P,
o s,

Journal of Nonlinear and Convex Analysis g& % mm P.,uis’m
2 2
Volume 12, Number 3, 2011, 599-610 \‘i «m') ISSN 1880-5221 ONLINE JOURNAL
Sinee 1!

© copyright 2011

CONTROLLABILITY FOR NONLINEAR FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH DELAY TERMS

JIN-MUN JEONG, SU-JIN CHEON, AND HYUN-HEE RHO

ABSTRACT. In this paper, we deal with the approximate controllability for the
nonlinear functional differential equations with time delay and establish a vari-
ation of constant formula for solutions of the given equations. We replace the
compactness of fundamental operators by the compactness of a given Gelfand
triple spaces, and we need the inequality constraint on the range condition of the
controller.

1. INTRODUCTION

Let H and V be two complex Hilbert spaces forming a Gelfand triple V C H C V'*
with a pivot space H.

In this paper we investigate the approximate controllability for the following
nonlinear functional differential equation on H:

(1.1) z () + Ax(t) = ff)h g(t,s,z(t),x(t + s))u(ds) + (Bu)(t), 0<t<T,
2(0) = 4% 2(s) =g'(s) s€[-h,0).

Here, the principal operator A is given as a single valued, monotone operator,
which is hemicontinuous and coercive from V to V*. Here V* stands for the dual
space of V. If the nonlinear term belongs to L?(0, T; V*), the basic assumption made
in these investigations is taken from the regularity result for the quasi-autonomous
differential equation(see Theorem 2.6 of Chapter III in [3]).

Most studies have been devoted to the semilinear system without time delay, and
the paper treating the nonlinear system with delay are not many. The regularity of
solution of the semilinear functional differential equations with unbounded delays
has been surveyed in Jeong, Kwun and Park [7] and Vrabie [10]. The approximate
controllability for semilinear systems has been also studied in [7]. The existence
of solutions for a class of nonlinear evolution equations with a nonlinear operator
A were developed in many references [1, 2, 4, 6]. Ahmed and Xiang [2] gave some
existence results for the initial value problem in case where the nonlinear term is
not monotone, which improved Hirano’s result [6].

Recently, as for the some considerations on the trajectory set of semilinear par-
abolic equations and that of its corresponding linear system(in case h = 0), we
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refer to Naito[8] and [9, 12] and references therein. Carrasco and Lebia [5] dis-
cussed sufficient conditions for approximate controllability of parabolic equations
with delay.

We will first establish a variation of constant formula for solutions of the given
equation with a nonlinear operator A on L2(0,T; V)NW12(0, T; V*) under a general
condition of the Lipschitz continuity of the nonlinear operator, which is reasonable
and widely used in case of the nonlinear system. The main research direction is
to find conditions on the nonlinear term such that the regularity result of (1.1) is
preserved under perturbation.

We briefly explain the contents of this paper. Section 2 presents the preliminaries
and assumptions. In Section 3, we will obtain that almost all part of the regularity
for quasi-autonomous differential equations can also applicable to (1.1) with non-
linear perturbations. The approach used here is similar to that developed in [3] on
the general nonlinear evolution equations. Moreover in Section 4, we establish the
approximate controllability of control system (1.1) with condition on compactness
of the embedding V C H.

In order to prove the control problem, as in [7] we must assume the uniform
boundedness of the nonlinear term, although we have some remark on this hypoth-
esis. Since we apply the Leray-Schauder degree of mapping theorem in the proof
of the main theorem, we need some compactness hypothesis. So we make the nat-
ural assumption that the embedding V' C H is compact. Then the embedding
L2(0,T;V)NnWY2(0,T;V*) € L*(0,T; H) is compact in view of Aubin’s result [1],
and we show that the mapping which maps a control u to the mild solution of (1.1)
is a compact operator from L?(0,7T; H) to itself.

