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uk is the control variable to be selected at time k with the knowledge of the state
xk,

µk, wk are random parameters (also called disturbance or noise) which belong to
Rs and Rm respectively, µ = (µ0, µ1, . . . , µN−1),

N is the horizon or number times control is applied,
αk and βk are given vectors in Rn,
Ak ∈ M(m,m) and Bk ∈ M(m,n) are given matrices, M(m,n) denotes the set

of m× n matrices.

A classical example of problem (1.1)-(1.4) is the inventory control problem, where
xk plays a stock available at the beginning of the kth period, uk plays a stock
order at the beginning of the kth period and wk is the demand during the kth
period with given probability distribution, and where the cost function has the
form ΣN−1

k=0 cuk + h(xk + uk −wk) together with state equation xk+1 = xk + uk −wk

(see [3] for details). For more information on discrete optimal control problem we
refer the readers to [1], [4], [5], [6], [8], [14] and references are given therein.

Put X = R(N+1)m, U = RNn, Z = X × U , M = RNs and W = RNm. For each
(µ,w) ∈ M ×W , we denote by S(µ,w) the solution set of problem (1.1)-(1.4) corre-
sponding parameters µ = (µ0, µ1, ..., µN−1) ∈ M and w = (w0, w1, . . . , wN−1) ∈ W .
Thus

S : M ×W → 2Z

is a set-valued map which is called the solution map to the problem (1.1)-(1.4).
The study of the continuity of the solution map to the problem (1.1)-(1.4) are

of importance in analysis and optimization. Such problems were studied by [9]
and [19] some years ago. In particular, when hk are strongly convex and of class
C2, Malanowski [9] showed that the solution map is single and differentiable in
parameters. However, when the cost functions hk are not strongly convex, the
situation becomes more complicated. In this cases the solution map is not single
in general. The aim of this paper is to deal with the situation, where the solution
map is a set-valued map. Namely, we shall derive some new sufficient conditions
under which the solution map to(1.1)-(1.4) has the Aubin property or the lower
semicontinuity.

In order to obtain the result, we shall reduce the problem to a programming
problem or a parametric variational inequality and use tools of variational analysis
to establish some abstract results on the continuous properties of solution maps.
We then apply the obtained results to problem(1.1)-(1.4).

Let us assume that F : E1 ⇒ E2 is a multifunction between finite dimensional
Euclidean spaces, we denote by domF and gphF the effective domain and the graph
of F respectively, where

domF := {z ∈ E1|F (z) ̸= ∅}

and the graph

gphF := {(z, v) ∈ E1 × E2|v ∈ F (z)}.

One says that F have the Aubin property around (z0, v0) ∈ gphF if there exist
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neighborhoods U0 of z0, V0 of v0 and a constant l > 0 such that

F (z′) ∩ V0 ⊂ F (z) + l||z′ − z||BE2 z′, z ∈ U0,

where BE2 stands for the closed unit ball in E2. A multifunction F is said to be
lower semicontinuous at z0 ∈ E1 if for any open set V in E2 satisfying F (z0)∩V ̸= ∅
there exists a neighborhood U1 of z0 such that F (z) ∩ V ̸= ∅ for all z ∈ U1.

Let us recall some notions on variational analysis and generalized differentiation
that we shall use in this paper. The notions and facts of variational analysis and
generalized differentiation can be found in [11], [12] and [18].

Let E be a finite dimensional Euclidean space and Ω is a nonempty set in E.
Given a point z ∈ Ω and ϵ ≥ 0, the set of ϵ-normal is defined by

(1.5) N̂ϵ(z; Ω) :=

{
z∗ ∈ E| lim sup

z→z

⟨z∗, z − z⟩
∥z − z∥

≤ ϵ

}
.

When ϵ = 0, the set N̂0(z; Ω) is called the Fréchet normal cone to Ω at z and

denoted by N̂(z; Ω). A vector z∗ ∈ E is called a limiting normal to Ω at z if there

exist sequences ϵk → 0+, zk → z, and z∗k → z∗ such that z∗k ∈ N̂ϵk(zk; Ω) for all k.
The collection of such normals is called the Mordukhovich normal cone to Ω at z
and denoted by N(z; Ω). It is obvious that N̂(z; Ω) ⊂ N(z; Ω). If Ω is convex then

N̂(z; Ω) = N(z; Ω) = {z∗ ∈ E|⟨z∗, z − z⟩ ≤ 0, ∀z ∈ Ω}.

Given a set valued map F : E1 ⇒ E2, the normal coderivative of F at (z, v) ∈ gphF
is the multifunction D∗F (z, v) : E2 → E1 defined by

D∗F (z, v)(v∗) = {z∗ ∈ E1 : (z
∗,−v∗) ∈ N((z, v); gphF )}.

