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In order to prove duality theorems for the nondifferentiable multiobjective program-
ming problems involving vector G-invex functions, we employ necessary optimality
conditions, the so-called G-Karush-Kuhn-Tucker necessary optimality conditions,
in Kim et al. [9]. As special cases of our duality results, G-Mond-Weir type and
G-Wolfe type duality theorems are given.

We provide some definitions and some results that we shall use in the sequel.
The following convention for equalities and inequalities will be used throughout the
paper.

For any x = (x1, x2, . . . , xn)
T , y = (y1, y2, . . . , yn)

T , we define:

x = y if and only if xi = yi for all i = 1, 2, . . . , n;

x < y if and only if xi < yi for all i = 1, 2, . . . , n;

x <= y if and only if xi ≤ yi for all i = 1, 2, . . . , n;

x ≤ y if and only if xi <= yi and x ̸= y, n > 1.

We also will use the same notation for row and column vectors when the interpre-
tation is obvious. We say that a vector z ∈ IRn is negative if z <= 0 and strictly
negative if z < 0.

Definition 1.1 ([12]). Let C be a compact convex set in IRn. The support function
s(x|C) is defined by

s(x|C) := max{xT y : y ∈ C}.
The support function s(x|C), being convex and everywhere finite, has a subdiffer-
ential, that is, there exists z such that

s(y|C) ≥ s(x|C) + zT (y − x) for all y ∈ D.

Equivalently,

zTx = s(x|C).

The subdifferential of s(x|C) is given by

∂s(x|C) := {z ∈ C : zTx = s(x|C)}.

Let f = (f1, . . . , fk) : X → IRk be a vector-valued differentiable function defined
on a nonempty open set X ⊂ IRn, and Ifi(X), i = 1, . . . , k, be the range of fi, that
is, the image of X under fi.

Definition 1.2. Let f : X → IRk be a vector-valued differentiable function defined
on a nonempty set X ⊂ IRn and u ∈ X. If there exist a differentiable vector-
valued function Gf = (Gf1 , . . . , Gfk) : IR → IRk such that any its component
Gfi : Ifi(X) → IR is a strictly increasing function on its domain. If there exists a
vector-valued function η : X × X → IRn such that, for all x ∈ X(x ̸= u) and for
any i = 1, . . . , k,

Gfi(fi(x))−Gfi(fi(u)) >= G′
fi
(fi(u))∇fi(u)η(x, u) (>),(1.1)

then f is said to be a (strictly) vector Gf -invex function at u on X(with respect
to η) (or shortly, G-invex function at u on X). If (1.1) is satisfied for each u ∈ X,
then f is vector Gf -invex on X with respect to η.
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Remark 1.3 ([2]). In order to define an analogous class of (strictly) vector Gf -
incave functions with respect to η, the direction of the inequality in the definition
of these function should be changed to the opposite one.

Remark 1.4 ([2]). In the case when Gfi(a) ≡ a, i = 1, . . . , k, for any a ∈ Ifi(X),
we obtain a definition of a vector-valued invex function.

We consider the following multiobjective programming problem :

(NMP ) Minimize ( GF1(f1(x) + s(x|C1)), . . . , (GFk
(fk(x) + s(x|Ck)) )

subject to ( Gg1(g1(x)), . . . , Ggm(gm(x)) ) <= 0, j ∈ J

( Gh1(h1(x)), . . . , Ghp(hp(x)) ) = 0, t ∈ T

where Fi : X → IR, i ∈ I = {1, . . . , k}, gj : X → IR, j ∈ J = {1, . . . ,m}, ht :
X → IR, t ∈ T = {1, . . . , p} are differentiable functions on a nonempty open
set X ⊂ IRn. Moreover GFi , i ∈ I, are differentiable real-valued strictly increasing
functions , Ggj , j ∈ J, are differentiable real-valued strictly increasing functions, and
Ght , t ∈ T , are differentiable real-valued strictly increasing functions. Let D = {x ∈
X : Ggj (gj(x)) <= 0, j ∈ J, Ght(ht(x)) = 0, t ∈ T} be the set of all feasible solutions