2.  PRELIMINARIES AND ASSUMPTIONS

If H is identified with its dual space, we may write V C H C V* densely and
the corresponding injections are continuous. The norms on V', H and V* will be
denoted by || - ||, | - | and || - ||+, respectively. Thus, in terms of the intermediate
theory we may assume that

(V> V*)%Q =H,
where (V,V*) 19 denotes the real interpolation space between V and V*. The
duality pairing between the element v; of V* and the element vo of V' is denoted
by (v1,v2), which is the ordinary inner product in H if vi,v9 € H. For the sake of
simplicity, we may consider

ull« < Jul <|lull, weV.
We note that a nonlinear operator A is said to be hemicontinuous on V' if
w—lim A(z + ty) = Az
t—0
for every x, y € V where "w — lim” indicates the weak convergence on V.

Let A:V — V* be given a monotone operator and hemicontinuous from V' to
V* such that

(2.1) { (Au — Av,u —v) > willu — ][> — walu — v|?,

[ Aull < wa([ful[ +1)
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for every u,v € V where wo is a real number and w, w3 are some positive constants.

It is well known that A is maximal monotone and R(A) = V* where R(A) denotes
the range of A.

Let £ and B be the Lebesgue o-field on [0, 00) and the Borel o-field on [—h, 0],
respectively. Let u be a Borel measure on [—h, 0] and g : [0,00) X [—h,0]xV xV — H
be a nonlinear mapping satisfying the following:

(i) For any =,y € V the mapping g(-, -, x,y) is strongly £ x B-measurable;
(ii) There exist positive constants Lo, L1, Lo such that

{ l9(t, 5,2, y) — g(t, 5,2, 9)| < Lz — 2| + La|ly — 9],

2.2
22) 9(t,5,0,0)| < Lo

for all (¢,s) € [0,00) x [=h,0] and z,Z,y,y € V.

Remark 2.1. The above operator g is the semilinear case of the nonlinear part of
quasilinear equations considered by Yong and Pan [11].

For € L?(—h,T;V), T > 0 we set

0
(2.3) Gltz) = /_hg(t, s 2(t), 2t + ))u(ds).

Here, as in [11] we consider the Borel measurable corrections of z(-).

Let U be a Banach space and the controller operator B be a bounded linear
operator from the Banach space L?(0,T;U) to L*(0,T; H).

Under assumptions mentioned above, we obtain the following result on the solv-
ability of (1.1) by virtue of Theorem 3.1 of [7].

Proposition 2.2. Let the assumptions (2.1) and (2.2) be satisfied. Then, for every
u € L*(0,T;U) and (¢°,g') € H x L*(0,T;V) the equation (1.1) has a unique
solution

xz e L?0,T;V)nC(0,T]; H) nWhH2(0,T; V*)

and there exists a constant C1; > 0 depending on T > 0 such that
(2.4) 2| z2ncrmre < C1(L+ 1° + g lz2 0.y + 1ullz20.7.07)-

3. CONTINUITY OF THE SOLUTION MAPPING
Let us concern with the quasi-autonomous differential equation
W) | Aw(t) = k(t), 0<t<T,
z(0) = ¢°,

where A satisfies the hypotheses mentioned in Section 2. The following result is
from Theorem 2.6 of Chapter III in [3].

(3.1)

Lemma 3.1. Let ¢° € H and k € L*(0,T;V*). Then there exists a unique solution
x of (8.1) belonging to

C([0,T]; H) N L*(0,T; V)N W12(0,T; V*)
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and satisfying

(3.2) 2l qom.mnrzorvynwreorve < Ca(lg° + 1kl 20.7:v+);

where Cq 1s a constant.
Acting on both sides of (3.1) by z(t), we have
5 2T +wille@)* < walz(®)? + (k(1), 2(2)).

As is seen Theorem 2.6 in [3], integrating from 0 to ¢t we can determine the
constant C5 > 0 in Lemma 3.1.
The following Lemma is from H. Brézis [[4]; Lemma A.5].

Lemma 3.2. Let m € L'(0,T;R) satisfying m(t) > 0 for all t € (0,T) and a > 0
be a constant. Let b be a continuous function on [0,T] satisfying the following
inequality:

—b2 < a+/m s, telo,T].

Then,
b(t)| < a+/0tm(s)ds, t € 0,T].