We now return to problem (1.1)-(1.4). For each

µ = (µ0, µ1, ..., µN−1) ∈ M and w = (w0, w1, . . . , wN−1) ∈ W

we have

f(x, u, µ) =

N∑
k=0

hk(xk, uk, µk),(1.6)

(1.7)
K(w) = {(x, u) ∈ Z|xk+1 = Akxk+Bkuk+wk, x0 = c, αk ≤ uk ≤ βk, k = 0, 1, . . . , N−1}.

Then (1.1)-(1.4) can be formulated in a simpler form:

min {f(x, u, µ)|(x, u) ∈ K(w)} .(1.8)

Throughout of this paper, we assume that z = (x, u) is a solution of the problem
at (µ,w), that is (x, u) ∈ S(µ,w) and there exist convex neighborhoods of µ, x and
u respectively,

M0 =

N−1∏
k=0

M0
k , X0 =

N∏
k=0

X0
k , U0 =

N−1∏
k=0

U0
k

such that one of the following conditions hold:
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(H1) For each fixed k ∈ {0, 1, . . . , N − 1} and λ ∈ M0
k , the functions hk(·, ·, λ) :

X0
k × U0

k → R and hN : X0
N → R are convex.

(H2) For each fixed k ∈ {0, 1, . . . , N − 1}, the functions hk : X0
k × U0

k ×M0
k → R

and hN : X0
N → R are continuous.

(H3) For each fixed k ∈ {0, 1, . . . , N − 1}, the functions hk : X0
k × U0

k ×M0
k → R

and hN : X0
N → R are of class C2 and the map

∂2f(z, µ)

∂µ∂z
: Z ×M → Z

is surjective.
Here, µ = (µ0, µ1, . . . , µN−1), x = (x0, x1, . . . , xN ), u = (u0, u1, . . . , uN−1) and
M0

k , X
0
k , U

0
k are convex neighborhoods of µk, xk, uk respectively,

The rest of the paper consists of two sections. In Section 2, we establish some
sufficient conditions under which the solution map is lower semicontinuous. Section
3 is devoted to the Aubin property of the solution map.

2. Lower semicontinuity of the solution map

In this section we shall give a result on the lower semicontinuity of the solution
map to problem (1.1)-(1.4). First of all, we notice that condition (3) can be rewritten
in the form

uk ≤ βk and − uk ≤ −αk.

Define

(2.1) z =



x0
x1
...

xN
u0
u1
...

uN−1


, b(w) =



w0

−w0

w1

−w1
...

wN−1

−wN−1

c
−c
β0
−α0

β1
−α1
...

−αN−1



,

and
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(2.2)

where Im×m and In×n denote the m×m and n×n unit matrices, respectively. Then
we have

(2.3) K(w) = {z ∈ X × U |Cz ≤ b(w)}
and so problem (1.8) can be written in the form

(2.4) min {f(z, µ)|z ∈ K(w)} .
Let us put Π = R2(N+1)m+2Nn, P = M ×Π and define a mapping K1 : Π → 2Z by

(2.5) K1(b) = {z ∈ Z|Cz ≤ b}, ∀b ∈ Π,

where C is a matrix which is given by (2.2). Thus we have K(w) = K1(b(w)) for all
w ∈ W , where b(w) is defined by (2.1). In the sequel, we denote by D1 the effective
domain of K1 and D the effective domain of K. It is clear that

D = {w ∈ W |K(w) ̸= ∅} = {w ∈ W |b(w) ∈ D1}.
The following lemma plays an important role in our proofs.

Lemma 2.1. ([10, Theorem 2.2]) The set valued map K1 : Π → 2Z which is defined
by (2.5), is Lipschitz on D1, i.e. there exists a constant l > 0, independent of b,
such that

K1(b1) ⊆ K1(b2) + l∥b1 − b2∥BZ

for all b1, b2 ∈ D1.

From this lemma we get

Corollary 2.2. The set-valued map K : W → 2Z which is defined by K(w) =
K1(b(w)) for all w ∈ W , is Lipschitz continuous on its effective domain D ⊂ W .

Proof. Notice that for all w,w′ ∈ D we have ∥b(w′)− b(w)∥ =
√
2∥w′ − w∥. Hence

Lemma 2.1 implies that there exists a constant l > 0 such that

K(w) = K1(b(w)) ⊆ K1(b(w
′)) + l∥b(w)− b(w′)∥BZ ⊆ K(w′) + l

√
2∥w − w′∥BZ

for all w,w′ ∈ D. We obtain the desired conclusion. �
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Recall that a function φ : Z → R is strictly convex if for any z1, z2 ∈ Z with
z1 ̸= z2 and for all t ∈ (0, 1), one has

φ(tz1 + (1− t)z2) < tφ(z1) + (1− t)φ(z2).

