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for all x, y ∈ C and n ≥ 1, where kn :=
√
1 + γn → 1. It is also known [17] that

the class of κ-strict pseudo-contractions and the class of asymptotically κ-strict
pseudo-contractions are independent.

Iterative methods are often used to solve the fixed point equation Tx = x. The
most well-known method is perhaps the Picard successive iteration method when
T is a contraction. Picard’s method generates a sequence {xn} successively as
xn = Txn−1 for n ≥ 2 with x1 := x arbitrary, and this sequence converges in norm
to the unique fixed point of T . However, if T is not a contraction (for instance, if
T is nonexpansive), then Picard’s successive iteration fails, in general, to converge.
Instead, Mann’s iteration method [11] prevails, which, an averaged process in nature,
generates a sequence {xn} recursively by

(1.3) xn+1 = αnxn + (1− αn)Txn, n ≥ 0,

where the initial guess x0 ∈ C is arbitrarily chosen and the sequence {αn}∞n=0 lies
in the interval [0, 1].

The Mann’s algorithm for nonexpansive mappings has been extensively investi-
gated; see [1, 5, 9, 19, 25, 26, 27, 28] and the references therein. One of the well
known results is proven by Reich [19] for a nonexpansive mapping T : C → C,
which asserts the weak convergence of the sequence {xn} generated by (1.3) in a
uniformly convex Banach space with a Frechet differentiable norm under the con-
trol condition

∑∞
n=1 αn(1−αn) = ∞. However iterative methods for strict pseudo-

contractions are far less developed though Browder and Petryshyn [1] initiated their
work in 1967. Recently, Marino and Xu [12] developed and extended Reich’s re-
sult to strict pseudo-contractions in the Hilbert space setting. More precisely, they
proved the weak convergence of the Mann’s iteration process (1.3) for a κ-strict
pseudo-contraction T : C → C. Subsequently, an analogue of this result was inves-
tigated for the class of asymptotically κ-strict pseudo-contractions by Kim and Xu
[7] with the following modified Mann’s algorithm:

(1.4) xn+1 = αnxn + (1− αn)T
nxn, n ≥ 0,

where the initial guess x0 ∈ C is arbitrarily chosen and the sequence {αn}∞n=0 lies
in the interval [0, 1]; see also [6, 8, 20, 21, 24] and the references therein for conver-
gence of the modified Mann iteration process (1.4) for asymptotically nonexpansive
mappings.

It is known that the Mann iteration method (1.3) is in general not strongly con-
vergent [3] for either nonexpansive mappings or strict pseudo-contractions. In 2003,
a method (called hybrid method) to modify the Mann iteration method (1.3) so
that strong convergence is guaranteed has been proposed by Nakajo and Takahashi
[15] for a single nonexpansive mapping T with Fix(T ) ̸= ∅ in a Hilbert space H:

(1.5)


x0 ∈ C chosen arbitrarily,
yn = αnxn + (1− αn)Txn,
Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0, n ≥ 0,

where PK denotes the metric projection from H onto a nonempty closed convex
subset K of H. They proved that if the sequence {αn}∞n=0 is bounded above from
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one, then the sequence {xn} generated by (1.5) converges strongly to PFix(T )x0.
This result has been extended to the class of asymptotically nonexpansive mappings
by Kim and Xu [6], and subsequently to the one of κ-strict pseudo-contractions by
Marino and Xu [13] as follows.

Theorem MX (see Theorem 4.1 of [13]) Let C be a closed convex subset of a Hilbert
space H. Let T : C → C be a κ-strict pseudo-contraction for some 0 ≤ κ < 1 and
assume that the fixed point set Fix(T ) of T is nonempty. Let {xn} be the sequence
generated by the following hybrid algorithm:

(1.6)


x0 ∈ C chosen arbitrarily,
yn = αnxn + (1− αn)Txn,
Cn = {z ∈ C : ∥yn − z∥2 ≤ ∥xn − z∥2 + (1− αn)(κ− αn)∥xn − Txn∥2},
Qn = {z ∈ C : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0, n ≥ 0.

Assume that the control sequence {αn}∞n=0 is chosen so that αn < 1 for all n ≥ 0.
Then {xn} converges strongly to PFix(T )x0.

Quite recently, Kim and Xu [7] gave an analogue of Theorem MX for the class of
asymptotically κ-strict pseudo-contractions.

Theorem KX (see Theorem 4.1 of [7]) Let C be a closed convex subset of a
Hilbert space H and let T : C → C be an asymptotically κ-strict pseudo-contraction
for some 0 ≤ κ < 1. Assume that the fixed point set Fix(T ) of T is nonempty and
bounded. Let {xn} be the sequence generated by the following hybrid algorithm:

(1.7)



x0 ∈ C chosen arbitrarily,
yn = αnxn + (1− αn)T

nxn,
Cn = {z ∈ C : ∥yn − z∥2 ≤ ∥xn − z∥2 + (1− αn)(κ− αn)

∥xn − Tnxn∥2 + θn},
Qn = {z ∈ C : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0, n ≥ 0

where

θn = △2
n(1− αn)γn → 0 as n → ∞, △n = sup{∥xn − z∥2 : z ∈ Fix(T )} < ∞.

Assume that the control sequence {αn}∞n=0 is chosen so that lim supn→∞ αn < 1.
Then {xn} converges strongly to PFix(T )x0.

From now on, motivated by definition of (1.2), we say that a family ℑ = {Sn :
C → C, n ≥ 0} of self-mappings of C is asymptotically κ-strict pseudo-contractive
on C if there exist a constant κ ∈ [0, 1) and a sequence {γn}∞n=0 of nonnegative real
numbers with limn→∞ γn = 0 such that

(1.8) ∥Snx− Sny∥2 ≤ (1 + γn)∥x− y∥2 + κ∥(I − Sn)x− (I − Sn)y∥2

for all x, y ∈ C and all integers n ≥ 0. When (1.8) holds, ℑ is often said to be
an asymptotically κ-strict pseudo-contractive family. Especially, when κ = 0 in
(1.8), the family ℑ is said to be asymptotically nonexpansive. Notice also that the
asymptotically strict pseudo-contractive family ℑ = {Sn : C → C, n ≥ 0} obviously
includes the class of strict pseudo-contractions and the class of asymptotically strict
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pseudo-contractions, simply by taking Sn := T (or Tn), n ≥ 0, for a strict pseudo-
contraction (or asymptotically strict pseudo-contraction) T : C → C, respectively.