for problem (NMP), and Fi = fi(·) + (·)Twi, i = 1, . . . , k. Further, we denote by
J(z) := {j ∈ J : Ggj (gj(z)) = 0} the set of inequality constraint functions active at
z ∈ D and by I(z) := {i ∈ I : λi > 0} the objective functions indices set, for which
the corresponding Lagrange multiplier is not equal to 0. For such optimization
problems, minimization means in general obtaining weak Pareto solutions in the
following sense:

Definition 1.5. A feasible point x̄ is said to be a weak Pareto solution (a weakly
efficient solution, a weak minimum) of (NMP) if there exists no other x ∈ D such
that

Gf(x)+xTw( f(x) + s(x|C) ) < Gf(x̄)+x̄Tw( f(x̄) + s(x̄|C) ).

2. Mixed duality theorems

In this section, we introduce a mixed dual programming problem and establish
weak and strong duality theorems. Now we propose the following mixed dual (G-
VMD) to (NMP).

(G-VMD) Maximize(
GF1( f1(y) + yTw1 ) +

∑
j∈J0

ξjGgj (gj(y)) +
∑
t∈T0

µtGht(ht(y)), . . . ,

GFk
( fk(y) + yTwk ) +

∑
j∈J0

ξjGgj (gj(y)) +
∑
t∈T0

µtGht(ht(y))
)

subject to
k∑

i=1

λiG
′
Fi
( fi(y) + yTwi )(∇fi(y) + wi) +

m∑
j=1

ξjG
′
gj (gj(y))∇gj(y)



666 H. J. KIM, K. D. BAE, AND D. S. KIM

+

p∑
t=1

µtG
′
ht
(ht(y))∇ht(y) = 0,∑

j∈Jα

ξjGgj (gj(y)) +
∑
t∈Tα

µtGht(ht(y)) >= 0,

y ∈ X, wi ∈ Ci, i = 1, . . . , k,

λ ∈ IRk, λ ≥ 0, λT e = 1,

ξ ∈ IRm, ξ >= 0, µ ∈ IRp,

where Jα ⊂ J = {1, . . . ,m}, α = 0, 1, . . . , r with ∪r
α=0Jα = J and Jα ∩ Jβ = ∅ if

α ̸= β, Tα ⊂ T = {1, . . . , p}, α = 0, 1, . . . , r with ∪r
α=0Tα = T and Tα ∩ Tβ = ∅ if

α ̸= β.
Let Λ+ = {λ ∈ IRp : λ >= 0, λT e = 1, e = (1, . . . , 1)T ∈ IRp} and GFi , i ∈ I be

differentiable real-valued strictly increasing functions defined in IFi(x), Ggj , j ∈ J
be differentiable real-valued strictly increasing functions defined in Igj (x).
Let W1 denote the set of all feasible solutions for (G-VMD) and prXW1 be the
projection of the set W1 on X, that is, prXW1 := {y ∈ X : (y, λ, ξ, µ, w) ∈ W1}.
Moreover, for a given (y, λ, ξ, µ, w) ∈ W1, we denote by I(y) the set of objective
functions indices for which a corresponding Lagrange multiplier is positive, that is,
I(y) := {i ∈ I : λi > 0}.

We define the so called vector G-Lagrange function. The vector G-Lagrange
function LG : X ×Rk ×Rm ×Rp ×Rk → Rk

LG(y, λ, ξ, µ, w) =diag λ(GF1( f1(y) + s(x|C1) ), . . . , GFk
( fk(y) + s(x|Ck) )

T

+

m∑
j=1

ξjGgj (gj(y))e+

p∑
t=1

µtGht(ht(y))e

=
(
λ1GF1( f1(y) + s(x|C1) ) +

m∑
j=1

ξjGgj (gj(y)) +

p∑
t=1

µtGht(ht(y)),

. . . ,

λkGFk
( fk(y) + s(x|Ck) ) +

m∑
j=1

ξjGgj (gj(y)) +

p∑
t=1

µtGht(ht(y))
)

where

diag λ =


λ1 0 0 . . . 0
0 λ2 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . . . . 0 λk


