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ON VECTOR OPTIMIZATION PROBLEM AND VECTOR
MATRIX GAME EQUIVALENCE

JEONG MIN HONG AND MOON HEE KIM

ABSTRACT. A vector matrix game with more than two skew symmetric matrices,
which is an extension of the matrix game, is defined and a nonlinear vector opti-
mization problem is considered. We formulate a dual problem for the nonlinear
vector optimization problem and establish equivalence between the dual prob-
lem and its corresponding vector matrix game. Moreover, we give a numerical
example illustrating such equivalent relations.

1. INTRODUCTION

A matrix game is defined by B of real n x m matrix together with the Cartesian
product S, x .Sy, of all n-dimensional probability vectors S,, and all m-dimensional
probability vectors Sp,, that is, S, := {z = (21, - ,2,)T € R" | 2; 20,31 | 2; =
1}, where the symbol 7" denotes the transpose.

A point (Z,y) € S, X S,, is called an equilibrium point of matrix game B if
t'By < z"By < ' By for all x € S, and all y € S,y,.

If n = m and B is skew symmetric, then we can check that (z,7) € S, x S, is
an equilibrium point of game B if and only if Bx <0 and By < 0.

When B is an n x n skew symmetric matrix, z € S, is called a solution (an
optimal strategy) of matrix game B if Bz <0 ([3]).

Consider the linear programming problem (LP) together with its dual (LD) as
follows:

(LP) Minimize ¢’z subject to Az =b, z =0,

(LD) Maximize b7y  subject to ATy < e, y =0,
where c € IR",x € IR",b € IR™,y € IR™, A = [a;;] is an real m x n matrix.

Now we consider the matrix game associated with the following (n +m + 1) x
(n +m+ 1) skew symmetric matrix B:

0 AT —¢
B=| -4 0 b
' =" 0
The following results due to Dantzig ([3]) are well known: Theorems 1.1 and 1.2
give complete equivalent relation linear programming problem and the matrix game
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Theorem 1.1. Let T and y be optimal solutions to (LP) and (LD) respectively. Let
2 =1/(1+32,Z;+>,¥i), v* =2"%, y* =2"y. Then (z*,y", 2") solves the matriz
game B.

Theorem 1.2. Let (z*,y*,2*) be a solution (an optimal strategy) of the matrix
game B with 2* > 0. Let 7 = (z7/2%), 4i = (y;/z"). Then T and § are optimal
solutions to (LP) and (LD), respectively.

Many authors [1, 2, 4, 7, 8, 9] have extended Theorems 1.1 and 1.2 to several
kinds of optimization problems. In particular, the vector versions of Theorems 1.1
and 1.2 for linear vector optimization problems were obtained in [8].

In [8], a vector matrix game with more than two skew symmetric matrices, which
is an extension of the matrix game, was defined and equivalence relations, that
is vector versions of Theorems 1.1 and 1.2, between a linear vector optimization
problem and its corresponding vector matrix game were established. The aim of this
paper is to extend the equivalence relations in [8] to nonlinear vector optimization
problems.

In this paper, we consider a nonlinear vector optimization problem. We formulate
a dual problem for a nonlinear vector optimization problem, and give a weak duality
result for the dual problem. Furthermore, we establish equivalence between the dual
problem and the corresponding vector matrix game. Lastly, we give a numerical
example for showing such equivalent relations.

2. VECTOR MATRIX GAME

Consider the nonlinear vector optimization problem (VOP):

(VOP) Minimize  f(x) := (fi(z),..., fp(z))
subject to z € X,

where X = {z € R" | g(z) 2 b, x 20}, f : R" - RP, g : R" — R™ is continuously
differentiable functions.

Definition 2.1 ([10]). (1) A point z € X is said to be an efficient solution for
(VOP) if there exists no other feasible point z € X such that (fi(x),..., fp(z)) <
(f1(Z),..., fp(2)).