In this paper we first propose either the following modified Mann iteration method
for an asymptotically κ-strict pseudo-contractive family ℑ = {Sn : C → C, n ≥ 0}:

(1.9) xn+1 = αnxn + (1− αn)Snxn, n ≥ 0,

where the initial guess x0 ∈ C is arbitrarily chosen, or the following hybrid iteration
method

(1.10)



x0 ∈ C chosen arbitrarily,
yn = αnxn + (1− αn)Snxn,
Cn = {z ∈ C : ∥yn − z∥2 ≤ ∥xn − z∥2 + (1− αn)[θn

+(κ− αn)∥xn − Snxn∥2]},
Qn = {z ∈ C : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0, n ≥ 0,

where

θn = γn · sup{∥xn − z∥2 : z ∈ F := ∩∞
n=0Fix(Sn)},

and the sequence {αn}∞n=0 lies in the interval [0, 1].
Motivated and inspired by the research works in [12], [7] and [10], we next study

the weak convergence of the above algorithm (1.9) and strong convergence of the
hybrid algorithm (1.10), respectively, for such an asymptotically strict pseudo-
contractive family ℑ = {Sn : C → C, n ≥ 0}. Also, some applications for the
parallel algorithm (4.3) and the cyclic algorithm (4.16) relating to our main results
are added, which extend and improve the corresponding ones due to Lopez Acedo
and Xu [10] for a finite family {Ti}N−1

i=0 of κi-strict pseudo-contractions.

2. Preliminaries

Let H be a real Hilbert space with the duality product ⟨·, ·⟩. When {xn} is a
sequence in H, we denote the strong convergence of {xn} to x ∈ H by xn → x and
the weak convergence by xn ⇀ x. We also denote the weak ω-limit set of {xn} by

ωw(xn) = {x : ∃xnj ⇀ x}.

We now need some facts and tools in a real Hilbert space H which are listed as
lemmas below (see [14] for necessary proofs of Lemmas 2.2 and 2.5).

Lemma 2.1. Let H be a real Hilbert space. There hold the following identities
(which will be used in the various places in the proofs of the results of this paper).

(i) ∥x− y∥2 = ∥x∥2 − ∥y∥2 − 2⟨x− y, y⟩, x, y ∈ H.

(ii) For all λi ∈ [0, 1] with
∑N−1

i=0 λi = 1, and x, y ∈ H, the following equality
holds:

(2.1) ∥
N−1∑
i=0

λixi∥2 =
N−1∑
i=0

λi∥xi∥2 −
N−1∑
i<j

λiλj∥xi − xj∥2.

In particular, for n = 2 we have

(2.2) ∥tx+ (1− t)y∥2 = t∥x∥2 + (1− t)∥y∥2 − t(1− t)∥x− y∥2, t ∈ [0, 1].
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Lemma 2.2 ([14]). Let H be a real Hilbert space. Given a nonempty closed convex
subset C ⊂ H and points x, y, z ∈ H. Given also a real number a ∈ R. The set{

v ∈ C : ∥y − v∥2 ≤ ∥x− v∥2 + ⟨z, v⟩+ a
}

is convex (and closed).

Recall that given a nonempty closed convex subset K of a real Hilbert space H,
the nearest point projection PK from H onto K assigns to each x ∈ H its nearest
point denoted PKx in K from x to K; that is, PKx is the unique point in K with
the property

∥x− PKx∥ ≤ ∥x− y∥, y ∈ K.

Lemma 2.3. Let K be a nonempty closed convex subset of real Hilbert space H.
Given x ∈ H and z ∈ K. Then z = PKx if and only if there holds the relation:

⟨x− z, y − z⟩ ≤ 0, y ∈ K.

Lemma 2.4 ([10]). Let K be a nonempty closed convex subset of H. Let {xn} be
a bounded sequence in H. Assume

(i) The weak ω-limit set ωw(xn) ⊂ K.
(ii) For each z ∈ K, limn→∞ ∥xn − z∥ exists.

Then {xn} is weakly convergent to a point in K.

Lemma 2.5 ([14]). Let K be a nonempty closed convex subset of H. Let {xn} be
a sequence in H and x0 ∈ H. Let q = PKx0. If {xn} is such that ωw(xn) ⊂ K and
satisfies the condition

(2.3) ∥xn − x0∥ ≤ ∥q − x0∥, n ≥ 1.

Then xn → q.

We also need the following lemmas.

Lemma 2.6 ([23]). Assume {an} is a sequence of nonnegative real numbers satis-
fying the property

an+1 ≤ (1 + γn)an, n ≥ n0

for some positive integer n0, where {γn} is a sequence of nonnegative real numbers
such that

∑∞
n=1 γn < ∞. Then limn→∞ an exists.

Proposition 2.7 ([7]). Assume C is a closed convex subset of a Hilbert space H
and let T : C → C be an asymptotically κ-strict pseudo-contraction.

(i) For each n ≥ 1, Tn satisfies the Lipschitz condition:

(2.4) ∥Tnx− Tny∥ ≤ Ln∥x− y∥, x, y ∈ C,

where Ln =
κ+

√
1+γn(1−κ)

1−κ (later Ln is called the Lipschitz constant of Tn).

(ii) The demiclosedness principle holds for I − T in the sense that if {xn} is
a sequence in C such that xn ⇀ x0 and lim supm→∞ lim supn→∞ ∥xn −
Tmxn∥ = 0, then (I − T )x0 = 0. In particular,

xn ⇀ x0 and (I − T )xn → 0 ⇒ (I − T )x0 = 0.

(iii) The fixed point set Fix(T ) of T is closed and convex so that the projection
PFix(T ) is well-defined.
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3. Convergence theorems

We begin with the following lemmas which are useful in our further discussion.

Lemma 3.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let
a family ℑ = {Sn : C → C, n ≥ 0} be asymptotically κ-strict pseudo-contractive on
C. Then, for each n ≥ 0, Sn satisfies the Lipschitz condition, namely,

(3.1) ∥Snx− Sny∥ ≤ Ln∥x− y∥,

where Ln :=
κ+

√
1+γn(1−κ)

1−κ → 1+κ
1−κ as n → ∞.

Proof. Similarly, (3.1) can be derived by replacing Tn in the proof of Proposition
2.6 (i) in [7] with Sn. �

Remark 3.2. Note that the common fixed point set F := ∩∞
n=0Fix(Sn) is closed,

but we don’t know whether it is convex or not. However, it is not hard to see that
F is convex provided the family ℑ = {Sn : C → C, n ≥ 0} satisfies the following
continuity condition:

(3.2) ∀ v ∈ C, ∥Snv − v∥ → 0 ⇒ v ∈ F.

Indeed, let p, q ∈ F and v := λp + (1 − λ)q ∈ C with λ ∈ (0, 1). To show the
convexity of F , we must show that ∥Snv − v∥ → 0. Now use (ii) of Lemma 2.1 and
(1.8) to get

∥Snv − v∥2 = ∥λ(Snv − p) + (1− λ)(Snv − q)∥2

= λ∥Snv − Snp∥2 + (1− λ)∥Snv − Snq∥2 − λ(1− λ)∥p− q∥2

≤ λ[(1 + γn)∥v − p∥2 + κ∥v − Snv∥2] +
(1− λ)[(1 + γn)∥v − q∥2 + κ∥v − Snv∥2]− λ(1− λ)∥p− q∥2.

