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refer to Naito[8] and [9, 12] and references therein. Carrasco and Lebia [5] dis-
cussed sufficient conditions for approximate controllability of parabolic equations
with delay.

We will first establish a variation of constant formula for solutions of the given
equation with a nonlinear operator A on L2(0, T ;V )∩W 1,2(0, T ;V ∗) under a general
condition of the Lipschitz continuity of the nonlinear operator, which is reasonable
and widely used in case of the nonlinear system. The main research direction is
to find conditions on the nonlinear term such that the regularity result of (1.1) is
preserved under perturbation.

We briefly explain the contents of this paper. Section 2 presents the preliminaries
and assumptions. In Section 3, we will obtain that almost all part of the regularity
for quasi-autonomous differential equations can also applicable to (1.1) with non-
linear perturbations. The approach used here is similar to that developed in [3] on
the general nonlinear evolution equations. Moreover in Section 4, we establish the
approximate controllability of control system (1.1) with condition on compactness
of the embedding V ⊂ H.

In order to prove the control problem, as in [7] we must assume the uniform
boundedness of the nonlinear term, although we have some remark on this hypoth-
esis. Since we apply the Leray-Schauder degree of mapping theorem in the proof
of the main theorem, we need some compactness hypothesis. So we make the nat-
ural assumption that the embedding V ⊂ H is compact. Then the embedding
L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ L2(0, T ;H) is compact in view of Aubin’s result [1],
and we show that the mapping which maps a control u to the mild solution of (1.1)
is a compact operator from L2(0, T ;H) to itself.

2. Preliminaries and Assumptions

If H is identified with its dual space, we may write V ⊂ H ⊂ V ∗ densely and
the corresponding injections are continuous. The norms on V , H and V ∗ will be
denoted by || · ||, | · | and || · ||∗, respectively. Thus, in terms of the intermediate
theory we may assume that

(V, V ∗) 1
2
,2 = H,

where (V, V ∗) 1
2
,2 denotes the real interpolation space between V and V ∗. The

duality pairing between the element v1 of V ∗ and the element v2 of V is denoted
by (v1, v2), which is the ordinary inner product in H if v1, v2 ∈ H. For the sake of
simplicity, we may consider

||u||∗ ≤ |u| ≤ ||u||, u ∈ V.

We note that a nonlinear operator A is said to be hemicontinuous on V if

w − lim
t→0

A(x+ ty) = Ax

for every x, y ∈ V where ”w − lim” indicates the weak convergence on V .
Let A : V −→ V ∗ be given a monotone operator and hemicontinuous from V to

V ∗ such that {
(Au−Av, u− v) ≥ ω1||u− v||2 − ω2|u− v|2,
||Au||∗ ≤ ω3(||u||+ 1)

(2.1)
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for every u, v ∈ V where ω2 is a real number and ω1, ω3 are some positive constants.
It is well known that A is maximal monotone and R(A) = V ∗ where R(A) denotes

the range of A.
Let L and B be the Lebesgue σ-field on [0,∞) and the Borel σ-field on [−h, 0],

respectively. Let µ be a Borel measure on [−h, 0] and g : [0,∞)×[−h, 0]×V ×V → H
be a nonlinear mapping satisfying the following:
(i) For any x, y ∈ V the mapping g(·, ·, x, y) is strongly L × B-measurable;
(ii) There exist positive constants L0, L1, L2 such that{

|g(t, s, x, y)− g(t, s, x̂, ŷ)| ≤ L1||x− x̂||+ L2||y − ŷ||,
|g(t, s, 0, 0)| ≤ L0

(2.2)

for all (t, s) ∈ [0,∞)× [−h, 0] and x, x̂, y, ŷ ∈ V .

Remark 2.1. The above operator g is the semilinear case of the nonlinear part of
quasilinear equations considered by Yong and Pan [11].

For x ∈ L2(−h, T ;V ), T > 0 we set

(2.3) G(t, x) =

∫ 0

−h
g(t, s, x(t), x(t+ s))µ(ds).