We are now ready to state the first result

Theorem 2.3. Suppose that z = (x, u) is a solution of problem (1.1)-(1.4) cor-
responding to parameter (µ,w) ∈ M × D and assumptions (H1), (H2) are ful-
filled. Assume furthermore that the mappings hk(·, ·, wk) are strictly convex for all
k = 0, 1, . . . , N − 1.

Then there exist a neighborhood M1 ⊂ M0 of µ, a neighborhood W1 ⊂ W of w
and an open bounded neighborhood Q1 ⊂ X0 × U0 := Z0 of (x, u) such that the
solution map

Ŝ : M1 × (W1 ∩D) → 2Q1

which is defined by Ŝ(µ,w) = S(µ,w)∩Q1, is nonempty valued and lower semicon-
tinuous at (µ,w).

Proof. Notice that for each λ ∈ M0
k , hk(·, λ) is convex, so f(·, µ) is convex for each

fixed µ ∈ M0. Moreover, since hk(·, µk) is strictly convex, f(·, µ) is strictly convex.
By Corollary 2.2, there exist positive constants k, ϵ0 and β0 such that

(2.6) K(w′) ∩ (z + ϵ0BZ) ⊆ K(w) + k∥w′ − w∥BZ , ∀w′, w ∈ B(w, β0) ∩D,

here B(w, β0) is a ball with centered w, radius β0.
We now choose positive constants s and δ such that

z + sBZ ⊂
(
z + ϵ0BZ

)
∩ Z0, k∥w − w∥ < s

for all w ∈ B(w, δ) ⊂ B(w, β0). Hence (2.6) implies

(2.7) K(w′) ∩ (z + sBZ) ⊆ K(w) + k∥w′ − w∥BZ , ∀w′, w ∈ B(w, δ) ∩D.

For each ϵ > 0 we define Kϵ by

(2.8) Kϵ(w) = K(w) ∩ (z + ϵBZ).

Choose a number β such that 0 < β < min{δ, s
4k}. According to [2, Lemma 2.3],

Ks(·) is Lipschitz continuous. Namely, we have

(2.9) K(w′)∩(z+sBZ) ⊆ K(w)∩
(
z+sBZ

)
+5k∥w′−w∥BZ , ∀w′, w ∈ B(w, β)∩D.

Putting w′ = w in (2.7), we see that for each w ∈ B(w, β)∩D, there exists z ∈ K(w)
such that ∥z − z∥ ≤ k∥w − w∥ < s. Consequently, K(w) ∩ B(z, s) ̸= ∅ for all
w ∈ B(w, β)∩D. Fixing any µ ∈ M0 and w ∈ B(w, β)∩D we consider the problem

(2.10)

{
f(z, µ) → min

z ∈ K(w) ∩B(z, s),

where B(z, s) is a closed ball with centered z, radius s. Since K(w) ∩ B(z, s)
is a compact set and f(·, µ) is continuous, (2.10) has a solution z = z(µ,w) ∈
K(w) ∩ B(z, s). We claim that there exists a neighborhood M ′

0 ⊂ M0 of µ and
a neighborhood W ′

0 ⊂ W of w such that for all (µ,w) ∈ M ′
0 × W ′

0, there exists a
solution z(µ,w) of (2.10) satisfying

(2.11) z(µ,w) /∈ ∂B(z, s),



STABILITY FOR A DISCRETE OPTIMAL CONTROL PROBLEM 641

where ∂B(z, s) is the boundary of B(z, s).
Indeed, suppose that the assertion is false. Then we can find sequences (µj , wj) →

(µ,w) and zj ∈ ∂B(z, s) ∩K(wj) such that

(2.12) f(zj , µj) ≤ f(z, µj), ∀z ∈ K(wj) ∩B(z, s).

Since ∂B(z, s) is a compact set, we can assume that zj → z0. Substituting w′ =
wj , w = w into (2.9), we see that, for each j, there exists yj ∈ K(w) ∩B(z, s) such
that

∥zj − yj∥ 6 5k∥wj − w∥.
Since K(w) ∩ B(z, s) is compact, without loss of generality we may assume that
yj → y0 ∈ K(w) ∩ B(z, s). From the above, we have zj → y0. Consequently,
z0 = y0 ∈ K(w) ∩B(z, s).

Putting w′ = w,w = wj into (2.9), we see that for each j there exists a point
vj ∈ K(wj) ∩B(z, s) such that vj → z.

Putting z = vj in (2.12) and letting j → ∞ we obtain

f(z0, µ) ≤ f(z, µ).

