢ 5, §i(Gy, (95(2)+
2 ey 1t(Gh, (he(2)))-

By G-weak duality,
(Gr (f1(Z) +s(Z|C1) ), ..., G (fu(Z) + s(|C) )
%(GFl(fl()_{—y wl +Z§j gj g] +Z/’LtGht ht( ))7"'7

j€Jo teTy
G (fe@) + 5 w) + D &G, (9;(@) + Y G (he(7)) ),
Jj€Jo teTy

where (7, A, &, p, w) is any feasible solution of (G-VMD).
Since (Z,w;) = s(z|C;), we have

(GF1(f1()+~T w1 +Z€] 9 gj +ZMtGht hi(Z)) ,...

j€Jo teTy

Gr.( fu(@) + 2wy +Z€] 9, (95 (T +Z/‘LtGht hi(z)) ),

j€Jo teTy

£ (Gr( A@) + 7w )+ Y &G (9:@) + D> mGn, (@) .-,

j€Jo teTy

Gr( 1@ + 7wk )+ D &G (9;@) + D miGn, (he()) ).

j€Jo teTy

Since (z, A\, &, p, w) is a feasible solution for (G-VMD), (z, A\, £, u, w) is a weak Pareto
solution for (G-VMD). Hence the result holds. O

Theorem 2.4 (G-Converse Duality). Let (g, \, &, u,w) be a weak Pareto solution
for (G-VMD) such that y € D. Moreover, we assume that G-Lagrange function
Lg s invex with respect ton at y on D UprxWi. Then § is a weak Pareto solution
for (NMP).

Proof. Let (g, A\, &, u, w) be a weak Pareto solution for (G-VMD) such that § € D.
Suppose contrary to the result, that y is not a weak Pareto solution for (NMP),
that is, there exists £ € D such that

Gr( fi(@) +s(E[Co) )+ Y &Gy, (gi(@) + Y G, (he())

j€Jo teTy
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<Gr( i) +7 wi )+ Y &G, (9;0) + Y G (ha(7):
j€Jo teTy
Since (%, w;) = s(Z|C;),i =1,...,k and (g, A\, &, u, w) is a weak Pareto solution for
(G-VMD). Thus we get
Gr( fil@) +3Twi )+ ) &G0, (95(®) + 3 1eG (he(#))

j€Jo teTy

(2.16) <Gr( £+ 7 wi )+ &G (g;@) + > mGhn, ().

j€Jo teTy
Hence, by the G-Karush-kuhn-Tucker necessary optimality condition [9].
(2.17) Z &Gy, (9;(% Z §iGg, (95
j€Ja j€Ja

Since £ € D and § € D, then

(2.18) Z HtGht ht Z NtGht ht

teT, teT,

By (2.16)-(2.18), we get for any i = 1,...,k,
Gr( fi(®) + & wi +Z§J g; (95 (@ +Z£] 9;(95(%

]EJO ]GJa
+ Z wiGh, (he(Z)) + Z G, (he())
teTy teTy
< GF( fz( )+ y wz + Z f] gj gj )) + Z ijgj (g](g))
]EJ() jEJa
(2.19) +> G (@) + > G, (he(7)).
teTo teT,

Since A\; > 0,¢ € I, and U},_yJo = J,U,_oT, =T, then (2.19) yields

k

> NGRS+, +ZA[Z@ (953 +Zmaht hi(@)]

<ZAGF fi() + 7w, +ZA[Z@ 03 (937 >>+Zutcht<ht<g>>]
t=1

=1

From the feasibility of (g, A, &, p, w) in(G-VMD), we have Zle A; = 1. Then, the
inequality above implies

k m
ZAiGFi( fz(j) +iT'wz [ ZnggJ g] +ZMtGht ht( ))}

J t=1

=1
230 <3 NGR(E@) + 7w )+ | &G, (900 D+ 3 Gy )|

=1 j=1 t=1
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By assumption, the G-Lagrange function Lg is invex with respect to 7 at § on
D UprxWj. Then, by Remark 1.4, it follows that

La(2, M\, & p,w) — La(y, N\, &, 1, w) =2 VLa(y, A, &, p,w) n(Z, 7).

