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part of the analysis is different from the ones in [14, 15]. And we analyze the com-
plexity for large-update and small-update methods based on three conditions on
the kernel function which is defined in [5]. The complexity bounds obtained by

the algorithm are O(n
5
8 log n

ϵ ) and O(
√
n log n

ϵ ), for large-update methods and for
small-update methods, respectively.

The paper is organized as follows. In Section 2 we recall the generic IPM and
the motivation of the new algorithm. In Section 3 we define a new barrier function
and give its properties which are essential for complexity analysis. In Section 4 we
derive the complexity result for the algorithm.

We use the following notations throughout the paper. Rn
+ and Rn

++ denote the
set of n-dimensional nonnegative vectors and positive vectors, respectively. For
x, s ∈ Rn, xmin and xs denote the smallest component of the vector x and the com-
ponentwise product of the vectors x and s, respectively. e denotes the n-dimensional
vector of ones. For a ∈ R, ⌊a⌋ := max{m ∈ Z | m ≤ a} and ⌈a⌉ := min{n ∈ Z | n ≥
a}. For f(t), g(t) : R++ → R++, f(t) = O(g(t)) if f(t) ≤ c1g(t) for some positive
constant c1 and f(t) = Θ(g(t)) if c2g(t) ≤ f(t) ≤ c3g(t) for some positive constants
c2 and c3.

2. Preliminaries

In this section we recall the basic concepts and the generic IPM. Without loss of
generality, we assume that both (1.1) and (1.2) satisfy the interior-point condition
(IPC)([16]), i.e., there exists (x0, y0, s0) such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0.

By the duality theorem (Theorem II.2 in [16]), finding an optimal solution of (1.1)
and (1.2) is equivalent to solving the following system:

(2.1)


Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = 0.

The basic idea of primal-dual IPMs is to replace the third equation in (2.1) by
the parameterized equation xs = µe with µ > 0. Now we consider the following
system:

(2.2)


Ax = b, x > 0,

AT y + s = c, s > 0,

xs = µe.

If the IPC holds, then the system (2.2) has a unique solution for each µ > 0([13]).
We denote this solution as (x(µ), y(µ), s(µ)) and call x(µ) the µ-center of (1.1) and
(y(µ), s(µ)) the µ-center of (1.2). The set of µ-centers (µ > 0) is the central path of
(1.1) and (1.2) ([17]). The limit of the central path (as µ goes to zero) exists and
since the limit point satisfies (2.1), it naturally yields optimal solutions for (1.1) and
(1.2) ([16]). Primal-dual IPMs follow the central path approximately and approach
the solution of (1.1) and (1.2) as µ goes to zero.
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For given (x, y, s) := (x0, y0, s0) by applying Newton method to the system (2.2)
we have the following Newton system

(2.3)


A∆x = 0,

AT∆y +∆s = 0,

s∆x+ x∆s = µe− xs.

Since A has full row rank, the system (2.3) has a unique solution (∆x,∆y,∆s) which
is called the search direction ([16]). By taking a step along the search direction
(∆x,∆y,∆s), one constructs a new positive (x+, y+, s+) with

x+ = x+ α∆x, y+ = y + α∆y, s+ = s+ α∆s,

for some α > 0.
For the motivation of the new algorithm we define the following scaled vectors

for x, s ∈ Rn
++:

(2.4) v :=

√
xs

µ
, dx :=

v∆x

x
, ds :=

v∆s

s
.

Using (2.4), we can rewrite the system (2.3) as follows:

(2.5)


Ādx = 0,

ĀT∆y + ds = 0,

dx + ds = v−1 − v,

where Ā := 1
µAV

−1X, V := diag(v), and X := diag(x). Note that the right side of

the third equation in (2.5) equals the negative gradient of the logarithmic barrier
function Ψl(v), i.e.

(2.6) dx + ds = −∇Ψl(v),

where

Ψl(v) :=

n∑
i=1

ψl(vi) =

n∑
i=1

(
v2i − 1

2
− log vi

)
.

We call ψl the kernel function of the logarithmic barrier function Ψl(v). In this
paper we replace Ψl(v) with a new barrier function Ψ(v) which is defined in section
3 and assume that τ ≥ 1.