Consequently, we have f(z0, µ) = f(z, µ). Since f(·, µ) is strictly convex and z0 ̸= z,
we obtain

f(z, µ) ≤ f(
z + z0

2
, µ) <

1

2
f(z, µ) +

1

2
f(z0, µ) = f(z, µ)

which is absurd. Our claim is proved.
We now choose a neighborhood M1 × W1 ⊂ M0 × B(w, β) of (µ,w) such that

(2.11) is valid and put Q1 = B(z, s). We shall show that M1,W1 and Q1 satisfy
the conclusion of the theorem. In fact, fix any (µ,w) ∈ M1 × (W1 ∩D) we consider
problem (2.10). By (2.11), it has a solution ẑ ∈ intB(z, s). Fixing any z ∈ K(w)
we see that for t ∈ (0, 1) small enough, one has

f(ẑ, µ) ≤ f(ẑ + t(z − ẑ), µ) ≤ tf(z, µ) + (1− t)f(ẑ, µ).

This implies that f(ẑ, µ) ≤ f(z, µ). Consequently, ẑ is also a solution of the problem

(2.13)

{
f(z, µ) → min

z ∈ K(w).

It follows that ẑ ∈ S(µ,w) ∩B(z, s) and so

Ŝ(µ,w) ̸= ∅, ∀(µ,w) ∈ M1 × (W1 ∩D).

We obtain the first conclusion. It remains to show that Ŝ : M1 × (W1 ∩ D) →
2Q1 is lower semicontinuous at (µ,w). Suppose G is a open set in Q1 such that

Ŝ(µ,w)∩G ̸= ∅. Note that G = Q1∩G1, where G1 is a open set in Z. Thus we have
S(µ,w)∩Q1∩G1 ̸= ∅. By uniqueness, we have z ∈ G2 := Q1∩G1. Choose s ∈ (0, s)
and δ > 0 such that B(z, s) ⊂ G2, k∥w − w∥ < s and B(w, δ) ∩D ⊂ B(w, β0) ∩D.
We then have

(2.14) K(w′) ∩ (z + sBZ) ⊆ K(w) + k∥w′ − w∥BZ , ∀w′, w ∈ B(w, δ) ∩D.

Choosing 0 < β < min{δ, s
4k} and using [2, Lemma 2.3] again, we see that

(2.15) K(w′)∩(z+sBZ) ⊆ K(w)∩(z+sBZ)+5k∥w′−w∥BZ , ∀w′, w ∈ B(w, β)∩D.
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By using similar arguments as the above, we can show that there exist a neighbor-
hood M2 ×W2 ⊂ M1 ×W1 such that for all (µ,w) ∈ M2 × (W2 ∩D), (2.10) has a
solution z(µ,w) satisfying

z(µ,w) /∈ ∂B(z, s).

From this we can show that for each (µ,w) ∈ M2 × (W2 ∩D), problem (2.13) has a

solution ẑ = ẑ(µ,w) ∈ B(z, s) ⊂ G2. Hence S(µ,w) ∩G2 = Ŝ(µ,w) ∩G ̸= ∅ for all

(µ,w) ∈ M2 × (W2 ∩D). Consequently, Ŝ is lower semicontinuous at (µ,w). The
proof of the theorem is complete. �

To illustrate the obtained result we give the following example.

Example 2.4. Let X = R3, U = R2,M = R3,W = R2. We consider the minimum
problem with the cost function

f(x, u, µ) =

1∑
k=0

[x2k + u2k + µ6
k(exp(−x2k) + exp(−u2k))] + x22 + µ6

2(2.16)

with system equation

xk+1 = xk + uk + wk, k = 0, 1(2.17)

x0 = 1(2.18)

and constraints

(2.19) −1 ≤ u0, u1 ≤ 1.

Suppose that M0 = B(0, 1) ⊂ R3 and W0 = B(0, 1) ⊂ R2 are neighborhoods of
µ = (0, 0, 0) and w = (0, 0) respectively. Let x = (1, 25 ,

1
5) and u = (−3

5 ,−
1
5). Then

the following assertion are fulfilled:
(a) assumptions of Theorem 2.3 are valid;
(b) x = (1, 25 ,

1
5), u = (−3

5 ,−
1
5) is a solution of the problem corresponding to (µ,w);

(c) there exist neighborhoods M1 and W1 of µ and w respectively, and a neighbor-
hood Q1 of (x, u) such that the solution map

S : M1 × (W1 ∩D) → 2Q1

is nonempty valued and lower semicontinuous at (µ,w).

