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Theorem 1.1. Let x̄ and ȳ be optimal solutions to (LP) and (LD) respectively. Let
z∗ = 1/(1+

∑
j x̄j+

∑
i ȳi), x∗ = z∗x̄, y∗ = z∗ȳ. Then (x∗, y∗, z∗) solves the matrix

game B.

Theorem 1.2. Let (x∗, y∗, z∗) be a solution (an optimal strategy) of the matrix
game B with z∗ > 0. Let x̄j = (x∗j/z

∗), ȳi = (y∗i /z
∗). Then x̄ and ȳ are optimal

solutions to (LP) and (LD), respectively.

Many authors [1, 2, 4, 7, 8, 9] have extended Theorems 1.1 and 1.2 to several
kinds of optimization problems. In particular, the vector versions of Theorems 1.1
and 1.2 for linear vector optimization problems were obtained in [8].

In [8], a vector matrix game with more than two skew symmetric matrices, which
is an extension of the matrix game, was defined and equivalence relations, that
is vector versions of Theorems 1.1 and 1.2, between a linear vector optimization
problem and its corresponding vector matrix game were established. The aim of this
paper is to extend the equivalence relations in [8] to nonlinear vector optimization
problems.

In this paper, we consider a nonlinear vector optimization problem. We formulate
a dual problem for a nonlinear vector optimization problem, and give a weak duality
result for the dual problem. Furthermore, we establish equivalence between the dual
problem and the corresponding vector matrix game. Lastly, we give a numerical
example for showing such equivalent relations.

2. Vector matrix game

Consider the nonlinear vector optimization problem (VOP):

(VOP) Minimize f(x) := (f1(x), . . . , fp(x))

subject to x ∈ X,

where X = {x ∈ IRn | g(x) >= b, x >= 0}, f : Rn → Rp, g : Rn → Rm is continuously
differentiable functions.

Definition 2.1 ([10]). (1) A point x̄ ∈ X is said to be an efficient solution for
(VOP) if there exists no other feasible point x ∈ X such that (f1(x), . . . , fp(x)) ≤
(f1(x̄), . . . , fp(x̄)).

(2) A point x̄ ∈ X is said to be a weakly efficient solution for (VOP) if there exists
no other feasible point x ∈ X such that (f1(x), . . . , fp(x)) < (f1(x̄), . . . , fp(x̄)).

Now we define solutions for vector matrix game as the following:

Definition 2.2. Let Bi, i = 1, . . . , p, be real n× n skew symmetric matrices.
(1) A point x̄ ∈ Sn is said to be a vector solution of vector matrix game Bi, i =

1, . . . , p if (xTB1x̄, . . . , x
TBpx̄) � (x̄TB1x̄, . . . , x̄

TBpx̄) � (x̄TB1x, . . . , x̄
TBpx) for

any x ∈ Sn.
(2) A point x̄ ∈ Sn is said to be a weak vector solution of vector matrix

game Bi, i = 1, . . . , p if (xTB1x̄, . . . , x
TBpx̄) ≯ (x̄TB1x̄, . . . , x̄

TBpx̄) ≯
(x̄TB1x, . . . , x̄

TBpx) for any x ∈ Sn.

Denote riSn by
o
S n, where riSn is the relative interior of the set Sn.
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We proved the characterization of vector solution vector matrix game in [8].
However, for the completeness, we present its proof.

Lemma 2.3. Let Bi, i = 1, . . . , p, be n×n skew symmetric matrices. Then ȳ ∈ Sn

is a vector solution of vector matrix game Bi, i = 1, . . . , p if and only if there exists

ξ ∈
o
S p such that (

∑p
i=1 ξiBi)ȳ <= 0.

Proof. ȳ ∈ Sn is a vector solution of vector matrix game Bi, i = 1, . . . , p.
⇐⇒ (yTB1ȳ, . . . , y

TBpȳ) ̸≥ 0,∀y ∈ Sn.
⇐⇒ ȳ ∈ Sn is an efficient solution of the following linear vector optimization

problem:

Maximize (yTB1ȳ, . . . , y
TBpȳ)

subject to y ∈ Sn.

