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WEAK AND STRONG CONVERGENCE THEOREMS
FOR EXTENDED HYBRID MAPPINGS IN HILBERT SPACES

WATARU TAKAHASHI, NGAI-CHING WONG, AND JEN-CHIH YAO

ABSTRACT. Let C be a closed convex subset of a real Hilbert space H. A mapping
U :C — H is called extended hybrid if there are «, 8, € R such that

a(l+)|Uz = Uy||* + (1 = a(l +7)) |z - Uy|®
< B+anlUz —y|* + (1 = (B+ay) |z -yl

—(a=Bnllz = Uz|* =]y - Uy|*
for all z,y € C. In this paper, we first show that the class of extended hybrid
mappings contains the class of strict pseudo-contractions defined by Browder and
Petryshyn [6]. We also obtain some important properties for extended hybrid
mappings and strict pseudo-contractions in a Hilbert space. Using these results,
we prove weak convergence theorems of Baillon’s type [3] and of Mann’s type
[19] for extended hybrid mappings in a Hilbert space. Finally, we get strong

convergence theorems of Halpern’s type [9] and of the hybrid methods [22] and
[30] for these mappings.

1. INTRODUCTION

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space and let C' be a nonempty closed
convex subset of H. A mapping T': C' — H is said to be nonexpansive if

1Tz =Tyl < llz -yl

for all x,y € C. A mapping T : C — H is said to be a strict pseudo-contraction [6]
if there exists a real number k£ with 0 < k < 1 such that

(1.1) 1Tz = Ty|* < |lo = ylI* + k(I = T)a — (1 = D)yl

for all x,y € C. We also call such a mapping T a k-strict pseudo-contraction.
A k-strict pseudo-contraction T' : C — H is nonexpansive if k = 0. A mapping
T :C — H is said to be nonspreading [17] and hybrid [28] if

(1.2) 2Tz — Ty|* < || Tz — ylI* + | Ty — =|?
and
(1.3) 3| Tz — Ty|l* < |lo =yl + 1Tz — y||* + |Ty — z|?
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for all z,y € C, respectively; see also [11], [12], [13] and [16]. We know from [2§]
that a nonexpansive mapping, a nonspreading mapping and a hybrid mapping are
deduced from a firmly nonexpansive mapping. A mapping T : C — H is said to be
firmly nonexpansive [5], [8] if

[Tz — Tyl < (z —y, Tz — Ty)

for all z,y € C. A firmly nonexpansive mapping F' can be deduced from an equilib-
rium problem in a Hilbert space; see, for instance, [4] and [7]. Recently, Kocourek,
Takahashi and Yao [15] considered a broad class of nonlinear mappings in a Hilbert
space which contains the classes of nonexpansive mappings, nonspreading mappings
and hybrid mappings: A mapping T : C — H is called generalized hybrid [15] if
there are «, 5 € R such that

(14)  alTz—Ty|* + (1 - a)llz - Tyll* < Bl|Tz — y|* + 1 - B)llz — |

for all x,y € C. We call such a mapping an («, [5)-generalized hybrid mapping.
For example, an («, )-generalized hybrid mapping is nonexpansive for o = 1 and
B = 0, nonspreading for ¢« = 2 and § = 1, and hybrid for a = % and g = %
Hojo, Takahashi and Yao [10] also introduced a class of nonlinear mappings in a
Hilbert space which contains the class of generalized hybrid mappings: A mapping
U :C — H is called extended hybrid if there are «, 8,y € R such that

(1.5) a(l+y)|Uz = Uyl + (1 — a1+ 7)) ||z — Uyl?
< (B+aN||Uz —yl> + (1= (B+ ay))llz — y|?
—(a =B llz = Uz|® = ~lly — Uyl

for all x,y € C.

In this paper, we first show that the class of extended hybrid mappings contains
the class of strict pseudo-contractions in a Hilbert space. We also obtain some
important properties for extended hybrid mappings and strict pseudo-contractions
in a Hilbert space. Using these results, we prove weak convergence theorems of
Baillon’s type [3] and of Mann’s type [19] for extended hybrid mappings in a Hilbert
space. Finally, we get strong convergence theorems of Halpern’s type [9] and of the
hybrid methods [22], [30] for these mappings.

2. PRELIMINARIES

Let H be a (real) Hilbert space with inner product (-,- ) and norm ||-|. We
denote the strong convergence and the weak convergence of {z,} to x € H by
xn, — x and z, — x, respectively. From [27], we know the following basic equality:
For z,y € H and A € R, we have

(2.1) Az 4 (1= Nyl = Alz]” + (1 = Vgl =21 =Nz -yl
Furthermore, we know that for z,y,u,v € H,
(2.2) 2(z —y,u—v) =l —v|*+ |y — ull’ = o —u|* — [ly — o>

Let C' be a nonempty closed convex subset of H and let T be a mapping from
C into H. Then, we denote by F(T) the set of fixed points of T. A mapping
T :C — H with F(T) # 0 is called quasi-nonezxpansive if ||x — Ty|| < ||z — y|| for



WEAK AND STRONG MEAN CONVERGENCE THEOREMS 555

all z € F(T) and y € C. It is well-known that the set F(T") of fixed points of a
quasi-nonexpansive mapping 7 is closed and convex; see Ito and Takahashi [14]. Tt
is not so difficult to show this fact in a Hilbert space. In fact, to show that F(T)
is closed, let us take a sequence {z,} C F(T) such that z, — zp. Since C is closed
and convex, C' is weakly closed and hence zg € C. We also have

120 = Tzo0ll < ll20 = znll + l|2n — Tz0l| < 2[|20 = zall

for n € N. Tending n — oo, we have that zp € F(T') and hence F(T) is closed.
To show that F(T') is convex, let us take z1,z2 € F(T) and A € [0, 1], and put
20 = Az1 + (1 — A)2z2. Then we have from (2.1) that

|20 — Tz0l|? = | Az1 + (1 — N)zo — T2
= | M(z1 — Tz0) + (1 — X (22 — T)||?
= Alz1 = Tzol” + (1 = N)[lz2 = Tzo[* = A(1 = A) |21 — 22
< Allzr = 2ol + (1 = N)llz2 = 201> = A1 = N)||z1 — 2o
= A1 = A?[lz1 = 2> + A2(1 = Mllz1 = 22)* = A1 = N)[|z1 — 22?
=A1=ANA=A+A=1)z1 —2|*=0

and hence zp € F(T). So, F(T) is convex.

Let C be a nonempty closed convex subset of H and « € H. Then, we know that
there exists a unique nearest point z € C such that ||z — z|| = inf,cc | — y||. We
denote such a correspondence by z = Pox. Pg is called the metric projection of H
onto C. It is known that Po is nonexpansive and

(x — Pox, Pcx —u) > 0
for all x € H and u € C. Furthermore, we know that
(2.3) |Pox — Peyll® < {x -y, Pex — Poy)

for all z,y € H; see [27] for more details. The following lemma was proved by
Takahashi and Toyoda [31].