Proof. Let t

B.(t) = %(a+6)2 + /0 m(s)b(s)ds, € > 0.
Then

PO _opie), =< 0.1),

and
(3.3) Lb2 1) < Bo(t) < Bu(t), te[0,T]

Hence, we have

dﬁs( ) < \f\/ﬁ?

Since t — [¢(t) is absolutely contlnuous and

4 VB = P

2¢/Be(t) b
for all t € (0,7) , it holds
d 1
VA0 < o)

that is,

1 t
wm§mM+ﬂAWM&m@n

Therefore, combining this with (3.3), we conclude that

Dl < VEVED < VEVAO + | im(s)ds
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t
= a—i—e—i—/ m(s)ds, te0,T)
0
for arbitrary € > 0. O

Lemma 3.3. Letx € L>(—h,T;V), T > 0. Then the nonlinear term G(-, ) defined
by (2.8) belongs to L?(0,T; H) and

(3.4) G 2)|r20,m5m) < p([=h, O){LoVT
+ (L1 + La)|l2|| 200, 1,v) + L2HQlHL2(—h,O;v)}-
Moreover, if x1, xo € L?(—=h,T;V), then
(3.5) G (-, 21) = G( 22l 20,150y < ([=h,0])
x {(L1 + La)l|lz1 — @2||r20,1v) + Lollzy — 2lr2(—nop b
Proof. From (2,2) it is easily seen that
GG )| 20,1y < (=B, ON{LoVT

+ Lallzl| 20,y + Lall2|| L2 (<hrvy }

< ([, ON{LoVT + (L1 + Lo)l[2|| 2(075v) + Ll L2(—n0v) }-
The proof of (3.5) is similar. O

Lemma 3.4. Let (¢¥, g}, ki) € H x L*(0,T;V) x L*(0,T;V*) and x; fori =1, 2
be the solutions of the following equation:

doilt) 4 sz( )= Gt, ) + ki(t), 0<t<T,
xZ(O) = gz, xi(s) = gil(s) s € [—h,0).
Then, we have that for 0 < ¢ < w;

(35 1mw—mwﬁ+m—@/um@—m@Wm

Qu)zt

Sl = 87+ o [ ha(s) ~ ke )

t
+/ e?2=9)|Q (s, 21) — G(s,x2)| |21(s) — 22(s)|ds,
0

and
1 t
6D () a0 < lof 8l + 5 [ )~ Ra(o) s

t
+/ e “?%|G(s,x1) — G(t,x2)|ds.
0

Proof. For i =1, 2, we consider the following equation:

(38) { 20 4 Ayt

= G(t,zi) + (t)7 0<t<T,
xz(o)_gw ()Z

1(s) se€[-h,0).
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Multiplying on (3.8) by x1(t) — x2(t), we have

S a(t) — 2+l (1) — 220

< wolwy(t) — w2 (t)]? + |Gt 21) — G(t, ma)| w1 (t) — 22(t)]
+ |[z1(t) — 22 ()| k1 () — K2(D)]]+-
Put
H(t) = |G(t,21) — G(t, 22)| |z1(t) — z2(2)]-
Noting that for 0 < ¢ < wy
|21 () — wa(B)]| [k (t) = ka(t)[]« < cllar(t) — z2(t)]]* + i\lkl(t) — ka (117,
we have

(3.9) %Iﬂfl(t) — () + (w1 — ) /O |1 (s) — wa(s)|[*ds

1 t
< 5198 = 98P s [ far(o) — aals) s
0

1 t 5 t
0 [ ) = kas + [ aGs)as

From (3.9) it follows that
d t
(3.10) {eQth/ |z1(s) — xg(s)Ist}
dt 0
1 t
= 2672w2t{§‘1’1(t) - 372@)‘2 - W2/ |z1(s) — 332(3)’2‘15}

1
§2e*2‘“2t{f\g? —l—/ [|k1(s) — ka(s)]|5 ds+/ H(s)ds}.