⇐⇒ ([6]) ȳ ∈ Sn is a properly efficient solution of the following linear vector
optimization problem:

Maximize (yTB1ȳ, . . . , y
TBpȳ)

subject to y ∈ Sn.

⇐⇒ ([5]) there exists ξ ∈
o
S p such that ȳ is optimal for the following linear

scalar optimization:

Maximize yT (

p∑
i=1

ξiBi)ȳ

subject to y ∈ Sn.

⇐⇒ there exists ξ ∈
o
S p such that ∀y ∈ Sn, y

T (
∑p

i=1 ξiBi)ȳ <= 0.

⇐⇒ there exists ξ ∈
o
S p such that (

∑p
i=1 ξiBi)ȳ <= 0. �

We can easily prove the following lemma.

Lemma 2.4. Let Bi, i = 1, . . . , p, be n×n skew symmetric matrices. Then ȳ ∈ Sn

is a weak vector solution of vector matrix game Bi, i = 1, . . . , p if and only if there
exists ξ ∈ S p such that (

∑p
i=1 ξiBi)ȳ <= 0.

3. Equivalent relations

We consider the vector optimization programming problem (VOP) together with
its dual (VOD) as follows:

(VOD) Maximize
(
f1(u)− vT (g(u)− b), . . . , fp(u)− vT (g(u)− b)

)
subject to

∑p
i=1 λi∇fi(u)−∇(vT g)(u) >= 0,

uT
[∑p

i=1 λi∇fi(u)−∇(vT g)(u)
]
<= 0,

v >= 0, λ ∈
o
S p.

(3.1)
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The following Theorems 3.1 and 3.2 are well known, but for the completeness,
we give proofs for the theorems.

Theorem 3.1 (Weak Duality). Let x and (u, v, λ) be feasible for (VOP) and
(VOD), respectively. If

∑p
i=1 λifi(·) − vT g(·) is pseudoconvex, then the following

cannot hold:

(3.2)
(
f1(x), . . . , fp(x)

)
≤

(
f1(u)− vT (g(u)− b), . . . , fp(u)− vT (g(u)− b)

)
.

Proof. Suppose that the result (3.2) holds. Since x is feasible for (VOP) and (u, v, λ)
is feasible for (VOD),

(3.3)
(
f1(x)− vT (g(x)− b), . . . , fp(x)− vT (g(x)− b)

)
≤(

f1(u)− vT (g(u)− b), . . . , fp(u)− vT (g(u)− b)
)
.

Multiplying (3.3) with λ, we get

p∑
i=1

λifi(x)− vT g(x) <

p∑
i=1

λifi(u)− vT g(u).

By the pseudoconvex of
∑p

i=1 λifi(·)− vT g(·),

[ p∑
i=1

λi∇fi(u)−∇(vT g)(u)
]T

(x− u) < 0,

which contradicts (3.1). Hence the result holds. �

Theorem 3.2 (Strong Duality). Let x̄ be an efficient solution of (VOP). Suppose
that a constraint qualification for (VOP) is satisfied and

∑p
i=1 λifi(·) − vT g(·) is

pseudoconvex. Then there exist λ̄ ∈
o
S p and v̄ ∈ R+

m such that (x̄, v̄, λ̄) is an efficient
solution of (VOD).

Proof. Let x̄ be an efficient solution of (VOP). By Kuhn-Tucker necessary optimality

condition, there exist λ̄ ∈
o
S p, v̄ ∈ R+

m and µ̄ ∈ R+
n such that

p∑
i=1

λ̄i∇fi(x̄)−∇(v̄T g)(x̄)− µ̄ = 0,

v̄T [g(x̄)− b] = 0,

µ̄T x̄ = 0.

Thus there exist λ̄ ∈
o
S p and v̄ ∈ R+

m such that

p∑
i=1

λ̄i∇fi(x̄)−∇(v̄T g)(x̄) >= 0,

x̄T [

p∑
i=1

λ̄i∇fi(x̄)−∇(v̄T g)(x̄)] = 0,

v̄T [g(x̄)− b] = 0.
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Thus (x̄, v̄, λ̄) is a feasible solution of (VOD) with fi(x̄) = fi(x̄)− v̄T (g(x̄)− b). By
weak duality, (f1(x̄)− v̄T (g(x̄)− b), . . . , fp(x̄)− v̄T (g(x̄)− b)) � (f1(u)− vT (g(u)−
b), . . . , fp(u)− vT (g(u)− b)) for any feasible (u, v, λ) of (VOD). Therefore, (x̄, v̄, λ̄)
is an efficient solution of (VOD). �

Lemma 3.3. Let x̄ and (x̄, ȳ, ξ̄) be feasible for (VOP) and (VOD), respectively, and
assume that ȳT (g(x̄)− b) = 0. If weak duality holds, then x̄ is an efficient solution
of (VOP) and (x̄, ȳ, ξ̄) is an efficient solution of (VOD).