Theorem 2.1 (G-Weak Duality). Let x and (y, λ, ξ, µ, w) be any feasible solutions
for (NMP) and (G-VMD), respectively. Further, assume that f(·) + (·)Tw is GF -
invex with respect to η at y ∈ prXW1 on D ∪ prXW1, g is Gg-invex with respect to
η at y ∈ prXW1 on D ∪ prXW1, ht, t ∈ T+(y) is Ght-invex with respect to η at
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y ∈ prXW1 on D ∪ prXW1 and ht, t ∈ T−(y) is Ght-incave with respect to η at
y ∈ prXW1 on D ∪ prXW1. Then the following holds:

(2.2) ( GF1(f1(x) + s(x|C1)), . . . , GFk
(fk(x) + s(x|Ck) )

̸< ( GF1(f1(y) + yTw1 ) +
∑
j∈J0

ξjGgj (gj(y)) +
∑
t∈T0

µtGht(ht(y)), . . . ,

GFk
(fk(y) + yTwk) +

∑
j∈J0

ξjGgj (gj(y)) +
∑
t∈T0

µtGht(ht(y)) ).

Proof. Let x and (y, λ, ξ, µ, w) be any feasible solutions for (NMP) and (G-VMD),
respectively. We proceed by contradiction. Suppose that

( GF1(f1(x) + s(x|C1)), . . . , GFk
(fk(x) + s(x|Ck) )

< ( GF1(f1(y) + yTw1) +
∑
j∈J0

ξjGgj (gj(y)) +
∑
t∈T0

µtGht(ht(y)), . . . ,

GFk
(fk(y) + yTwk) +

∑
j∈J0

ξjGgj (gj(y)) +
∑
t∈T0

µtGht(ht(y)) ).

Since GFi , i ∈ I, are differentiable real-valued strictly increasing functions defined
in IFi(x). By definition of support function, we get

( GF1(f1(x) + xTw1), . . . , GFk
(fk(x) + xTwk) )

< ( GF1(f1(y) + yTw1) +
∑
j∈J0

ξjGgj (gj(y)) +
∑
t∈T0

µtGht(ht(y)), . . . ,

GFk
(fk(y) + yTwk) +

∑
j∈J0

ξjGgj (gj(y)) +
∑
t∈T0

µtGht(ht(y)) ).

Therefore, for any i ∈ I

GFi( fi(x) + xTwi )−GFi( fi(y) + yTwi )

<
∑
j∈J0

ξjGgj (gj(y)) +
∑
t∈T0

µtGht(ht(y)).(2.3)

Since λ ≥ 0, then (2.3) gives

k∑
i=1

λiGFi( fi(x) + xTwi )−
k∑

i=1

λiGFi( fi(y) + yTwi )

<

k∑
i=1

λi

[ ∑
j∈J0

ξjGgj (gj(y)) +
∑
t∈T0

µtGht(ht(y))
]
.

From the feasibility of (y, λ, ξ, µ, w) in (G-VMD), we have
∑k

i=1 λi = 1. Then the
inequality above implies

(2.4)

k∑
i=1

λiGFi( fi(x) + xTwi )−
k∑

i=1

λiGFi( fi(y) + yTwi )

<
∑
j∈J0

ξjGgj (gj(y)) +
∑
t∈T0

µtGht(ht(y)).
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From x ∈ D follows that Ggj (gj(x)) <= 0, j ∈ J and Ght(ht(x)) = 0, t ∈ T . Thus
from the feasibility of (y, λ, ξ, µ, w) in (G-VMD), it follows that∑

j∈J0

ξjGgj (gj(x)) +
∑
t∈T0

µtGht(ht(x)) <= 0(2.5)