Thus we have

(1− κ)∥Snv − v∥2 ≤ λ(1− λ)(1 + γn)∥p− q∥2 − λ(1− λ)∥p− q∥2

= λ(1− λ)γn∥p− q∥2 → 0

because γn → 0 as n → ∞. So, we obtain that ∥Snv − v∥ → 0.

Lemma 3.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let
a family ℑ = {Sn : C → C, n ≥ 0} be asymptotically κ-strict pseudo-contractive on
C. Assume that F ̸= ∅ and the control sequences {γn}∞n=0 and {αn}∞n=0 are chosen
so that

(i)
∑∞

n=0 γn < ∞, and
(ii) κ+ ϵ ≤ αn ≤ 1− ϵ, where ϵ ∈ (0, 1) is a small enough constant.

Starting from an arbitrarily given x0 ∈ C, let {xn} be the sequence generated by the
algorithm (1.9). Then there hold the following properties.

(a) For each q ∈ co(F ), limn→∞ ∥xn − q∥ exists, whereco(F ) denotes the closed
convex hull of F .

(b) ∥xn − Snxn∥ → 0 and, furthermore, ∥xn − xn+1∥ → 0 as n → ∞.
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Proof. (a) First we show that limn→∞ ∥xn − p∥ exists for all p ∈ F . Indeed, let
p ∈ F . By virtue of (1.8), we see

∥Snxn − p∥2 = ∥Snxn − Snp∥2 ≤ (1 + γn)∥xn − p∥2 + κ∥xn − Snxn∥2.

Then this jointed with the identity (2.2) and the hypothesis (ii) yields

∥xn+1 − p∥2 = ∥αn(xn − p) + (1− αn)(Snxn − p)∥2

= αn∥xn − p∥2 + (1− αn)∥Snxn − p∥2 − αn(1− αn)∥xn − Snxn∥2

≤ [1 + γn(1− αn)]∥xn − p∥2 − (1− αn)(αn − κ)∥xn − Snxn∥2

≤ (1 + γn)∥xn − p∥2 − ϵ2∥xn − Snxn∥2,(3.3)

in particular,

∥xn+1 − p∥2 ≤ (1 + γn)∥xn − p∥2

and, since
∑∞

n=0 γn < ∞ by (i), an application of Lemma 2.6 ensures that limn→∞ ∥xn−
p∥ exists. Next, let q ∈ co(F ), that is,

q =
N−1∑
i=0

λipi,

where all pi ∈ F and λi ∈ [0, 1] such that
∑N−1

i=0 λi = 1. Using the identity (2.1),
we have

∥xn − q∥2 = ∥
N−1∑
i=0

λi(xn − pi)∥2

=

N−1∑
i=0

λi∥xn − pi∥2 −
N−1∑
i<j

λiλj∥pi − pj∥2

for all n. Since limn→∞ ∥xn − pi∥ exists for i = 0, 1, . . . , N − 1, the above identity
yields

lim
n→∞

∥xn − q∥2 =
N−1∑
i=0

λi lim
n→∞

∥xn − pi∥2 −
N−1∑
i<j

λiλj∥pi − pj∥2

and hence limn→∞ ∥xn − q∥ exists for all q ∈ co(F ),which quickly gives (a).
(b) Since {xn} is bounded, so is {Snxn}. Now rewrite (3.3) in the form

∥xn − Snxn∥2 ≤
1

ϵ2
(∥xn − p∥2 − ∥xn+1 − p∥2) + γn

ϵ2
∥xn − p∥.

As γn → 0 and {xn} is bounded as n → ∞, we get

(3.4) ∥xn − Snxn∥ → 0.

From definition of xn+1, it follows that

(3.5) ∥xn+1 − xn∥ = (1− αn)∥xn − Snxn∥ → 0.

Hence (b) is obtained, which completes the proof. �



584 K.-Y. KIM AND T.-H. KIM

Lemma 3.4. Let C be a nonempty closed convex subset of a Hilbert space H. Let
a family ℑ = {Sn : C → C, n ≥ 0} be asymptotically κ-strict pseudo-contractive on
C. Assume that F is a nonempty bounded subset of C, and also that the control
sequence {αn}∞n=0 is chosen so that 0 ≤ αn < 1 for n ≥ 0. Let {xn} be the sequence
generated by the hybrid algorithm (1.10), starting from an arbitrarily given x0 ∈ C.
Then there hold the following properties.

(a) ∥xn − x0∥ ≤ ∥q − x0∥ for all n ≥ 1, where q := Pco(F )x0.
(b) ∥xn − xn+1∥ → 0 and, furthermore, ∥xn − Snxn∥ → 0 as n → ∞.
(c) ∥yn − xn∥ → 0 as n → ∞.

Proof. First observe that Cn is closed convex by Lemma 2.2 and also that Qn is
closed convex for all n ≥ 0. Next we show that F ⊂ Cn for n ≥ 0. Indeed, we have,
for all p ∈ F , replacing xn+1 in (3.3) with yn we have

∥yn − p∥2 = ∥αn(xn − p) + (1− αn)(Snxn − p)∥2

≤ [1 + γn(1− αn)]∥xn − p∥2 − (1− αn)(αn − κ)∥xn − Snxn∥2

≤ ∥xn − p∥2 + (1− αn)[θn + (κ− αn)∥xn − Snxn∥2]

and thus p ∈ Cn for all n ≥ 0. This shows F ⊂ Cn for each n ≥ 0.
Next we show that

(3.6) F ⊂ Qn, n ≥ 0.

We prove this by induction. For n = 0, we have F ⊂ C = Q0. Assume that F ⊂ Qk.
Since xk+1 is the projection of x onto Ck ∩Qk, by Lemma 2.3 we have

⟨xk+1 − z, x0 − xk+1⟩ ≥ 0, z ∈ Ck ∩Qk.

As F ⊂ Ck∩Qk by the induction assumption, the last inequality holds, in particular,
for all z ∈ F . This together with the definition of Qk+1 implies that F ⊂ Qk+1.
Hence (3.6) holds for all n ≥ 0, and xn is well defined for all n. Furthermore, since
Cn ∩Qn is closed and convex, it follows from F ⊂ Cn ∩Qn that

co(F ) ⊂ Cn ∩Qn, n ≥ 0.

Notice that the definition of Qn actually implies xn = PQnx0. This together with
the fact co(F ) ⊂ Qn further implies

∥xn − x0∥ ≤ ∥p− x0∥, p ∈ co(F ).

In particular, {xn} is bounded and

(3.7) ∥xn − x0∥ ≤ ∥q − x0∥, where q := Pco(F )x0.

Hence (a) is fulfilled.
The fact xn+1 ∈ Qn asserts that ⟨xn+1 − xn, xn − x0⟩ ≥ 0. This together with

Lemma 2.1 (i) implies

∥xn+1 − xn∥2 = ∥(xn+1 − x0)− (xn − x0)∥2

= ∥xn+1 − x0∥2 − ∥xn − x0∥2 − 2⟨xn+1 − xn, xn − x0⟩
≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2.(3.8)
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This implies that the sequence {∥xn − x0∥} is increasing. Since it is also bounded,
we see that limn→∞ ∥xn−x0∥ exists. Note that since {xn} is bounded, so is {Snxn}.
Then it turns out from (3.8) that

(3.9) ∥xn+1 − xn∥ → 0.