Lemma 2.1. Let D be a nonempty closed convex subset of a real Hilbert space H .
Let P be the metric projection of H onto D and let {x,} be a sequence in H. If
|znt1 — ul| < ||zn —u|| for allu € D and n € N, then {Px,} converges strongly.

Let C be a nonempty closed convex subset of H. Then, we know that a mapping
T :C — H is called generalized hybrid [15] if there are «, € R such that

(2.4) a| Tz = Tyl + (1 = a)llz = Tyl < BTz — y|* + (1 = B) |z -y
for all z,y € C. We can show that if x = Tx, then for any y € C,

allz = Tyl* + (1 = o)l = Ty|* < Blla —y* + (1 = B)||z — |
and hence

(2.5) [z =Tyl < [lz =yl



556 W. TAKAHASHI, N.-C. WONG, AND J.-C. YAO

This means that an (a, ()-generalized hybrid mapping with a fixed point is quasi-
nonexpansive. A mapping S : C — H is super hybrid [15, 33] if there are «, 5,7 € R
such that

af|Sz — Syl*+(1 — a+ )|z — Sy|?
<B+B-a))ISz—y|P+(1-8—(B—a-1))|z—yl?
+ (o = B)yllz — Szl|” + ~lly — Sy|?

for all z,y € C. We call such a mapping an («, 3, v)-super hybrid mapping. An
(c, B, 0)-super hybrid mapping is («, ()-generalized hybrid. So, the class of super
hybrid mappings contains the class of generalized hybrid mappings. Kocourek,
Takahashi and Yao [15] also proved the following fixed point theorem for super
hybrid mappings in a Hilbert space.

Theorem 2.2. Let C' be a nonempty bounded closed convex subset of a Hilbert
space H and let o, 8 and v be real numbers with v > 0. Let S : C — C be an
(e, B, v)-super hybrid mapping. Then, S has a fized point in C. In particular, if
S:C — Cis an («a, B)-generalized hybrid mapping, then S has a fized point in C.

We also know a fixed point theorem [10] for generalized hybrid non-self mappings
in a Hilbert space.

Theorem 2.3. Let C' be a nonempty bounded closed convex subset of a Hilbert space
H and let o« and [ be real numbers. Let T be an (o, B)-generalized hybrid mapping
of C into H with a — B > 0. Suppose that there exists m > 1 such that for any
xeC,Te =x+tly—x) for somey € C and t with 1 <t <m. Then, T has a
fized point in C.

To prove one of our main results, we need the following lemma [2]:

Lemma 2.4. Let {s,} be a sequence of nonnegative real numbers, let {ay} be
a sequence of [0,1] with Y o2, = 00, let {8y} be a sequence of nonnegative
real numbers with > > | Bn < 0o, and let {~,} be a sequence of real numbers with

limsup,,_,o Yn < 0. Suppose that
Spt+1 < (1 - an)sn + anyn + Bn

foralln =1,2,.... Then lim,_, s, =0.

Let [*° be the Banach space of bounded sequences with supremum norm. Let

u be an element of (I°°)* (the dual space of [°°). Then, we denote by u(f) the
value of p at f = (1,22, x3,...) € [°°. Sometimes, we denote by pu,(z,) the value
w(f). A linear functional p on [*° is called a mean if u(e) = ||p|| = 1, where
e=(1,1,1,...). A mean p is called a Banach limit on I*° if pp(zp+1) = pin(xn).
We know that there exists a Banach limit on [*°. If 4 is a Banach limit on [*°, then
for f = (ml,xg,xg, .. ) €[>,

liminf 2, < pp(x,) < limsup z,.

n—r00 n—o00
In particular, if f = (x1,x9,23,...) € [*® and x,, — a € R, then we have u(f) =
tn(zy) = a. For the proof of existence of a Banach limit and its other elementary
properties, see [25].
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For a sequence {C,} of nonempty closed convex subsets of a Hilbert space H,
define s-Li,C,, and w-Ls,C,, as follows: x €s-Li,C, if and only if there exists
{zn} C H such that {x,} converges strongly to x and z, € C, for all n € N.
Similarly, y €w-Ls,C,, if and only if there exist a subsequence {Cy,} of {C,} and a
sequence {y;} C H such that {y;} converges weakly to y and y; € Cy,, for all i € N.
If Cy satisfies that

(2.6) Cy =s-Li,,C,, =w-Ls,,C,,,

we say that {C),} converges to Cp in the sense of Mosco [21] and we write Cy =M-
lim,, o, Cy,. It is easy to show that if {C}, } is nonincreasing with respect to inclusion,
then {C),} converges to N2>, C,, in the sense of Mosco. For more details, see [21].
We know the following theorem [34].

Theorem 2.5. Let H be a Hilbert space. Let {C,} be a sequence of monempty
closed convex subsets of H. If Co =M-lim,—o C, exists and nonempty, then for
each x € H, Pc,x converges strongly to Po,z, where Pc, and Pc, are the mertic
projections of H onto Cy, and Cy, respectively.

3. EXTENDED HYBRID MAPPINGS

Let H be a Hilbert space and let C' be a nonempty closed convex subset of H.
We recall that a mapping U : C — H is called extended hybrid [10] if there are
a, 3,7 € R such that

(3.1) a(l+9)||Uz — Uyl]* + (1 — a(l + 7))l — Uy|?
< (B+aN||Uz —yll> + (1= (B+ ay))llz — y|?
—(a=B)llz = Uz|® = ~lly — Uyl

for all z,y € C and such a mapping U is called («, 3, v)-extended hybrid. In [10],
the authors derived a relation between the class of generalized hybrid mappings and
the class of extended hybrid mappings in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H and
let a, B and v be real numbers with v # —1. Let T and U be mappings of C into
H such that U = ﬁT—&— ﬁl, where Iz = x for all x € H. Then, for 1+~ > 0,
T:C — H is an («, 8)-generalized hybrid mapping if and only if U : C' — H is an
(o, B, v )-extended hybrid mapping. In this case, F(T) = F(U).

In this section, we first prove a fixed point theorem for strict pseudo-contractions
in a Hilbert space.

Theorem 3.2. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 < k <1 and let U : C — H be a k-strict
pseudo-contraction. Then, U is a (1,0,-k)-extended hybrid mapping and F(U) is
closed and convex. If, in addition, C is bounded and U is a mapping of C into
itself, then F(U) is nonempty.

Proof. Let U : C — H be a k-strict pseudo-contraction. Then, 0 < k < 1 and
(3:2) Uz = Uyl* < |l = yll* + E|(T = U)x — (I = U)ylf?