Solution. It is easy to see that f(x, u, µ) is strongly convex. Besides, for all µ ∈
B(0, 1), f(x, u, µ) is convex. Hence assumptions of the theorem are fulfilled. It
remains to show that x = (1, 25 ,

1
5), u = (−3

5 ,−
1
5) is a solution of the problem

corresponding to (µ,w). Let us define

I(x, k) = min
uk,uk+1,...,uN−1

N−1∑
j=k

hj(xj , uj , µj) + hN (xN ),

where x is the state at stage k, xk = x and uj ∈ [−1, 1]. Then we have the Bellman
equation

I(x, k) = min
u

[h(x, u, k) + I(x+ u, k + 1)],

I(x,N) = min
uN

hN (xN ) = x2, (N = 2).
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Hence we have

I(x, 1) = min
u∈[−1,1]

[x2 + u2 + I(x+ u, 2)] = min
u∈[−1,1]

[x2 + u2 + (x+ u)2].

It follows that

(2.20) u1 =


−1

2x if − 2 < x < 2

−1 if x ≥ 2

1 if x ≤ −2

and

(2.21) I(x, 1) =


3
2x

2 if − 2 < x < 2

2x2 − 2x+ 2 if x ≥ 2

2x2 + 2x+ 2 if x ≤ −2.

Similarly, we get

I(x, 0) = min
u∈[−1,1]

[x2 + u2 + I(x+ u, 1)].

We consider the following cases.
Case 1. −2 < x+ u < 2. Then one has

I(x, 1) = min
u∈[−1,1]

[x2 + u2 +
3

2
(x+ u)2].

In this case we have

(2.22) u0 =


−3

5x if − 5
3 < x < 5

3

−1 if 5
3 ≤ x < 3

1 if − 3 < x ≤ −5
3 .

Case 2. x+ u ≥ 2. Then one has

I(x, 1) = min
u∈[−1,1]

[x2 + u2 + 2(x+ u)2 − 2(x+ u) + 2].

In this case we have u0 = −1 if x ≥ 2.
Case 3. x+ u ≤ −2. Then one has

I(x, 1) = min
u∈[−1,1]

[x2 + u2 + 2(x+ u)2 + 2(x+ u) + 2].

In this case we also have u0 = 1 if x ≤ −3. In summary we get

(2.23) u0 =


−3

5x if − 5
3 < x < 5

3

−1 if x ≥ 5
3

1 if x ≤ −5
3 .

Since x0 = 1 we obtain from (2.23) that u0 = −3
5x0 = −3

5 and so x1 = x0 + u0 =

1 − 3
5 = 2

5 . Since x1 = 2
5 , we obtain from (2.20) that u1 = −1

2x1 = −1
2
2
5 = −1

5

and so x2 = x1 + u1 = 2
5 − 1

5 = 1
5 . Thus we have shown that x = (1, 25 ,

1
5) and

u = (−3
5 ,−

1
5). From this we have the f(x, u, µ) = 40

25 . Finally, assertion (c) follows
from the conclusion of Theorem 2.3.
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3. The Aubin property of the solution map

In the previous section we have obtained a result on the lower semicontinuity
of the solution set to problem (1.1)-(1.4). In this section we continue to study
continuous properties of the solution map. Namely, we want to investigate the
Aubin property of the solution map of (1.1)-(1.4). Since the Lipschitz continuity is
stronger than the lower semicontinuity, assumptions (H1) and (H2) are not enough
to establish the property. For this we need assumption (H3) and tools of generalized
differentiation to deal with the problem.

Note that, for each fixed couple (µ,w), (2.4) is a convex programming problem
under linear constraints. Since f is convex and differentiable in z, we see that z is
a solution of the problem if and only if

0 ∈ f ′
z(z, µ) +N(z;K(w)),

where N(z;K(w)) is the normal cone to K(w) at z in the sense of convex analysis.
Putting ϕ(z, µ) = f ′

z(z, µ) we get

(3.1) 0 ∈ ϕ(z, µ) +N(z;K(w))

which is called a parametric variational inequality.
Recall that given a set Q ⊂ Z, the set

Q∗ := {z∗ ∈ Z|⟨z∗, z⟩ ≤ 0, ∀z ∈ Q}
is called the polar cone of Q. Let Ω ⊂ Z and z ∈ Ω. The tangent cone to Ω at z
which denoted by T (z; Ω) and defined by

T (z; Ω) = N(z; Ω)∗ =
{
v ∈ Z : ⟨z∗, v⟩ ≤ 0, ∀ z∗ ∈ N(z; Ω)

}
.

From now on, we shall write b instead of b(w). For each (µ, b) ∈ M × Π we now
consider the problem of finding z = z(µ, b) which satisfies the equation

(3.2) 0 ∈ ϕ(µ, z) +N(z;K1(b)).

Let us denote by S1(µ, b) the solution set of (3.2) corresponding to (µ, b) ∈ M ×Π.
It is clear that S(µ,w) = S1(µ, b(w)) for all (µ,w) ∈ M ×D, where S(µ,w) is the
solution set of (3.1), which is also the solution map of problem (1.1)-(1.4).