Proof. Let x̄ and (x̄, ȳ, ξ̄) be feasible for (VOP) and (VOD), respectively. By weak
duality, f(x) � f(x̄) − ȳT (g(x̄) − b)e for any feasible x of (VOP). Since f(x̄) =

f(x̄)− ȳT (g(x̄)− b)e, f(x) � f(x̄) for any feasible x of (VOP). Therefore, x̄ is an

efficient solution of (VOP). By weak duality, f(x̄) � f(u)− vT (g(u)− b)e for any

feasible (u, v, ξ) of (VOD). Since f(x̄) = f(x̄)− ȳT (g(x̄)−b)e, f(x̄)− ȳT (g(x̄)−b)e �
f(u) − vT (g(u) − b)e for any feasible (u, v, ξ) of (VOD). Therefore, (x̄, ȳ, ξ̄) is an
efficient solution of (VOD). �

Consider the vector matrix game defined by the following (n+m+1)×(n+m+1)
skew symmetric matrices Bi(x), i = 1, . . . , p, related to (VOP) and (VOD):

Bi(x) =

 0 ∇g(x) −∇fi(x)
−∇g(x)T 0 b− g(x) +∇g(x)Tx
∇fi(x)

T −(b− g(x))T − xT∇g(x) 0

 .

Now we give equivalent relations between (VOD) and vector matrix game Bi(x),
i = 1, . . . , p.

Theorem 3.4. Let x̄ and (x̄, ȳ, ξ̄) be feasible for (VOP) and (VOD), respectively,
with ȳT (g(x̄) − b) = 0. Let z∗ = 1/(1 +

∑
i x̄i +

∑
j ȳj), x

∗ = z∗x̄ and y∗ = z∗ȳ.

Then (x∗, y∗, z∗) is a vector solution of vector matrix game Bi(x̄), i = 1, . . . , p.

Proof. Let x̄ and (x̄, ȳ, ξ̄) be feasible for (VOP) and (VOD), respectively. Then the
following holds:

p∑
i=1

ξ̄i∇fi(x̄)−∇(ȳT g)(x̄) >= 0,(3.4)

x̄T
[ p∑
i=1

ξ̄i∇fi(x̄)−∇(ȳT g)(x̄)
]
<= 0,(3.5)

g(x̄) >= b,(3.6)

ȳT (g(x̄)− b) = 0,(3.7)

x̄ >= 0, ȳ >= 0, ξ̄ ∈
o
S p.(3.8)

Since z∗ > 0 by (3.8) and using (3.4) and (3.6), we get:

z∗
[
∇(ȳT g)(x̄)−

p∑
i=1

ξ̄i∇fi(x̄)
]
<= 0,(3.9)

z∗(b− g(x̄)) <= 0.(3.10)
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From (3.5) and (3.7), we obtain

z∗
[∑p

i=1 ξ̄i∇fi(x̄)
T x̄− (b− g(x̄))T ȳ − x̄T∇(ȳT g)(x̄)

]
= z∗

[∑p
i=1 ξ̄i∇fi(x̄)

T x̄−∇(ȳT g)(x̄)T x̄
]

= z∗x̄T
[∑p

i=1 ξ̄i∇fi(x̄)−∇(ȳT g)(x̄)
]

<= 0.

(3.11)

From (3.9), (3.10) and (3.11) we have following inequality( p∑
i=1

ξ̄iBi(x̄)
) z∗x̄

z∗ȳ
z∗

 <= 0.