558 W. TAKAHASHI, N.-C. WONG, AND J.-C. YAO

for all x,y € C. So, we have from (2.2) that for all z,y € C,
Uz — Uy|* < ||lz = yl* + &||(I = U)z — (I = U)y]]?
= llz —ylI* + kllz —y — (Uz — Uy)|
= |z =yl + k(e — y* + |Uz — Uy|* - 2(z — y, Uz — Uy))
= |z = ylP” + k(llz — yl|* + |Uz — Uy|?
—|lz = Uy|* = lly — Uz|* + ||z — Uz|* + ||y — Uy|*)
and hence
(3.3) (1= B)[Uz=Uy|? + kl|lz = Uy||* < —k|Uz - y|?
+ (L4 k)|l —yl* + Ellz — Uz|® + &lly — Uy|*.
Putting o« = 1, 8 = 0 and v = —k in (3.1), we get (3.3). Then, U is a (1,0,-k)-

extended hybrid mapping. Furthermore, putting 7' = (1 — k)U + kI, where Iz = z
for all x € H, we have that

1 —k
U= 1—kT+1—k['
Using 1 +v =1 —k > 0 and Theorem 3.1, we have that T is a (1,0)-generalized
hybrid mapping, i.e., a nonexpansive mapping. So, F(T) is closed and convex.
From F(T) = F(U), F(U) is also closed and convex. Since C' is a bounded closed
convex set and T is a nonexpansive mapping of C' into itself, F'(T) is nonempty; see
[27]. Hence F'(U) is nonempty. O

In general, we have the following fixed point theorem for extended hybrid map-
pings in a Hilbert space.

Theorem 3.3. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let a, 3,y be real numbers. Let U : C — H be an («, 3,7 )-extended
hybrid mapping with 1 +~ > 0. Then F(U) is closed and convex. If, in addition,
C' is bounded, 0 < —vy < 1 and U is a mapping of C into itself, then F(U) # 0.

Proof. Let U : C — H be an (a, 3,7)-extended hybrid mapping with 1 +~v > 0.
Putting T'= (1 + v)U — vI, we have
v= 1 o7y g
1++ 1+~

From Theorem 3.1, we have that T is an («, #)-generalized hybrid mapping of C
into H. If F(U) # 0, then F(T) # () from F(U) = F(T). Then we have from
(2.5) that T': C — H is quasi-nonexpansive. So, we have that F(T) is closed and
convex and hence F(U) is closed and convex. If F(U) = (), it is obvious that F(U)
is closed and convex. Let U : C' — C be an («, 3, 7)-extended hybrid mapping with
0 < —y < 1. We note that if 0 < —y < 1, then 1 +v > 0. Since 0 < —y < 1 and
T = (14+~)U —~I, we have from Theorem 3.1 that T is an («, 3)-generalized hybrid
mapping of C into itself. Using Theorem 2.2, we have F(T) # (). So, F(U) #0. O

Using Theorem 3.3, we have the following fixed point theorem.
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Theorem 3.4. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 < k < 1. Let U : C' — H be a mapping
such that

(3-4) 2|Uz — Uy|? < |la = Uyl* + [Uz — y|®
+k(I(I = U)z — (I = U)yl* - 2(x — Uz,y — Uy))

for all z,y € C. Then, F(U) is closed and convex. In addition, if C' is bounded and
U is a mapping C into itself, then F(U) # ().

Proof. Using (2.2), we have that the inequality (3.4) is equivalent to
(3.5) 2(1 - k)|\Uz — Uy|* + (=1 + 2k) ||z — Uyl
< (1= 2k)||Uz — || + 2k[|z — y|”
+ ke —Uz|)? + klly — Uy|*.

On the other hand, putting « = 2, 8 = 1 and v = —k in (3.1), we get this inequality
(3.5). So, U is a (2,1,-k)-extended hybrid mapping. Using 0 < k < 1 and Theorem
3.3, we have the desired result. Il

For example, taking k = 3 in (3.4), we obtain that
2|Uz — Uyl® < 2|z — y|* + | - Uz|* + |ly - Uy|]?

for all x,y € C. Using Theorem 3.4, we have that such a mapping U has a fixed
point in C if C is bounded, closed and convex. Furthermore, F(U) is closed and
convex.

We also have the following important result for extended hybrid mappings in a
Hilbert space.

Theorem 3.5. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let o, 3,7 be real numbers and let U : C — H be an («, 3, )-extended
hybrid mapping with 1 +~ > 0. Then, I — U 1is demiclosed, i.e., x, — z and
Ty — Uxy — 0 imply z € F(U).

Proof. Since U : C' — H is extended hybrid, there are a, 8, € R such that
a(l+7)|Uz = Uyl* + (1 = a(l +7))llz — Uyl
< (B+ay|lUz —y|* + (1= (B + o)z -yl
— (o= Bz = Uz|* = ~lly - Uyl
for all x,y € C. Suppose z,, — z and z, — Uz, — 0. Let us consider
a(L+N|Uzn = Uzl + (1 = a(l +7))|zn — Uz|
< B+ allUzn = 2]* + (1 = (B + ay))l|lzn — 2|
— (a = Bllen — Uzy|? = ~llz = U2|.
From this inequality, we have
a(l+N)|Uzp — 2p + 20 — Uz|> + (1 — a(l + ) ||z, — Uz|?
< (B + aNlUzn = @ + 2 = 2[* + (1= (B + a))||2n — 2[*
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— (a = B)llen = Uzy|? = ~llz = U2|.
We apply a Banach limit u to both sides of the inequality. Then, we have
(L + VU — @ + @0 = Uz|* + (1 = a1+ 7)) |20 — Uz
< (B+ ammn| Uty — ap + 25 — 2|* + (L = (B + ay) |z — 2|
— (@ = B)vhnllzn — Uznl* = vinllz = Uz|.
We know from the properties of p that
pin||Uy—2p + 2 — Uz|?
= pn(|Uzn — znl|? + |20 — Uz||? + 2{Uzp — 2, 2p — Uz))
= pn||Uzn — 20||? + pin||zn — Uz|)? + 20 Uz — 20, 2 — Uz)
= pnllTn — UZHQ
and p, [|[Uzy, — 2n + 2 — 2||% = pin||zn — 2]|?. So, we have
a1+ P pallen = Uz|? + (1 = a(l + 7)) pallen — Uz|?
< (B+ ay)pnllzn = 21* + (1 = (8 + av))pallzn — 2|
—llz = Uz|)?
and hence
pnllzn = Uz||* < pnllzn — 2||* =71z — Uz
From ji,||zn, — Uz||? = pnllon — 2+ 2 — Uz||? = pullzn — 2]]? + ||z — Uz]|?, we also
have
pnllen = 2l* + ||z = Uz|? < pllzn — 2)1* = yllz = U=|%.