The generic interior point algorithm works as follows. Assume that we are given a
strictly feasible point (x, y, s) which is in a τ−neighborhood of the given µ−center.
Then we decrease µ to µ+ = (1−θ)µ, for some fixed θ ∈ (0, 1) and then we solve the
Newton system (2.3) to obtain the unique search direction. The positivity condition
of a new iterate is ensured with the right choice of the step size α which is defined
by some line search rule. This procedure is repeated until we find a new iterate
(x+, y+, s+) that is in a τ−neighborhood of the µ+−center and then we let µ := µ+
and (x, y, s) := (x+, y+, s+). Then µ is again reduced by the factor 1 − θ and we
solve the Newton system targeting at the new µ+-center, and so on. This process
is repeated until µ is small enough, say until nµ < ε.
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Primal-Dual Algorithm for LO

Input:
a threshold parameter τ > 0;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
(x0, s0) and µ0 := 1 such that Ψl(x

0, s0, µ0) ≤ τ.
begin

x := x0; s := s0; µ := µ0;
while nµ ≥ ε do
begin
µ := (1− θ)µ;
while Ψl(v) > τ do
begin

Solve the system (2.3) for ∆x,∆y,∆s,
Determine a step size α;
x := x+ α∆x;
s := s+ α∆s;
y := y + α∆y;

v :=
√

xs
µ ;

end
end

end

If θ is a constant independent of the dimension of the problem n, e.g. θ = 1
2 ,

then we call the algorithm a large-update method. If θ depends on n, e.g. θ = 1√
n
,

then the algorithm is called a small-update method.

3. The new barrier function

In this section we define a new barrier function and give its properties. We
call ψ : R++ → R+ a kernel function if ψ is twice differentiable and satisfies the
following conditions:

(3.1)

ψ′(1) = ψ(1) = 0,

ψ′′(t) > 0, t > 0,

lim
t→0+

ψ(t) = lim
t→∞

ψ(t) = ∞.

Now we define a new kernel function ψ(t) as follows:

(3.2) ψ(t) := 8t2 − 10t+
2

t3
, t > 0.

Then we have the following:

(3.3) ψ′(t) = 16t− 10− 6t−4, ψ′′(t) = 16 + 24t−5, ψ′′′(t) = −120t−6.
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From (3.3), ψ(t) is clearly a kernel function and

(3.4) ψ′′(t) > 16, t > 0.

In this paper, we define the barrier function Ψ(v) =
∑n

i=1 ψ(vi), where ψ(t) is
defined in (3.2) and replace the function Ψl(v) in (2.6) with the function Ψ(v) as
follows:

(3.5) dx + ds = −∇Ψ(v).

Note that dx and ds are orthogonal because the vector dx belongs to null space and
ds to the row space of the matrix Ā. Since dx and ds are orthogonal, we have

dx = ds = 0 ⇔ ∇Ψ(v) = 0 ⇔ v = e ⇔ Ψ(v) = 0 ⇔ x = x(µ), s = s(µ).

We use Ψ(v) as the proximity function. Also, we define the norm-based proximity
measure δ(v) as follows:

(3.6) δ(v) :=
1

2
||∇Ψ(v)|| = 1

2
||dx + ds||.

Consequently, in this paper we use the barrier function Ψ(v) as the proximity func-
tion to find a search direction and to measure the proximity between the current
iterate and the µ-center. Hence the new search direction (∆x,∆y,∆s) is obtained
by solving the following modified Newton system:

A∆x = 0,

AT∆y +∆s = 0,

s∆x+ x∆s = −µv∇Ψ(v).

Lemma 3.1. For ψ(t) we have
(i) ψ(t) is exponentially convex, t > 0,
(ii) ψ′′(t) is monotonically decreasing, t > 0,
(iii) tψ′′(t)− ψ′(t) > 0, t > 0.

Proof. For (i), by Lemma 2.1.2 in [15], it suffices to show that the function ψ(t)
satisfies tψ′′(t) + ψ′(t) ≥ 0 for t > 0. Using (3.3), we have

tψ′′(t) + ψ′(t) = 32t− 10 + 18t−4.