Integrating (3.10) over (0,t) we have

_2w2t/ |$1 —-TZ )| ds

72W2t 9
<l - P / () — ka(s)]2ds}
+ 2/ / e ?27dr H (s)ds
1— e*QWQt
S a8 o [ ) — a2}
t 6720.125 _ 720.)2t
2 H
+ /0 — (s)ds
1— e*QWQt
S B o [ ) — a2}
1 t
4+ = (€—2w25 _ 6_2w2t)H(8)d8,

w2 Jo
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thus, we get

UJQ/ |581 —LUQ( )| ds <

ngt
5 {!gl — g9?

t
+ / |Ik1(s) — ka(s)| ]2 ds}—i—/ (€20~ — 1)H (s)ds.
Combining which with (3.9) it holds that

%\m(t) — 2a(t)? + / oa(s) — wa(s)][ds

2wgt
lo? — 3P / [k (s) — ka(s)|2ds} + / 229 B () ds
62wgt
= o /Hkl (5)|[2ds)

t
+/ e?2079)|G (s, 21) — G(s,32)| [21(s) — 2(s)|ds,
0

which implies

S (1) — w2 (1)) + e /O 21(s) — wa(s)|ds

1 1 [t
< Sllad = g8 + o [ 1lia(o) ~ kel 2ds)
0

¢
+/ e “?*|G(s,x1) — G(s,x2)|e”“?*|x1(s) — x2(s)|ds.
0
Hence, we obtain (3.7) by using Lemma 3.2. O

Theorem 3.5. Let the assumptions (2.1) and (2.2) be satisfied and (¢°,g', k) €
H x L*(0,T;V) x L?>(0,T;V*), Then the solution = of the equation

(3.11) ' (t) + Aw(t) = [°, g(t,s,2(t), x(t + s))p(ds) + k(t), 0<t<T,
' 2(0) =9¢% x(s)=g'(s) se[-h,0)

belongs to L*(0,T; V)N C([0,T); H) and the mapping
H x L*(0,T;V) x L*(0,T;V*) 3 (¢° ¢, k) — = € L*(0,T; V)N C([0,T]; H)
18 continuous.

Proof. From (3.6) and (3.7) in Lemma 3.4, it follows that
1 t

(3.12) f]xl(t) — xg(t)|2 + wl/ ||z1(s) — azg(s)Hst

Mﬂgl / ks (s) — ka(s) 12}

ARG (s, 21) — G5, 22) e {|g] — g3

\N‘
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/Hh (7)o }ds

+/ 2w2 t— s ’G(S,ﬂh) o G(S,l’g)‘/ ew2(S*T)|G(T7q;1) — G(T, 372)‘de8.
0 0

The third term of the right of (3.12) is estimated as

20J2t
(3.13) / |G(s,21) — G(s,22)|%ds.

We note that from (3.5) of Lemma 3.3 for 0 <t < T
(3.14) IG(,21) = G( @) p2(0,0.0m) < p([=h, 0])
x {(L1 + Lo)llz1 — wa|l2(0,6v) + Lallgi — B3llz2(—no07) }-
Let T7 < T be such that
N = wy — (4w2) " u([—h, 0])*(L1 + Lo)?(e*2Tr — 1) > 0.
Then we can choose a constant ¢; > 0 such that
N — cypu([=h, 0))2 (L1 4 Lo)2e®2T1 > 0
and
|G(s,21) = G(s,22) {9} — 98] + (2) /| Ik1 — kallL2(0,6v+)}

< 1Al = 81+ 202 llky el vy + 1| Gls, ) - Gls, )

Thus, the second term of the right of (3.12) is estimated as
(3.15) const{|g{ — g3 + (2¢) /| |k1 — kallr2 004}

T
+ Cle2w2T1 / ’G(ijl) — G(S,I'Q)’st-
0

Hence, from (3.13), (3.14) and (3.15) it follows that there exists a constant C' > 0
such that
(3.16) |21 — 22| 200, 73v)nc (0,17 H)

< C(lgY — 931 + llg1 — 931l r2(—nov) + 1K1 = kallz2(0.13v+))-

Suppose (g2, gk, kn) — (¢°, g%, k) in € H x L2(0,T1;V) x L*(0,Ty;V*), and let
r,, and x be the solutions (3.11) with (g%, g}, k) and (¢°, g*, k), respectively. Then,
by virtue of (3.16), we see that z,, — = in L?(0,Ty,V)NC([0,T1]; H). This implies
that x,(71) — x(T1) in H. Therefore the same argument shows that z, — z in

L*(Ty, min{2T1, T}; V) N C([Ty, min{2Ty, T}]; H).