Hence, we obtain (1 4+ ~)||z — Uz||> < 0. Since 1 4+ > 0, we have ||z — Uz||?> < 0.
Then, Uz = z. This implies that I — U is demiclosed. O

Using Theorems 3.2 and 3.6, we have the following result obtained by Marino
and Xu [20]; see also [1].

Corollary 3.6. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 < k <1 and U : C — H be a k-strict
pseudo-contraction. Then, I — U is demiclosed, i.e., x, — z and x, — Uxy, — 0
imply z € F(U).

Proof. We know from Theorem 3.2 that a k-strict pseudo-contraction U : C' - H
is (1,0,-k)-entended hybrid. Furthermore, 0 < k < 1 implies 1 +~v=1—% > 0. So,
we have the desired result from Theorem 3.6. O

4. NONLINEAR ERGODIC THEOREM

In this section, using the technique developed in [24], [29] and [32], we prove
a nonlinear ergodic theorem of Baillon’s type [3] for extended hybrid mappings
in a Hilbert space. For proving it, we need the following two lemmas proved by
Takahashi and Yao and Kocourek [33] and Hojo, Takahashi and Yao [10].
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Lemma 4.1. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. LetT : C — H be a generalized hybrid mapping. Suppose that there exists
{zn} C C such that x,, = z and x,, — Txy, — 0. Then, z € F(T).

Lemma 4.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T be a generalized hybrid mapping from C into itself. Suppose that {T"x}
is bounded for some © € C. Define S,z = %2221 Tkz. Then, lim,_ o | Snx —
TSnz|| = 0. In particular, if C' is bounded, then

lim sup ||Spz — T'Spz|| = 0.

n—oo zeC

Theorem 4.3. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let o, B and 7 be real numbers and let U : C — C be an («a, 3,
v )-extended hybrid mapping such that 0 < —y < 1 and F(U) # 0. Let P be the
mertic projection of H onto F(U). Then, for any x € C,
1 n
Spo = ;((1 + VU —~D)Fz
converges weakly to z € F(U), where z = limy, oo PT"x and T = (1 + ~)U — ~I.

Proof. Put T = (1 +~)U — ~I. Since 0 < —vy < 1, we have from Theorem 3.1 that
T is an («, [3)-generalized hybrid mapping of C into itself, i.e.,
41 alTe—Ty|* + (1 —a)|z = Ty|* < BTz —y|* + (1 - B)llz — y|*
for all z,y € C. Since T is a generalized hybrid mapping and F(T) = F(U) # 0,
T is quasi-nonexpansive. So, F(T) is closed and convex. Let z € C' and u € F(T).
Then, we have ||[T" 'z — u|| < ||T"x — u||. Putting D = F(T) in Lemma 2.1, we
have that lim,,_,oo PT"x converges strongly. Put z = lim,,_,oo PT"z. Let us show
Spx — z. Since {T™z} is bounded, so is {Syz}. Let {S,,z} be a subsequence of
{Spz} such that S,,z — v. By Lemma 4.2, we know lim,,_, ||Spz — T'Spz|| = 0.
Using Lemma 4.1, we have v = Tw. To show S,x — z, it is sufficient to prove z = v.
From v € F(T), we have
(v —2,TFx — PT*z) = (v — PT*z, T*x — PT*z) + (PT*z — 2, T*z — PT"z)

< (PT*z — 2, Tz — PT"z)

< ||\ PT*z — 2||||T*x — PT*x|

< ||PT*z — 2||L
for all k € N, where L = sup{||T*z — PT*z|| : k € N}. Summing these inequalities
from k =1 to n; and dividing by n;, we have

1 & 1 &
— 2,8, ——Y PT*z) < =Y ||PT*z — z||L.
<v 2z, Sp, T - kzzl :c> < Z I x —z||

! k=1
Since Sp,x — v as ¢ — oo and PT"x — z as n — 00, we have (v — z,v — z) < 0.
This implies z = v. Therefore, {S,z} converges weakly to z € F(T') = F(U), where
z = limy,_,00 PT™x. So, we get the desired result. O

Using Theorem 4.3, we obtain the following corollary.
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Corollary 4.4. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 < k <1 and U : C — C be a k-strict
pseudo-contraction and F(U) # (). Let P be the mertic projection of H onto F(U).
Then, for any x € C,

n

S = — > (A-K)U + kD)™
m=1

converges weakly to z € F(U), where z = limy,_,oo PT"x and T = (1 — k)U + kI.

Proof. We know from Theorem 3.2 that a k-strict pseudo-contraction U : C' — C'is
(1,0,-k)-entended hybrid. Furthermore, 0 < k < 1 and —y = k imply 0 < —vy < 1.
So, we have the desired result from Theorem 4.3. O

5. WEAK CONVERGENCE THEOREM OF MANN’S TYPE

In this section, we prove a weak convergence theorem of Mann’s type [19] for
extended hybrid mappings in a Hilbert space. Before proving the theorem, we need
the following lemma proved by Takahashi, Yao and Kocourek [33].

Lemma 5.1. Let H be a Hilbert space, let C' be a nonempty closed convex subset
of H and let Po be the metric projection of H onto C'. Let a, B and ~ be real
numbers with v # —1 and let S : C — H be an (a, B, 7v)-super hybrid mapping
with F(S) # 0. Let {ay,} be a sequence of real numbers such that 0 < ay, < 1 and
liminf,, oo @ (1 — @) > 0. Suppose {x,} is the sequence generated by v1 = x € C
and

Sx, + xn)}, n € N.

1+~ 1+~
Then, the sequence {xy,} converges weakly to an element v of F(S), where v =
limy, 00 Pp(s)Zn and Prgy is the metric projection of H onto F(S).

In+1 = PC{anxn + (1 - an)(

Theorem 5.2. Let H be a Hilbert space, let C be a nonempty closed convex subset of
H and let Pc be the metric projection of H onto C. Let o, 5 and v be real numbers.
Let U : C — H be an (a, B, v)-extended hybrid mapping such that 1 4+~ > 0 and
F(U) # 0. Let {an} be a sequence of real numbers such that 0 < o, < 1 and
liminf, o an(l — o) > 0. Suppose {x,} is the sequence generated by z1 =z € C
and
Tptl = Pc{anxn +(1=-an) (A +y)Uzy — 733,1)}, n € N.

Then, the sequence {x,} converges weakly to an element v of F(U), where v =
limy, 00 Ppnn and Py is the metric projection of H onto FU).

Proof. Put T'= (1 + v)U — ~I. Then, we have from 1+~ > 0 and Theorem 3.1
that 7: C — H is an (a, f)-generalized hybrid mapping and F(U) = F(T) # 0.
Furthermore, we have that

Tyl = Pc{an:cn +(1- Ozn)T.CEn}, n € N.