Let g(t) = 32t− 10+ 18t−4. Then g′(t) = 32− 72t−5 and g′′(t) = 360t−6 > 0, t > 0.

Letting g′(t) = 0, we have t = (94)
1
5 . Since g(t) is strictly convex and has a global

minimum g((94)
1
5 ) > 37. Hence we have the result.

For (ii), from (3.3), ψ′′′(t) < 0.
For (iii), using (3.3), we have tψ′′(t)− ψ′(t) = 10 + 30t−4 > 0. This completes the
proof. �
Lemma 3.2. For ψ(t) we have
(i) 8(t− 1)2 ≤ ψ(t) ≤ 1

32(ψ
′(t))2, t > 0,

(ii) ψ(t) ≤ 20(t− 1)2, t ≥ 1.

Proof. For (i), using the first condition of (3.1) and (3.4), we have

ψ(t) =

∫ t

1

∫ ξ

1
ψ′′(ζ)dζdξ ≥ 16

∫ t

1

∫ ξ

1
dζdξ = 8(t− 1)2.
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which proves the first inequality. The second inequality is obtained as follows:

ψ(t) =

∫ t

1

∫ ξ

1
ψ′′(ζ)dζdξ ≤ 1

16

∫ t

1

∫ ξ

1
ψ′′(ξ)ψ′′(ζ)dζdξ

=
1

16

∫ t

1
ψ′′(ξ)ψ′(ξ)dξ =

1

16

∫ t

1
ψ′(ξ)dψ′(ξ) =

1

32
(ψ′(t))2.

For (ii), using Taylor’s Theorem, ψ(1) = ψ
′
(1) = 0, ψ

′′′
< 0, and ψ

′′
(1) = 40, we

have

ψ(t) = ψ(1) + ψ
′
(1)(t− 1) +

1

2
ψ

′′
(1)(t− 1)2 +

1

3!
ψ

′′′
(ξ)(ξ − 1)3

=
1

2
ψ

′′
(1)(t− 1)2 +

1

3!
ψ

′′′
(ξ)(ξ − 1)3

<
1

2
ψ

′′
(1)(t− 1)2 = 20(t− 1)2,

for some ξ, 1 ≤ ξ ≤ t. This completes the proof. �
Lemma 3.3 (Lemma 2.4 in [5]). If ψ(t) satisfies Lemma 3.1 (ii) and (iii), then
ψ(t) satisfies

ψ
′′
(t)ψ

′
(βt)− βψ

′
(t)ψ

′′
(βt) > 0, t > 1, β > 1.

Let ϱ : [0,∞) → [1,∞) be the inverse function of ψ(t) for t ≥ 1 and ρ : [0,∞) →
(0, 1], the inverse function of −1

2ψ
′
(t) for t ∈ (0, 1]. Then we have the following

lemma.

Lemma 3.4. For ψ(t) we have

(i)
√

s
8 + 1 ≤ ϱ(s) ≤ 1 +

√
s
8 , s ≥ 0,

(ii) ρ(z) ≥ ( 3
z+3)

1
4 , z ≥ 0.

Proof. For (i), let s = ψ(t), t ≥ 1, i.e. ϱ(s) = t, t ≥ 1. By the definition of ψ(t),
s = 8t2 − 10t+ 2

t3
. This implies that

8t2 = s+ 10t− 2

t3
≥ s+ 8

because 10t− 2
t3

is monotone increasing with respect to t and t ≥ 1. Hence we have

t = ϱ(s) ≥
√
s

8
+ 1, s ≥ 0.

Using Lemma 3.2 (i), we have s = ψ(t) ≥ 8(t− 1)2, t > 0. Then we have

t = ϱ(s) ≤ 1 +

√
s

8
, s ≥ 0.

For (ii), let z = −1
2ψ

′(t), t ∈ (0, 1]. Then by the definition of ρ, ρ(z) = t, t ∈ (0, 1]

and 2z = −ψ′(t). So we have 2z = −16t+ 10 + 6t−4. Since 0 < t ≤ 1,

6t−4 = 2z + 16t− 10 ≤ 2z + 6.