By Lemma 2.3, (x∗, y∗, z∗) is a vector solution of the vector matrix game Bi(x̄), i =
1, . . . , p. �
Theorem 3.5. Let (x∗, y∗, z∗) with z∗ > 0 be a vector solution of vector matrix
game Bi(x̄), i = 1, . . . , p, where x̄ = x∗/z∗. Let ȳ = y∗/z∗. Then x̄ is feasible

for (VOP) and there exists ξ̄ ∈
o
S p such that (x̄, ȳ, ξ̄) is feasible for (VOD) and

ȳT (g(x̄)− b) = 0.

Proof. Let (x∗, y∗, z∗) with z∗ > 0 be a vector solution of vector matrix game

Bi(x̄), i = 1, . . . , p. Then by Lemma 2.3, there exists ξ̄ ∈
o
S p such that

( p∑
i=1

ξ̄iBi(x̄)
) x∗

y∗

z∗

 <= 0.

Thus we get:

∇g(x̄)y∗ −
p∑

i=1

ξ̄i∇fi(x̄)z
∗ <= 0,(3.12)

−∇g(x̄)Tx∗ + [b− g(x̄) +∇g(x̄)T x̄]z∗ <= 0,(3.13)
p∑

i=1

ξ̄i∇fi(x̄)
Tx∗ − [(b− g(x̄))T + x̄T∇g(x̄)]y∗ <= 0,(3.14)

x∗ >= 0, y∗ >= 0, z∗ > 0.(3.15)

Dividing (3.12), (3.13) and (3.14) by z∗ > 0, we have

∇g(x̄)ȳ −
p∑

i=1

ξ̄i∇fi(x̄) <= 0,(3.16)

b− g(x̄) <= 0,(3.17)
p∑

i=1

ξ̄i∇fi(x̄)
T x̄− [(b− g(x̄))T + x̄T∇g(x̄)]ȳ <= 0.(3.18)

By using (3.15), we get

(3.19) x̄ >= 0, ȳ >= 0.
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From (3.16) and (3.19), we obtain

(3.20) ∇(ȳT g)(x̄)x̄−
p∑

i=1

ξ̄i∇fi(x̄)
T x̄ <= 0.

From (3.18) and (3.20), (b − g(x̄))T ȳ >= 0. Using (3.17) and (3.19), we obtain (b −
g(x̄))T ȳ <= 0. It implies that

(3.21) (b− g(x̄))T ȳ = 0.

From (3.18) and (3.21), x̄T
[∑p

i=1 ξ̄i∇fi(x̄) − ∇(ȳT g)(x̄)
]
<= 0. Using (3.20), we

obtain x̄T
[∑p

i=1 ξ̄i∇fi(x̄)−∇(ȳT g)(x̄)
]
= 0. Therefore x̄ is feasible for (VOP) and

(x̄, ȳ, ξ̄) is feasible for (VOD). �
By Theorem 3.5 and Lemma 3.3, we give the following corollary.

Corollary 3.6. Let (x∗, y∗, z∗) with z∗ > 0 be a vector solution of vector matrix
game Bi(x̄), i = 1, . . . , p, where x̄ = x∗/z∗. Let ȳ = y∗/z∗. If weak duality holds,

x̄ is an efficient solution of (VOP) and there exists ξ ∈
o
S p such that (x̄, ȳ, ξ̄) is an

efficient solution of (VOD).

Corollary 3.7. The converse of Theorem 3.4 holds, and the converse of Theorem
3.5 holds.

Proof. Let (x∗, y∗, z∗) be a vector solution of the vector matrix game Bi(x̄), i =
1, . . . , p and Sx be the set of vector solutions of the vector matrix game Bi(x), i =
1, . . . , p. Let x∗ = x̄

1+
∑

i x̄i+
∑

j ȳj
, y∗ = ȳ

1+
∑

i x̄i+
∑

j ȳj
, z∗ = 1

1+
∑

i x̄i+
∑

j ȳj
. Since

z∗ > 0 and (x∗, y∗, z∗) ∈ Sx∗
z∗

for some y∗, it follows from Theorem 3.5 that x∗

z∗ is

an efficient solution of (VOP) and there exists ξ̄ ∈
o
S p such that (x

∗

z∗ ,
y∗

z∗ , ξ̄) is an

efficient solution of (VOD), ȳT (g(x̄)− b) = 0. Therefore, the converse of Theorem
3.4 holds.