Here, as in [11] we consider the Borel measurable corrections of x(·).
Let U be a Banach space and the controller operator B be a bounded linear

operator from the Banach space L2(0, T ;U) to L2(0, T ;H).
Under assumptions mentioned above, we obtain the following result on the solv-

ability of (1.1) by virtue of Theorem 3.1 of [7].

Proposition 2.2. Let the assumptions (2.1) and (2.2) be satisfied. Then, for every
u ∈ L2(0, T ;U) and (g0, g1) ∈ H × L2(0, T ;V ) the equation (1.1) has a unique
solution

x ∈ L2(0, T ;V ) ∩ C([0, T ];H) ∩W 1,2(0, T ;V ∗)

and there exists a constant C1 > 0 depending on T > 0 such that

(2.4) ||x||L2∩C∩W 1,2 ≤ C1(1 + |g0|+ ||g1||L2(0,T ;V ) + ||u||L2(0,T ;U)).

3. Continuity of the solution mapping

Let us concern with the quasi-autonomous differential equation{
dx(t)
dt +Ax(t) = k(t), 0 < t ≤ T,

x(0) = g0,
(3.1)

where A satisfies the hypotheses mentioned in Section 2. The following result is
from Theorem 2.6 of Chapter III in [3].

Lemma 3.1. Let g0 ∈ H and k ∈ L2(0, T ;V ∗). Then there exists a unique solution
x of (3.1) belonging to

C([0, T ];H) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗)
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and satisfying

(3.2) ||x||C([0,T ];H)∩L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C2(|g0|+ ||k||L2(0,T ;V ∗)),

where C2 is a constant.

Acting on both sides of (3.1) by x(t), we have

1

2

d

dt
|x(t)|2 + ω1||x(t)||2 ≤ ω2|x(t)|2 + (k(t), x(t)).

As is seen Theorem 2.6 in [3], integrating from 0 to t we can determine the
constant C2 > 0 in Lemma 3.1.

The following Lemma is from H. Brézis [[4]; Lemma A.5].

Lemma 3.2. Let m ∈ L1(0, T ;R) satisfying m(t) ≥ 0 for all t ∈ (0, T ) and a ≥ 0
be a constant. Let b be a continuous function on [0, T ] satisfying the following
inequality:

1

2
b2(t) ≤ 1

2
a2 +

∫ t

0
m(s)b(s)ds, t ∈ [0, T ].

Then,

|b(t)| ≤ a+

∫ t

0
m(s)ds, t ∈ [0, T ].

Proof. Let

βϵ(t) =
1

2
(a+ ϵ)2 +

∫ t

0
m(s)b(s)ds, ϵ > 0.

Then
dβϵ(t)

dt
= m(t)b(t), τ ∈ (0, T ),

and

(3.3)
1

2
b2(t) ≤ β0(t) ≤ βϵ(t), t ∈ [0, T ].

Hence, we have
dβϵ(t)

dt
≤ m(t)

√
2
√

βϵ(t).

Since t → βϵ(t) is absolutely continuous and

d

dt

√
βϵ(t) =

1

2
√

βϵ(t)

dβϵ(t)

dt

for all t ∈ (0, T ) , it holds
d

dt

√
βϵ(t) ≤

1√
2
m(t),

that is, √
βϵ(t) ≤

√
βϵ(0) +

1√
2

∫ t

0
m(s)ds, t ∈ (0, T ).

Therefore, combining this with (3.3), we conclude that

|b(t)| ≤
√
2
√

βϵ(t) ≤
√
2
√

βϵ(0) +

∫ t

0
m(s)ds
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= a+ ϵ+

∫ t

0
m(s)ds, t ∈ [0, T ]

for arbitrary ϵ > 0. �

Lemma 3.3. Let x ∈ L2(−h, T ;V ), T > 0. Then the nonlinear term G(·, x) defined
by (2.3) belongs to L2(0, T ;H) and

||G(·, x)||L2(0,T ;H) ≤ µ([−h, 0]){L0

√
T(3.4)

+ (L1 + L2)||x||L2(0,T ;V ) + L2||g1||L2(−h,0;V )}.

Moreover, if x1, x2 ∈ L2(−h, T ;V ), then

||G(·, x1)−G(·, x2)||L2(0,T ;H) ≤ µ([−h, 0])(3.5)

× {(L1 + L2)||x1 − x2||L2(0,T ;V ) + L2||x1 − x2||L2(−h,0;V )}.