Hence we have

ρ(z) = t ≥ (
3

z + 3
)
1
4 , z ≥ 0.

�
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Using Lemma 3.3, we have the following lemma. The reader can refer to Theorem
3.2 in [5] for the proof.

Lemma 3.5. Let ϱ : [0,∞) → [1,∞) be the inverse function of ψ(t), t ≥ 1. Then
we have

Ψ(βv) ≤ nψ

(
βϱ

(
Ψ(v)

n

))
, v ∈ R++, β ≥ 1.

In the following theorem we obtain an estimate for the effect of a µ-update on the
value of Ψ(v).

Theorem 3.6. Let 0 ≤ θ < 1 and v+ = v√
1−θ

, v ∈ Rn
++. If Ψ(v) ≤ τ, then

Ψ(v+) ≤
20

1− θ

(√
nθ +

√
τ

8

)2

.

Proof. Since 1√
1−θ

≥ 1 and ϱ
(
Ψ(v)
n

)
≥ 1, we have

ϱ
(

Ψ(v)
n

)
√
1−θ

≥ 1. Using Lemma 3.5

with β = 1√
1−θ

, Lemma 3.2 (ii), Lemma 3.4 (i), and Ψ(v) ≤ τ , we have

Ψ(v+) ≤ nψ

(
1√
1− θ

ϱ

(
Ψ(v)

n

))

≤ 20n

ϱ
(
Ψ(v)
n

)
√
1− θ

− 1

2

= 20n

ϱ
(
Ψ(v)
n

)
−

√
1− θ

√
1− θ

2

≤ 20n

(
1 +

√
τ
8n −

√
1− θ

√
1− θ

)2

≤ 20n

(
θ +

√
τ
8n√

1− θ

)2

=
20

1− θ

(√
nθ +

√
τ

8

)2

,

where the last inequality holds from 1 −
√
1− θ = θ

1+
√
1−θ

≤ θ, 0 ≤ θ < 1. This

completes the proof. �

Denote

(3.7) Ψ̃0 :=
20

1− θ

(√
nθ +

√
τ

8

)2

.

Then Ψ̃0 is an upper bound for Ψ(v) during the process of the algorithm.

Remark 3.7. For large-update method with τ = O(n) and θ = Θ(1), Ψ̃0 = O(n)

and for small-update method with τ = O(1) and θ = Θ( 1√
n
), Ψ̃0 = O(1).

4. Complexity results

In this section we compute a step size and the decrease of the proximity function
during an inner iteration and give the complexity results of the algorithm. For fixed
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µ, if we take a step size α, then we have new iterates x+ = x+α∆x, s+ = s+α∆s.
Using (2.4), we have

x+ = x

(
e+ α

∆x

x

)
= x

(
e+ α

dx
v

)
=
x

v
(v + αdx)

and

s+ = s

(
e+ α

∆s

s

)
= s

(
e+ α

ds
v

)
=
s

v
(v + αds).

Thus we have

v+ :=

√
x+s+
µ

=
√

(v + αdx)(v + αds).

Define for α > 0,
f(α) = Ψ(v+)−Ψ(v).

Then f(α) is the difference of proximities between a new iterate and a current
iterate for fixed µ. By Lemma 3.1 (i), we have

Ψ(v+) = Ψ(
√

(v + αdx)(v + αds) ) ≤
1

2
(Ψ(v + αdx) + Ψ(v + αds)).

Hence we have f(α) ≤ f1(α), where

(4.1) f1(α) :=
1

2
(Ψ(v + αdx) + Ψ(v + αds))−Ψ(v).

Obviously, we have
f(0) = f1(0) = 0.

By taking the derivative of f1(α) with respect to α, we have

f ′1(α) =
1

2

n∑
i=1

(ψ′(vi + α[dx]i)[dx]i + ψ′(vi + α[ds]i)[ds]i),

where [dx]i and [ds]i denote the i-th components of the vectors dx and ds, respec-
tively. Using (3.5) and (3.6), we have

(4.2) f ′1(0) =
1

2
∇Ψ(v)T (dx + ds) = −1

2
∇Ψ(v)T∇Ψ(v) = −2δ(v)2.