Hence, from the definition of the G-Lagrange function Lg, it follows for any i =
1,...,k,

(NGR(5(@)+ 5w + | 32 €Go,(0:(2) )+ G (i )
j=1 t=1
— (NG fi@) + 7w )+ | D &Gy, (95() +iutaht<ht<y>> |)
j=1 t=1

> | NG (£(@) +y"wi )(V () + w)

hS]

+ 366G (9:5) V(3 Z G, (@) VRe() | (7, 9).
=1

Adding both sides of the inequalities above and using Zle Ai =1, we get

Z)\ Gr( fi(@) +3Tw; )+ [f;gag](g] +;utGht ha(@))]
p
7ZA Gr,( fi(@) + 5" wi ) [Zé} 0,957 +;utaht h(@)]
> | ZA Gl @) + 57w NV FilG) + wy)
(2.21) +Z§] 7)Vg;(y +t§;me he()Vhi(5) | (@, 5).
v (2.26) and (2.27), we obtain the following inequality
[ iAiGh(ﬁ( )+ 5" wi) (Vi) + wi +Z£J 7)V;(7)

3 WGl (3 V) | 5.5 < 0,

t=1

which contradicts the dual constraint of problem(G-VMD). Thus, the conclusion of
theorem is proved. O

Theorem 2.5 (No-maximal G-Converse Duality). Let (y, \, &, p, w) be a feasible
solution for (G-VMD) such that y € D. Moreover, we assume that the G-Lagrange
function Lq is (strictly) invex with respect n at y on D UprxWy. Then § is a weak
Pareto solution for (NMP).
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Theorem 2.6 (G-restricted Converse Duality). Let = and (g, A\, &, p, w) be feasible
solutions for (NMP) and (G-VMD), respectively, such that
(Gr( @) +3Tw ), .., Gr( fro(@) + 37wy ) )
= (Gr( @) +7 w1 ), Gr( fr(@) + 5w )
+[ D &Gy, (95(0) + D G, (he(9)) le.

j€Jo teTy

Moreover, assume that, for any fited A € R¥, X > 0,£ € R™, € = 0,4 € RP, the
G-Lagrange function Lqg is strictly invex at y on DUprx Wy with respect ton. Then
Z is a weak Pareto solution for (NMP) and (g, A, &, u, w) is a weak Pareto solution
for (G-VMD).

The proof of Theorem 2.5 and 2.6 follow directly from the weak duality theo-
rem.(Theorem 2.2)
3. SPECIAL CASES
As special cases of our duality results between (NMP) and (G-VMD), we give
Mond-Weir type and Wolfe type duality theorems.
G-Mond-Weir Type

fJy=To=0, Up_yJa=J, U,_1Ta =T, then (G-VMD) reduced to the Mond-
Weir type dual (G-VMWD).

(G-VMWD) Maximize ( Gg ( f1(y) + yTw; ), Gr ( frly) + yTwy )

k
subject to Y MG, ( fi(y) +y wi )(Vfi(y) +wi )
=1

+ 306G (9:()Vei(y) + Y wGh, (hi(y))Vhe(y) = 0,
j=1

t=1

m P
> &G (95(W) + > G, (he(y)) 2 0,
j=1 t=1

ye X, wyeCyi=1,...,k,
AeRF, A >0, MTe=1,
§€R™, £20, peIRP.

Since the set of all feasible solutions for problem (G-VMWD) is the same as the set
of all feasible solutions for problem (G-VMD), we denote it by Wj.

G-Wolfe Type

fJo=JT=T, U.,_1Ja =U._;Ta = 0, then (G-VMD) reduced to the Wolfe

a=1 a=1

type dual (G-VWD).
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(G-VWD)  Maximize

(Gr( Ay +y w )+ Y &G (9;W) + D G, (he(v)), - -,

j=1 t=1
m p
Gr( fey) +y we )+ ) &G (95m) + Y G, (he(y)) )
j=1 t—1
k
subject to Z )\iGlﬂ( fi(w) + yTw YV fily) +w; )
i=1

+ Y &Gy (95(y) Vi (y)
j=1

P
+ ZutGﬁlt(ht(y))Vht(y) =0,
t=1
yeX, w,eCy, i=1,...,k,
AeRF, A>0, Me=1,
EeR™ €20, peRP.
Let W5 denote the set of all feasible solutions for (G-VWD) and prx W5 be the
projection of the set W5 on X, that is, prxWs :={y € X : (y, \,§, p,w) € Wa}.
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