(2) A point Z € X is said to be a weakly efficient solution for (VOP) if there exists
no other feasible point z € X such that (fi(x),..., fp(z)) < (f1(Z),..., fp(Z)).

Now we define solutions for vector matrix game as the following:

Definition 2.2. Let B;, i =1,...,p, be real n X n skew symmetric matrices.

(1) A point T € S, is said to be a vector solution of vector matrix game B;, i =
L,...,pif (2TB1Z,...,2TByz) # (2T B12,...,27 Byz) # (T Byx,...,2T Byz) for
any r € Sy.

(2) A point £ € S, is said to be a weak vector solution of vector matrix
game B;, i = 1,...,p if (aTBiz,...,2TByz) # (2'Biz,...,21Byz) #
(T Byx,...,z7 B,x) for any x € S,,.

(o]
Denote riS,, by S, where 1.5, is the relative interior of the set .
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We proved the characterization of vector solution vector matrix game in [8].
However, for the completeness, we present its proof.

Lemma 2.3. Let B;, i =1,...,p, be n xn skew symmetric matrices. Then y € Sy,
s a vector solution of vector matrix game B;,i = 1,...,p if and only if there exists
o
¢ €Sy such that (3°F 1 &Bi)y < 0.
Proof. y € S,, is a vector solution of vector matrix game B;,1=1,...,p.
— (yI'B1y,...,yT Bpy) # 0,Yy € S,,.
< ¢ € S5, is an efficient solution of the following linear vector optimization
problem:
Maximize (yTBlg, . ,yTBpgj)
subject to y € 5.
< ([6]) y € S, is a properly efficient solution of the following linear vector
optimization problem:
Maximize (y! B17, ... ,yTBp;g)
subject to y € 5.

o
<= ([5]) there exists & € §, such that y is optimal for the following linear
scalar optimization:
p

Maximize yT(Z &iBi)y
i=1
subject to y € .5,.

<= there exists £ € §p such that Vy € Sp,yT (3°F_, &B)y <0

<= there exists £ € §p such that (3-8, &B))y § 0. O
We can easily prove the following lemma.

Lemma 2.4. Let B;, i =1,...,p, be n x n skew symmetric matrices. Then y € S,
is a weak vector solution of vector matriz game B;,i = 1,...,p if and only if there
exists £ € Sp such that (3_F_, &B;)y < 0.

3. EQUIVALENT RELATIONS

We consider the vector optimization programming problem (VOP) together with
its dual (VOD) as follows:

(VOD) Maximize (ﬁ@@—vT@w)—mw“,QQO—vTQW)—M)
subject to S0 AV i(u) — V(T g)(u) 2 0,
(3.1)
u? |2 AV fi(w) = V(T g)w)| <0,

V20, AES,.
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The following Theorems 3.1 and 3.2 are well known, but for the completeness,
we give proofs for the theorems.

Theorem 3.1 (Weak Duality). Let = and (u,v,\) be feasible for (VOP) and
(VOD), respectively. If S5 Xifi(-) — vTg(+) is pseudoconvez, then the following
cannot hold:

(3.2) (fl(x), .. .,fp(ac)) < (fl(u) — UT(g(u) —b),..., fp(u) — UT(g(u) — b))

Proof. Suppose that the result (3.2) holds. Since z is feasible for (VOP) and (u, v, A)
is feasible for (VOD),

(3.3) (filz) —v"(g(x) = b),..., flz) — v (g(x) = b)) <

(fi(u) = v"(g(w) = b),..., fy(u) = oT (g(u) = b)).
Multiplying (3.3) with A, we get

p p
> Adhi@) = oTg(a) < 3 Achiw) — o g(w).
i=1 i=1

By the pseudoconvex of Y2 A fi(-) — vTg("),

Do AVSitw) = V(" ) )]z —u) <0,

which contradicts (3.1). Hence the result holds. O

Theorem 3.2 (Strong Duality). Let T be an efficient solution of (VOP). Suppose
that a constraint qualification for (VOP) is satisfied and >_0_; Nifi(-) — vTg(+) is
pseudoconver. Then there exist A € §p and v € R} such that (%,9,\) is an efficient
solution of (VOD).