Differentiating f ′1(α) with respect to α, we have

(4.3) f ′′1 (α) =
1

2

n∑
i=1

(ψ′′(vi + α[dx]i)[dx]
2
i + ψ′′(vi + α[ds]i)[ds]

2
i ).

Since f ′′1 (α) > 0, f1(α) is strictly convex in α unless dx = ds = 0.

Lemma 4.1. Let δ(v) be as defined in (3.6). Then we have

δ(v) ≥ 2
√

2Ψ(v).

Proof. Using Lemma 3.2 (i) and (3.6), we have

Ψ(v) =
n∑

i=1

ψ(vi) ≤
1

32

n∑
i=1

(ψ′(vi))
2 =

1

32
||∇Ψ(v)||2 = δ2(v)

8
.

Hence we have δ(v) ≥ 2
√

2Ψ(v). �
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Remark 4.2. Throughout the paper we assume that τ ≥ 1. Using Lemma 4.1 and
the assumption Ψ(v) ≥ τ, we have

(4.4) δ(v) ≥ 2
√

2Ψ(v) ≥ 2
√
2.

For notational convenience we denote δ := δ(v), and Ψ := Ψ(v).

Lemma 4.3. Let f1(α) be as defined in (4.1) and δ be as defined in (3.6). Then we
have

(4.5) f ′′1 (α) ≤ 2δ2ψ′′(vmin − 2αδ).

Proof. Since dx and ds are orthogonal, (3.5) and (3.6) imply that

(4.6)
√

||dx||2 + ||ds||2 = ||dx + ds|| = || − ∇Ψ|| = 2δ.

Hence, we have ||dx|| ≤ 2δ and ||ds|| ≤ 2δ. Therefore, we have

(4.7) vi + α[dx]i ≥ vmin − 2αδ, vi + α[ds]i ≥ vmin − 2αδ, 1 ≤ i ≤ n.

Using (4.3), Lemma 3.1 (ii), (4.7) and (4.6), we have

f ′′1 (α) ≤
1

2
ψ′′(vmin − 2αδ)

n∑
i=1

([dx]
2
i + [ds]

2
i ) = 2δ2ψ′′(vmin − 2αδ).

This proves the lemma. �

Lemma 4.4. If the step size α satisfies the inequality

(4.8) −ψ′(vmin − 2αδ) + ψ′(vmin) ≤ 2δ,

then we have

f ′1(α) ≤ 0.

Proof. Since d(vmin − 2ζδ) = −2δdζ,

f ′1(α) = f ′1(0) +

∫ α

0
f ′′1 (ζ)dζ

≤ −2δ2 + 2δ2
∫ α

0
ψ′′(vmin − 2ζδ)dζ

= −2δ2 − δ

∫ α

0
ψ′′(vmin − 2ζδ)d(vmin − 2ζδ)

= −2δ2 − δ(ψ′(vmin − 2αδ)− ψ′(vmin))

≤ −2δ2 + 2δ2 = 0,

where the first inequality holds by (4.2) and (4.5) and the second inequality holds
by the assumption. This proves the lemma. �

Lemma 4.5. Let ρ : [0,∞) → (0, 1] denote the inverse function of −1
2ψ

′(t) for
t ∈ (0, 1] and δ := δ(v) ≥ 0, v ∈ Rn

++. Then, in the worst case, the largest step size
α̂ satisfying (4.8) is given by

α̂ :=
1

2δ
(ρ(δ)− ρ(2δ)).
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Proof. Given δ, we want to find the largest possible α such that (4.8) holds. Since
ψ′′(t) is monotone decreasing for t > 0, the derivative of the left side of (4.8) with
respect to vmin becomes

−ψ′′(vmin − 2αδ) + ψ′′(vmin) < 0.

Hence, the left side of (4.8) is monotone decreasing in vmin. For fixed δ, if vmin is
smaller, then α will be smaller. Using (3.6), we have

δ =
1

2
||∇Ψ(v)|| ≥ 1

2
|ψ′(vmin)| ≥ −1

2
ψ′(vmin).