Proof. From (2,2) it is easily seen that

||G(·, x)||L2(0,T ;H) ≤ µ([−h, 0]){L0

√
T

+ L1||x||L2(0,T ;V ) + L2||x||L2(−h,T ;V )}

≤ µ([−h, 0]){L0

√
T + (L1 + L2)||x||L2(0,T ;V ) + L2||x||L2(−h,0;V )}.

The proof of (3.5) is similar. �

Lemma 3.4. Let (g0i , g
1
i , ki) ∈ H × L2(0, T ;V ) × L2(0, T ;V ∗) and xi for i = 1, 2

be the solutions of the following equation:{
dxi(t)
dt +Axi(t) = G(t, xi) + ki(t), 0 < t ≤ T,

xi(0) = g0i , xi(s) = g1i (s) s ∈ [−h, 0).

Then, we have that for 0 < c ≤ ω1

1

2
|x1(t)− x2(t)|2 + (ω1 − c)

∫ t

0
||x1(s)− x2(s)||2ds(3.6)

≤ e2ω2t

2
{|g01 − g02|2 +

1

2c

∫ t

0
||k1(s)− k2(s)||2∗ds}

+

∫ t

0
e2ω2(t−s)|G(s, x1)−G(s, x2)| |x1(s)− x2(s)|ds,

and

e−ω2t|x1(t)− x2(t)| ≤ |g01 − g02|+
1

2c

∫ t

0
||k1(s)− k2(s)||∗ds(3.7)

+

∫ t

0
e−ω2s|G(s, x1)−G(t, x2)|ds.

Proof. For i = 1, 2, we consider the following equation:{
dxi(t)
dt +Axi(t) = G(t, xi) + ki(t), 0 < t ≤ T,

xi(0) = g0i , xi(s) = g1i (s) s ∈ [−h, 0).
(3.8)
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Multiplying on (3.8) by x1(t)− x2(t), we have

1

2

d

dt
|x1(t)− x2(t)|2 + ω1||x1(t)− x2(t)||2

≤ ω2|x1(t)− x2(t)|2 + |G(t, x1)−G(t, x2)| |x1(t)− x2(t)|
+ ||x1(t)− x2(t)|| ||k1(t)− k2(t)||∗.

Put
H(t) = |G(t, x1)−G(t, x2)| |x1(t)− x2(t)|.

Noting that for 0 < c < ω1

||x1(t)− x2(t)|| ||k1(t)− k2(t)||∗ ≤ c||x1(t)− x2(t)||2 +
1

4c
||k1(t)− k2(t)||2∗,

we have

1

2
|x1(t)− x2(t)|2 + (ω1 − c)

∫ t

0
||x1(s)− x2(s)||2ds(3.9)

≤ 1

2
|g01 − g02|2 + ω2

∫ t

0
|x1(s)− x2(s)|2ds

+
1

4c

∫ t

0
||k1(s)− k2(s)||2∗ds+

∫ t

0
H(s)ds.

From (3.9) it follows that

d

dt
{e−2ω2t

∫ t

0
|x1(s)− x2(s)|2ds}(3.10)

= 2e−2ω2t{1
2
|x1(t)− x2(t)|2 − ω2

∫ t

0
|x1(s)− x2(s)|2ds}

≤ 2e−2ω2t{1
2
|g01 − g02|2 +

1

4c

∫ t

0
||k1(s)− k2(s)||2∗ds+

∫ t

0
H(s)ds}.

Integrating (3.10) over (0, t) we have

e−2ω2t

∫ t

0
|x1(s)− x2(s)|2ds

≤ 1− e−2ω2t

2ω2
{|g01 − g02|2 +

1

2c

∫ t

0
||k1(s)− k2(s)||2∗ds}

+ 2

∫ t

0

∫ t

s
e−2ω2τdτH(s)ds

=
1− e−2ω2t

2ω2
{|g01 − g02|2 +

1

2c

∫ t

0
||k1(s)− k2(s)||2∗ds}

+ 2

∫ t

0

e−2ω2s − e−2ω2t

2ω2
H(s)ds

=
1− e−2ω2t

2ω2
{|g01 − g02|2 +

1

2c

∫ t

0
||k1(s)− k2(s)||2∗ds}

+
1

ω2

∫ t

0
(e−2ω2s − e−2ω2t)H(s)ds,
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thus, we get

ω2

∫ t

0
|x1(s)− x2(s)|2ds ≤

e2ω2t − 1

2
{|g01 − g02|2

+
1

2c

∫ t

0
||k1(s)− k2(s)||2∗ds}+

∫ t

0
(e2ω2(t−s) − 1)H(s)ds.