Let x̄ be feasible for (VOP) and there exists ξ̄ ∈
o
S p such that (x̄, ȳ, ξ̄) be feasible

for (VOD) and ȳT (g(x̄)−b) = 0. Let z∗ = 1
1+

∑
i x̄i+

∑
j ȳj

, x∗ = x̄z∗, y∗ = ȳz∗. Then

z∗ > 0 and by Theorem 3.4, (x∗, y∗, z∗) ∈ Sx∗
z∗

for some y∗. Therefore, the converse

of Theorem 3.5 holds. �
By Corollary 3.7, we give the following corollary.

Corollary 3.8.

{
x∗

z∗
| z∗ > 0, (x∗, y∗, z∗) ∈ Sx∗

z∗
for some y∗

}
= {(x̄, ȳ) | x̄ : effi-

cient solution of (VOP), there exists ξ̄ ∈
o
S p such that (x̄, ȳ, ξ̄) : efficient solution

of (VOD), ȳT (g(x̄)− b) = 0
}
.

Now we give an example illustrating Theorems 3.4 and 3.5.

Example 3.9. Consider the following vector optimization problem (VOP) together
with its dual (VOD) as follows:

(VOP) Minimize (−x, x2)
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subject to −x >= −2,

x >= 0,

(VOD) Maximize (−u+ uv − 2v, u2 + uv − 2v)

subject to −λ1 + 2λ2u+ v >= 0,

u[−λ1 + 2λ2u+ v] <= 0,

v >= 0,

λ = (λ1, λ2) ∈
o
S 2.

Now we determine the set of all vector solutions of vector matrix game Bi(x), i =
1, 2. Let

Bi(x) =

 0 ∇g(x) −∇fi(x)
−∇g(x)T 0 b− g(x) +∇g(x)Tx
∇fi(x)

T −(b− g(x))T − xT∇g(x) 0

 .

Then

B1(x) =

 0 −1 1
1 0 −2
−1 2 0

 and B2(x) =

 0 −1 −2x
1 0 −2
2x 2 0

 .

Let x ∈ R and (x∗, y∗, z∗) ∈ S3 be a vector solution of vector matrix game Bi(x), i =
1, 2 if and only if there exists ξ1 > 0, ξ2 > 0, ξ1 + ξ2 = 1 such thatξ1

 0 −1 1
1 0 −2
−1 2 0

+ ξ2

 0 −1 −2x
1 0 −2
2x 2 0

 x∗

y∗

z∗

 <=

 0
0
0

 .

⇐⇒ there exists ξ1 > 0, ξ2 > 0, ξ1 + ξ2 = 1 such that −y∗ + (ξ1 − 2xξ2)z
∗

x∗ − 2z∗

−(ξ1 − 2xξ2)x
∗ + 2y∗

 <=

 0
0
0

 .

Thus

(i) the case that ξ1 − 2xξ2 > 0;
There exist ξ1 >

2x
1+2x , ξ2 = 1− ξ1, ξ1 > 0, ξ2 > 0, and x ∈ R such that (ξ1 − 2xξ2)z

∗ <= y∗

x∗ <= 2z∗

2y∗ <= (ξ1 − 2xξ2)x
∗.

⇐⇒ (x∗, y∗, z∗) ∈ {(x1, y1, z1) | x1 = 2
ξ1−2xξ2+3 , y1 = ξ1−2xξ2

ξ1−2xξ2+3 , z1 =
1

ξ1−2xξ2+3 , x1 >= 0, y1 >= 0, z1 >= 0, ξ1 > 0, ξ2 > 0, ξ1 + ξ2 = 1, ξ1 − 2xξ2 >

0, x ∈ R}.
(ii) the case that ξ1 − 2xξ2 = 0;
There exist ξ1 =

2x
1+2x , ξ2 =

1
1+2x , ξ1 > 0, ξ2 > 0, and x ∈ R such that −y∗ <= 0

x∗ <= 2z∗

2y∗ <= 0.
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⇐⇒ (x∗, y∗, z∗) ∈ {(x1, 0, z1) | 0 <= x1 <=
2
3 , z1 = 1− x1}.