Equality holds if and only if vmin is the only coordinate in v that differs from 1 and
vmin ≤ 1. Hence, the worst situation for the step size occurs when vmin satisfies

(4.9) −1

2
ψ′(vmin) = δ.

The derivative of the left side of (4.8) with respect to α equals 2δψ′′(vmin−2αδ) ≥ 0
and hence the left side is increasing in α. So the largest possible value of α satisfying
(4.8) holds the following equality

(4.10) −1

2
ψ′(vmin − 2αδ) = 2δ.

Due to the definition of ρ, (4.9) and (4.10) can be written as

vmin = ρ(δ), vmin − 2αδ = ρ(2δ).

This implies

α̂ =
1

2δ
(vmin − ρ(2δ)) =

1

2δ
(ρ(δ)− ρ(2δ)).

This proves the lemma. �
Lemma 4.6. Let ρ and α̂ be as defined in Lemma 4.5. Then we have for δ > 0,

α̂ ≥ 1

ψ′′(ρ(2δ))
.

Proof. By the definition of ρ, we have

−ψ′(ρ(δ)) = 2δ.

If we differentiate the above equation with respect to δ, we have −ψ′′(ρ(δ))ρ′(δ) = 2.
Since ψ′′(t) > 0, for all t > 0, we have

(4.11) ρ′(δ) = − 2

ψ′′(ρ(δ))
< 0.

Hence, ρ is monotonically decreasing with respect to δ. Using Lemma 4.5 and
(4.11), we have

(4.12) α̂ =
1

2δ

∫ δ

2δ
ρ′(σ)dσ =

1

δ

∫ 2δ

δ

1

ψ′′(ρ(σ))
dσ.

By Lemma 3.1 (ii), ψ
′′
(ρ(σ)) ≤ ψ

′′
(ρ(2δ)) for σ ∈ [δ, 2δ], i.e. ψ′′(ρ(σ)) is maximal

when σ = 2δ. From (4.12),

α̂ =
1

δ

∫ 2δ

δ

1

ψ′′(ρ(σ))
dσ ≥ 1

δ

∫ 2δ

δ

1

ψ′′(ρ(2δ))
dσ =

1

ψ′′(ρ(2δ))
.
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This proves the lemma. �

Define

(4.13) ᾱ :=
1

ψ′′(ρ(2δ))
.

Then we have ᾱ ≤ α̂.

Lemma 4.7. Let ᾱ be as defined in (4.13). If Ψ(v) ≥ τ ≥ 1, then we have

ᾱ ≥ 1

(4
√
2 + 32(43)

1
4 )δ

5
4

.

Proof. Using the definition of ψ′′(t), Lemma 3.4 (ii), and (4.4), we have

ᾱ =
1

ψ′′(ρ(2δ))
=

1

16 + 24(ρ(2δ))−5

≥ 1

16 + 24
(
2δ+3
3

) 5
4

=
1

16 + 16(23)
1
4 (δ + 3

2)
5
4

≥ 1

16 + 32(43)
1
4 δ

5
4

≥ 1

4
√
2δ

5
4 + 32(43)

1
4 δ

5
4

=
1

(4
√
2 + 32(43)

1
4 )δ

5
4

.

�

Define

(4.14) α̃ =
1

(4
√
2 + 32(43)

1
4 )δ

5
4

.

Then α̃ ≤ ᾱ. We will use α̃ as the default step size.

Lemma 4.8 (Lemma 1.3.3 in [15]). Suppose that h(t) is a twice differentiable convex
function with

h(0) = 0, h′(0) < 0

and h(t) attains its (global) minimum at t∗ > 0 and h′′(t) is increasing with respect
to t. Then for any t ∈ [0, t∗], we have

h(t) ≤ th′(0)

2
.

Lemma 4.9. If the step size α is such that α ≤ ᾱ, then

f(α) ≤ −αδ2.

Proof. Let the univariate function h be such that

h(0) = f1(0) = 0, h′(0) = f ′1(0) = −2δ2, h′′(α) = 2δ2ψ′′(vmin − 2αδ).