Combining which with (3.9) it holds that

1

2
|x1(t)− x2(t)|2 + ω1

∫ t

0
||x1(s)− x2(s)||2ds

≤ e2ω2t

2
{|g01 − g02|2 +

1

2c

∫ t

0
||k1(s)− k2(s)||2∗ds}+

∫ t

0
e2ω2(t−s)H(s)ds

=
e2ω2t

2
{|g01 − g02|2 +

1

2c

∫ t

0
||k1(s)− k2(s)||2∗ds}

+

∫ t

0
e2ω2(t−s)|G(s, x1)−G(s, x2)| |x1(s)− x2(s)|ds,

which implies

1

2
(e−ω2t|x1(t)− x2(t)|)2 + ω1e

−2ω2t

∫ t

0
||x1(s)− x2(s)||2ds

≤ 1

2
{|g01 − g02|2 +

1

2c

∫ t

0
||k1(s)− k2(s)||2∗ds}

+

∫ t

0
e−ω2s|G(s, x1)−G(s, x2)|e−ω2s|x1(s)− x2(s)|ds.

Hence, we obtain (3.7) by using Lemma 3.2. �

Theorem 3.5. Let the assumptions (2.1) and (2.2) be satisfied and (g0, g1, k) ∈
H × L2(0, T ;V )× L2(0, T ;V ∗), Then the solution x of the equation

(3.11)

{
x

′
(t) +Ax(t) =

∫ 0
−h g(t, s, x(t), x(t+ s))µ(ds) + k(t), 0 < t ≤ T,

x(0) = g0, x(s) = g1(s) s ∈ [−h, 0)

belongs to L2(0, T ;V ) ∩ C([0, T ];H) and the mapping

H × L2(0, T ;V )× L2(0, T ;V ∗) ∋ (g0, g1, k) 7→ x ∈ L2(0, T ;V ) ∩ C([0, T ];H)

is continuous.

Proof. From (3.6) and (3.7) in Lemma 3.4, it follows that

1

2
|x1(t)− x2(t)|2 + ω1

∫ t

0
||x1(s)− x2(s)||2ds(3.12)

≤ 1

2
e2ω2t{|g01 − g02|2 +

1

2c

∫ t

0
||k1(s)− k2(s)||2∗}

+

∫ t

0
e2ω2(t−s)|G(s, x1)−G(s, x2)|eω2s{|g01 − g02|
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+
1

2c

∫ s

0
||k1(τ)− k2(τ)||∗dτ}ds

+

∫ t

0
e2ω2(t−s)|G(s, x1)−G(s, x2)|

∫ s

0
eω2(s−τ)|G(τ, x1)−G(τ, x2)|dτds.

The third term of the right of (3.12) is estimated as

(3.13)
(e2ω2t − 1)

4ω2

∫ t

0
|G(s, x1)−G(s, x2)|2ds.

We note that from (3.5) of Lemma 3.3 for 0 < t < T

||G(·, x1)−G(·, x2)||L2(0,t;H) ≤ µ([−h, 0])(3.14)

× {(L1 + L2)||x1 − x2||L2(0,t;V ) + L2||g11 − g22||L2(−h,0;V )}.

Let T1 < T be such that

N := ω1 − (4ω2)
−1µ([−h, 0])2(L1 + L2)

2(e2ω2T1 − 1) > 0.

Then we can choose a constant c1 > 0 such that

N − c1µ([−h, 0])2(L1 + L2)
2e2ω2T1 > 0

and

|G(s, x1)−G(s, x2)|{|g01 − g02|+ (2c)−1/2||k1 − k2||L2(0,t;V ∗)}

≤ 1

4c1
{|g01 − g02|+ (2c)−1/2||k1 − k2||L2(0,t;V ∗)}2 + c1|G(s, x1)−G(s, x2)|2.