To prove the second part of (b), i.e., ∥xn − Snxn∥ → 0, use the fact xn+1 ∈ Cn to
get

∥yn − xn+1∥2

≤ ∥xn − xn+1∥2 + (1− αn)[θn + (κ− αn)∥xn − Snxn∥2].(3.10)

On the other hand, by virtue of yn = αnxn+(1−αn)Snxn and (2.2) in Lemma 2.1,
we have

∥yn − xn+1∥2 = ∥αn(xn − xn+1) + (1− αn)(Snxn − xn+1)∥2

= αn∥xn − xn+1∥2 + (1− αn)∥Snxn − xn+1∥2

−αn(1− αn)∥xn − Snxn∥2.
After substituting this equality into (3.10), by simplifying and dividing both sides
by (1− αn) (note that αn < 1 for all n), we arrive at

∥xn+1 − Snxn∥2 ≤ ∥xn+1 − xn∥2 + θn + κ∥xn − Snxn∥2.(3.11)

Also, since

∥xn+1 − Snxn∥2 = ∥(xn+1 − xn) + (xn − Snxn)∥2

= ∥xn+1 − xn∥2 + ∥xn − Snxn∥2 − 2⟨xn − xn+1, xn − Snxn⟩
by the parallelogram law, substituting this equality into (3.11) and simplifying, we
have

(1− κ)∥xn − Snxn∥2 ≤ θn + 2⟨xn − xn+1, xn − Snxn⟩
≤ θn + 2∥xn − xn+1∥ ∥xn − Snxn∥.

Since θn → 0 and ∥xn − xn+1∥ → 0 by (3.9), solving this quadratic inequality in
∥xn−Snxn∥2 yields limn→∞ ∥xn−Snxn∥ = 0. Hence (b) is proven. Finally, (c) can
be immediately derived by combining (3.10) and (b). �

Now we present the weak convergence of the algorithm (1.9) and the strong
convergence of the hybrid algorithm (1.10) for an asymptotically strict pseudo-
contractive family ℑ = {Sn : C → C, n ≥ 0}.

Theorem 3.5. Under the same hypotheses with Lemma 3.3, assume, in addition,
that ωw(xn) ⊂ F and ℑ satisfies the continuity condition (3.2). Then {xn} converges
weakly to a point of F .

Proof. Following Remark 3.2, we notice that the set F is closed and convex. By (a)
of Lemma 3.3, limn→∞ ∥xn − p∥ exists for p ∈ F . Also, since ωw(xn) ⊂ F by the
assumption, an application of Lemma 2.4 with K := F ensures that {xn} converges
weakly to a point in F . �
Theorem 3.6. Under the same hypotheses with Lemma 3.4, assume, in addition,
that ωw(xn) ⊂ F and ℑ satisfies the continuity condition (3.2). Then xn → PFx0.
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Proof. Obviously, F is closed and convex. Combined the assumption ωw(xn) ⊂ F
with (a) of Lemma 3.4, an application of Lemma 2.5 (with K := F ) ensures that
xn → q, where q = PFx. �

We here give an example of an asymptotically strict pseudo-contractive family of
self-mappings which is not asymptotically nonexpansive.

Example 3.7. Let C = H = ℓ2 and t > 1, p ≥ 1. Then we can define

Snx = −
(
t+

1

np

)
x, x ∈ C

for each n ≥ 1 and let S0 = I, the identity mapping on C. Then, F := ∩∞
n=0Fix(Sn) =

{0}, the family ℑ = {Sn : C → C, n ≥ 0} is obviously not asymptotically nonex-
pansive, but asymptotically κ-strict pseudo-contractive on C for any κ ∈ [ t−1

t+1 , 1).

Indeed, let x, y ∈ C and t−1
t+1 ≤ κ < 1. Since

∥Snx− Sny∥2 =
(
t+

1

np

)2
∥x− y∥2,

∥(I − Sn)x− (I − Sn)y∥2 =
(
1 + t+

1

np

)2
∥x− y∥2,

and also,(
t+

1

np

)2
− κ

(
1 + t+

1

np

)2
≤

(
t+

1

np

)2
− t− 1

t+ 1

(
1 + t+

1

np

)2

= 1 +
2

np
+

2

t+ 1

( 1

np

)2

< 1 +
3

np
,

we have

∥Snx− Sny∥2 =
[(

t+
1

n

)2
− κ

(
1 + t+

1

n

)2]
∥x− y∥2

+κ
(
1 + t+

1

n

)2
∥x− y∥2

≤
(
1 +

3

np

)
∥x− y∥2 + κ

(
1 + t+

1

n

)2
∥x− y∥2

= (1 + γn)∥x− y∥2 + κ∥(I − Sn)x− (I − Sn)y∥2,
where γn := 3

np (note that
∑∞

n=1 γn < ∞ for p > 1; see (i) of Lemma 3.3). There-
fore, ℑ = {Sn : C → C, n ≥ 0} is asymptotically κ-strict pseudo-contractive on C
for any κ satisfying t−1

t+1 ≤ κ < 1.

Remark 3.8. Note that if the family ℑ = {Sn : C → C, n ≥ 0} is given as in Example
3.7 with p > 1, and {xn} is generated by the algorithm (1.9), then ωw(xn) =
{0} = F . In fact, assume without loss of generality that xn ⇀ z ∈ C. Since
∥xn − xn+1∥ → 0 by (b) of Lemma 3.3, xn+1 ⇀ z too. Now choose a subsequence
{nk} of {n} such that αnk

→ α ∈ [κ + ϵ, 1 − ϵ] by (ii) of Lemma 3.3 as k → ∞.
Then the algorithm (1.9) yields

xnk+1 = αnk
xnk

− (1− αnk
)
(
t+

1

nk

)
xnk
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and also

⟨xnk+1, y⟩ = [αnk
− (1− αnk

)(t+
1

nk
)]⟨xnk

, y⟩, y ∈ H.

Now taking the limit on both sides as k → ∞, we get

⟨z, y⟩ = [α− (1− α)t]⟨z, y⟩ ⇔ (1− α)(1 + t)⟨z, y⟩ = 0

for all y ∈ H. In particular, choosing y = z yields z = 0. Therefore ωw(xn) ⊂ {0}.
For the converse inclusion, since {xn} is bounded; hence ωw(xn) ̸= ∅, the same
argumentation as above gives

xn ⇀ 0 ∈ ωw(xn),

which concludes that ωw(xn) = {0}.
On the other hand, if the sequence {xn} is defined by the hybrid algorithm (1.10)

and lim supn→∞ αn < 1, then ωw(xn) = {0} can be similarly proven by virtue
of (c) of Lemma 3.4. Consequently, our main results (without such restrictions)
can be directly applied to this family, in other words, the sequence {xn} defined
by (1.9) converges weakly to zero under assumption (ii) of Lemma 3.3, while the
sequence x {xn} generated by (1.10) converges strongly to zero under the condition
lim supn→∞ αn < 1.