Proof. Let T be an efficient solution of (VOP). By Kuhn-Tucker necessary optimality
condition, there exist A € § »» U € RS and i € R} such that

D AVfi@) - V(@ g)(@) — i =0,
=1

o"g(z) — b =0,

plz=
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Thus (Z,7, )\) is a feasible solution of (VOD) Wlth fl( ) = ( ) — ( ( ) —-b). B

weak duality, (f1(z) — 0" (9(2) —b),..., fp(z) — 0" (9(z) — b)) £ (/1 (Q(U)_—
b), ..., fp(u) —vT(g(u) — b)) for any feasible (u v )\) of (VO ) Therefore (z,v,\)
is an efficient solution of (VOD). O

Lemma 3.3. Let T and (Z,7,€) be feasible for (VOP) and (VOD), respectively, and

assume that QT(g(ac)_— b) = 0. If weak duality holds, then T is an efficient solution
of (VOP) and (z,y,&) is an efficient solution of (VOD).

Proof. Let T and (z,7, ) be feasible for (VOP) and (VOD), respectively. By weak
duality, f(z) £ f(2) — 47 (9(Z) — b)e for any feasible z of (VOP). Since f(z) =
f(@) — g7 (g(z) — b)e, f(z) £ f(&) for any feasible z of (VOP). Therefore, Z is an
efficient solution of (VOP). By weak duality, f(z) £ f(u) — vT(g(u) — b)e for any
feasible (u, v, ) of (VOD). Since f(z) = f(z)—y* (9(z) —b)e, f(Z) -y (9(Z) —b)e £
f(u) —vT(g(u) — b)e for any feasible (u,v,&) of (VOD). Therefore, (Z,7,€) is an
efficient solution of (VOD). O

Consider the vector matrix game defined by the following (n+m+1) X (n+m+1)
skew symmetric matrices B;(z),i = 1,...,p, related to (VOP) and (VOD):

0 Vy(z) —V fi(x)
Bi(x) = | —Vg(z)" 0 b—g(x) + Vg(x)z
Vi)t —(b—gx)’ —2TVg(x) 0

Now we give equivalent relations between (VOD) and vector matrix game B;(z),
1=1,...,p

Theorem 3.4. Let T and (Z,7,£) be feasible for (VOP) and (VOD), respectively,
with §7 (g(z) —b) = 0. Let z* = 1/(1+ >, % + > Uj)sx" = 2"% and y* = 2*y.
Then (z*,y*, 2*) is a vector solution of vector matriz game B;(z),i =1,...,p

Proof. Let = and (&, 7, &) be feasible for (VOP) and (VOD), respectively. Then the
following holds:

P

(3.4) > &GV i) - V(gTg)(®) 20,
i=1
(3.5) 'Y &V i) - V(i g)(@)| £0,
i=1
(3.6) 9(z) 2 b,
(3.7) g (g(z) —b) =0,
(3.8) zgo,ggo,éegp
Since z* > 0 by (3.8) and using (3.4) and (3.6), we get:
(3.9) 2|V @) - Y &vii@)| <o,
i=1

(3.10) (b — g(z)) 0.
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From (3.5) and (3.7), we obtain

=[S0 &V F@)TT - (0 - 9(@) 75— V(T 9) ()]
1) = [0, &V - V9@ )Tf}
= 22T [Y0, 6V(@) — V(T 9)@)]
< 0.