By assumption, f(·) + (·)Tw is GF -invex with respect to η at y ∈ prXW1 on D ∪
prXW1, gj , j ∈ J0∪Jα is Ggj -invex with respect to η at y ∈ prXW1 on D∪prXW1,

ht, t ∈ T+(y) is Ght-invex with respect to η at y ∈ prXW1 on D ∪ prXW1 and
ht, t ∈ T−(y) is Ght-incave with respect to η at y ∈ prXW1 on D ∪ prXW1. Then,
by Definition 1.2, we have

(GFi( fi(x) + xTwi )− (GFi( fi(y) + yTwi )

>= [G′
Fi
(fi(y) + yTwi)(∇fi(y) + wi)] η(x, y),

Ggj (gj(x))−Ggj (gj(y)) >= G′
gj (gj(y))∇gj(y) η(x, y),

Ght(ht(x))−Ght(ht(y)) >= G′
ht
(ht(y))∇ht(y) η(x, y), t ∈ T+(y)

Ght(ht(x))−Ght(ht(y)) <= G′
ht
(ht(y))∇ht(y) η(x, y), t ∈ T−(y).

respectively.
From the feasibility of (y, λ, ξ, µ, w) in (G-VMD), it follows that

(2.6)

k∑
i=1

λiGFi( fi(x) + xTwi )−
k∑

i=1

λiGFi( fi(y) + yTwi )

>=

k∑
i=1

λiG
′
Fi
(fi(y) + yTwi)(∇fi(y) + wi)η(x, y),

(2.7)
∑
j∈J0

ξjGgj (gj(x))−
∑
j∈J0

ξjGgj (gj(y)) >=
∑
j∈J0

ξjG
′
gj (gj(y))∇gj(y)η(x, y),

(2.8)
∑
t∈T0

µtGht(ht(x))−
∑
t∈T0

µtGht(ht(y)) >=
∑
t∈T0

µtG
′
ht
(ht(y))∇ht(y)η(x, y),

t ∈ T+(y) ∩ T0,

(2.9)
∑
t∈T0

µtGht(ht(x))−
∑
t∈T0

µtGht(ht(y)) <=
∑
t∈T0

µtG
′
ht
(ht(y))∇ht(y)η(x, y),

t ∈ T−(y) ∩ T0.

By (2.4) and (2.6)

(2.10)
∑
j∈J0

ξjGgj (gj(y)) +
∑
t∈T0

µtGht(ht(y))

>

k∑
i=1

λiG
′
Fi
(fi(y) + yTwi)(∇fi(y) + wi)η(x, y).
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Adding both sides of inequalities (2.7), (2.8) and (2.10), we get∑
j∈J0

ξjGgj (gj(x)) +
∑
t∈T0

µtGht(ht(x)) >
[ k∑

i=1

λiG
′
Fi
(fi(y) + yTwi)(∇fi(y) + wi)

+
∑
j∈J0

ξjG
′
gj (gj(y))∇gj(y) +

∑
t∈T0

µtG
′
ht
(ht(y))∇ht(y)

]
η(x, y).(2.11)

From the feasibility of (y, λ, ξ, µ, w) in (G-VMD), we also get

0 >=

[ ∑
j∈Jα

ξjG
′
gj (gj(y))∇gj(y) +

∑
t∈Tα

µtG
′
ht
(ht(y))∇ht(y)

]
η(x, y).(2.12)

By (2.5), (2.11) and (2.12)[ k∑
i=1

λiG
′
Fi
(fi(y) + yTwi)(∇fi(y) + wi) +

m∑
j=1

ξjG
′
gj (gj(y))∇gj(y)

+

p∑
t=1

µtG
′
ht
(ht(y))∇ht(y)

]
η(x, y) < 0,

which contradicts the feasibility of (y, λ, ξ, µ, w) in (G-VMD). �
Theorem 2.2 (G-Weak Duality). Let x and (y, λ, ξ, µ, w) be any feasible solutions
for (NMP) and (G-VMD), respectively. If the G-Lagrange function LG is invex with
respect to η at y on D ∪ prXW1. Further, assume that gj , j ∈ Jα is Ggj -invex with

respect to η at y ∈ prXW1 on D ∪ prXW1, ht, t ∈ T+(y) ∩ Tα is Ght-invex with
respect to η at y ∈ prXW1 on D∪prXW1 and ht, t ∈ T−(y)∩Tα is Ght-incave with
respect to η at y ∈ prXW1 on D ∪ prXW1.Then the relation (2.2) is fulfilled.