(iii) the case that ξ1 − 2xξ2 < 0;
There exist ξ1 <

2x
1+2x , ξ2 = 1− ξ1, ξ1 > 0, ξ2 > 0, and x ∈ R such that{

x∗ <= 2z∗

2y∗ <= (ξ1 − 2xξ2)x
∗.

⇐⇒ (x∗, y∗, z∗) = (0, 0, 1).

Let x ∈ R and Sx be the set of vector solutions of vector matrix game Bi(x), i = 1, 2.
From (i), (ii) and (iii), if 0 < x < 2, then

Sx =

{(
2

ξ1 − 2xξ2 + 3
,

ξ1 − 2xξ2
ξ1 − 2xξ2 + 3

,
1

ξ1 − 2xξ2 + 3

)

| ξ1 > 0, ξ2 > 0, ξ1 + ξ2 = 1, ξ1 − 2xξ2 > 0

}

∪
{
(u, 0, 1− u) | 0 <= u <=

2

3

}
,

and if x = 2, then

S2 =

{(
2

ξ1 − 4ξ2 + 3
,

ξ1 − 4ξ2
ξ1 − 4ξ2 + 3

,
1

ξ1 − 4ξ2 + 3

)
| 4
5
< ξ1 < 1, ξ2 = 1− ξ1

}
∪
{
(u, 0, 1− u) | 0 <= u <=

2

3

}
.

Let x̄ and (x̄, ȳ, ξ̄) be feasible for (VOP) and (VOD), respectively, with ȳT (g(x̄) −
b) = 0. By definition of efficient solution of (VOP),

{x̄ | x̄ : efficient solution of (VOP)} = [0, 2].

Moreover, we can easily check that

{(x̄, ȳ) | x̄ : efficient solution of (VOP), there exists ξ̄ ∈
o
S p such that

(x̄, ȳ, ξ̄) : efficient solution of (VOD), ȳT (g(x̄)− b) = 0}
= {(x̄, 0) | 0 < x̄ < 2} ∪ {(2, ȳ) | 0 <= ȳ < 1}.

Thus for 0 < x̄ < 2,(
x̄

1 + x̄+ ȳ
,

ȳ

1 + x̄+ ȳ
,

1

1 + x̄+ ȳ

)
=

(
x̄

1 + x̄
, 0,

1

1 + x̄

)
∈ Sx̄

and for x̄ = 2,(
x̄

1 + x̄+ ȳ
,

ȳ

1 + x̄+ ȳ
,

1

1 + x̄+ ȳ

)
=

{(
2

3 + ȳ
,

ȳ

3 + ȳ
,

1

3 + ȳ

)
| 0 <= ȳ < 1

}
∈ Sx̄.

Therefore, Theorem 3.4 holds.

Let x ∈ R and

A =

{(
2

ξ1 − 2xξ2 + 3
,

ξ1 − 2xξ2
ξ1 − 2xξ2 + 3

,
1

ξ1 − 2xξ2 + 3

)
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| ξ1 > 0, ξ2 > 0, ξ1 + ξ2 = 1, ξ1 − 2xξ2 > 0

}

∪
{
(u, 0, 1− u) | 0 <= u <=

2

3

}
.

Then the above calculations implies that∪
x∈R

Sx = A.

So, {
x∗

z∗
| z∗ > 0 and (x∗, y∗, z∗) ∈ Sx∗

z∗
for some y∗

}
⊂

{ x̄

z̄
| (x̄, ȳ, z̄) ∈ A

}
= [0, 2].

From (ii) and (iii) of the above calculations, we get

(0, 2] ⊂
{
x∗

z∗
| z∗ > 0 and (x∗, y∗, z∗) ∈ Sx∗

z∗
for some y∗

}
.

Since S0 =
{(

2
ξ1+3 ,

ξ1
ξ1+3 ,

1
ξ1+3

)
| 0 < ξ1 < 1

}
, hence

{
x∗

z∗
| z∗ > 0 and (x∗, y∗, z∗) ∈ Sx∗

z∗
for some y∗

}
= (0, 2].

Moreover, from (i) and (ii) of the above calculations,{(
x∗

z∗
,
y∗

z∗

)
| z∗ > 0 and (x∗, y∗, z∗) ∈ Sx∗

z∗

}
= {(2, ȳ) | 0 <= ȳ < 1} ∪ {(x̄, 0) | 0 < x̄ < 2} .