Thus, the second term of the right of (3.12) is estimated as

const.{|g01 − g02|+ (2c)−1/2||k1 − k2||L2(0,T1;V ∗)}2(3.15)

+ c1e
2ω2T1

∫ T1

0
|G(s, x1)−G(s, x2)|2ds.

Hence, from (3.13), (3.14) and (3.15) it follows that there exists a constant C > 0
such that

||x1 − x2||L2(0,T ;V )∩C([0,T ];H)(3.16)

≤ C(|g01 − g02|+ ||g11 − g22||L2(−h,0;V ) + ||k1 − k2||L2(0,T1;V ∗)).

Suppose (g0n, g
1
n, kn) → (g0, g1, k) in ∈ H × L2(0, T1;V ) × L2(0, T1;V

∗), and let
xn and x be the solutions (3.11) with (g0n, g

1
n, kn) and (g0, g1, k), respectively. Then,

by virtue of (3.16), we see that xn → x in L2(0, T1, V ) ∩C([0, T1];H). This implies
that xn(T1) → x(T1) in H. Therefore the same argument shows that xn → x in

L2(T1,min{2T1, T};V ) ∩ C([T1,min{2T1, T}];H).

Repeating this process, we conclude that xn → x in L2(0, T ;V ) ∩ C([0, T ];H). �
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4. Approximate controllability

We assume that the embedding V ⊂ H is compact and A is a strongly continuous
operator from V to V ∗ satisfying (2.1). In this section we are interested in the
approximate controllability for the nonlinear functional control system (1.1) on H.

For h ∈ L2(0, T ;H) and let xh be the solution of the following equation with
B = I:

(4.1)

{
dx(t)
dt +Ax(t) = G(t, x) + h(t), 0 < t,

x(0) = 0, x(s) = 0 − h ≤ s ≤ 0.

Theorem 4.1. Let us define the solution mapping S from L2(0, T ;V ∗) to L2(0, T ;V )∩
W 1,2(0, T ;V ∗) by

(4.2) (Sh)(t) = xh(t), h ∈ L2(0, T ;V ∗).

Then, the mapping h 7→ Sh = xh is compact from L2(0, T ;V ∗) to L2(0, T ;H).

Proof. With the aid of Lemma 3.1 and Proposition 2.2

||Sh||L2(0,T ;V )∩W 1,2(0,T ;V ∗) = ||xh|| ≤ C2||G(·, xh) + h||L2(0,T ;V ∗)

≤ C2µ([−h, 0]){L0

√
T + (L1 + L2)||x||L2(0,T ;V )}+ C2||h||L2(0,T ;V ∗)

≤ C2µ([−h, 0])[L0

√
T + (L1 + L2){C1(1 + ||h||L2(0,T ;V ∗))}]

+ C2||h||L2(0,T ;V ∗).

Hence, if h is bounded in L2(0, T ;V ∗), then so is xh in L2(0, T ;V )∩W 1,2(0, T ;V ∗).
Since V is compactly embedded in H by assumption, the embedding L2(0, T ;V ) ∩
W 1,2(0, T ;V ∗) ⊂ L2(0, T ;H) is compact in view of Theorem 2 of J. P. Aubin [1].
Hence, the mapping h 7→ Sh = xh is compact from L2(0, T ;V ∗) to L2(0, T ;H). �

Let A and G be the Nemitsky operators corresponding to the maps A and G,
which are defined by A(x)(·) = Ax(·) and G(h)(·) = G(·, xh), respectively. Then
since the solution x belongs to L2(−h, T ;V ) ∩ W 1,2(0, T ;V ∗) ⊂ C([0, T ];H), it is
represented by

(4.3) xh(t) =

∫ t

0
((I + G −AS)h)(s)ds,

From Theorem 4.1, it follows that G is a compact mapping from L2(0, T ;V ∗) to
L2(0, T ;H) and so is AS from L2(0, T ;V ∗) to itself. The solution of (1.1) is denoted
by x(T ; g, u) associated with the nonlinear term g and a control u at the time T .