From (3.9), (3.10) and (3.11) we have following inequality

(}pj &B:(7)) zi <0,
=1 z

By Lemma 2.3, (z*,y*, 2*) is a vector solution of the vector matrix game B;(Z),i =
1,...,p. Il

Theorem 3.5. Let (z*,y*,2*) with z* > 0 be a vector solution of vector matriz
game Bi(z),i = 1,...,p, where T = x*/z*. Let §y = y*/z*. Then & is feasible
for (VOP) and there exists £ € §p such that (z,7,£) is feasible for (VOD) and
7" (9(z) = b) =0

Proof. Let (z*,y*,2*) with z* > 0 be a vector solution of vector matrix game

Bi(%), i =1,...,p. Then by Lemma 2.3, there exists £ € §p such that

(53@34@) % <0.
Thus we get: - )
(3.12) Vg(@)y™ — Zp: &V fi(z)z" £ 0,
(3.13) -~ Vg@)%*: i b—g(z) + Vg(z) 22" <0,
(3.14) iévm)%* — (b g(@)" +2"Vg@)y" <0,
(3.15) ;120 Y20, 25> 0.

Dividing (3.12), (3.13) and (3 14) by z* > 0, we have

(3.16) Vg(z)y — Z &V i(2) <0
(3.17) b— g(7) <0,
(3.18) Z&-Vfi(:?r)TﬂE —[b-g@)" +2"Vg(@)y < 0.

By using (3.15), we get
(3.19) r=20,y=20.
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From (3.16) and (3.19), we obtain

(3.20) NMERIOEEDS

i=1
From (3.18) and (3.20), (b — g(z))Ty = 0. Using (3.17) and (3.19), we obtain (b —
g(2))Ty < 0. It implies that
(3.21) (b g(@)7g = 0.
From (3.18) and (3.21), :ET[ ' EVF(T) — V(FTg)(x)] < 0. Using (3.20), we
obtain 2T |>°F_ &V () — V(g g)(Z )} = 0. Therefore 7 is feasible for (VOP) and
(z,7,€) is feas1ble for (VOD). O

By Theorem 3.5 and Lemma 3.3, we give the following corollary.
Corollary 3.6. Let (x*,y*, z*) with z* > 0 be a vector solution of vector matrix
game Bi(Z),i = 1,...,p, where & = x*/z*. Let §y = y*/z*. If weak duality holds,
Z is an efficient solution of (VOP) and there exists & € §p such that (z,7,€) is an
efficient solution of (VOD).

Corollary 3.7. The converse of Theorem 3.4 holds, and the converse of Theorem
3.5 holds.

Proof Let (x*,y* 2*) be a vector solution of the vector matrix game B;(z),i =
1,...,p and S; be the set of vector solutions of the vector matrix game Bi(z), i =
— — * o __ 3
Looop Let a” = iy ¥ = myaan g T mnaay S
z* > 0 and (z*,y*, %) € S « for some y*, it follows from Theorem 3.5 that % is

an efficient solution of (VOP) and there exists ¢ € Sp such that (Z* , Z*,E) is an
efficient solution of (VOD), 77 (g(Z) — b) = 0. Therefore, the converse of Theorem
3.4 holds.

Let Z be feasible for (VOP) and there exists & E S p such that (a: 7,€) be feasible
for (VOD) and 37 (g(Z) —b) = 0. Let z* —m x* =2x2*, y* = yz*. Then
z* > 0 and by Theorem 3.4, (z*,y*,z*) € S a* for some y*. Therefore, the converse
of Theorem 3.5 holds. ’ U

By Corollary 3.7, we give the following corollary.

Corollary 3.8. {:1:* | 2* >0, (",y",2%) € S = for some y } z: effi-
z

cient solution of (VOP), there exists £ € Sp such that (z,y,&) : efficient solution
of (VOD), 5" (g(z) —b) = 0}.
Now we give an example illustrating Theorems 3.4 and 3.5.