Repeating this process, we conclude that z,, — = in L2(0,7;V)NC([0,T); H). O
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4. APPROXIMATE CONTROLLABILITY

We assume that the embedding V' C H is compact and A is a strongly continuous
operator from Vto V* satisfying (2.1). In this section we are interested in the
approximate controllability for the nonlinear functional control system (1.1) on H.

For h € L?(0,T; H) and let z; be the solution of the following equation with
B=1I

(4.1)

) L Aw(t) = G(t,z) +h(t), 0<t,
z(0)=0, z(s)=0 —h<s<O0.

Theorem 4.1. Let us define the solution mapping S from L*(0,T;V*) to L*(0,T; V)N
WL2(0,T; V*) by
(4.2) (Sh)(t) = zp(t), he L*0,T;V*).
Then, the mapping h +— Sh = xy, is compact from L*(0,T;V*) to L*(0,T; H).
Proof. With the aid of Lemma 3.1 and Proposition 2.2

1SR 20, )nwr20,v+) = [2nl| < Col|G (-, zh) + Rl|p2(0,1;v+)

< Cop([—h, ){LoVT + (L1 + L)zl z20m:v) } + Collhlr20.1.v+)

< Cop([=h, OD[LoVT + (L1 + La){Cr (1 + ||kl r2(0.2:v) ]

+ Ca|[h]|L2(0,1;v+)-

Hence, if h is bounded in L?(0,T;V*), then so is z in L2(0,T; V) NWL2(0, T; V*).
Since V is compactly embedded in H by assumption, the embedding L?(0,7; V) N
WY2(0,T;V*) C L*(0,T; H) is compact in view of Theorem 2 of J. P. Aubin [1].
Hence, the mapping h +— Sh = z, is compact from L?(0,T;V*) to L*(0,T; H). O

Let A and G be the Nemitsky operators corresponding to the maps A and G,
which are defined by A(z)(-) = Az(:) and G(h)(-) = G(-,xp), respectively. Then
since the solution z belongs to L?(—h,T;V) N W12(0,T;V*) c C([0,T]; H), it is
represented by

(4.3) onlt) = /O (I +G — AS)h)(s)ds,

From Theorem 4.1, it follows that G is a compact mapping from L?(0,7;V*) to
L?(0,T; H) and so is AS from L?(0,T;V*) to itself. The solution of (1.1) is denoted
by z(T'; g, u) associated with the nonlinear term g and a control u at the time 7.

Definition 4.2. The system (1.1) is said to be approximately controllable at
time T if the reachable set {z(T;g,u) : u € L?(0,T;U)} is dense in H, that is,
Cl{z(T;g,u) :u € L*(0,T;U)} = H.

We assume that
(G) g is uniformly bounded: there exists a constant M, such that

\g(t,s,x,y)’ S M97
forall x, y € V.
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Then it holds that
|G(t,2)| < Mgu([—h,0]),

and hence

(4.4) G 20,y = GG )l p2 0y < Mop([=h, DV

Theorem 4.3. Let the assumption (G) hold and let us assume that

(4.5) Cly : y(t) = Bu(t), a.e. u € L*(0,T;U)} = L*(0,T; H).
Then
(4.6) CH(G+1T—AS)h:he L*0,T;V*)} = L*(0,T; V*).

Thus, the system (1.1) is approximately controllable at time T
Proof. Let us fix Ty > 0 such that

(4.7) Y5 (22T _ 1) > 0,

4wiwo
Let z € L?(0,Tp; V*) and r be a constant such that
z e Urr = {.ZU S L2(O,T0; V*) : HxHLQ(O,To;V*) < 7"}.