Using Lemma 5.1 with v = 0, we have that {z,} converges weakly to an element v
of F(T'), where v = limy, 00 Pp(1)Tn and Pp(ry is the metric projection of H onto
F(T)=F(U). O

As direct consequences of Theorem 5.2, we obtain the following results.
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Corollary 5.3. Let H be a Hilbert space, let C be a nonempty closed convexr subset
of H and let Po be the metric projection of H onto C. Let v be a real number with
1+~v>0andletU:C — H be an (2, 1, v)-extended hybrid mapping, i.e.,
201+ y)|Uz = Uy|* = (1 +27) ||z — Uyl|?
< (1+29)[Uz = yl* = 27z - y?
— e = Uzl =~y - Uy|?
for all x,y € C. Let {a,} be a sequence of real numbers such that 0 < a,, < 1 and

liminf, o0 ap(l — o) > 0. Suppose {x,} is the sequence generated by v1 =z € C
and

Tni1 = Po{anzn + (1 — o) (1 +7)Uzp —yan)}, neN.
If F(U) # 0, then the sequence {x,} converges weakly to an element v of F(U),
where v = limy, 00 Pru)Tn and Pp) is the metric projection of H onto FU).

Corollary 5.4. Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let Po be the metric projection of H onto C. Let v be a real number with
1+~v>0andletU :C — H be an (g, %, v )-extended hybrid mapping, i.e.,

3L+ Uz = Uyl* = (1 +37))llz — Uylf?
< L+ 3)[Uz —y[* + (1 = 37) = - y?
— 29|z — Uz|* - 29|ly - Uy|?
for all x,y € C. Let {a,} be a sequence of real numbers such that 0 < a,, < 1 and

liminf, o0 an(l — o) > 0. Suppose {x,} is the sequence generated by 1 =z € C
and

Tpal = Pc(oznxn +(1—=-apn)((1+~y)Uzy — ’}/l'n)), n € N.
If F(U) # 0, then the sequence {x,} converges weakly to an element v of F(U),
where v = limy, 0o Pp)®n and Pryy is the metric projection of H onto F(U).

Taking v = —% in Corollaries 5.3 and 5.4, we obtain two mappings such that
2|Uz — Uyl® < 2l|lz — yl* + [lo — Uz||* + |y — Uyl
and
3|Ux — Uy|PP+[|lz — Uyl® + |y — Uz||?
< 5|z =y + 2lle — Uz|® + 2|y — Uyl|?

for all x,y € C, respectively. We can apply Corollaries 5.3 and 5.4 for such mappings
and then obtain weak convergence theorems in a Hilbert space. Next, we prove a
weak convergence theorem of Mann’s type for a class of non-self mappings containing

the class of nonexpansive mappings in a Hilbert space. For proving it, we state the
following lemma proved by Takahashi, Yao and Kocourek [33].

Lemma 5.5. Let H be a Hilbert space and let C' be a nonempty closed convex subset
of H. Let v be a real number with v # —1 and let S : C — H be a mapping such
that

1Sz — Syl + 2y(x — y, Sz — Sy) < (1 + 27)||z — yl|>
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for all x,y € C. Let {a,} be a sequence of real numbers such that 0 < a,, < 1 and
oo on(l — ay) = co. Suppose {xy} is a sequence generated by xy =z € C' and

1
Tpi1 = Gty + (1 —an)Pc(l_i_Van—l—%xn), n=12,....

If F(S) # 0, then the sequence {x,} converges weakly to an element v of F(S),
where v = limy, 00 Pp(syTn and Pp(g) is the metric projection of H onto F(S).

Theorem 5.6. Let H be a Hilbert space, let C' be a nonempty closed convexr subset
of H and let Po be the metric projection of H onto C'. Let a, B and ~ be real
numbers. Let v be a real number with 1 +~v > 0 and let U : C — H be a mapping
with F(U) # 0 such that

Uz — Uyl* < |l = ylI* = yII(I = U)z — (I = U)y]”
for all x,y € C. Let {a,} be a sequence of real numbers such that 0 < a,, < 1 and
Yoo om(l — ay) = co. Suppose {xy} is a sequence generated by xy =z € C' and
Tni1 = Oy + (1 — o) Po((1 4+ y)Uzn — yx,)), neN.
Then the sequence {x,} converges weakly to an element v of F(U), where v =
limp, 00 PpunyTn and Ppy is the metric projection of H onto F(U).
Proof. We have that for any =,y € C,
Uz = Uy|* < ||z = y|I* = ~(|(1 = U)z = (I = U)y]?
= Uz = Uy|* < |z =yl =v(llz —yl* + |Uz — Uy|®
— |z = Uyl® = |Uz = y|* + Uz — z[* + |ly = Uy|*)
= (1+9)[|Uz = Uy|)? = yl|lz = Uyl
<AUz =yl + (1 = le =yl =AUz — 2| =~y - Uy|*.

Thus, U isa (1,0, v)-extended hybrid mapping with 14y > 0. Put T' = (14~)U—~I.
Then, we have from Theorem 3.1 that T': C — H is an (1, 0)-generalized hybrid
mapping, i.e., a nonexpansive mapping and F(U) = F(T) # (). Using Lemma 5.5
with v = 0 or Reich’s theorem [23], we have that {z,} converges weakly to an
element v of F(T'), where v = limy, 0o Pp(7)Tn and Pp(y is the metric projection
of H onto F(T') = F(U). O

As a direct consequence of Theorem 5.6, we have the following corollary.

Corollary 5.7. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 < k < 1 and U : C — C be a
k-strict pseudo-contraction and F(U) # (. Let P be the mertic projection of H
onto F(U). Let {an} be a sequence of real numbers such that 0 < o, < 1 and
Yol an(l —ay) =o00. Suppose {z,} is a sequence generated by x1 = x € C' and

Tnt1 = nZn + (1 —ap){(1 — k) Uz, + kx,}, neN.

Then the sequence {xn} converges weakly to an element v of F(U), where v =
limy, 00 Prnyn and Ppyy is the metric projection of H onto F(U).
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Proof. We know from Theorem 3.2 that a k-strict pseudo-contraction U : C' — H
is (1,0,-k)-entended hybrid. Furthermore, 0 < k < 1 and —y = k imply 1+~ > 0.
So, we have the desired result from Theorem 5.6. O

Using Corollary 5.7, we prove a weak convergence theorem of Mann’s type for
strict pseudo-contractions which was obtained by Marino and Xu [20]; see also [1].