Notice that C = (cij)p×q, where p = 2(N +1)m+2Nn and q = (N +1)m+Nn.
Put

T =
{
0, 1, ..., p

}
= T0 ∪ T1,

where

T0 = {1, 2, ..., 2(N+1)m}, T1 = {2(N+1)m+1, 2(N+1)m+2, ..., 2(N+1)m+2Nn}.
Let us denote by Ci the i− th row of matrix C. For a fixed element z ∈ K1(b), the
set of active indices at z is given by

(3.3) I(z, b) =
{
i ∈ T : Ciz = (b)i

}
,

where (b)i is the i-th component of b. Here vector b consists of 2(N + 1)m + 2Nn
components, and vector z consists of (N +1)m+Nn components. For convenience
we assume that

βi =
(
b̂2(N+1)m+2in+1, b̂2(N+1)m+2in+2, ..., b̂2(N+1)m+2in+n

)
,
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−αi =
(
b̂2(N+1)m+(2i+1)n+1, b̂2(N+1)m+(2i+1)n+2, ..., b̂2(N+1)m+(2i+1)n+n

)
,

i = 0, 1, ..., N − 1.

Here b̂k are fixed for all k = 2(N + 1)m+ 1, ..., 2(N + 1)m+ 2Nn. Thus we have

b(w) = [w0,−w0, w1,−w1, ..., wN−1,−wN−1, c,−c, b̂]T ,

where b̂ = (b̂2(N+1)m+1, b̂2(N+1)m+2, ..., b̂2(N+1)m+2Nn). Since Ciz = bi for all i ∈ T0,
we get

(3.4) I(z, b) = T0 ∪ T1(z, b),

where

T1(z, b) = {i ∈ T1|Ciz = (b̂)i}.
For every subset I ⊂ T , we put I = T\I and let CI (resp.,CI) be the matrix

composed by the rows Ci, i ∈ I , of C (resp., the rows Ci, i ∈ I).
The following proposition gives formulas of the normal cone and tangent cone to

a convex polyhedron (2.5). Its proof can be found in [16, Lemma 3.1].

Proposition 3.1 (Cf. [16, Lemma 3.1]). Let K1(b) be defined by (2.5), z ∈ K1(b)
and I(z, b) be defined by (3.3). Then one has the following representations:
(i)

(3.5) N(z;K1(b)) =
{
y ∈ Z : y ∈ pos

{
CT
i : i ∈ I(z, b)

}}
,

where

pos
{
CT
i : i ∈ I(z, b)

}
=

{ ∑
i∈I(z,b)

λiC
T
i , λi ≥ 0

}
;

(ii)

(3.6) T (z;K1(b)) =
{
v ∈ Z : Civ ≤ 0, ∀i ∈ I(z, b)

}
.

Let us define a mapping F2 : Z ×Π → 2Z by

F2(z, b) = N(z;K1(b))

and assume that Ω2 is the graph of F2. The following lemmas give formulas com-
puting the prenormal cone to Ω2 at a given point.

Lemma 3.2 ([20, Lemma 4.1]). If (z∗, b∗, v∗) ∈ N̂((z, b, v); Ω2) then

(3.7) (z∗, v∗) ∈
(
T (z;K1(b)) ∩ v⊥

)∗ × (
T (z;K1(b)) ∩ v⊥

)
,

(3.8) z∗ = −CT
I b

∗
I

and

(3.9) b∗
I
= 0,

where I = I(z, b) and v⊥ =
{
z ∈ Z|⟨v, z⟩ = 0

}
.

Recall that, a set Q is called a closed face of a cone H if and only if there exists
v ∈ H∗ such that Q =

{
z ∈ H|⟨v, z⟩ = 0

}
. We now give an upper estimate for the

Mordukhovich normal cone to Ω2 at a given point.
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Theorem 3.3. Suppose that (z, b, v) ∈ Ω2 and (z∗, b∗, v∗) ∈ N
(
(z, b, v); Ω2

)
. Then

there exists an index set I ′ ⊂ I(z, b) := T0 ∪ T1(z, b) and a closed face Q of the
polyhedral convex cone T (zI′ ;K1(b)) ∩ v⊥ such that

(3.10) (z∗, v∗) ∈ Q∗ ×Q,

(3.11) v ∈ pos{CT
i : i ∈ I ′},

(3.12) z∗ = −CT
I′b

∗
I′

and

(3.13) b∗
I
′ = 0.

where

zI′ =
{
z = (x, u)|CI′z = bI′ , CI

′z < b
I
′}

with I ′ = T1(z, b) \ I ′.