4. Applications to the parallel algorithm and the cyclic algorithm

Let C be a nonempty closed convex subset of a Hilbert space H. Unless other
specified throughout this section, we always assume that

(c1) for each i = 0, 1, . . . , N − 1, Ti : C → C be an asymptotically κi-strict

pseudo-contraction with respect to the sequence {γ(i)n }∞n=0 for some 0 ≤
κi < 1,

(c2) for each n ≥ 0, {λ(n)
i } is a finite sequence of positive numbers such that∑N−1

i=0 λ
(n)
i = 1 for all n, and λ̄i := inf{λ(n)

i : n ≥ 0} > 0 for i = 0, 1, . . . , N−
1.

Recently, Lopez Acedo and Xu [10] considered the problem of finding a point x
such that

x ∈ FN := ∩N−1
i=0 Fix(Ti),

where {Ti}N−1
i=0 are κi-strict pseudo-contractions defined on C under the condition

(c2). As FN ̸= ∅, they investigated the weak convergence of the sequence {xn}
generated explicitly by the following parallel algorithm:

(4.1) xn+1 = αnxn + (1− αn)

N−1∑
i=0

λ
(n)
i Tixn, n ≥ 0,
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and strong convergence of the following hybrid parallel algorithm:

(4.2)



x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)
∑N−1

i=0 λ
(n)
i Tixn,

Cn = {z ∈ C : ∥yn − z∥2 ≤ ∥xn − z∥2 + (1− αn)(κ− αn)

∥xn −
∑N−1

i=0 λ
(n)
i Tixn∥2},

Qn = {z ∈ C : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0, n ≥ 0,

where the initial guess x0 ∈ C is arbitrarily chosen and {αn}∞n=0 ⊂ [0, 1).

Throughout this section, let {Ti}N−1
i=0 be a finite family of asymptotically κi-strict

pseudo-contractions defined on C. Then we consider either the following modified
parallel algorithm of (4.1):

xn+1 = αnxn + (1− αn)
N−1∑
i=0

λ
(n)
i Tn

i xn, n ≥ 1.(4.3)

or the modified hybrid parallel algorithm of (4.2):

(4.4)



x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)
∑N−1

i=0 λ
(n)
i Tn

i xn,
Cn = {z ∈ C : ∥yn − z∥2 ≤ ∥xn − z∥2 + (1− αn)[θn

+(κ− αn)∥xn −
∑N−1

i=0 λ
(n)
i Tn

i xn∥2]},
Qn = {z ∈ C : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0, n ≥ 0,

where

θn = γn · sup{∥xn − z∥2 : z ∈ FN}.
For each n ≥ 0, let a mapping Sn : C → C defined by

(4.5) Snx =

N−1∑
i=0

λ
(n)
i Tn

i x

for all x ∈ C, where T 0
i = I for i = 0, 1, . . . , N − 1, Then parallel algorithms (4.3)

and (4.4) can be written compactly as (1.9) and (1.10), respectively, noticing the
fact

FN = F := ∩∞
n=0Fix(Sn)

by the property (iii) of the following lemma 4.1.

Put γn := max{γ(i)n : 1 ≤ i ≤ N} for n ≥ 0 and κ := max{κi : 1 ≤ i ≤ N}.
Obviously, γn → 0 and 0 ≤ κ < 1 and we therefore obtain the following properties
of the mapping Sn.

Lemma 4.1. Let x, y ∈ C and i = 0, 1, . . . , N − 1. Then the following properties
are satisfied.

(i) ∥Tn
i x− Tn

i y∥2 ≤ (1 + γn)∥x− y∥2 + κ∥(I − Tn
i )x− (I − Tn

i )y∥2.
(ii) ∥Snx − Sny∥2 ≤ (1 + γn)∥x − y∥2 + κ∥(I − Sn)x − (I − Sn)y∥2. In other

words, the family ℑ = {Sn : C → C, n ≥ 0} is asymptotically κ-strict
pseudo-contractive on C.
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(iii) If FN ̸= ∅, then FN = F ; hence F is closed convex so that the projection
PF is well defined.

Proof. (i) is obvious from the definition of asymptotically strict pseudo-contraction.
To prove (ii), use the identity (2.1) of Lemma 2.1 to derive

∥(I − Sn)x− (I − Sn)y∥2 =
∥∥N−1∑

i=0

λ
(n)
i [(I − Tn

i )x− (I − Tn
i )y]

∥∥2
=

N−1∑
i=0

λ
(n)
i ∥(I − Tn

i )x− (I − Tn
i )y∥2 −

N−1∑
i<j

λ
(n)
i λ

(n)
j ∥(Tn

i x− Tn
i y)− (Tn

j x− Tn
j y)∥2.

This yields a simple form:

(4.6)

N−1∑
i=0

λ
(n)
i ∥(I − Tn

i )x− (I − Tn
i )y∥2 = ∥(I − Sn)x− (I − Sn)y∥2 + J,

where J :=
∑N−1

i<j λ
(n)
i λ

(n)
j ∥(Tn

i x − Tn
i y) − (Tn

j x − Tn
j y)∥2 ≥ 0. Use (2.1), (i) and

(4.6) in turn to get

∥Snx− Sny∥2 =
∥∥N−1∑

i=0

λ
(n)
i (Tn

i x− Tn
i y)

∥∥2
=

N−1∑
i=0

λ
(n)
i ∥Tn

i x− Tn
i y∥2 − J

≤
N−1∑
i=0

λ
(n)
i {(1 + γn)∥x− y∥2 + κ∥(I − Tn

i )x− (I − Tn
i )y∥2} − J

= (1 + γn)∥x− y∥2 + κ

N−1∑
i=0

λ
(n)
i ∥(I − Tn

i )x− (I − Tn
i )y∥2 − J

= (1 + γn)∥x− y∥2 + κ∥(I − Sn)x− (I − Sn)y∥2 − (1− κ)J

≤ (1 + γn)∥x− y∥2 + κ∥(I − Sn)x− (I − Sn)y∥2.

Hence (ii) is proven.
Finally to prove (iii), it suffices to show that F ⊂ FN . Indeed, let x = Snx for

all n ≥ 0. Since FN ̸= ∅, for p ∈ FN , use (2.1) and (i) to derive

∥p− x∥2 = ∥p− Snx∥2 =
∥∥N−1∑

i=0

λ
(n)
i (p− Tn

i x)
∥∥2

=

N−1∑
i=0

λ
(n)
i ∥p− Tn

i x∥2 −
N−1∑
i<j

λ
(n)
i λ

(n)
j ∥Tn

i x− Tn
j x∥2

≤
N−1∑
i=0

λ
(n)
i {(1 + γn)∥p− x∥2 + κ∥x− Tn

i x∥2} − δ
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= (1 + γn)∥p− x∥2 + κ
N−1∑
i=0

λ
(n)
i ∥x− Tn

i x∥2 − δ

where δ :=
∑N−1

i<j λ
(n)
i λ

(n)
j ∥Tn

i x− Tn
j x∥2. Therefore, we have

(4.7) δ ≤ γn∥p− x∥2 + κ

N−1∑
i=0

λ
(n)
i ∥x− Tn

i x∥.