Theorem 5.8. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 < k <1 and U : C — C be a k-strict
pseudo-contraction such that F(U) # 0. Let {$,} be a sequence of real numbers
such that k < By, < 1 and Y 02 (Bn — k)(1 — Bn) = oo. Suppose that {x,} is a
sequence generated by 1 =z € C and

Tnt1 = Bnxn + (1 = Bp)Uxy, n €N
Then the sequence {xyn} converges weakly to an element v of F(U).
Proof. We have that for any n € N,

Yn = 5711'71 + (1 - Bn)an

_ﬁn_k Bn_k
C1-k 1—k

xn + (1 —

KA = k)Uzy + kxn}.

Putting o, = Bl"__kk, we have from 1 > 8, > k that 1 — k > 8, — k > 0 and hence

1> Bl"__kk = ay, > 0. Furthermore, we have that

[e.9]

D (Ba— k)1 = By) = o0

n=1

> (1= k)an(l - k)(1 - ay) = o0
n=1
—(1—k)? ian(l —ap) =0
n=1

<:>Zan(1 — ay) = 0.

n=1

From Corollary 5.7, we have the desired result. O

6. STRONG CONVERGENCE THEOREMS

In this section, we first prove a strong convergence theorem of Halpern’s type [9]
for extended hybrid mappings in a Hilbert space.

Theorem 6.1. Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Let v be a real number with 1+~ > 0 and let U : C'— H be a mapping
such that

Uz — Uyl* < |l = ylI* = yII(I = U)z — (I = U)y]®
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for all x,y € C. Let {a,,} C [0,1] be a sequence of real numbers such that o, — 0,
Yo o =00 and Y o7 oy — apg1| < 00. Suppose {x,} is a sequence generated
byrzy=x€C,ueC and

Tyl = apu+ (1 — an)PC{(l +y)Uxy — vmn}, n € N.

If F(U) # 0, then the sequence {x,} converges strongly to an element v of F(U),
where v = Ppnu and Ppy is the metric projection of H onto F'(U).

Proof. As in the proof of Theorem 5.6, we have that U is a (1, 0, -y)-extended
hybrid mapping of C into H. Put T' = (1 + ~)U — vI. Then, we have from
Theorem 3.1 that 7" is a (1, 0)-generalized hybrid mapping of C' into H, i.e., T is
a nonexpansive mapping of C' into H. Furthermore, we have F(U) = F(T). From
Wittmann’s theorem [35], we obtain z, — Pp(p,r)u; see also Takahashi [26]. Let
us show F(PcT) = F(T) = F(U). We know F(T) = F(U). It is obvious that
F(T) c F(PcT). We show F(PcT) ¢ F(T). If PcTv = v, we have from the
property of P that for u € F(T),

oo — ul® = 2| PoTv — ul?
< 2(Tv —u, PeTv — )
[T — ull? + | PoTo — ul®* — | T — PoTo|?
and hence
2llv —ul® < [lv—ul* + [l —ul® — || Tv —v|*.
Then, we have 0 < —||Tv — v||? and hence Twv = v. This completes the proof. [

As a direct consequence of Theorem 6.1, we have the following corollary.

Corollary 6.2. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 < k <1 and U : C — C be a k-strict
pseudo-contraction with F(U) # (). Let P be the mertic projection of H onto F(U).
Let {an} C [0,1] be a sequence of real numbers such that oy, — 0, Y 07 | oy = 00
and Y 00| |on — 1| < 00. Suppose {x,} is a sequence generated by r1 = x € C,
u e C and

Tpt1 = apu+ (1 — an){(l —k)Uzy, + kﬂ:n}, n € N.

Then the sequence {x,} converges strongly to an element v of F(U), where v =
Ppnyu and Ppy is the metric projection of H onto F'(U).

Next, using an idea of mean convergence and the method of the proof in [18], we
prove a strong convergence theorem of Halpern’s type for extended hybrid mappings
in a Hilbert space.

Theorem 6.3. Let C be a nonempty closed convex subset of a real Hilbert space H
and let o, B and k be real numbers. Let U : C — C be a («, 3, —k)-extended hybrid
mapping such that 0 < k < 1 and F(U) # () and let P be the metric projection of
H onto F(U). Suppose {x,} is a sequence generated by x1 =z € C, u € C and

Tpt1 = apt + (1 — ay)zn,
==Y (1=k)U + k)",

n
m=1
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for alln =1,2,..., where 0 < ay, <1, ay — 0 and > 02 ap = 00. Then {z,}
converges strongly to Pu.

Proof. For an («, 3, —k)-extended hybrid mapping U : C' — C, define
T=01-kU-+kI.

Then, we have from Theorem 3.1 that T': C — C'is an («, 8)-generalized hybrid
mapping such that F(T) = F(U). Since F(T) = F(U) is nonempty, we take
q€ F(T). Put r = ||u— ¢||. We define

D={yeH:|y—q|<r}nC.

Then D is a nonempty bounded closed convex subset of C'. Furthermore, D is
T-invariant and contains u. Thus we may assume that C is bounded without loss
of generality. Since T' is quasi-nonexpansive, we have that for all ¢ € F(T) and
n=123,..,

1 < 1 &
llzn —qll = - Z Tz, —q|| < - Z T %y — q|
m=1 m=1
(6.1) "
<

1
=3 llzn —gll = [z — ql.
n

m=1

Let us show limsup,,_, . (u— Pu, z, — Pu) < 0. Since {z,} is bounded, there exists a
subsequence {zp,} of {z,} with z,, — v. We may assume without loss of generality

lim sup(u — Pu, z, — Pu) = lim (u — Pu, z,, — Pu).
n—o0 1— 00

By Lemma 4.2, we have lim,_,« ||z, — Tzn|| = 0. Using Lemma 4.1, we have
v € F(T). Since P is the metric projection of H onto F(T'), we have

lim (v — Pu, z,, — Pu) = (u — Pu,v — Pu) <0.

1—00
This implies
(6.2) lim sup(u — Pu, z, — Pu) < 0.

n—00

Since zp4+1 — Pu= (1 — ayp) (2, — Pu) + o (u — Pu), from (6.1) we have

11 = ) (20 — Pu) + an(u — Pu)||?

(
(

Znt1 — Pul]?

IN

1 — an)?||zn — Pul|® + 2004, (u — Pu, 2,41 — Pu)

IN

1 — )|z, — Pul|? + 200, (u — Pu, 2,41 — Pu).

Putting s, = ||z, — Pul|?, 8, = 0 and 7, = 2(u — Pu, 7,41 — Pu) in Lemma 2.4,
from Y 7 | a,, = oo and (6.2) we have

lim ||z, — Pu| = 0.
n—oo

This completes the proof. O
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7. STRONG CONVERGENCE THEOREMS BY HYBRID METHODS

In this section, using the hybrid method by Nakajo and Takahashi [22], we first
prove a strong convergence theorem for extended hybrid non-self mappings in a
Hilbert space. The method of the proof is due to Nakajo and Takahashi [22] and
Marino and Xu [20].