Proof. The proof of the theorem is based on Lemma 3.2 and uses similar arguments
as in the proof of [20, Theorem 4.3]. �

From the above theorem we obtain

Theorem 3.4. Suppose that (z, b, v) ∈ Ω2 and v∗ ∈ Z. If (z∗, b∗) ∈ D∗F2(z, b, v)(v
∗)

then there must exist an index set I ′ ⊂ I(z, b) and a closed face Q of the polyhedral
convex cone T (zI′ ;K1(b)) ∩ v⊥ such that conditions (3.11)-(3.13) and condition

(3.14) (z∗,−v∗) ∈ Q∗ ×Q

are satisfied.

The following theorem is a main result on the Aubin property of the solution
map to problem (1.1)-(1.4).

Theorem 3.5. Suppose that z = (x, u) is a solution of the problem (1.1)-(1.4)
corresponding to parameter (µ,w), assumptions (H1) and (H3) are satisfied. If for

any (z∗, b∗) ∈ R(N+1)m+Nn ×R2Nm+2Nn, one has (z∗, b∗) = (0, 0) whenever

(3.15)
(
(
∂2f(z, µ)

∂z2
)T z∗, z∗

)
∈ Q∗ ×Q,

(3.16) (
∂2f(z, µ)

∂z2
)T z∗ = −CT

I′b
∗
I′

and

(3.17) b∗
I
′ = 0

for an index I ′ ⊂ I(z, b) = T0∪T1(z, b) and a closed face Q of the polyhedral convex
cone T (zI′ ;K(w))∩(∇zf(z, µ))

⊥, then the solution map M×D ∋ (µ,w) 7→ S(µ,w)
has the Aubin property around (µ,w, z) ∈ gph S.

Proof. For the proof we need the following lemmas:
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Lemma 3.6 ([13, Corollary 4.4]). Let X, Y be finite dimensional Euclidean spaces,
ϕ1 : X −→ Y be strictly differentiable at x ∈ X and Φ2 : X ⇒ Y be a multifunction
with closed graph. Then for any y ∈ ϕ1(x) + Φ2(x) and y∗ ∈ Y one has

D∗(ϕ1 +Φ2)(x, y)(y
∗) = (▽ϕ1(x))

T y∗ +D∗Φ2(x, y − ϕ1(x))(y
∗).

Lemma 3.7 ([7, Theorem 3.6]). Let X,Y and Z be finite-dimensional Euclidean
spaces, F : X×Y ⇒ Z be a multifunction and G be an implicit multifunction which
is defined by F , that is,

G(y) =
{
x ∈ X|0 ∈ F (x, y)

}
and (x0, y0) ∈ X × Y be a pair such that x0 ∈ G(y0). Assume that the following
conditions hold:
(a) graph of F is locally closed around ω0 = (x0, y0, 0Z);
(b) the constraint qualification

(3.18) KerD∗F (ω0) = {0},

(c)

(3.19)
∪

z∗∈Z
{y∗ ∈ Y |(0, y∗) ∈ D∗F (ω0)(z

∗)} = {0}.

Then the implicit multifunction G has the Aubin property at (y0, x0), that is, there
exist neighborhoods U of x0, V of y0 and a constant l > 0 such that

G(y′) ∩ U ⊂ G(y) + l||y′ − y||BX , ∀y, y′ ∈ V.

Recall that P = M ×Π = RNs ×R2(N+1)m+2Nn. Let us define mappings

ϕ1 : Z × P → Z, Φ2 : Z × P → 2Z and F : Z × P → 2Z

by

ϕ1(z, µ, b) = ϕ(z, µ) = ∇zf(z, µ)

Φ2(z, µ, b) = F2(z, b) = N(z;K1(b))

F (z, µ, b) = ϕ1(z, µ, b) + Φ2(z, µ, b).

Then we have

S(µ, b) = {z ∈ Z|0 ∈ F (z, µ, b)}.
We first claim that F and Φ2 has a closed graph. In fact, take any sequence
(zk, µk, bk, z

∗
k) ∈ gphF and assume that (zk, µk, bk, z

∗
k) → (z, µ, b, z∗) as k → ∞. We

have to show that (z, µ, b, z∗) ∈ gphF . Since (zk, µk, bk, z
∗
k) ∈ gphF , we have

z∗k ∈ ϕ(zk, µk) +N(zk;K1(bk)).

Hence we have

⟨ϕ(zk, µk)− z∗k, z
′ − zk⟩ ≥ 0, ∀z′ ∈ K1(bk).

Fix any z′′ ∈ K1(b). By Lemma 2.1, K1 is Lipschitz continuous with Lipschitz
constant l. Hence for each k, there exists z′′k ∈ K1(bk) such that ∥z′′−z′′k∥ ≤ l∥b−bk∥.
This implies that z′′k → z′′. Since

⟨ϕ(zk, µk)− z∗k, z
′′
k − zk⟩ ≥ 0
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and letting k → ∞, we get

⟨ϕ(z, µ)− z∗, z′′ − z⟩ ≥ 0.