On the other hand, since Snx = x for all n ≥ 0, it follows from (2.1) that

0 = ∥Snx− x∥ =
∥∥N−1∑

i=0

λ
(n)
i (Tn

i x− x)
∥∥2

=

N−1∑
i=0

λ
(n)
i ∥Tn

i x− x∥2 − δ.(4.8)

Substituting (4.8) into (4.7) and simplifying, we have

0 ≤ (1− κ)

N−1∑
i=0

λ̄i∥Tn
i x− x∥2

≤ (1− κ)
N−1∑
i=0

λ
(n)
i ∥Tn

i x− x∥2

≤ γn∥p− x∥2 → 0

because γn → 0. This implies that, for i = 0, 1, . . . , N − 1, limn→∞ Tn
i x = x and

so x ∈ Fix(Ti) by continuity of Ti. Hence, x ∈ FN = ∩N
i=1Fix(Ti), which proves

F ⊂ FN . Finally, by (iii) of Proposition 2.7, each Fix(Ti) is closed convex for
i = 0, 1, . . . , N − 1. Hence FN is closed convex, and so is F = FN . This completes
the proof. �

Lemma 4.2. Assume FN ̸= ∅. Let x ∈ C and p ∈ FN . Then,

(i) (1− κ)
∑N−1

i=0 λ
(n)
i ∥x− Tn

i x∥2 ≤ ∥p− x∥(γn∥p− x∥+ 2∥x− Snx∥).
(ii) Let {xn} ⊂ C such that xn ⇀ z and ∥xn−Snxn∥ → 0. Assume, in addition,

∥xn − xn+1∥ → 0. Then z ∈ FN .

Proof. Put I :=
∑N−1

i=0 λ
(n)
i ∥x− Tn

i x∥2 and J :=
∑N−1

i<j λ
(n)
i λ

(n)
j ∥Tn

i x− Tn
j x∥2. Use

(2.1) to get

∥x− Snx∥2 =
∥∥N−1∑

i=0

λ
(n)
i (x− Tn

i x)
∥∥2 = I − J.

Observe

∥p− Snx∥2 = ∥(p− x) + (x− Snx)∥2

= ∥p− x∥2 + ∥x− Snx∥2 − 2⟨x− p, x− Snx⟩
= ∥p− x∥2 + I − J − 2⟨x− p, x− Snx⟩(4.9)
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by parallelogram law. Using (2.1) and (i) of Lemma 4.1 we have

∥p− Snx∥2 =
∥∥N−1∑

i=0

λ
(n)
i (p− Tn

i x)
∥∥2 = N−1∑

i=0

λ
(n)
i ∥p− Tn

i x∥2 − J

≤
N−1∑
i=0

λ
(n)
i {(1 + γn)∥p− x∥2 + κ∥x− Tn

i x∥2} − J

≤ (1 + γn)∥p− x∥2 + κI − J.(4.10)

Substituting (4.9) into (4.10) and simplifying we have

(1− κ)I ≤ γn∥p− x∥2 + 2⟨x− p, x− Snx⟩
≤ ∥p− x∥(γn∥p− x∥+ 2∥x− Snx∥),

which proves (i). To show (ii), replacing x with xn in (i) gives

(1− κ)
N−1∑
i=0

λ
(n)
i ∥xn − Tn

i xn∥2 ≤ ∥p− xn∥(γn∥p− xn∥+ 2∥x− Snxn∥).

Since {xn} is bounded, γn → 0 and ∥xn − Snxn∥ → 0, we can easily derive

(4.11) ∥xn − Tn
i xn∥ → 0, i = 0, 1, . . . , N − 1.

On the other hand, by (i) of Proposition 2.7, for each i = 0, 1, . . . , N − 1,

∥Tn
i x− Tn

i y∥ ≤ L(i)
n ∥x− y∥, x, y ∈ C,

where L
(i)
n denotes the Lipschitz constant of Tn

i . Put Ln := maxN−1
i=0 L

(i)
n . Then

(4.12) ∥Tn
i x− Tn

i y∥ ≤ Ln∥x− y∥, x, y ∈ C, i = 0, 1, . . . , N − 1.

After using (4.12) in the following second inequality, apply (4.11) and the as-
sumption ∥xn − xn+1∥ → 0 to derive

∥Tn
i xn − Tn+1

i xn∥ ≤ ∥Tn
i xn − xn∥+ ∥xn − xn+1∥

+∥xn+1 − Tn+1
i xn+1∥+ ∥Tn+1

i xn+1 − Tn+1
i xn∥

≤ ∥Tn
i xn − xn∥+ (1 + Ln+1)∥xn − xn+1∥

+∥xn+1 − Tn+1
i xn+1∥ → 0.(4.13)

For i = 0, 1, . . . , N − 1, with the help of (4.11)-(4.13) we have

∥xn − Tixn∥ ≤ ∥xn − Tn
i xn∥+ ∥Tn

i xn − Tn+1
i xn∥+ ∥Tn+1

i xn − Tixn∥
≤ (1 + L1)∥xn − Tn

i xn∥+ ∥Tn
i xn − Tn+1

i xn∥ → 0.(4.14)

Then the demiclosedness principle of I − Ti (Proposition 2.7 (ii)) implies that z ∈
Fix(Ti) for all i = 0, 1, . . . , N − 1. Hence z ∈ FN = ∩N−1

i=0 Fix(Ti) and the proof is
complete. �

As direct applications of Theorem 3.5 and 3.6, respectively, we obtain the fol-
lowing successive convergence problems of parallel algorithms for a finite family
{Ti}N−1

i=0 of N asymptotically κi-strict pseudo-contractions.
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Theorem 4.3. Let C be a nonempty closed convex subset of a Hilbert space H.

Let {Ti}N−1
0 and {λ(n)

i } be as in (c1) and (c2), respectively. Let γn := maxN−1
i=0 γ

(i)
n

and κ := maxN−1
i=0 κi. Assume that FN ̸= ∅ and the control sequences {γn}∞n=0 and

{αn}∞n=0 are chosen so that

(i)
∑∞

n=0 γn < ∞.
(ii) κ+ ϵ ≤ αn ≤ 1− ϵ, where ϵ ∈ (0, 1) is a small enough constant.

Starting from an arbitrarily given x0 ∈ C, let {xn} be the sequence generated by the
parallel algorithm (4.3) or (1.9). Then {xn} converges weakly to a common fixed

point of {Ti}N−1
i=0 .