The proof is similar to the one used for Theorem 2.1.

Theorem 2.3 (G-Strong Duality). Let x̄ be a weak Pareto solution for problem
(NMP). We assume that G′

ht
(ht(x̄))∇ht(x̄), t = 1, . . . , p are linearly independent,

and there exists z∗ ∈ IRn such that
⟨
G′

gj (gj(x̄)∇gj(x̄), z
∗
⟩

< 0, j ∈ J(x̄) and⟨
G′

ht
(ht(x̄))∇ht(x̄), z

∗⟩ = 0, t = 1, . . . , p. Then there exist λ ∈ IRk
+, ξ ∈ IRm

+ , µ ∈
IRp, wi ∈ Ci, i = 1, . . . , k, such that (x̄, λ, ξ, µ, w) is feasible for (G-VMD) and
⟨x̄, wi⟩ = s(x̄|Ci). Moreover, the objective functions of (NMP) and (G-VMD) are
equal at these points. If also G-weak duality (Theorem 2.1) between (NMP) and
(G-VMD) holds, then (x̄, λ, ξ, µ, w) is a weak Pareto solution for (G-VMD).

Proof. By assumption, x̄ is a weak Pareto solution for (NMP). We assume that
G′

ht
(ht(x̄))∇ht(x̄), t = 1, . . . , p are linearly independent, and there exists z∗ ∈ IRn

such that
⟨
G′

gj (gj(x̄)∇gj(x̄), z
∗
⟩
< 0, j ∈ J(x̄) and

⟨
G′

ht
(ht(x̄))∇ht(x̄), z

∗⟩ = 0, t =

1, . . . , p. That is, the Karush-Kuhn-Tucker constraint qualification be satisfied at
x̄ [9]. Then there exist λ ∈ IRk, ξ ∈ IRm, and µ ∈ IRp, λ ≥ 0, ξ >= 0, wi ∈ Ci, i =
1, . . . , k, such that

k∑
i=1

λiG
′
Fi
( fi(x̄) + x̄Twi )( ∇fi(x̄) + wi ) +

m∑
j=1

ξjG
′
gj (gj(x̄))∇gj(x̄)
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+

p∑
t=1

µtG
′
ht
(ht(x̄))∇ht(x̄) = 0,(2.13)

ξjGgj (gj(x̄)) = 0, j ∈ J.(2.14)

From the assumption, we get ∑
t∈T0

µtGht(ht(x̄)) = 0,(2.15)

Using (2.13)-(2.15), we obtain the feasibility of (x̄, λ, ξ, µ, w) in (G-VMD) and the
objective functions of (NMP) and (G-VMD) are equal at these points. Notice that,
GFi(f(x̄)+s(x̄|Ci)) = GFi(fi(x̄)+x̄Twi) = GFi(fi(x̄)+x̄Twi)+

∑
j∈J0 ξj(Ggj (gj(x̄)))+∑

t∈T0
µt(Ght(ht(x̄))).