As z′′ ∈ K1(b) is arbitrary, we obtain that (z, µ, b, z∗) ∈ gphF. Hence F has a closed
graph. Similarly, we can show that Φ2 has a closed graph.

By changing order of components and using Lemma 3.6, we see that for all
z∗ ∈ Z = R(N+1)m+Nn one has

D∗F (z, µ, b, 0Z)(z
∗) = ∇ϕ1(z, µ, b)

T (z∗) +D∗Φ2(z, µ, b,−ϕ1(z, µ, b))

= (∇zϕ(z, µ)
T z∗,∇µϕ(z, µ)

T z∗, 0Π) +D∗Φ2(z, µ, b,−ϕ1(z, µ, b))(z
∗)

= [(∇zϕ(z, µ)
T z∗, 0Π) +D∗F2(z, b,−ϕ(z, µ))(z∗)]× {∇µϕ(z, µ)

T (z∗)}.(3.20)

We now show that the implication

(3.21) 0 ∈ D∗F (z, µ, b, 0Z)(z
∗) ⇒ z∗ = 0

is valid, where 0Π, 0Z are zero elements in spaces Π and Z, respectively. Indeed,
from (3.20) and condition 0 ∈ D∗F (z, µ, b, 0Z)(z

∗), we get

(3.22) ∇µϕ(z, µ)
T (z∗) = 0.

Since

∇µϕ(z, µ) =
∂2f(z, µ)

∂µ∂z
: Z ×M → Z

is surjective, [11, Lemma 1.18] implies that the adjoint mapping

∇µϕ(z, µ)
T = (

∂2f(z, µ)

∂µ∂z
)T : Z → Z ×M

is injective. Hence we obtain from (3.22) that z∗ = 0. Consequently, (3.21) is
justified.

It remains to check the condition

(3.23)
∪

z∗∈Z
{(µ∗, b∗) ∈ P ∗|(0, µ∗, b∗) ∈ D∗F (y)(z∗)} = {0} with y = (z, µ, b, 0Z).

In fact, assume that (µ∗, b∗) ∈ P satisfying (0, µ∗, b∗) ∈ D∗F (y)(z∗) for some z∗ ∈ Z.
By (3.20) we have

(3.24) µ∗ = ∇µϕ(z, µ)
T (z∗)

and

(3.25) (0, b∗) ∈ (∇zϕ(z, µ)
T (z∗), 0Π) +D∗F2(z, b,−ϕ(z, µ))(z∗).

The latter is equivalent to

(−∇zϕ(z, µ)
T (z∗), b∗) ∈ D∗F2(z, b,−ϕ(z, µ))(z∗).

By Theorem 3.4, there exists an index I ′ ⊂ I(z, b) = T0 ∪ T1(z, b) and a closed face
Q of the polyhedral convex cone

T (zI′ ;K1(b)) ∩ (∇zf(z, µ))
⊥ = T (zI′ ;K(w)) ∩ (∇zf(z, µ))

⊥
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such that

(3.26)


(−∇zϕ(z, µ)

T (z∗),−z∗) ∈ Q∗ ×Q

−∇zϕ(z, µ)
T (z∗) = −CT

I′b
∗
I′

b∗
I
′ = 0

This is equivalent to 
(
(∂

2f(z,µ)
∂z2

)T (−z∗),−z∗
)
∈ Q∗ ×Q

( ∂2

∂z2
f(z, µ))T (−z∗) = −CT

I′b
∗
I′

b∗
I
′ = 0.

By assumptions of the theorem, it follows that −z∗ = 0. Substituting z∗ = 0 into
(3.24) we have µ∗ = 0. Thus condition (3.23) is valid. Hence Lemma 3.7 is appli-
cable. By Lemma 3.7, the map M × Π ∋ (µ, b) 7→ S1(µ, b) has the Aubin property
at (µ, b, x, u), that is, there exist positive constants δ1, δ2, l and a neighborhood
V ⊂ X × U of (x, u) such that

(3.27) S1(µ
′, b′) ∩ V ⊂ S1(µ, b) + l(∥µ′ − µ∥+ ∥b′ − b∥)BZ

for all µ, µ′ ∈ B(µ, δ1) and b, b′ ∈ B(b, δ2) ∩D1.
Notice that for b = b(w), b = b(w) one has ∥b(w) − b(w′)∥ =

√
2∥w − w′∥ and

S(µ,w) = S1(µ, b(w)). Hence for all µ, µ′ ∈ B(µ, δ1√
2
) and w,w′ ∈ B(w, δ2√

2
) ∩D we

obtain from (3.27) that

S(µ′, w′) ∩ V ⊂ S(µ,w) + l
√
2(∥µ′ − µ∥+ ∥w′ − w∥)BZ .

The proof of Theorem 3.5 is complete. �
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