Theorem 7.1. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let o, B and k be real numbers and let U : C — H be an («a, 3,
—k )-extended hybrid mapping such that k < 1 and F(U) # (0. Let {x,} C C be a
sequence generated by x1 = x € C and

Yn = anZTpn + (1 —an){(1 — k)Uzp + kxp},

Co = {2 € C Iy — 2P < ll2m — 212 = (1 = F)Pan(1 — an)l2n — Uzn2},
Qn=1{2€C:{(xy—z,x—1x,) >0},

Tni1 = Pe,ng,r, Vn €N,

where Pc,nq, is the metric projection of H onto Cp, N Qy and {a,} C (—o0,1).
Then, {z,} converges strongly to zy = Rpyz, where Ppy is the metric projection
of H onto F(U).

Proof. Put T = (1 — k)U + kI. We have U = 2.T + %I. So, we have from

Theorem 3.1 that 7' is an («, ()-generalized hybrid mapping of C into H and
F(U) = F(T). Since F(T) is closed and convex, F(U) is closed and convex. So,
there exists the mertic projection of H onto F(U). Furthermore, we have

Yn = oy + (1 — ay) Ty,
for all n € N. For any z € H, the inequality
lyn — 217 < llzn = 2[* = (1 = k)?an(l — an)llzn — Uznl|?
is equivalent to
2(zn = Yo, 2) < llznll® = llyal® — (1 = k)2 an(l = an) |2y — Uz,

So, we have that C),, Q,, and C, N @, are closed and convex for all n € N. We
next show that C,, N @, is nonempty. Let z € F(T) = F(U). Since T is quasi-
nonexpansive, we have that

1y = 2lI* = lan@n + (1 — an) Ty — 2||?
= apll@n — 2”2 + (1= an)|[Tayn — 2”2 —an(l = ap)[[Tzy — an2
< apllzn — Z”2 + (1 = an)llzn — Z||2 —an(l = ap)[[Tzy — ‘Tn”z
= [lzn — Z||2 - (1= k)2an(1 —an)||Uzp — lin”2-

So, we have z € C,, and hence F(T') C C, for all n € N. Next, we show by induction
that F(T) C C,NQy, for alln € N. From F(T') C Q1, it follows that F(T) C C1NQ;.
Suppose that F(T') C C, N Qy, for some k € N. From 441 = Pc,ng, =, we have

(X1 — 2, — Tpy1) >0, Vz € Cp N Q.
Since F(T') C Cx N Qy, we also have
(g1 — 2,0 —xp41) >0, Vze F(T).
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This implies F(T') C Qg+1. So, we have F(T) C Cr11NQk+1. By induction, we have
F(T) c C,NQy for all n € N. This means that {x,} is well-defined. Since z,, € C
and (x, — zp,x — x,) = 0, we have x,, € Q. Furthermore, from the definition of
Qn, we have z,, = Py, x. Using x, = Pg,r and z,41 = Pc,nQ,r C Qn, we have
from (2.2) that

(7.1) 0<2(x—xp, Tp — Tpi1)
= llz = znsa I = llz = 2al® = ll2n — 2n|?
<o =z [* = o — aall*.
So, we get that
(7.2) o = ]2 < [l — s
Furthermore, since z,, = Pg,x and z € F(T) C Qy, we have
(7.3) Iz — 2l < fla — 2.

So, we have that lim,, o |2 — 2,]|? exists. This implies that {x,} is bounded.
Hence, {T'z,} is also bounded. From (7.1), we also have

20 = @nsal? < |z = zpia|* = |z — 2n|?

and hence
(7.4) |zn, — zpt1]] — 0.
From z,+1 € C,, we have that
(7.5) lyn = Zpa1l* < llzn — @nra | = an(l — an)llzn — Tl
On the other hand, we know
(7.6) lyn = zns1ll® = llanzn + (1 = @n) Ty — Topa|®

= Oanxn - xn+1||2 + (1 — ap)[|Twp — wnJrIHQ

— an(1 = ap)||zn — T2
From (7.5) and (7.6), we have
(1= an)|Tzn — 2t |* < (1= an)l|zn — znga .
Since 1 — oy, > 0, we have || T2, — 2n11]|? < ||2n — Zny 1| and hence
Tz, — xpt1]| — O.
From
Ty — z0)|? = [T2n — @nt1 || + 2(T2n — Tntr, Tng1 — 2) + |2p41 — 2l

we also have
(7.7) Tz, — zp| — 0.

Since {x,} is bounded, there exists a subsequence {z,,} C {x,} such that z,, —
z*. From (7.7) and Lemma 4.1, we have z* € F(T). Put zo = Pp)z. Since
20 = Ppimyz C Cp, N Qp and zp41 = Po,n@,, we have that

(7.8) 2 = znpal* < [l — 20]*.
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Since || - ||? is weakly lower semicontinuous, from z,,, — z* we have that
lz = 2*[|* = flz|l* - 2(z, 2*) + 12"
< liminf(||z]* - 2(z, 2n,) + [|zn,|1*)
1—00

= liminf ||z — z,, ||
1—00

<l — 2.
From the definition of zg, we have z* = z3. So, we obtain x,, — 2. We finally show
that x,, — z9. Since
20 — znll? = |20 — z||> + ||z — zn||® + 2(20 — z,2 — x,), Vn €N,
we have

limsup ||20 — x,||? = limsup(||zo — z||* + ||z — 2 |* + 2(20 — z, 2 — 2,,))
n—00 n—00

< limsup(||z0 — z|* + ||z — 20|* + 2(20 — 2, 2 — 2,,))
n—oo

= ll20 = z[|* + || = 20* + 2(20 — x, & — 20)
=0.
So, we obtain lim,,_,~ |20 — zy|| = 0. Hence, {z,,} converges strongly to zp. This

completes the proof. O

Using Theorem 7.1, we can prove the following theorem obtained by Marino and
Xu [20].

Theorem 7.2. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 < k <1 and let U : C' — C be a k-strict
pseudo contraction such that F(U) # (. Let {x,} C C be a sequence generated by
r1 =z € C and

Yn = Bnpn + (1 — Bp)Usy,
Cn={2€C:lyn — 2> < llon — 2|> = (Bn — k)1 = Bu)llwn — Uzan|?},
Qn={2€C:(xy—2z,x—x,) >0},
Tptl = Pcannx, Vn € N,
where Pc,nq, is the metric projection of H onto C,, N Qy and {B,} C (—o0,1).

Then, {z,} converges strongly to zo = RpnT, where Ppy is the metric projection
of H onto F(U).