Proof. By (ii) and (iii) of Lemma 4.1, it suffices to show that ωw(xn) ⊂ F . This
fact is directly derived from (ii) of Lemma 4.2 by reminding of (b) of Lemma 3.3.
Then our conclusion is obtained by Theorem 3.5. �

Theorem 4.4. Let C be a nonempty closed convex subset of a Hilbert space H. Let

{Ti}N−1
0 and {λ(n)

i } be as in (c1) and (c2), respectively. Let γn := maxN−1
i=0 γ

(i)
n and

κ := maxN−1
i=0 κi. Assume that FN is a nonempty bounded subset of C, and also that

the control sequence {αn}∞n=0 is chosen so that 0 ≤ αn < 1 for n ≥ 0. Let {xn}
be the sequence generated by the modified hybrid parallel algorithm (4.4) or (1.10),
starting from an arbitrarily given x0 ∈ C. Then xn → PFN

x0.

Proof. By (ii) and (iii) of Lemma 4.1, the family ℑ = {Sn : C → C, n ≥ 0}
is asymptotically κ-strict pseudo-contractive on C and F = FN is closed convex.
Immediately, the fact ωw(xn) ⊂ F is required from (ii) of Lemma 4.2 by reminding
of (b) of Lemma 3.4. Then our conclusion is achieved by Theorem 3.6. �

Lopez Acedo and Xu [10] also investigated the convergence problems for the
following cyclic algorithm:

x0 ∈ C chosen arbitrarily,
x1 = α0x0 + (1− α0)T0x0,
x2 = α1x1 + (1− α1)T1x1,

...
xN = αN−1xN−1 + (1− αN−1)TN−1xN−1,
xN+1 = αNxN + (1− αN )T0xN ,

...

where {αn}∞n=0 be a sequence in [0, 1]. The above cyclic algorithm can be written
in a more compact form as

(4.15) xn+1 = αnxn + (1− αn)T[n]xn, n ≥ 0,

where T[k] = TkmodN for integer k ≥ 1. The mod function takes values in the set
{0, 1, 2, · · · , N − 1} as

T[k] =

{
T0, if q = 0;
Tq, if 0 < q < N

for k = jN + q for some integers j ≥ 0 and 0 ≤ q < N .
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For our argument for a finite family {Ti}N−1
i=0 of asymptotically κi-strict pseudo-

contractions defined on C, we consider the following modified cyclic algorithm in-
stead of (4.15):

x0 ∈ C chosen arbitrarily,
x1 = α0x0 + (1− α0)T0x0,
x2 = α1x1 + (1− α1)T1x1,

...
xN = αN−1xN−1 + (1− αN−1)TN−1xN−1,
xN+1 = αNxN + (1− αN )T 2

0 xN ,
...

x2N = α2N−1x2N−1 + (1− α2N−1)T
2
N−1x2N−1,

x2N+1 = α2Nx2N + (1− α2N )T 3
0 x2N ,

...

which can be written in the following compact form:

(4.16) xn+1 = αnxn + (1− αn)T
k(n)
[n] xn, n ≥ 0,

where k(n) := q + 1, as expressed with n = qN + [n] for each n ≥ 0. Then it is not
hard to see that

(4.17) k(n−N) = k(n)− 1 and T[n−N ] = T[n], n ≥ N.

Observe that taking Tn
i = Ti (then γ

(i)
n = 0) for all n ≥ 0 in (4.16) reduces to

(4.15). Also, it is not hard to see that the family ℑ = {T k(n)
[n] : C → C, n ≥ 0} is

asymptotically κ-strict pseudo-contraction. Indeed, use (i) of Lemma 4.1 to get

∥T k(n)
[n] x− T

k(n)
[n] y∥ ≤ (1 + γk(n))∥x− y∥2 + κ∥(I − T

k(n)
[n] )x− (I − T

k(n)
[n] )y∥2

for all x, y ∈ C, and γk(n) → 0 because k(n) → ∞ as n → ∞.
Finally, as direct consequences of our main theorems, we also prove the following

successive convergence problems of cyclic algorithms for a finite family {Ti}N−1
i=0 of

asymptotically κi-strict pseudo-contractions.

Theorem 4.5. Under the same hypotheses with Theorem 4.3, the sequence {xn}
generated by the cyclic algorithm (4.16) converges weakly to a common fixed point

of {Ti}N−1
i=0 .

Proof. Replacing all the Sn in the process of the proof of Lemma 3.3 with T
k(n)
[n] , we

can immediately prove the following facts:

(1) limn→∞ ∥xn − p∥ exists for p ∈ FN ;

(2) ∥xn − T
k(n)
[n] xn∥ → 0 (hence ∥xn − xn+1∥ → 0) as n → ∞.

By (2), it is not hard to see that, for i = 0, 1, . . . , N − 1

(4.18) ∥xn − xn+i∥ → 0

and

(4.19) ∥T k(n)
[n] xn − xn+i∥ → 0.
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Using (4.12) and (4.17), we have

∥xn − T[n]xn∥ = ∥(xn − T
k(n)
[n] xn) + (T

k(n)
[n] xn − T[n]xn)∥

≤ ∥xn − T
k(n)
[n] xn∥+ L1∥T k(n)−1

[n] xn − xn∥

≤ ∥xn − T
k(n)
[n] xn∥+ L1(∥T k(n)−1

[n] xn − T
k(n−N)
[n−N ] xn−N∥+ ∥T k(n−N)

[n−N ] xn−N − xn∥)

≤ ∥xn − T
k(n)
[n] xn∥+ L1(Lk(n)−1∥xn − xn−N∥+ ∥T k(n−N)

[n−N ] xn−N − xn∥)

for all n ≥ N . Using (2), (4.18) and (4.19) with n −N instead n, i = 0, the right
hand side converges strongly to 0 and hence

(4.20) ∥xn − T[n]xn∥ → 0.

For i = 0, 1, . . . , N − 1, use (4.12) to derive the following second inequality and
also use (4.18) and (4.20) to get the convergence to 0 as

∥xn − T[n+i]xn∥ ≤ ∥xn − xn+i∥+ ∥xn+i − T[n+i]xn+i∥
+∥T[n+i]xn+i − T[n+i]xn∥

≤ (1 + L1)∥xn − xn+i∥+ ∥xn+i − T[n+i]xn+i∥ → 0.

For simplicity, put cni := ∥xn − Tixn∥ for i = 0, 1, . . . , N − 1 and n ≥ 0. For the
following enumeration (4.21) with N -rows, take, in turn, i = 0, N − 1, N − 2, · · · , 1
in the set {∥xn − T[n+i]xn∥} for each row and enumerate each column for all n ≥ 0.

(4.21)

c00 c11 c22 · · · cN−1
N−1 cN0 cN+1

1 · · · c2N−1
N−1 c2N0 · · · → 0

c0N−1 c10 c21 · · · cN−1
N−2 cNN−1 cN+1

0 · · · c2N−1
N−2 c2NN−1 · · · → 0

...
...

... · · ·
...