Putting
1

2 2w T
N% = — (X2 _ 1),
40)1(4)2

Take a constant d > 0 such that
(4.8) {r 4+ wsNMyu([—h, 0))VTo + w3} (1 —w3N) ! < d.

Noting that L?(0, Tp; H) is a dense subspace of L2(0, Tp; V*), for every h € L?(0, Tp; V*),
consider the following equation:

{ 2 (t) + Az(t) = G(t,z) + h(t), 0<t,

(4.9) 2(0)=0, a(s)=0 —h<s<0.

Taking scalar product on both sides of (4.9) by x(t)
5|2 +willa@)]]* < wola(®)]* + |G(¢, @) + h(t)] |2(2)].
Integrating on [0, ¢], by the similar process of the proof (3.6) and (3.7) we get
1 t t
(410) Sl + wl/ [l (s)[|*ds < / 279G (s, x) + h(s)| |z(s)|ds,
0 0
and
t
(4.11) etz ()] < / e “?%|G(s,x) + h(s)|ds.
0

Putting
Hi(s) = |G(s,z) + h(s)|
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and combining (4.10) with (4.11) we obtain
412) O +en [ lllo)|Pds <
/Ot 62“’2<t_5)H1(5) /OS e“2(5=7) ) (1)drds
= 2wt /Ot e “?*Hy(s) /05 e “?THy(7)drds

— 2wat —wz’TH _ - 2L:J2t —UJQ’TH 2
e /OMS/ [(r)dryds = {/ [(7)dr}

< 262“’2'5/ e_QwQTdT/ Hl(T)2dT: — (et — / Hi(s
0 0

Noting that
G @) 20 sy < Myia([—h, O)VT,
it follows from (4.12) that
(4.13) ISPl 20,105y = [l £2(0,10:)
< N(||Pll20,mv+) + Myp([=h, 01)v/To).
In order to prove (4.6) we will use the topological degree theory for the equation
(4.14) z2=XMG—-AS)h+h, 0<A<1.
Let h be the solution of (4.14). Then since z € U, and from (4.13), (2.1) we have
[Pl 20,50+ <2l + [|ASR]] +[|GA]
<7+ ws(|IShl| + 1) + Myp([—h, 0})vTo
<7+ w3 N{[|h|[2(0,/1;v+) + Mgu([=h, 0)v/To} + ws
Mgp([~h, 0) /Ty,
and hence,
||B]| < {r + wsNMyu([—h,0])VTo + w3} (1 —wsN)~! < d.

It follows that h ¢ OU,; where 0U, stands for the boundary of Uy. Thus, from the
homotopy property of topological degree theory, there exists h € Uy such that the
equation
=(G+I-GS)h

holds. By virtue of the assumption (4.5), there exists a sequence {u,, } in L?(0, Tp; U)
such that Bu,, — hin L?(0,Tp; V*). Then by Theorem 3.5 we have that z(-; Bu,)
xp, in L2(0, Tp; V)NC([0, To); H). Let y € H. We can choose g € W2(0, Ty; V*) such
that g(0) = xo and g(Tp) = y and from the equation (4.14) there is h € L?(0, Ty; V*)
such that ¢’ = (G+1 —.AS)h. By the assumption (4.5) and Lemma 3.4 there exists
u € L?(0,Ty; U) such that

||zp — $Bu|\L2(0,T0;V)nC([o,TO];H) < Cs|lh — BUHL2(0,T0;V*)
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for some constant C'3 > 0. Thus, we have
To
ly —an(T)] = !/0 {((G+1—AS)h)(s) — (G + 1 — AS)Bu)(s)}ds|

< lzn — zBullL2(0.10:v)n0(0,11:8) < Cillh — Bul| 207,74
Therefore, the system (1.1) is approximately controllable at time Tp. Since the con-
dition (4.7) is independent of initial values, we can solve the equation in [Tp, 270
with the initial value (7). By repeating this process, the approximate controlla-
bility for (1.1) can be extended the interval [0, nTp] for natural number n, i.e., for
the initial 2(nTp) in the interval [nTp, (n + 1)Tp]. O
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