Example 3.9. Consider the following vector optimization problem (VOP) together
with its dual (VOD) as follows:

(VOP) Minimize (—z, %)
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subject to —r = -2,
xz =0,
(VOD) Maximize (—u + uv — 20, u* 4 uv — 20)
subject to A +20u+v=20,
u[—A1 + 2 u +v] £0,
v =0,

A= (A1) € So.

Now we determine the set of all vector solutions of vector matrix game B;(z),7 =
1,2. Let

0 Vy(z) =V fi(x)
Bi(x) = | —Vg(z)" 0 b—g(x) + Vg(a)'x
Vi)t —(b—g)’ —2TVg(x) 0
Then
0 -1 1 0 -1 -2z
Biz)=| 1 0 -2 and  Bo(z)=| 1 0 -2
-1 2 0 20 2 0

Let x € R and (z*, y*, 2*) € S3 be a vector solution of vector matrix game B;(z), i =
1,2 if and only if there exists & > 0, & > 0, & + & = 1 such that

0o -1 1 0 -1 —2x x* 0
& 1 0 -2 |+& 1 0 =2 yv | £ 0
-1 2 0 2x 2 0 z* 0
<= there exists & > 0, & > 0, & + & = 1 such that
—y* 4 (&1 — 2282)2" 0
* —2z* < 0
—(&1 — 2z&)2" + 2y* 0

Thus

(i) the case that & — 2x& > 0;
There exist & > %, Eo=1—-¢&1, & >0, & > 0, and = € R such that

(&1 —22&)2" = y*
z* < 22*

2y* < (& — 2z&o) .
&1—2xo

= (@) € {tnya) | 21 = gomgre N = glmgas A =
et 1120,y 20,220 6>0 &>0 &+& =1 &2t >
0, z € R}.
(ii) the case that & — 2x&; = 0;
There exist & = li—éz, & = H%z’ & >0, & >0, and = € R such that
—y* <0
r* L 2z*
2 < 0.
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— (2% y*2") € {(21,0,21) | 0Lz < %, z1=1—m}.
(iii) the case that & — 2z& < 0;
There exist & < 252, & =1—¢&1, & >0, & >0, and x € R such that
{ z* L 2zF
2y" < (&1 - 2265)7".
— (2%,y*2*) =(0,0,1).

Let € R and S, be the set of vector solutions of vector matrix game B;(x), i = 1,2.
From (i), (ii) and (iii), if 0 < 2 < 2, then

S, = {( 2 §1 — 228 1 )
v & — 226+ 37 & — 226+ 37 & — 226+ 3
| §&1>0, & >0, §1+§2=17§1—2x§2>0}

2
U{(u,O,l—u)Oéuég},

and if z = 2, then

= 2 §1 — 48 1 4 L
= {<514§2+37§14§2+3’§14§2+3) |5<§1<1, §2=1 51}
U{(uvovl—u)!0§U§§}.

Let z and (7,7, &) be feasible for (VOP) and (VOD), respectively, with 37 (g(z) —
b) = 0. By definition of efficient solution of (VOP),
{Z | & : efficient solution of (VOP)} = |0, 2].

Moreover, we can easily check that

{(z,9) | 7 : efficient solution of (VOP), there exists £ € §p such that
(Z,7,€) : efficient solution of (VOD), 37 (¢(z) — b) = 0}
={(z,0) |0<z<2}U{(2,y) |0y <1}
Thus for 0 < Z < 2,

z Y 1 z 1
— — — — _ — - 7,7077, ES{E
1+z4+y 1+24+y 14+2+y 1+z2° "14+2

and for & = 2,

T Y 1 - 2 Y
<1+£+g’ 1+z2+7 1+z+g> B {<3+y’3+g’3+g
Therefore, Theorem 3.4 holds.
Let z € R and