...
... · · ·

...
... · · · → 0

c01 c12 c23 · · · cN−1
0 cN1 cN+1

2 · · · c2N−1
0 c2N1 · · · → 0

It is not hard to find a sequence {cn0} positioned at each N -diagonal, repeatedly,
such that cn0 = ∥xn−T0xn∥ → 0. Moving each row downwards once and the last row
to the first cyclically, we can get the sequence {cn1} appearing at the same position
with {cn0} such that cn1 = ∥xn − T1xn∥ → 0. Repeating these processes, we have

(4.22) ∥xn − Tixn∥ → 0, i = 0, 1, . . . , N − 1.

Finally to show ωw(xn) ⊂ FN , use the demiclosedness property of I − Ti (see (ii)
of Proposition 2.7). Then, use Lemma 2.4 (with K = FN ) to conclude that {xn}
converges weakly to a point in FN . �

Theorem 4.6. Let C be a nonempty closed convex subset of a Hilbert space H. Let

{Ti}N−1
0 and {λ(n)

i }∞n=0 be as in (c1) and (c2), respectively. Let γn := maxN−1
i=0 γ

(i)
n

and κ := maxN−1
i=0 κi. Assume that FN is a nonempty bounded subset of C, and also

that the control sequence {αn} is chosen so that 0 ≤ αn < 1 for all n ≥ 0. Let {xn}
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be the sequence generated by the following modified cyclic algorithm:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)T
k(n)
[n] xn,

Cn = {z ∈ C : ∥yn − z∥2 ≤ ∥xn − z∥2 + (1− αn)[θn

+(κ− αn)∥xn − T
k(n)
[n] xn∥2]},

Qn = {z ∈ C : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0, n ≥ 0,

where θn = γn · sup{∥xn − z∥2 : z ∈ FN} → 0. Then xn → PFN
x0.

Proof. First, to claim the following observations (i)-(vi), simply replace Sn in the

proof of Lemma 3.4 with T
k(n)
[n] .

(i) xn is well defined for all n ≥ 1.
(ii) ∥xn − x0∥ ≤ ∥q − x0∥ for all n, where q = PFN

x0.
(iii) ∥xn+1 − xn∥ → 0.

(vi) ∥xn − T
k(n)
[n] xn∥ → 0.

To derive ωn(xn) ⊂ FN , repeat the argument of (4.18)-(4.22) in the proof of Theo-
rem 4.5. Finally use (ii) and Lemma 2.5 to arrive at the our conclusion. �
Remark 4.7. (a) The cyclic algorithm (4.15) was investigated by Xu and Ori [29] for
the implicit iteration process for N nonexpansive mappings, later studied by Sun
[22] for N quasi-nonexpansive mappings, and recently developed by Chang et al.
[2] for the implicit iteration process with error for N asymptotically nonexpansive
mappings.

(b) As taking γ
(i)
n = 0 (hence γn = 0) and Tn

i = Ti for all n and i = 0, 1, . . . , N−1
in (4.3) and (4.16), our results extend and improve the corresponding ones for a finite

family {Ti}N−1
i=0 of N κi-strict pseudo-contractions due to Lopez Acedo and Xu [10];

see Theorem 4.1 and 5.2 of [10].
(c) Note that Theorem 3.5 and 3.6 are also satisfied under the weaker assumption

of ℑ = {Sn : C → C, n ≥ 0}, more precisely, for an asymptotically κ-strict quasi-
pseudo-contractive family; in view of (1.8), we say that ℑ = {Sn : C → C, n ≥ 0}
is asymptotically κ-strict quasi-pseudo-contractive on C if F := ∩∞

n=1Fix(Sn) ̸= ∅
and there exist a constant κ ∈ [0, 1) and a sequence {γn}∞n=0 of nonnegative real
numbers with limn→∞ γn = 0 such that

∥Snx− p∥2 ≤ (1 + γn)∥x− p∥2 + κ∥x− Snx∥2

for all x ∈ C, p ∈ F and all integers n ≥ 0.
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(1977), 1357–1359.

[10] G. Lopez Acedo and H. K. Xu,Iterative methods for strict pseudo-contractions in Hilbert spaces,
Nonlinear Analysis TMA 67 (2007), 2258–2271.

[11] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.
[12] G. Marino and H. K. Xu, Convergence of generalized proximal point algorithms, Comm. Applied

Anal. 3 (2004), 791–808.
[13] G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudo-contractions

in Hilbert Spaces, J. Math. Anal. Appl. 329 (2007) 336–346.
[14] C. Matinez-Yanes and H. K. Xu, Strong convergence of the CQ method for fixed point processes,

Nonlinear Analysis TMA 64 (2006), 2400–2411.
[15] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and

nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372–379.
[16] M. O. Osilike, S. C. Aniagbosor and B. G. Akuchu, Fixed points of asymptotically demicon-

tractive mappings in arbitrary Banach spaces, Panamer. Math. J. 12 (2002), 77–88.
[17] M. O. Osilike, A. Udomene, D. I. Igbokwe and B. G. Akuchu, Demiclosedness principle and

convergence theorems for k-strictly asymptotically pseudocontractive maps, J. Math. Anal.
Appl. 326 (2007), 1334–1345.

[18] L. Qihou, Convergence theorems of the sequence of iterates for asymptotically demicontractive
and hemicontractive mappings, Nonlinear Analysis TMA 26 (1996), 1835–1842.

[19] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math.
Anal. Appl. 67 (1979), 274–276.

[20] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J.
Math. Anal. Appl. 158 (1991), 407–413.

[21] J. Schu, Approximation of fixed points of asymptotically nonexpansive mappings, Proc. Amer.
Math. Soc. 112 (1991), 143–151.

[22] Z. H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptoti-
cally quasi-nonexpansive mappings, J. Math. Anal. Appl. 286 (2003), 351–358.

[23] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa
iteration process, J. Math. Anal. Appl. 178 (1993), 301–308.

[24] K. K. Tan and H. K. Xu, Fixed point iteration processes for asymptotically nonexpansive
mappings, Proc. Amer. Math. Soc. 122 (1994), 733–739.

[25] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58
(1992), 486–491.

[26] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), 240–
256.

[27] H. K. Xu, Remarks on an iterative method for nonexpansive mappings, Comm. Applied Non-
linear Anal. 10 (2003), 67–75.



THE MODIFIED MANN’S ITERATION METHODS 597

[28] H. K. Xu, Strong convergence of an iterative method for nonexpansive Mappings and accretive
operators, J. Math. Anal. Appl. 314 (2006), 631–643.

[29] H. K. Xu and R. G. Ori, An implicit iteration process for nonexpansive mappings, Numer.
Funct. Anal. Optimiz. 22 (2001), 767–773.

Manuscript received June 23, 2010

revised April 14, 2011

Kui-Yeon Kim
Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea

E-mail address: iloveky0416@hanmail.net

Tae-Hwa Kim
Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea

E-mail address: taehwa@pknu.ac.kr