Definition 4.2. The system (1.1) is said to be approximately controllable at
time T if the reachable set {x(T ; g, u) : u ∈ L2(0, T ;U)} is dense in H, that is,
Cl{x(T ; g, u) : u ∈ L2(0, T ;U)} = H.

We assume that
(G) g is uniformly bounded: there exists a constant Mg such that

|g(t, s, x, y)| ≤ Mg,

for all x, y ∈ V .
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Then it holds that

|G(t, x)| ≤ Mgµ([−h, 0]),

and hence

(4.4) ||G(h)||L2(0,T ;H) = ||G(·, xh)||L2(0,T ;H) ≤ Mgµ([−h, 0])
√
T .

Theorem 4.3. Let the assumption (G) hold and let us assume that

(4.5) Cl{y : y(t) = Bu(t), a.e. u ∈ L2(0, T ;U)} = L2(0, T ;H).

Then

(4.6) Cl{(G + I −AS)h : h ∈ L2(0, T ;V ∗)} = L2(0, T ;V ∗).

Thus, the system (1.1) is approximately controllable at time T .

Proof. Let us fix T0 > 0 such that

(4.7)
ω3

4ω1ω2
(e2ω2T0 − 1) > 0.

Let z ∈ L2(0, T0;V
∗) and r be a constant such that

z ∈ Ur = {x ∈ L2(0, T0;V
∗) : ||x||L2(0,T0;V ∗) < r}.

Putting

N2 :=
1

4ω1ω2
(e2ω2T0 − 1),

Take a constant d > 0 such that

(4.8) {r + ω3NMgµ([−h, 0])
√
T 0 + ω3}(1− ω3N)−1 < d.

Noting that L2(0, T0;H) is a dense subspace of L2(0, T0;V
∗), for every h ∈ L2(0, T0;V

∗),
consider the following equation:

(4.9)

{
x

′
(t) +Ax(t) = G(t, x) + h(t), 0 < t,

x(0) = 0, x(s) = 0 − h ≤ s ≤ 0.

Taking scalar product on both sides of (4.9) by x(t)

1

2

d

dt
|x(t)|2 + ω1||x(t)||2 ≤ ω2|x(t)|2 + |G(t, x) + h(t)| |x(t)|.

Integrating on [0, t], by the similar process of the proof (3.6) and (3.7) we get

(4.10)
1

2
|x(t)|2 + ω1

∫ t

0
||x(s)||2ds ≤

∫ t

0
e2ω2(t−s)|G(s, x) + h(s)| |x(s)|ds,

and

(4.11) e−ω2t|x1(t)| ≤
∫ t

0
e−ω2s|G(s, x) + h(s)|ds.

Putting

H1(s) = |G(s, x) + h(s)|
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and combining (4.10) with (4.11) we obtain

1

2
|x(t)|2 + ω1

∫ t

0
||x(s)||2ds ≤(4.12) ∫ t

0
e2ω2(t−s)H1(s)

∫ s

0
eω2(s−τ)H1(τ)dτds

= e2ω2t

∫ t

0
e−ω2sH1(s)

∫ s

0
e−ω2τH1(τ)dτds

= e2ω2t

∫ t

0

1

2

d

ds
{
∫ s

0
e−ω2τH1(τ)dτ}2ds =

1

2
e2ω2t{

∫ t

0
e−ω2τH1(τ)dτ}2

≤ 1

2
e2ω2t

∫ t

0
e−2ω2τdτ

∫ t

0
H1(τ)

2dτ =
1

4ω2
(e2ω2t − 1)

∫ t

0
H1(s)

2ds.

Noting that

||G(·, x)||L2(0,T0;H) ≤ Mgµ([−h, 0])
√
T 0,

it follows from (4.12) that

||Sh||L2(0,T0;V ) = ||x||L2(0,T0;V )(4.13)

≤ N(||h||L2(0,T0;V ∗) +Mgµ([−h, 0])
√
T 0).