A = {< 2 51*21‘62 1 >
N 1 —2€+ 376 —2xb +37 €6 — 2260+ 3
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| &1 >0, & >0, §1+§2=1,51—2:17£2>0}

b

Wl N

U{(u,O,l—u)]Oéug

Then the above calculations implies that

U S =4

zeR

So,

* _
{x* | z*>0and (z*,y", 2") € Sy for some y*} C {ﬁ | (z,79,2) € A}
z = z

From (ii) and (iii) of the above calculations, we get

(0,2] C {x* | 2* >0 and (z*,y*, 2") € Su+ for some y*}
z z*

Since Sy = {(51%, 55%7 &%) |0< & < 1}, hence

{x* | 2* >0 and (z*,y", 2") € Sy= for some y*} = (0,2].
z z*

Moreover, from (i) and (ii) of the above calculations,

{<$ y) | 2* >0 and (z*,y",2") € Sz:}

z* 7 2%

={(2,9) |0y <1}U{(z,0) | 0<z<2}.

For any x € (0, 2], z is feasible for (VOP). Let I be the set of all feasible solutions of
(VOD). Then we can check that {(2,7,&,&) |0 <7 < 1, % <H <1, &=1-6&}

C F and {(@,0,51,52)10<:z<2, & = =, 52:2—15} c F. Forj e [0,1),

77 (g(2) +2) = 0. For z € (0,2), 0(g(%) +2) = 0. Therefore, Theorem 3.5 holds. [J

In Example 3.9, £ = 0 is an efficient solution, but there does not exist y

such that (0,0) € {(z,7) | T : efficient solution of (VOP), there exists £ € §p
such that (z,9,€) : efficient solution of (VOD), 7% (g(Z) — b) = 0}. Since Sy =

{(51%, &Eﬁ, ﬁ) | 0< & <1}, there is no y and z such that (0,y,2) € Sp.

Therefore to cover the point & = 0, we consider weakly efficient solution and weak
vector solution of the vector matrix game B;(z), i = 1,2.
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Let us consider formulate the dual (VOD);, which is based upon the weak effi-
ciency, as follows:

(VOD), Maximize ( Fi(u) — T (g(u) = b),..., folu) — T (g(u) — b))
subject to Y, AV fi(u) — V(uTg)(u) 2 0,
uf |2 AV fi(w) - VTg)w)| <0,
V=0, €S,

Following the proofs of Theorems 3.4 and 3.5, we can easily check the following
theorems and corollary:

Theorem 3.10. Let & and (Z,7, &) be feasible for (VOP) and (VOD)y, respectively,
with §* (g(z)—b) = 0. Let 2* =1/(1+); i+, Yj), 2" = 2"T andy* = 2*y. Then

(z*,y*, 2*) is a weak vector solution of the vector matriz game B;(z),i =1,...,p.

Theorem 3.11. Let (z*,y*, z*) with z* > 0 be a weak vector solution of the vector
matriz game B;(Z),i =1,...,p, where ¥ = x*/2*. Lety = y*/2*. Then T is feasible
for (VOP) and there exists £ € S, such that (%,7,&) is feasible for (VOD); and
9" (9(z) - b) =0.

Corollary 3.12. Let (x*,y*, 2*) with z* > 0 be a weak vector solution of the vector
matriz game B;(%),i = 1,...,p, where T = x*/2*. Let j = y*/2*. If weak duality
holds, T is a weakly efficient solution of (VOP) and there exists £ € S, such that
(Z,9,€) is a weakly efficient solution of (VOD);.

In Example 3.9, 7 = 0 is a weakly efficient solution and (0,0) € {(z,9) | Z : weakly
efficient solution of (VOP), there exists £ € S, such that (Z,7, &) : weakly
efficient solution of (VOD),, 57 (¢(z) —b) = 0}. Let Sp be the set of all weak vector

solutions of the vector matrix game B;(0), i = 1,2. Then Sy = {(51%, gfi?ﬂ £1i3> |

0 < ¢ <1} and hence there exist y and z such that (0,y, z) € Sp.
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