By G-weak duality,

( GF1(f1(x̄) + s(x̄|C1) ), . . . , GFk
(fk(x̄) + s(x̄|Ck) )

̸< ( GF1(f1(ȳ) + ȳTw1) +
∑
j∈J0

ξjGgj (gj(ȳ)) +
∑
t∈T0

µtGht(ht(ȳ)) , . . . ,

GFk
(fk(ȳ) + ȳTwk) +

∑
j∈J0

ξjGgj (gj(ȳ)) +
∑
t∈T0

µtGht(ht(ȳ)) ),

where (ȳ, λ, ξ, µ, w) is any feasible solution of (G-VMD).
Since ⟨x̄, wi⟩ = s(x̄|Ci), we have

( GF1( f1(x̄) + x̄Tw1 ) +
∑
j∈J0

ξjGgj (gj(x̄)) +
∑
t∈T0

µtGht(ht(x̄)) , . . .

GFk
( fk(x̄) + x̄Twk ) +

∑
j∈J0

ξjGgj (gj(x̄)) +
∑
t∈T0

µtGht(ht(x̄)) ),

̸< ( GF1( f1(ȳ) + ȳTw1 ) +
∑
j∈J0

ξjGgj (gj(ȳ)) +
∑
t∈T0

µtGht(ht(ȳ)) , . . . ,

GFk
( fk(ȳ) + ȳTwk ) +

∑
j∈J0

ξjGgj (gj(ȳ)) +
∑
t∈T0

µtGht(ht(ȳ)) ).

Since (x̄, λ, ξ, µ, w) is a feasible solution for (G-VMD), (x̄, λ, ξ, µ, w) is a weak Pareto
solution for (G-VMD). Hence the result holds. �

Theorem 2.4 (G-Converse Duality). Let (ȳ, λ, ξ, µ, w) be a weak Pareto solution
for (G-VMD) such that ȳ ∈ D. Moreover, we assume that G-Lagrange function
LG is invex with respect to η at ȳ on D∪ prXW1. Then ȳ is a weak Pareto solution
for (NMP).

Proof. Let (ȳ, λ, ξ, µ, w) be a weak Pareto solution for (G-VMD) such that ȳ ∈ D.
Suppose contrary to the result, that ȳ is not a weak Pareto solution for (NMP),
that is, there exists x̃ ∈ D such that

GFi( fi(x̃) + s(x̃|Ci) ) +
∑
j∈J0

ξjGgj (gj(x̃)) +
∑
t∈T0

µtGht(ht(x̃))
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< GFi( fi(ȳ) + ȳTwi ) +
∑
j∈J0

ξjGgj (gj(ȳ)) +
∑
t∈T0

µtGht(ht(ȳ)).

Since ⟨x̃, wi⟩ = s(x̃|Ci), i = 1, . . . , k and (ȳ, λ, ξ, µ, w) is a weak Pareto solution for
(G-VMD). Thus we get

GFi( fi(x̃) + x̃Twi ) +
∑
j∈J0

ξjGgj (gj(x̃)) +
∑
t∈T0

µtGht(ht(x̃))

< GFi( fi(ȳ) + ȳTwi ) +
∑
j∈J0

ξjGgj (gj(ȳ)) +
∑
t∈T0

µtGht(ht(ȳ)).(2.16)

Hence, by the G-Karush-kuhn-Tucker necessary optimality condition [9].∑
j∈Jα

ξjGgj (gj(x̃)) <=
∑
j∈Jα

ξjGgj (gj(ȳ)).(2.17)

Since x̃ ∈ D and ȳ ∈ D, then∑
t∈Tα

µtGht(ht(x̃))−
∑
t∈Tα

µtGht(ht(ȳ)) = 0.(2.18)

By (2.16)-(2.18), we get for any i = 1, . . . , k,

GFi( fi(x̃) + x̃Twi) +
∑
j∈J0

ξjGgj (gj(x̃)) +
∑
j∈Jα

ξjGgj (gj(x̃))

+
∑
t∈T0

µtGht(ht(x̃)) +
∑
t∈Tα

µtGht(ht(x̃))

< GFi( fi(ȳ) + ȳTwi) +
∑
j∈J0

ξjGgj (gj(ȳ)) +
∑
j∈Jα

ξjGgj (gj(ȳ))

+
∑
t∈T0

µtGht(ht(ȳ)) +
∑
t∈Tα

µtGht(ht(ȳ)).(2.19)