For any x ∈ (0, 2], x is feasible for (VOP). Let F be the set of all feasible solutions of
(VOD). Then we can check that

{
(2, ȳ, ξ̄1, ξ̄2) | 0 <= ȳ < 1, 4

5
<= ξ̄1 < 1, ξ̄2 = 1− ξ̄1

}
⊂ F and

{
(x̄, 0, ξ̄1, ξ̄2) | 0 < x̄ < 2, ξ̄1 =

2x̄
1+2x̄ , ξ̄2 =

1
2x̄

}
⊂ F . For ȳ ∈ [0, 1),

ȳT (g(2) + 2) = 0. For x̄ ∈ (0, 2), 0(g(x̄) + 2) = 0. Therefore, Theorem 3.5 holds. �

In Example 3.9, x̄ = 0 is an efficient solution, but there does not exist y

such that (0, 0) ̸∈ {(x̄, ȳ) | x̄ : efficient solution of (VOP), there exists ξ̄ ∈
o
S p

such that (x̄, ȳ, ξ̄) : efficient solution of (VOD), ȳT (g(x̄)− b) = 0}. Since S0 ={(
2

ξ1+3 ,
ξ1

ξ1+3 ,
1

ξ1+3

)
| 0 < ξ1 < 1}, there is no y and z such that (0, y, z) ∈ S0.

Therefore to cover the point x̄ = 0, we consider weakly efficient solution and weak
vector solution of the vector matrix game Bi(x), i = 1, 2.
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Let us consider formulate the dual (VOD)1, which is based upon the weak effi-
ciency, as follows:

(VOD)1 Maximize
(
f1(u)− vT (g(u)− b), . . . , fp(u)− vT (g(u)− b)

)
subject to

∑p
i=1 λi∇fi(u)−∇(vT g)(u) >= 0,

uT
[∑p

i=1 λi∇fi(u)−∇(vT g)(u)
]
<= 0,

v >= 0, λ ∈ Sp .

Following the proofs of Theorems 3.4 and 3.5, we can easily check the following
theorems and corollary:

Theorem 3.10. Let x̄ and (x̄, ȳ, ξ̄) be feasible for (VOP) and (VOD)1, respectively,
with ȳT (g(x̄)−b) = 0. Let z∗ = 1/(1+

∑
i x̄i+

∑
j ȳj), x

∗ = z∗x̄ and y∗ = z∗ȳ. Then

(x∗, y∗, z∗) is a weak vector solution of the vector matrix game Bi(x̄), i = 1, . . . , p.

Theorem 3.11. Let (x∗, y∗, z∗) with z∗ > 0 be a weak vector solution of the vector
matrix game Bi(x̄), i = 1, . . . , p, where x̄ = x∗/z∗. Let ȳ = y∗/z∗. Then x̄ is feasible
for (VOP) and there exists ξ̄ ∈ S p such that (x̄, ȳ, ξ̄) is feasible for (VOD)1 and
ȳT (g(x̄)− b) = 0.

Corollary 3.12. Let (x∗, y∗, z∗) with z∗ > 0 be a weak vector solution of the vector
matrix game Bi(x̄), i = 1, . . . , p, where x̄ = x∗/z∗. Let ȳ = y∗/z∗. If weak duality
holds, x̄ is a weakly efficient solution of (VOP) and there exists ξ̄ ∈ S p such that
(x̄, ȳ, ξ̄) is a weakly efficient solution of (VOD)1.

In Example 3.9, x̄ = 0 is a weakly efficient solution and (0, 0) ∈ {(x̄, ȳ) | x̄ : weakly
efficient solution of (VOP), there exists ξ̄ ∈ Sp such that (x̄, ȳ, ξ̄) : weakly

efficient solution of (VOD)1, ȳT (g(x̄)− b) = 0}. Let S̄0 be the set of all weak vector

solutions of the vector matrix gameBi(0), i = 1, 2. Then S̄0 =
{(

2
ξ1+3 ,

ξ1
ξ1+3 ,

1
ξ1+3

)
|

0 <= ξ1 <= 1} and hence there exist y and z such that (0, y, z) ∈ S̄0.
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