In order to prove (4.6) we will use the topological degree theory for the equation

z = λ(G −AS)h+ h, 0 ≤ λ ≤ 1.(4.14)

Let h be the solution of (4.14). Then since z ∈ Ur and from (4.13), (2.1) we have

||h||L2(0,T ;V ∗) ≤ ||z||+ ||ASh||+ ||Gh||

≤ r + ω3(||Sh||+ 1) +Mgµ([−h, 0])
√
T 0

≤ r + ω3N{||h||L2(0,T0;V ∗) +Mgµ([−h, 0])
√

T0}+ ω3

+Mgµ([−h, 0])
√

T0,

and hence,

||h|| ≤ {r + ω3NMgµ([−h, 0])
√
T 0 + ω3}(1− ω3N)−1 < d.

It follows that h /∈ ∂Ud where ∂Ud stands for the boundary of Ud. Thus, from the
homotopy property of topological degree theory, there exists h ∈ Ud such that the
equation

z = (G + I − GS)h
holds. By virtue of the assumption (4.5), there exists a sequence {un} in L2(0, T0;U)
such that Bun 7→ h in L2(0, T0;V

∗). Then by Theorem 3.5 we have that x(·;Bun) 7→
xh in L2(0, T0;V )∩C([0, T0];H). Let y ∈ H. We can choose g ∈ W 1,2(0, T0;V

∗) such
that g(0) = x0 and g(T0) = y and from the equation (4.14) there is h ∈ L2(0, T0;V

∗)

such that g
′
= (G+ I−AS)h. By the assumption (4.5) and Lemma 3.4 there exists

u ∈ L2(0, T0;U) such that

||xh − xBu||L2(0,T0;V )∩C([0,T0];H) ≤ C3||h−Bu||L2(0,T0;V ∗)
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for some constant C3 > 0. Thus, we have

|y − xh(T )| = |
∫ T0

0
{((G + I −AS)h)(s)− ((G + I −AS)Bu)(s)}ds|

≤ ||xh − xBu||L2(0,T0;V )∩C([0,T ];H) ≤ C1||h−Bu||L2(0,T ;V ∗).

Therefore, the system (1.1) is approximately controllable at time T0. Since the con-
dition (4.7) is independent of initial values, we can solve the equation in [T0, 2T0]
with the initial value x(T0). By repeating this process, the approximate controlla-
bility for (1.1) can be extended the interval [0, nT0] for natural number n, i.e., for
the initial x(nT0) in the interval [nT0, (n+ 1)T0]. �
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[4] H. Brézis, Opérateurs Maximaux Monotones et Semigroupes de Contractions dans un Espace

de Hilbert, North Holland, 1973.
[5] A. Carrasco and H. Lebia, Approximate controllability of a system of parabolic equations with

delay, J. Math. Anal. Appl. 345 (2008), 845–853.
[6] N. Hirano, Nonlinear evolution equations with nonmonotonic perturbations, Nonlinear Analy-

sis, T. M. A. 13 (1989), 599–609.
[7] J. M. Jeong, Y. C. Kwun and J. Y. Park, Approximate controllability for semilinear retarded

functional differential equations, J. Dynamics and Control Systems 5 (1999), 329–346.
[8] K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J.

Control Optim. 25 (1987), 715–722.
[9] N. Sukavanam and Nutan Kumar Tomar, Approximate controllability of semilinear delay con-

trol system, Nonlinear Func.Anal.Appl. 12 (2007), 53–59.
[10] I. I. Vrabie, An existence result for a class of nonlinear evolution equations in Banach spaces,

Nonlinear Analysis, T. M. A. 7 (1982), 711–722.
[11] J. Yong and L. Pan, Quasi-linear parabolic partial differential equations with delays in the

highest order spartial derivatives, J. Austral. Math. Soc. 54 (1993), 174–203.
[12] H. X. Zhou, Approximate controllability for a class of semilinear abstract equations, SIAM J.

Control Optim. 21 (1983), 551–565.

Manuscript received July 7, 2010

revised March 10, 2011

Jin-Mun Jeong
Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea

E-mail address: jmjeong@pknu.ac.kr

Su-Jin Cheon
Department of Mathematics, Pusan National University, Busan 608-735, Korea
E-mail address: hjwh12@hanmail.net

Hyun-Hee Rho
Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea

E-mail address: hhn9486@hanmail.net