Since λi ≥ 0, i ∈ I, and ∪r
α=0Jα = J,∪r

α=0Tα = T , then (2.19) yields

k∑
i=1

λiGFi( fi(x̃) + x̃Twi ) +
k∑

i=1

λi

[ m∑
j=1

ξjGgj (gj(x̃)) +

p∑
t=1

µtGht(ht(x̃))
]

<

k∑
i=1

λiGFi( fi(ȳ) + ȳTwi ) +

k∑
i=1

λi

[ m∑
j=1

ξjGgj (gj(ȳ)) +

p∑
t=1

µtGht(ht(ȳ))
]
.

From the feasibility of (ȳ, λ, ξ, µ, w) in(G-VMD), we have
∑k

i=1 λi = 1. Then, the
inequality above implies

k∑
i=1

λiGFi( fi(x̃) + x̃Twi ) +
[ m∑

j=1

ξjGgj (gj(x̃)) +

p∑
t=1

µtGht(ht(x̃))
]

<

k∑
i=1

λiGFi(fi(ȳ) + ȳTwi ) +
[ m∑

j=1

ξjGgj (gj(ȳ)) +

p∑
t=1

µtGht(ht(ȳ))
]
.(2.20)
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By assumption, the G-Lagrange function LG is invex with respect to η at ȳ on
D ∪ prXW1. Then, by Remark 1.4, it follows that

LG(x̃, λ, ξ, µ, w)− LG(ȳ, λ, ξ, µ, w) >= ∇LG(ȳ, λ, ξ, µ, w) η(x̃, ȳ).

Hence, from the definition of the G-Lagrange function LG, it follows for any i =
1, . . . , k,(

λiGFi( fi(x̃) + x̃Twi ) +
[ m∑

j=1

ξjGgj (gj(x̃)) +

p∑
t=1

µtGht(ht(x̃))
] )

−
(
λiGFi( fi(ȳ) + ȳTwi ) +

[ m∑
j=1

ξjGgj (gj(ȳ)) +

p∑
t=1

µtGht(ht(ȳ))
] )

≥
[
λiG

′
Fi
( fi(ȳ) + yTwi )(∇fi(ȳ) + wi)

+

m∑
j=1

ξjG
′
gj (gj(ȳ))∇gj(ȳ) +

p∑
t=1

µtG
′
ht
(ht(ȳ))∇ht(ȳ)

]
η(x̃, ȳ).

Adding both sides of the inequalities above and using
∑k

i=1 λi = 1, we get

k∑
i=1

λiGFi( fi(x̃) + x̃Twi ) +
[ m∑
j=1

ξjGgj (gj(x̃)) +

p∑
t=1

µtGht(ht(x̃))
]

−
k∑

i=1

λiGFi( fi(ȳ) + ȳTwi )−
[ m∑
j=1

ξjGgj (gj(ȳ)) +

p∑
t=1

µtGht(ht(ȳ))
]

≥
[ k∑

i=1

λiG
′
Fi
( fi(ȳ) + ȳTwi )(∇fi(ȳ) + wi)

+

m∑
j=1

ξjG
′
gj (gj(ȳ))∇gj(ȳ) +

p∑
t=1

µtG
′
ht
(ht(ȳ))∇ht(ȳ)

]
η(x̃, ȳ).(2.21)

By (2.26) and (2.27), we obtain the following inequality[ k∑
i=1

λiG
′
Fi
(fi(ȳ) + ȳTwi)(∇fi(ȳ) + wi ) +

m∑
j=1

ξjG
′
gj (gj(ȳ))∇gj(ȳ)

+

p∑
t=1

µtG
′
ht
(ht(ȳ))∇ht(ȳ)

]
η(x̃, ȳ) < 0,

which contradicts the dual constraint of problem(G-VMD). Thus, the conclusion of
theorem is proved. �

Theorem 2.5 (No-maximal G-Converse Duality). Let (ȳ, λ, ξ, µ, w) be a feasible
solution for (G-VMD) such that ȳ ∈ D. Moreover, we assume that the G-Lagrange
function LG is (strictly) invex with respect η at ȳ on D ∪ prXW1. Then ȳ is a weak
Pareto solution for (NMP).
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Theorem 2.6 (G-restricted Converse Duality). Let x̄ and (ȳ, λ, ξ, µ, w) be feasible
solutions for (NMP) and (G-VMD), respectively, such that

( GF1( f1(x̄) + x̄Tw1 ), . . . , GFk
( fk(x̄) + x̄Twk ) )

= ( GF1( f1(ȳ) + ȳTw1 ), . . . , GFk
( fk(ȳ) + ȳTwk ))

+[
∑
j∈J0

ξjGgj (gj(ȳ)) +
∑
t∈T0

µtGht(ht(ȳ)) ]e.

Moreover, assume that, for any fixed λ ∈ IRk, λ ≥ 0, ξ ∈ IRm, ξ >= 0, µ ∈ IRp, the
G-Lagrange function LG is strictly invex at ȳ on D∪prXW1 with respect to η. Then
x̄ is a weak Pareto solution for (NMP) and (ȳ, λ, ξ, µ, w) is a weak Pareto solution
for (G-VMD).

The proof of Theorem 2.5 and 2.6 follow directly from the weak duality theo-
rem.(Theorem 2.2)

3. Special cases

As special cases of our duality results between (NMP) and (G-VMD), we give
Mond-Weir type and Wolfe type duality theorems.

G-Mond-Weir Type

If J0 = T0 = ∅,
∪r

α=1 Jα = J,
∪r

α=1 Tα = T , then (G-VMD) reduced to the Mond-
Weir type dual (G-VMWD).

(G-VMWD) Maximize ( GF1( f1(y) + yTw1 ), . . . , GFk
( fk(y) + yTwk )

subject to

k∑
i=1

λiG
′
Fi
( fi(y) + yTwi )(∇fi(y) + wi )

+

m∑
j=1

ξjG
′
gj (gj(y))∇gj(y) +

p∑
t=1

µtG
′
ht
(ht(y))∇ht(y) = 0,

m∑
j=1

ξjGgj (gj(y)) +

p∑
t=1

µtGht(ht(y)) >= 0,

y ∈ X, wi ∈ Ci, i = 1, . . . , k,

λ ∈ IRk, λ ≥ 0, λT e = 1,

ξ ∈ IRm, ξ >= 0, µ ∈ IRp.

Since the set of all feasible solutions for problem (G-VMWD) is the same as the set
of all feasible solutions for problem (G-VMD), we denote it by W1.

G-Wolfe Type

If J0 = J, T0 = T,
∪r

α=1 Jα =
∪r

α=1 Tα = ∅, then (G-VMD) reduced to the Wolfe
type dual (G-VWD).
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(G-VWD) Maximize(
GF1( f1(y) + yTw1 ) +

m∑
j=1

ξjGgj (gj(y)) +

p∑
t=1

µtGht(ht(y)), . . . ,

GFk
( fk(y) + yTwk ) +

m∑
j=1

ξjGgj (gj(y)) +

p∑
t=1

µtGht(ht(y)) )

subject to
k∑

i=1

λiG
′
Fi
( fi(y) + yTwi )(∇fi(y) + wi )

+

m∑
j=1

ξjG
′
gj (gj(y))∇gj(y)

+

p∑
t=1

µtG
′
ht
(ht(y))∇ht(y) = 0,

y ∈ X, wi ∈ Ci, i = 1, . . . , k,

λ ∈ IRk, λ ≥ 0, λT e = 1,

ξ ∈ IRm, ξ >= 0, µ ∈ IRp.

Let W2 denote the set of all feasible solutions for (G-VWD) and prXW2 be the
projection of the set W2 on X, that is, prXW2 := {y ∈ X : (y, λ, ξ, µ, w) ∈ W2}.
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