Then h(t) is twice differentiable, h(0) = 0, and h′(0) < 0. Since h′′(α) > 0, h(t) is
strictly convex and hence has a global minimum at some α∗ > 0. From (4.5), we
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have f ′′1 (α) ≤ h′′(α). As a result, we have f ′1(α) ≤ h′(α) and f1(α) ≤ h(α). Taking
α ≤ ᾱ, we have

h′(α) = h′(0) +

∫ α

0
h′′(ζ)dζ

= −2δ2 + 2δ2
∫ α

0
ψ′′(vmin − 2ξδ)dξ

= −2δ2 − 2δ2

2δ

∫ α

0
ψ′′(vmin − 2ξδ)d(vmin − ξδ)

= −2δ2 + δ(ψ′(vmin)− ψ′(vmin − 2αδ))

≤ −2δ2 + 2δ2 = 0,

where the inequality follows from (4.8). Since h′′′(α) = −4δ3ψ′′′(vmin − 2αδ) > 0,
h′′(α) is monotonically increasing in α. Thus, using Lemma 4.8, we have

f1(α) ≤ h(α) ≤ 1

2
αh′(0) = −αδ2.

Since f(α) ≤ f1(α), the lemma is proved. �

Theorem 4.10. Let α̃ be as defined in (4.14) and Ψ(v) ≥ 1. Then

f(α̃) ≤ −8
3
8Ψ(v)

3
8

41
.

Proof. Using Lemma 4.9, (4.14), and Lemma 4.1 we have

f(α̃) ≤ −α̃δ2 = − δ
3
4

4
√
2 + 32(43)

1
4

≤ −δ
3
4

41
≤ −8

3
8Ψ(v)

3
8

41
.

This completes the proof. �

Lemma 4.11 (Lemma 1.3.2 in [15]). Let t0, t1, . . . , tK̂ be a sequence of positive
numbers such that

tk+1 ≤ tk − γt1−β̃
k , k = 0, 1, . . . , K̂ − 1,

where γ > 0 and 0 < β̃ ≤ 1. Then K̂ ≤
⌊

tβ̃0
γβ̃

⌋
.

We define the value of Ψ(v) after the µ−update as Ψ0 and the subsequent values
in the same outer iteration are denoted as Ψk, k = 1, 2, . . . . Then we have

Ψ0 ≤ Ψ̃0,

where Ψ̃0 is defined in (3.7). Let K denote the total number of inner iterations per
outer iteration. Then we have

ΨK−1 > τ, 0 ≤ ΨK ≤ τ.

Lemma 4.12. Let Ψ̃0 be as defined in (3.7) and K the total number of inner
iterations in the outer iteration. Then we have

K ≤ 31Ψ̃
5
8
0 .
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Proof. Using Theorem 4.10 and Lemma 4.11 with γ := 8
3
8

41 and β̃ := 5
8 , we have

K ≤
(

41

83/8

)(
8

5

)
Ψ̃

5
8
0 ≤ 31Ψ̃

5
8
0 .

This completes the proof. �

Theorem 4.13. Let a LO problem be given, Ψ̃0 as defined in (3.7) and τ ≥ 1.
Then the total number of iterations to have an approximate solution with nµ < ϵ is
bounded by ⌈

31

θ
Ψ̃

5
8
0 log

n

ϵ

⌉
.

Proof. If the central path parameter µ has the initial value µ0 := 1 and is updated
by multiplying 1− θ with 0 ≤ θ < 1, then after at most⌈

1

θ
log

n

ϵ

⌉
iterations we have nµ < ϵ([16]). For the total number of iterations, we multiply the
number of inner iterations by that of outer iterations. Hence the total number of
iterations is bounded by ⌈

31

θ
Ψ̃

5
8
0 log

n

ϵ

⌉
.

This completes the proof. �
Remark 4.14. By Remark 3.7, for large-update methods with τ = O(n) and

θ = Θ(1), the algorithm has O(n
5
8 log n

ϵ ) iteration complexity which improves the
complexity for large-update IPMs based on the classical logarithmic barrier function.
For small-update methods, we have O(

√
n log n

ϵ ) iteration complexity which is the
best complexity result so far.
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