Proof. We first know that a (1,0,-k)-extended hybrid mapping with 0 < k < 1is a
k-strict pseudo contraction. We also have that for any n € N,

Yn = BnTn + (1 - 6n)an

6n_k ﬁn_k
= wt (1 1 — k) Uz, + k).
T %2 + ( 1—k>{( kYUzy, + kx,}
Putting o, = 5f_7kk,we have from 1 > (3, that 1 —k > 5, —k and hence 1 > Bl’fkk =

an,. Furthermore, we have that for any n € N and z € C|
lyn — ZH2 < |lzn — ZH2 = (Bn = B)(L = Bp)l|zn — UCCnHQ
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= lyn — 201 < e — 217 = (1= k)an(L = k)(1 = an)llzn — Unl|?
= llyn — 201 < llen — 217 = (1= k)2 an(l = ag)|en — Uzy .
From Theorem 7.1, we have the desired result. O

Next, we prove a strong convergence theorem by the shrinking projection method
[30] for extended hybrid non-self mappings in a Hilbert space.

Theorem 7.3. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let o,  and k be real numbers and let U : C — H be an («a, 3,
—k )-extended hybrid mapping such that k < 1 and F(U) # (. Let C; = C and let
{zn} C C be a sequence generated by x1 = x € C' and

Yn = @&y + (1 — ap){(1 — k) Uy, + kaxy, },
Covr = {2 € C + gn — 212 < lm — #IP — (1 = k)%ain(1 — ) [Uzn — 2]},

Tny1 = Po, .z, Vn €N,

where Pg, ,, is the metric projection of H onto Cpy1, and {a,} C (—o0,1). Then,
{zn} converges strongly to zp = Pp@yz, where Ppyy is the metric projection of H
onto F(U).
Proof. Put T'= (1 — k)U + kI. Then, we have from Theorem 3.1 that T is an («,
B)-generalized hybrid mapping of C into H and F(U) = F(T'). Since F(T) is closed
and convex, so is F(U). Then, there exists the mertic projection of H onto F(U).
Furthermore, we have
Yn = QpTp + (1 - an)Tmn
for all n € N. We show that C), are closed and convex, and F(T) C C, for all
n € N. It is obvious from the assumption that C7 = C is closed and convex, and
F(T) c C;. Suppose that Cy is closed and convex, and F(T) C C}, for some k € N.
As in the proof of Theorem 7.1, we know that for z € C}, the inequality
lyn — 2117 < llzn = 2I* = (1 = k)?an(1 = an)l|zn — Uzal|?
is equivalent to
2(Tn — Yn, 2) < ||xn||2 - ||ynH2 -(1- k/')2an(1 — an)|zy — anHz'

Since Cj, is closed and convex, so is Cgy1. Take z € F(T) C Ck. Then we have
from (2.2) that

3 — ZH2 = |lanmn + (1 — )Ty — ZH2
= apl|zn — ZH2 + (1 = an)||Txy — ZH2 —ap(1 — an)||Ton — xn”Q
< ap |z, — ZH2 + (1 = an)|lzn — ZH2 —(1- k)zan(l —ap) |Uxy — an2~

Hence, we have z € Cj41 and hence F(T') C Ciy;1. By induction, we have that C,
are closed and convex, and F(T') C C), for all n € N. Since C,, is closed and convex,
there exists the metric projection Pc, of H onto C,. Thus, {z,} is well-defined.
Since {C),} is a nonincreasing sequence of nonempty closed convex subsets of H
with respect to inclusion, it follows that

(7.9) 0 # F(T) C M- lim C, = () Cn.

n=1
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Put Cy = (,—; Cn. Then, by Theorem 2.5 we have that { P, x} converges strongly
to g = P, z, ie.,

xn = Po,x — x0.

To complete the proof, it is sufficient to show that zg = Pp(r)z. Since z, = Po,
and x, 11 = Po, ,x € Cpyq1 C Cy, we have from (2.2) that

1
(7.10) 0<2x—xp,Tn — Tpi1)
= |z — znall® = 2 = zal® ~ |20 — 241 |1®
< lz = 241 — llz — 2.
Thus, we get that
(7.11) P P R
Furthermore, since x,, = Pc,xz and z € F(T) C C,,, we have

(7.12) lz = zall? < ||z - 2|,

from which it follows that lim, ,o ||z — 2,||? exists. This implies that {z,} is
bounded. Hence, {T'z,} are also bounded. From (7.10), we have

0 = zn41]l? < llz = zasa|* = o — zal®.

So, we have that
(7.13) |xn — Tpt1]] — 0.
From z,; € C,11, we also have that
(7.14) 1y = @niall® < llen = znal® = (1= k)?an(l = an)l|lzn — Uzy|?

= |20 = @ni1])? = an(l = ap) ey — Ty,
On the other hand, we have from (2.2) that
(7.15) 1y = @nsall® = lonzn + (1 = an)Tzn — 2o

= anllen — Tnral* + (1 = a) [ T2n — 20|

— (1 = ap) ||z — Ty %
From (7.14) and (7.15), we have
(1= an)ITzy — 2nia|? < (1= ap)|len — zoga .
Since 1 — a, > 0, we have | T, — 2n+1]|? < ||2n — 2n41]|* and hence
| Txn — zpta| — 0.
Since
IT2n = 2l = IT2n — Tnsil* + 2{T20 = Tnt1, Tnst — 2n) + [|[Tns1 — @al?,

we also have

(7.16) Tz — 23] — 0.
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From x,, = Pc,x — xp, we have x,, = 9. Using (7.16) and Lemma 4.1 we have
zo € F(T). Put z9 = Pp(yx. Since 20 = Prpyz C Cpy1 and z,41 = Po, @, we
have that

(7.17) |z — zng1 |2 < [l — 20]|
So, we have from z, = Pg,x — o that

lz — ol = Iz — anll* < |z — 20|

lim
n—oo
From the definition of zp, we get z9 = z¢. Hence, {z,} converges strongly to zp.
This completes the proof. O

Using Theorem 7.3 and the metod of proof in Theorem 7.2, we have the following
strong convergence theorem for strict pseud-contractions in a Hilbert space.

Theorem 7.4. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 < k < 1 and let U : C — H be a

k-strict pseudo-contraction such that F(U) # 0. Let C; = C and let {x,} C C be a
sequence generated by x1 = x € C and

Yn = BnTn + (1 = Bp)Un,

Cri1= {2 € Cp ¢ [lyn — 2|* < llzn — 2[1* = (Bn — B)(1 = Ba) [Uzn — zal*},

Tpy1 = Po,., @, Vn €N,
where P, ., is the metric projection of H onto Cpi1, and {$,} C (—o0,1). Then,
{zn} converges strongly to zop = Pr @)z, where Ppyy is the metric projection of H
onto F(U).
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